mmzone.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifdef __KERNEL__
  4. #ifndef __ASSEMBLY__
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/cache.h>
  9. #include <linux/threads.h>
  10. #include <linux/numa.h>
  11. #include <linux/init.h>
  12. #include <linux/seqlock.h>
  13. #include <linux/nodemask.h>
  14. #include <asm/atomic.h>
  15. #include <asm/page.h>
  16. /* Free memory management - zoned buddy allocator. */
  17. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  18. #define MAX_ORDER 11
  19. #else
  20. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  21. #endif
  22. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  23. struct free_area {
  24. struct list_head free_list;
  25. unsigned long nr_free;
  26. };
  27. struct pglist_data;
  28. /*
  29. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  30. * So add a wild amount of padding here to ensure that they fall into separate
  31. * cachelines. There are very few zone structures in the machine, so space
  32. * consumption is not a concern here.
  33. */
  34. #if defined(CONFIG_SMP)
  35. struct zone_padding {
  36. char x[0];
  37. } ____cacheline_internodealigned_in_smp;
  38. #define ZONE_PADDING(name) struct zone_padding name;
  39. #else
  40. #define ZONE_PADDING(name)
  41. #endif
  42. enum zone_stat_item {
  43. NR_ANON_PAGES, /* Mapped anonymous pages */
  44. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  45. only modified from process context */
  46. NR_FILE_PAGES,
  47. NR_SLAB, /* Pages used by slab allocator */
  48. NR_PAGETABLE, /* used for pagetables */
  49. NR_FILE_DIRTY,
  50. NR_WRITEBACK,
  51. NR_UNSTABLE_NFS, /* NFS unstable pages */
  52. NR_BOUNCE,
  53. #ifdef CONFIG_NUMA
  54. NUMA_HIT, /* allocated in intended node */
  55. NUMA_MISS, /* allocated in non intended node */
  56. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  57. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  58. NUMA_LOCAL, /* allocation from local node */
  59. NUMA_OTHER, /* allocation from other node */
  60. #endif
  61. NR_VM_ZONE_STAT_ITEMS };
  62. struct per_cpu_pages {
  63. int count; /* number of pages in the list */
  64. int high; /* high watermark, emptying needed */
  65. int batch; /* chunk size for buddy add/remove */
  66. struct list_head list; /* the list of pages */
  67. };
  68. struct per_cpu_pageset {
  69. struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
  70. #ifdef CONFIG_SMP
  71. s8 stat_threshold;
  72. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  73. #endif
  74. } ____cacheline_aligned_in_smp;
  75. #ifdef CONFIG_NUMA
  76. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  77. #else
  78. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  79. #endif
  80. enum zone_type {
  81. /*
  82. * ZONE_DMA is used when there are devices that are not able
  83. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  84. * carve out the portion of memory that is needed for these devices.
  85. * The range is arch specific.
  86. *
  87. * Some examples
  88. *
  89. * Architecture Limit
  90. * ---------------------------
  91. * parisc, ia64, sparc <4G
  92. * s390 <2G
  93. * arm26 <48M
  94. * arm Various
  95. * alpha Unlimited or 0-16MB.
  96. *
  97. * i386, x86_64 and multiple other arches
  98. * <16M.
  99. */
  100. ZONE_DMA,
  101. /*
  102. * x86_64 needs two ZONE_DMAs because it supports devices that are
  103. * only able to do DMA to the lower 16M but also 32 bit devices that
  104. * can only do DMA areas below 4G.
  105. */
  106. ZONE_DMA32,
  107. /*
  108. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  109. * performed on pages in ZONE_NORMAL if the DMA devices support
  110. * transfers to all addressable memory.
  111. */
  112. ZONE_NORMAL,
  113. /*
  114. * A memory area that is only addressable by the kernel through
  115. * mapping portions into its own address space. This is for example
  116. * used by i386 to allow the kernel to address the memory beyond
  117. * 900MB. The kernel will set up special mappings (page
  118. * table entries on i386) for each page that the kernel needs to
  119. * access.
