file.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/aio.h>
  27. #include <linux/falloc.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. #include <linux/statfs.h>
  31. #include <linux/compat.h>
  32. #include <linux/slab.h>
  33. #include <linux/btrfs.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "print-tree.h"
  39. #include "tree-log.h"
  40. #include "locking.h"
  41. #include "compat.h"
  42. #include "volumes.h"
  43. static struct kmem_cache *btrfs_inode_defrag_cachep;
  44. /*
  45. * when auto defrag is enabled we
  46. * queue up these defrag structs to remember which
  47. * inodes need defragging passes
  48. */
  49. struct inode_defrag {
  50. struct rb_node rb_node;
  51. /* objectid */
  52. u64 ino;
  53. /*
  54. * transid where the defrag was added, we search for
  55. * extents newer than this
  56. */
  57. u64 transid;
  58. /* root objectid */
  59. u64 root;
  60. /* last offset we were able to defrag */
  61. u64 last_offset;
  62. /* if we've wrapped around back to zero once already */
  63. int cycled;
  64. };
  65. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  66. struct inode_defrag *defrag2)
  67. {
  68. if (defrag1->root > defrag2->root)
  69. return 1;
  70. else if (defrag1->root < defrag2->root)
  71. return -1;
  72. else if (defrag1->ino > defrag2->ino)
  73. return 1;
  74. else if (defrag1->ino < defrag2->ino)
  75. return -1;
  76. else
  77. return 0;
  78. }
  79. /* pop a record for an inode into the defrag tree. The lock
  80. * must be held already
  81. *
  82. * If you're inserting a record for an older transid than an
  83. * existing record, the transid already in the tree is lowered
  84. *
  85. * If an existing record is found the defrag item you
  86. * pass in is freed
  87. */
  88. static int __btrfs_add_inode_defrag(struct inode *inode,
  89. struct inode_defrag *defrag)
  90. {
  91. struct btrfs_root *root = BTRFS_I(inode)->root;
  92. struct inode_defrag *entry;
  93. struct rb_node **p;
  94. struct rb_node *parent = NULL;
  95. int ret;
  96. p = &root->fs_info->defrag_inodes.rb_node;
  97. while (*p) {
  98. parent = *p;
  99. entry = rb_entry(parent, struct inode_defrag, rb_node);
  100. ret = __compare_inode_defrag(defrag, entry);
  101. if (ret < 0)
  102. p = &parent->rb_left;
  103. else if (ret > 0)
  104. p = &parent->rb_right;
  105. else {
  106. /* if we're reinserting an entry for
  107. * an old defrag run, make sure to
  108. * lower the transid of our existing record
  109. */
  110. if (defrag->transid < entry->transid)
  111. entry->transid = defrag->transid;
  112. if (defrag->last_offset > entry->last_offset)
  113. entry->last_offset = defrag->last_offset;
  114. return -EEXIST;
  115. }
  116. }
  117. set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  118. rb_link_node(&defrag->rb_node, parent, p);
  119. rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
  120. return 0;
  121. }
  122. static inline int __need_auto_defrag(struct btrfs_root *root)
  123. {
  124. if (!btrfs_test_opt(root, AUTO_DEFRAG))
  125. return 0;
  126. if (btrfs_fs_closing(root->fs_info))
  127. return 0;
  128. return 1;
  129. }
  130. /*
  131. * insert a defrag record for this inode if auto defrag is
  132. * enabled
  133. */
  134. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  135. struct inode *inode)
  136. {
  137. struct btrfs_root *root = BTRFS_I(inode)->root;
  138. struct inode_defrag *defrag;
  139. u64 transid;
  140. int ret;
  141. if (!__need_auto_defrag(root))
  142. return 0;
  143. if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  144. return 0;
  145. if (trans)
  146. transid = trans->transid;
  147. else
  148. transid = BTRFS_I(inode)->root->last_trans;
  149. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  150. if (!defrag)
  151. return -ENOMEM;
  152. defrag->ino = btrfs_ino(inode);
  153. defrag->transid = transid;
  154. defrag->root = root->root_key.objectid;
  155. spin_lock(&root->fs_info->defrag_inodes_lock);
  156. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
  157. /*
  158. * If we set IN_DEFRAG flag and evict the inode from memory,
  159. * and then re-read this inode, this new inode doesn't have
  160. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  161. */
  162. ret = __btrfs_add_inode_defrag(inode, defrag);
  163. if (ret)
  164. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  165. } else {
  166. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  167. }
  168. spin_unlock(&root->fs_info->defrag_inodes_lock);
  169. return 0;
  170. }
  171. /*
  172. * Requeue the defrag object. If there is a defrag object that points to
  173. * the same inode in the tree, we will merge them together (by
  174. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  175. */
  176. void btrfs_requeue_inode_defrag(struct inode *inode,
  177. struct inode_defrag *defrag)
  178. {
  179. struct btrfs_root *root = BTRFS_I(inode)->root;
  180. int ret;
  181. if (!__need_auto_defrag(root))
  182. goto out;
  183. /*
  184. * Here we don't check the IN_DEFRAG flag, because we need merge
  185. * them together.