  120. */
  121. ZONE_HIGHMEM,
  122. MAX_NR_ZONES
  123. };
  124. #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
  125. /*
  126. * When a memory allocation must conform to specific limitations (such
  127. * as being suitable for DMA) the caller will pass in hints to the
  128. * allocator in the gfp_mask, in the zone modifier bits. These bits
  129. * are used to select a priority ordered list of memory zones which
  130. * match the requested limits. GFP_ZONEMASK defines which bits within
  131. * the gfp_mask should be considered as zone modifiers. Each valid
  132. * combination of the zone modifier bits has a corresponding list
  133. * of zones (in node_zonelists). Thus for two zone modifiers there
  134. * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
  135. * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
  136. * combinations of zone modifiers in "zone modifier space".
  137. *
  138. * As an optimisation any zone modifier bits which are only valid when
  139. * no other zone modifier bits are set (loners) should be placed in
  140. * the highest order bits of this field. This allows us to reduce the
  141. * extent of the zonelists thus saving space. For example in the case
  142. * of three zone modifier bits, we could require up to eight zonelists.
  143. * If the left most zone modifier is a "loner" then the highest valid
  144. * zonelist would be four allowing us to allocate only five zonelists.
  145. * Use the first form for GFP_ZONETYPES when the left most bit is not
  146. * a "loner", otherwise use the second.
  147. *
  148. * NOTE! Make sure this matches the zones in <linux/gfp.h>
  149. */
  150. #define GFP_ZONEMASK 0x07
  151. /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */
  152. #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */
  153. struct zone {
  154. /* Fields commonly accessed by the page allocator */
  155. unsigned long free_pages;
  156. unsigned long pages_min, pages_low, pages_high;
  157. /*
  158. * We don't know if the memory that we're going to allocate will be freeable
  159. * or/and it will be released eventually, so to avoid totally wasting several
  160. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  161. * to run OOM on the lower zones despite there's tons of freeable ram
  162. * on the higher zones). This array is recalculated at runtime if the
  163. * sysctl_lowmem_reserve_ratio sysctl changes.
  164. */
  165. unsigned long lowmem_reserve[MAX_NR_ZONES];
  166. #ifdef CONFIG_NUMA
  167. /*
  168. * zone reclaim becomes active if more unmapped pages exist.
  169. */
  170. unsigned long min_unmapped_ratio;
  171. struct per_cpu_pageset *pageset[NR_CPUS];
  172. #else
  173. struct per_cpu_pageset pageset[NR_CPUS];
  174. #endif
  175. /*
  176. * free areas of different sizes
  177. */
  178. spinlock_t lock;
  179. #ifdef CONFIG_MEMORY_HOTPLUG
  180. /* see spanned/present_pages for more description */
  181. seqlock_t span_seqlock;
  182. #endif
  183. struct free_area free_area[MAX_ORDER];
  184. ZONE_PADDING(_pad1_)
  185. /* Fields commonly accessed by the page reclaim scanner */
  186. spinlock_t lru_lock;
  187. struct list_head active_list;
  188. struct list_head inactive_list;
  189. unsigned long nr_scan_active;
  190. unsigned long nr_scan_inactive;
  191. unsigned long nr_active;
  192. unsigned long nr_inactive;
  193. unsigned long pages_scanned; /* since last reclaim */
  194. int all_unreclaimable; /* All pages pinned */
  195. /* A count of how many reclaimers are scanning this zone */
  196. atomic_t reclaim_in_progress;
  197. /* Zone statistics */
  198. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  199. /*
  200. * prev_priority holds the scanning priority for this zone. It is
  201. * defined as the scanning priority at which we achieved our reclaim
  202. * target at the previous try_to_free_pages() or balance_pgdat()
  203. * invokation.
  204. *
  205. * We use prev_priority as a measure of how much stress page reclaim is
  206. * under - it drives the swappiness decision: whether to unmap mapped
  207. * pages.
  208. *
  209. * temp_priority is used to remember the scanning priority at which
  210. * this zone was successfully refilled to free_pages == pages_high.
  211. *
  212. * Access to both these fields is quite racy even on uniprocessor. But
  213. * it is expected to average out OK.