  186. */
  187. spin_lock(&root->fs_info->defrag_inodes_lock);
  188. ret = __btrfs_add_inode_defrag(inode, defrag);
  189. spin_unlock(&root->fs_info->defrag_inodes_lock);
  190. if (ret)
  191. goto out;
  192. return;
  193. out:
  194. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  195. }
  196. /*
  197. * pick the defragable inode that we want, if it doesn't exist, we will get
  198. * the next one.
  199. */
  200. static struct inode_defrag *
  201. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  202. {
  203. struct inode_defrag *entry = NULL;
  204. struct inode_defrag tmp;
  205. struct rb_node *p;
  206. struct rb_node *parent = NULL;
  207. int ret;
  208. tmp.ino = ino;
  209. tmp.root = root;
  210. spin_lock(&fs_info->defrag_inodes_lock);
  211. p = fs_info->defrag_inodes.rb_node;
  212. while (p) {
  213. parent = p;
  214. entry = rb_entry(parent, struct inode_defrag, rb_node);
  215. ret = __compare_inode_defrag(&tmp, entry);
  216. if (ret < 0)
  217. p = parent->rb_left;
  218. else if (ret > 0)
  219. p = parent->rb_right;
  220. else
  221. goto out;
  222. }
  223. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  224. parent = rb_next(parent);
  225. if (parent)
  226. entry = rb_entry(parent, struct inode_defrag, rb_node);
  227. else
  228. entry = NULL;
  229. }
  230. out:
  231. if (entry)
  232. rb_erase(parent, &fs_info->defrag_inodes);
  233. spin_unlock(&fs_info->defrag_inodes_lock);
  234. return entry;
  235. }
  236. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  237. {
  238. struct inode_defrag *defrag;
  239. struct rb_node *node;
  240. spin_lock(&fs_info->defrag_inodes_lock);
  241. node = rb_first(&fs_info->defrag_inodes);
  242. while (node) {
  243. rb_erase(node, &fs_info->defrag_inodes);
  244. defrag = rb_entry(node, struct inode_defrag, rb_node);
  245. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  246. if (need_resched()) {
  247. spin_unlock(&fs_info->defrag_inodes_lock);
  248. cond_resched();
  249. spin_lock(&fs_info->defrag_inodes_lock);
  250. }
  251. node = rb_first(&fs_info->defrag_inodes);
  252. }
  253. spin_unlock(&fs_info->defrag_inodes_lock);
  254. }
  255. #define BTRFS_DEFRAG_BATCH 1024
  256. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  257. struct inode_defrag *defrag)
  258. {
  259. struct btrfs_root *inode_root;
  260. struct inode *inode;
  261. struct btrfs_key key;
  262. struct btrfs_ioctl_defrag_range_args range;
  263. int num_defrag;
  264. int index;
  265. int ret;
  266. /* get the inode */
  267. key.objectid = defrag->root;
  268. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  269. key.offset = (u64)-1;
  270. index = srcu_read_lock(&fs_info->subvol_srcu);
  271. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  272. if (IS_ERR(inode_root)) {
  273. ret = PTR_ERR(inode_root);
  274. goto cleanup;
  275. }
  276. if (btrfs_root_refs(&inode_root->root_item) == 0) {
  277. ret = -ENOENT;
  278. goto cleanup;
  279. }
  280. key.objectid = defrag->ino;
  281. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  282. key.offset = 0;
  283. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  284. if (IS_ERR(inode)) {
  285. ret = PTR_ERR(inode);
  286. goto cleanup;
  287. }
  288. srcu_read_unlock(&fs_info->subvol_srcu, index);
  289. /* do a chunk of defrag */
  290. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  291. memset(&range, 0, sizeof(range));
  292. range.len = (u64)-1;
  293. range.start = defrag->last_offset;
  294. sb_start_write(fs_info->sb);
  295. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  296. BTRFS_DEFRAG_BATCH);
  297. sb_end_write(fs_info->sb);
  298. /*
  299. * if we filled the whole defrag batch, there
  300. * must be more work to do. Queue this defrag
  301. * again
  302. */
  303. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  304. defrag->last_offset = range.start;
  305. btrfs_requeue_inode_defrag(inode, defrag);
  306. } else if (defrag->last_offset && !defrag->cycled) {
  307. /*
  308. * we didn't fill our defrag batch, but
  309. * we didn't start at zero. Make sure we loop
  310. * around to the start of the file.
  311. */
  312. defrag->last_offset = 0;
  313. defrag->cycled = 1;
  314. btrfs_requeue_inode_defrag(inode, defrag);
  315. } else {
  316. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  317. }
  318. iput(inode);
  319. return 0;
  320. cleanup:
  321. srcu_read_unlock(&fs_info->subvol_srcu, index);
  322. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  323. return ret;
  324. }
  325. /*
  326. * run through the list of inodes in the FS that need
  327. * defragging
  328. */
  329. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  330. {
  331. struct inode_defrag *defrag;
  332. u64 first_ino = 0;
  333. u64 root_objectid = 0;
  334. atomic_inc(&fs_info->defrag_running);
  335. while(1) {
  336. /* Pause the auto defragger. */
  337. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  338. &fs_info->fs_state))
  339. break;
  340. if (!__need_auto_defrag(fs_info->tree_root))
  341. break;
  342. /* find an inode to defrag */
  343. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  344. first_ino);
  345. if (!defrag) {
  346. if (root_objectid || first_ino) {
  347. root_objectid = 0;
  348. first_ino = 0;
  349. continue;
  350. } else {
  351. break;
  352. }
  353. }
  354. first_ino = defrag->ino + 1;
  355. root_objectid = defrag->root;
  356. __btrfs_run_defrag_inode(fs_info, defrag);
  357. }
  358. atomic_dec(&fs_info->defrag_running);
  359. /*
  360. * during unmount, we use the transaction_wait queue to
  361. * wait for the defragger to stop
  362. */
  363. wake_up(&fs_info->transaction_wait);
  364. return 0;
  365. }
  366. /* simple helper to fault in pages and copy. This should go away
  367. * and be replaced with calls into generic code.
  368. */
  369. static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
  370. size_t write_bytes,
  371. struct page **prepared_pages,
  372. struct iov_iter *i)
  373. {
  374. size_t copied = 0;
  375. size_t total_copied = 0;
  376. int pg = 0;
  377. int offset = pos & (PAGE_CACHE_SIZE - 1);
  378. while (write_bytes > 0) {
  379. size_t count = min_t(size_t,
  380. PAGE_CACHE_SIZE - offset, write_bytes);
  381. struct page *page = prepared_pages[pg];
  382. /*
  383. * Copy data from userspace to the current page
  384. *
  385. * Disable pagefault to avoid recursive lock since
  386. * the pages are already locked
  387. */
  388. pagefault_disable();
  389. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  390. pagefault_enable();
  391. /* Flush processor's dcache for this page */
  392. flush_dcache_page(page);
  393. /*
  394. * if we get a partial write, we can end up with
  395. * partially up to date pages. These add
  396. * a lot of complexity, so make sure they don't
  397. * happen by forcing this copy to be retried.