  214. */
  215. int temp_priority;
  216. int prev_priority;
  217. ZONE_PADDING(_pad2_)
  218. /* Rarely used or read-mostly fields */
  219. /*
  220. * wait_table -- the array holding the hash table
  221. * wait_table_hash_nr_entries -- the size of the hash table array
  222. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  223. *
  224. * The purpose of all these is to keep track of the people
  225. * waiting for a page to become available and make them
  226. * runnable again when possible. The trouble is that this
  227. * consumes a lot of space, especially when so few things
  228. * wait on pages at a given time. So instead of using
  229. * per-page waitqueues, we use a waitqueue hash table.
  230. *
  231. * The bucket discipline is to sleep on the same queue when
  232. * colliding and wake all in that wait queue when removing.
  233. * When something wakes, it must check to be sure its page is
  234. * truly available, a la thundering herd. The cost of a
  235. * collision is great, but given the expected load of the
  236. * table, they should be so rare as to be outweighed by the
  237. * benefits from the saved space.
  238. *
  239. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  240. * primary users of these fields, and in mm/page_alloc.c
  241. * free_area_init_core() performs the initialization of them.
  242. */
  243. wait_queue_head_t * wait_table;
  244. unsigned long wait_table_hash_nr_entries;
  245. unsigned long wait_table_bits;
  246. /*
  247. * Discontig memory support fields.
  248. */
  249. struct pglist_data *zone_pgdat;
  250. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  251. unsigned long zone_start_pfn;
  252. /*
  253. * zone_start_pfn, spanned_pages and present_pages are all
  254. * protected by span_seqlock. It is a seqlock because it has
  255. * to be read outside of zone->lock, and it is done in the main
  256. * allocator path. But, it is written quite infrequently.
  257. *
  258. * The lock is declared along with zone->lock because it is
  259. * frequently read in proximity to zone->lock. It's good to
  260. * give them a chance of being in the same cacheline.
  261. */
  262. unsigned long spanned_pages; /* total size, including holes */
  263. unsigned long present_pages; /* amount of memory (excluding holes) */
  264. /*
  265. * rarely used fields:
  266. */
  267. char *name;
  268. } ____cacheline_internodealigned_in_smp;
  269. /*
  270. * The "priority" of VM scanning is how much of the queues we will scan in one
  271. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  272. * queues ("queue_length >> 12") during an aging round.
  273. */
  274. #define DEF_PRIORITY 12
  275. /*
  276. * One allocation request operates on a zonelist. A zonelist
  277. * is a list of zones, the first one is the 'goal' of the
  278. * allocation, the other zones are fallback zones, in decreasing
  279. * priority.
  280. *
  281. * Right now a zonelist takes up less than a cacheline. We never
  282. * modify it apart from boot-up, and only a few indices are used,
  283. * so despite the zonelist table being relatively big, the cache
  284. * footprint of this construct is very small.
  285. */
  286. struct zonelist {
  287. struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
  288. };
  289. /*
  290. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  291. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  292. * zone denotes.
  293. *
  294. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  295. * it's memory layout.
  296. *
  297. * Memory statistics and page replacement data structures are maintained on a
  298. * per-zone basis.
  299. */
  300. struct bootmem_data;
  301. typedef struct pglist_data {
  302. struct zone node_zones[MAX_NR_ZONES];
  303. struct zonelist node_zonelists[GFP_ZONETYPES];
  304. int nr_zones;
  305. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  306. struct page *node_mem_map;
  307. #endif
  308. struct bootmem_data *bdata;
  309. #ifdef CONFIG_MEMORY_HOTPLUG
  310. /*
  311. * Must be held any time you expect node_start_pfn, node_present_pages
  312. * or node_spanned_pages stay constant. Holding this will also
  313. * guarantee that any pfn_valid() stays that way.
  314. *
  315. * Nests above zone->lock and zone->size_seqlock.