  398. *
  399. * The rest of the btrfs_file_write code will fall
  400. * back to page at a time copies after we return 0.
  401. */
  402. if (!PageUptodate(page) && copied < count)
  403. copied = 0;
  404. iov_iter_advance(i, copied);
  405. write_bytes -= copied;
  406. total_copied += copied;
  407. /* Return to btrfs_file_aio_write to fault page */
  408. if (unlikely(copied == 0))
  409. break;
  410. if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
  411. offset += copied;
  412. } else {
  413. pg++;
  414. offset = 0;
  415. }
  416. }
  417. return total_copied;
  418. }
  419. /*
  420. * unlocks pages after btrfs_file_write is done with them
  421. */
  422. void btrfs_drop_pages(struct page **pages, size_t num_pages)
  423. {
  424. size_t i;
  425. for (i = 0; i < num_pages; i++) {
  426. /* page checked is some magic around finding pages that
  427. * have been modified without going through btrfs_set_page_dirty
  428. * clear it here
  429. */
  430. ClearPageChecked(pages[i]);
  431. unlock_page(pages[i]);
  432. mark_page_accessed(pages[i]);
  433. page_cache_release(pages[i]);
  434. }
  435. }
  436. /*
  437. * after copy_from_user, pages need to be dirtied and we need to make
  438. * sure holes are created between the current EOF and the start of
  439. * any next extents (if required).
  440. *
  441. * this also makes the decision about creating an inline extent vs
  442. * doing real data extents, marking pages dirty and delalloc as required.
  443. */
  444. int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
  445. struct page **pages, size_t num_pages,
  446. loff_t pos, size_t write_bytes,
  447. struct extent_state **cached)
  448. {
  449. int err = 0;
  450. int i;
  451. u64 num_bytes;
  452. u64 start_pos;
  453. u64 end_of_last_block;
  454. u64 end_pos = pos + write_bytes;
  455. loff_t isize = i_size_read(inode);
  456. start_pos = pos & ~((u64)root->sectorsize - 1);
  457. num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
  458. end_of_last_block = start_pos + num_bytes - 1;
  459. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  460. cached);
  461. if (err)
  462. return err;
  463. for (i = 0; i < num_pages; i++) {
  464. struct page *p = pages[i];
  465. SetPageUptodate(p);
  466. ClearPageChecked(p);
  467. set_page_dirty(p);
  468. }
  469. /*
  470. * we've only changed i_size in ram, and we haven't updated
  471. * the disk i_size. There is no need to log the inode
  472. * at this time.
  473. */
  474. if (end_pos > isize)
  475. i_size_write(inode, end_pos);
  476. return 0;
  477. }
  478. /*
  479. * this drops all the extents in the cache that intersect the range
  480. * [start, end]. Existing extents are split as required.