  316. */
  317. spinlock_t node_size_lock;
  318. #endif
  319. unsigned long node_start_pfn;
  320. unsigned long node_present_pages; /* total number of physical pages */
  321. unsigned long node_spanned_pages; /* total size of physical page
  322. range, including holes */
  323. int node_id;
  324. wait_queue_head_t kswapd_wait;
  325. struct task_struct *kswapd;
  326. int kswapd_max_order;
  327. } pg_data_t;
  328. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  329. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  330. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  331. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  332. #else
  333. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  334. #endif
  335. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  336. #include <linux/memory_hotplug.h>
  337. void __get_zone_counts(unsigned long *active, unsigned long *inactive,
  338. unsigned long *free, struct pglist_data *pgdat);
  339. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  340. unsigned long *free);
  341. void build_all_zonelists(void);
  342. void wakeup_kswapd(struct zone *zone, int order);
  343. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  344. int classzone_idx, int alloc_flags);
  345. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  346. unsigned long size);
  347. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  348. void memory_present(int nid, unsigned long start, unsigned long end);
  349. #else
  350. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  351. #endif
  352. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  353. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  354. #endif
  355. /*
  356. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  357. */
  358. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  359. static inline int populated_zone(struct zone *zone)
  360. {
  361. return (!!zone->present_pages);
  362. }
  363. static inline int is_highmem_idx(enum zone_type idx)
  364. {
  365. return (idx == ZONE_HIGHMEM);
  366. }
  367. static inline int is_normal_idx(enum zone_type idx)
  368. {
  369. return (idx == ZONE_NORMAL);
  370. }
  371. /**
  372. * is_highmem - helper function to quickly check if a struct zone is a
  373. * highmem zone or not. This is an attempt to keep references
  374. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  375. * @zone - pointer to struct zone variable
  376. */
  377. static inline int is_highmem(struct zone *zone)
  378. {
  379. return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
  380. }
  381. static inline int is_normal(struct zone *zone)
  382. {
  383. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  384. }
  385. static inline int is_dma32(struct zone *zone)
  386. {
  387. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  388. }
  389. static inline int is_dma(struct zone *zone)
  390. {
  391. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  392. }
  393. /* These two functions are used to setup the per zone pages min values */
  394. struct ctl_table;
  395. struct file;
  396. int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
  397. void __user *, size_t *, loff_t *);
  398. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  399. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
  400. void __user *, size_t *, loff_t *);
  401. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
  402. void __user *, size_t *, loff_t *);
  403. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  404. struct file *, void __user *, size_t *, loff_t *);
  405. #include <linux/topology.h>
  406. /* Returns the number of the current Node. */
  407. #ifndef numa_node_id
  408. #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
  409. #endif
  410. #ifndef CONFIG_NEED_MULTIPLE_NODES
  411. extern struct pglist_data contig_page_data;
  412. #define NODE_DATA(nid) (&contig_page_data)
  413. #define NODE_MEM_MAP(nid) mem_map
  414. #define MAX_NODES_SHIFT 1
  415. #else /* CONFIG_NEED_MULTIPLE_NODES */
  416. #include <asm/mmzone.h>
  417. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  418. extern struct pglist_data *first_online_pgdat(void);
  419. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  420. extern struct zone *next_zone(struct zone *zone);
  421. /**
  422. * for_each_pgdat - helper macro to iterate over all nodes
  423. * @pgdat - pointer to a pg_data_t variable
  424. */
  425. #define for_each_online_pgdat(pgdat) \
  426. for (pgdat = first_online_pgdat(); \
  427. pgdat; \
  428. pgdat = next_online_pgdat(pgdat))
  429. /**
  430. * for_each_zone - helper macro to iterate over all memory zones
  431. * @zone - pointer to struct zone variable
  432. *
  433. * The user only needs to declare the zone variable, for_each_zone
  434. * fills it in.
  435. */
  436. #define for_each_zone(zone) \
  437. for (zone = (first_online_pgdat())->node_zones; \
  438. zone; \
  439. zone = next_zone(zone))
  440. #ifdef CONFIG_SPARSEMEM
  441. #include <asm/sparsemem.h>
  442. #endif
  443. #if BITS_PER_LONG == 32
  444. /*
  445. * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
  446. * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
  447. */
  448. #define FLAGS_RESERVED 9
  449. #elif BITS_PER_LONG == 64
  450. /*
  451. * with 64 bit flags field, there's plenty of room.