  481. */
  482. void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
  483. int skip_pinned)
  484. {
  485. struct extent_map *em;
  486. struct extent_map *split = NULL;
  487. struct extent_map *split2 = NULL;
  488. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  489. u64 len = end - start + 1;
  490. u64 gen;
  491. int ret;
  492. int testend = 1;
  493. unsigned long flags;
  494. int compressed = 0;
  495. WARN_ON(end < start);
  496. if (end == (u64)-1) {
  497. len = (u64)-1;
  498. testend = 0;
  499. }
  500. while (1) {
  501. int no_splits = 0;
  502. if (!split)
  503. split = alloc_extent_map();
  504. if (!split2)
  505. split2 = alloc_extent_map();
  506. if (!split || !split2)
  507. no_splits = 1;
  508. write_lock(&em_tree->lock);
  509. em = lookup_extent_mapping(em_tree, start, len);
  510. if (!em) {
  511. write_unlock(&em_tree->lock);
  512. break;
  513. }
  514. flags = em->flags;
  515. gen = em->generation;
  516. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  517. if (testend && em->start + em->len >= start + len) {
  518. free_extent_map(em);
  519. write_unlock(&em_tree->lock);
  520. break;
  521. }
  522. start = em->start + em->len;
  523. if (testend)
  524. len = start + len - (em->start + em->len);
  525. free_extent_map(em);
  526. write_unlock(&em_tree->lock);
  527. continue;
  528. }
  529. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  530. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  531. clear_bit(EXTENT_FLAG_LOGGING, &flags);
  532. remove_extent_mapping(em_tree, em);
  533. if (no_splits)
  534. goto next;
  535. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  536. em->start < start) {
  537. split->start = em->start;
  538. split->len = start - em->start;
  539. split->orig_start = em->orig_start;
  540. split->block_start = em->block_start;
  541. if (compressed)
  542. split->block_len = em->block_len;
  543. else
  544. split->block_len = split->len;
  545. split->orig_block_len = max(split->block_len,
  546. em->orig_block_len);
  547. split->generation = gen;
  548. split->bdev = em->bdev;
  549. split->flags = flags;
  550. split->compress_type = em->compress_type;
  551. ret = add_extent_mapping(em_tree, split);
  552. BUG_ON(ret); /* Logic error */
  553. list_move(&split->list, &em_tree->modified_extents);
  554. free_extent_map(split);
  555. split = split2;
  556. split2 = NULL;
  557. }
  558. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  559. testend && em->start + em->len > start + len) {
  560. u64 diff = start + len - em->start;
  561. split->start = start + len;
  562. split->len = em->start + em->len - (start + len);
  563. split->bdev = em->bdev;
  564. split->flags = flags;
  565. split->compress_type = em->compress_type;
  566. split->generation = gen;
  567. split->orig_block_len = max(em->block_len,
  568. em->orig_block_len);
  569. if (compressed) {
  570. split->block_len = em->block_len;
  571. split->block_start = em->block_start;
  572. split->orig_start = em->orig_start;
  573. } else {
  574. split->block_len = split->len;
  575. split->block_start = em->block_start + diff;
  576. split->orig_start = em->orig_start;
  577. }
  578. ret = add_extent_mapping(em_tree, split);
  579. BUG_ON(ret); /* Logic error */
  580. list_move(&split->list, &em_tree->modified_extents);
  581. free_extent_map(split);
  582. split = NULL;
  583. }
  584. next:
  585. write_unlock(&em_tree->lock);
  586. /* once for us */
  587. free_extent_map(em);
  588. /* once for the tree*/
  589. free_extent_map(em);
  590. }
  591. if (split)
  592. free_extent_map(split);
  593. if (split2)
  594. free_extent_map(split2);
  595. }
  596. /*
  597. * this is very complex, but the basic idea is to drop all extents
  598. * in the range start - end. hint_block is filled in with a block number
  599. * that would be a good hint to the block allocator for this file.
  600. *
  601. * If an extent intersects the range but is not entirely inside the range
  602. * it is either truncated or split. Anything entirely inside the range
  603. * is deleted from the tree.
  604. */
  605. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  606. struct btrfs_root *root, struct inode *inode,
  607. struct btrfs_path *path, u64 start, u64 end,
  608. u64 *drop_end, int drop_cache)
  609. {
  610. struct extent_buffer *leaf;
  611. struct btrfs_file_extent_item *fi;
  612. struct btrfs_key key;
  613. struct btrfs_key new_key;
  614. u64 ino = btrfs_ino(inode);
  615. u64 search_start = start;
  616. u64 disk_bytenr = 0;
  617. u64 num_bytes = 0;
  618. u64 extent_offset = 0;
  619. u64 extent_end = 0;
  620. int del_nr = 0;
  621. int del_slot = 0;
  622. int extent_type;
  623. int recow;
  624. int ret;
  625. int modify_tree = -1;
  626. int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
  627. int found = 0;
  628. if (drop_cache)
  629. btrfs_drop_extent_cache(inode, start, end - 1, 0);
  630. if (start >= BTRFS_I(inode)->disk_i_size)
  631. modify_tree = 0;
  632. while (1) {
  633. recow = 0;
  634. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  635. search_start, modify_tree);
  636. if (ret < 0)
  637. break;
  638. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  639. leaf = path->nodes[0];
  640. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  641. if (key.objectid == ino &&
  642. key.type == BTRFS_EXTENT_DATA_KEY)
  643. path->slots[0]--;
  644. }
  645. ret = 0;
  646. next_slot:
  647. leaf = path->nodes[0];
  648. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  649. BUG_ON(del_nr > 0);
  650. ret = btrfs_next_leaf(root, path);
  651. if (ret < 0)
  652. break;
  653. if (ret > 0) {
  654. ret = 0;
  655. break;
  656. }
  657. leaf = path->nodes[0];
  658. recow = 1;
  659. }
  660. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  661. if (key.objectid > ino ||
  662. key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  663. break;
  664. fi = btrfs_item_ptr(leaf, path->slots[0],
  665. struct btrfs_file_extent_item);
  666. extent_type = btrfs_file_extent_type(leaf, fi);
  667. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  668. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  669. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  670. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  671. extent_offset = btrfs_file_extent_offset(leaf, fi);
  672. extent_end = key.offset +
  673. btrfs_file_extent_num_bytes(leaf, fi);
  674. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  675. extent_end = key.offset +
  676. btrfs_file_extent_inline_len(leaf, fi);
  677. } else {
  678. WARN_ON(1);
  679. extent_end = search_start;
  680. }
  681. if (extent_end <= search_start) {
  682. path->slots[0]++;
  683. goto next_slot;
  684. }
  685. found = 1;
  686. search_start = max(key.offset, start);
  687. if (recow || !modify_tree) {
  688. modify_tree = -1;
  689. btrfs_release_path(path);
  690. continue;
  691. }
  692. /*
  693. * | - range to drop - |
  694. * | -------- extent -------- |
  695. */
  696. if (start > key.offset && end < extent_end) {
  697. BUG_ON(del_nr > 0);
  698. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  699. memcpy(&new_key, &key, sizeof(new_key));
  700. new_key.offset = start;
  701. ret = btrfs_duplicate_item(trans, root, path,
  702. &new_key);
  703. if (ret == -EAGAIN) {
  704. btrfs_release_path(path);
  705. continue;
  706. }
  707. if (ret < 0)
  708. break;
  709. leaf = path->nodes[0];
  710. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  711. struct btrfs_file_extent_item);
  712. btrfs_set_file_extent_num_bytes(leaf, fi,
  713. start - key.offset);
  714. fi = btrfs_item_ptr(leaf, path->slots[0],
  715. struct btrfs_file_extent_item);
  716. extent_offset += start - key.offset;
  717. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  718. btrfs_set_file_extent_num_bytes(leaf, fi,
  719. extent_end - start);
  720. btrfs_mark_buffer_dirty(leaf);
  721. if (update_refs && disk_bytenr > 0) {
  722. ret = btrfs_inc_extent_ref(trans, root,
  723. disk_bytenr, num_bytes, 0,
  724. root->root_key.objectid,
  725. new_key.objectid,
  726. start - extent_offset, 0);
  727. BUG_ON(ret); /* -ENOMEM */
  728. }
  729. key.offset = start;
  730. }
  731. /*
  732. * | ---- range to drop ----- |
  733. * | -------- extent -------- |
  734. */
  735. if (start <= key.offset && end < extent_end) {