  452. */
  453. #define FLAGS_RESERVED 32
  454. #else
  455. #error BITS_PER_LONG not defined
  456. #endif
  457. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  458. #define early_pfn_to_nid(nid) (0UL)
  459. #endif
  460. #ifdef CONFIG_FLATMEM
  461. #define pfn_to_nid(pfn) (0)
  462. #endif
  463. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  464. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  465. #ifdef CONFIG_SPARSEMEM
  466. /*
  467. * SECTION_SHIFT #bits space required to store a section #
  468. *
  469. * PA_SECTION_SHIFT physical address to/from section number
  470. * PFN_SECTION_SHIFT pfn to/from section number
  471. */
  472. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  473. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  474. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  475. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  476. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  477. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  478. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  479. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  480. #endif
  481. struct page;
  482. struct mem_section {
  483. /*
  484. * This is, logically, a pointer to an array of struct
  485. * pages. However, it is stored with some other magic.
  486. * (see sparse.c::sparse_init_one_section())
  487. *
  488. * Additionally during early boot we encode node id of
  489. * the location of the section here to guide allocation.
  490. * (see sparse.c::memory_present())
  491. *
  492. * Making it a UL at least makes someone do a cast
  493. * before using it wrong.
  494. */
  495. unsigned long section_mem_map;
  496. };
  497. #ifdef CONFIG_SPARSEMEM_EXTREME
  498. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  499. #else
  500. #define SECTIONS_PER_ROOT 1
  501. #endif
  502. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  503. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  504. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  505. #ifdef CONFIG_SPARSEMEM_EXTREME
  506. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  507. #else
  508. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  509. #endif
  510. static inline struct mem_section *__nr_to_section(unsigned long nr)
  511. {
  512. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  513. return NULL;
  514. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  515. }
  516. extern int __section_nr(struct mem_section* ms);
  517. /*
  518. * We use the lower bits of the mem_map pointer to store
  519. * a little bit of information. There should be at least
  520. * 3 bits here due to 32-bit alignment.
  521. */
  522. #define SECTION_MARKED_PRESENT (1UL<<0)
  523. #define SECTION_HAS_MEM_MAP (1UL<<1)
  524. #define SECTION_MAP_LAST_BIT (1UL<<2)
  525. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  526. #define SECTION_NID_SHIFT 2
  527. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  528. {
  529. unsigned long map = section->section_mem_map;
  530. map &= SECTION_MAP_MASK;
  531. return (struct page *)map;
  532. }
  533. static inline int valid_section(struct mem_section *section)
  534. {
  535. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  536. }
  537. static inline int section_has_mem_map(struct mem_section *section)
  538. {
  539. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  540. }
  541. static inline int valid_section_nr(unsigned long nr)
  542. {
  543. return valid_section(__nr_to_section(nr));
  544. }
  545. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  546. {
  547. return __nr_to_section(pfn_to_section_nr(pfn));
  548. }
  549. static inline int pfn_valid(unsigned long pfn)
  550. {
  551. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  552. return 0;
  553. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  554. }
  555. /*
  556. * These are _only_ used during initialisation, therefore they
  557. * can use __initdata ... They could have names to indicate
  558. * this restriction.
  559. */
  560. #ifdef CONFIG_NUMA
  561. #define pfn_to_nid(pfn) \
  562. ({ \
  563. unsigned long __pfn_to_nid_pfn = (pfn); \
  564. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  565. })
  566. #else
  567. #define pfn_to_nid(pfn) (0)
  568. #endif
  569. #define early_pfn_valid(pfn) pfn_valid(pfn)
  570. void sparse_init(void);
  571. #else
  572. #define sparse_init() do {} while (0)
  573. #define sparse_index_init(_sec, _nid) do {} while (0)
  574. #endif /* CONFIG_SPARSEMEM */
  575. #ifndef early_pfn_valid
  576. #define early_pfn_valid(pfn) (1)
  577. #endif
  578. void memory_present(int nid, unsigned long start, unsigned long end);
  579. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  580. #endif /* !__ASSEMBLY__ */
  581. #endif /* __KERNEL__ */
  582. #endif /* _LINUX_MMZONE_H */