  736. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  737. memcpy(&new_key, &key, sizeof(new_key));
  738. new_key.offset = end;
  739. btrfs_set_item_key_safe(trans, root, path, &new_key);
  740. extent_offset += end - key.offset;
  741. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  742. btrfs_set_file_extent_num_bytes(leaf, fi,
  743. extent_end - end);
  744. btrfs_mark_buffer_dirty(leaf);
  745. if (update_refs && disk_bytenr > 0)
  746. inode_sub_bytes(inode, end - key.offset);
  747. break;
  748. }
  749. search_start = extent_end;
  750. /*
  751. * | ---- range to drop ----- |
  752. * | -------- extent -------- |
  753. */
  754. if (start > key.offset && end >= extent_end) {
  755. BUG_ON(del_nr > 0);
  756. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  757. btrfs_set_file_extent_num_bytes(leaf, fi,
  758. start - key.offset);
  759. btrfs_mark_buffer_dirty(leaf);
  760. if (update_refs && disk_bytenr > 0)
  761. inode_sub_bytes(inode, extent_end - start);
  762. if (end == extent_end)
  763. break;
  764. path->slots[0]++;
  765. goto next_slot;
  766. }
  767. /*
  768. * | ---- range to drop ----- |
  769. * | ------ extent ------ |
  770. */
  771. if (start <= key.offset && end >= extent_end) {
  772. if (del_nr == 0) {
  773. del_slot = path->slots[0];
  774. del_nr = 1;
  775. } else {
  776. BUG_ON(del_slot + del_nr != path->slots[0]);
  777. del_nr++;
  778. }
  779. if (update_refs &&
  780. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  781. inode_sub_bytes(inode,
  782. extent_end - key.offset);
  783. extent_end = ALIGN(extent_end,
  784. root->sectorsize);
  785. } else if (update_refs && disk_bytenr > 0) {
  786. ret = btrfs_free_extent(trans, root,
  787. disk_bytenr, num_bytes, 0,
  788. root->root_key.objectid,
  789. key.objectid, key.offset -
  790. extent_offset, 0);
  791. BUG_ON(ret); /* -ENOMEM */
  792. inode_sub_bytes(inode,
  793. extent_end - key.offset);
  794. }
  795. if (end == extent_end)
  796. break;
  797. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  798. path->slots[0]++;
  799. goto next_slot;
  800. }
  801. ret = btrfs_del_items(trans, root, path, del_slot,
  802. del_nr);
  803. if (ret) {
  804. btrfs_abort_transaction(trans, root, ret);
  805. break;
  806. }
  807. del_nr = 0;
  808. del_slot = 0;
  809. btrfs_release_path(path);
  810. continue;
  811. }
  812. BUG_ON(1);
  813. }
  814. if (!ret && del_nr > 0) {
  815. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  816. if (ret)
  817. btrfs_abort_transaction(trans, root, ret);
  818. }
  819. if (drop_end)
  820. *drop_end = found ? min(end, extent_end) : end;
  821. btrfs_release_path(path);
  822. return ret;
  823. }
  824. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  825. struct btrfs_root *root, struct inode *inode, u64 start,
  826. u64 end, int drop_cache)
  827. {
  828. struct btrfs_path *path;
  829. int ret;
  830. path = btrfs_alloc_path();
  831. if (!path)
  832. return -ENOMEM;
  833. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  834. drop_cache);
  835. btrfs_free_path(path);
  836. return ret;
  837. }
  838. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  839. u64 objectid, u64 bytenr, u64 orig_offset,
  840. u64 *start, u64 *end)
  841. {
  842. struct btrfs_file_extent_item *fi;
  843. struct btrfs_key key;
  844. u64 extent_end;
  845. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  846. return 0;
  847. btrfs_item_key_to_cpu(leaf, &key, slot);
  848. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  849. return 0;
  850. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  851. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  852. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  853. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  854. btrfs_file_extent_compression(leaf, fi) ||
  855. btrfs_file_extent_encryption(leaf, fi) ||
  856. btrfs_file_extent_other_encoding(leaf, fi))
  857. return 0;
  858. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  859. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  860. return 0;
  861. *start = key.offset;
  862. *end = extent_end;
  863. return 1;
  864. }
  865. /*
  866. * Mark extent in the range start - end as written.
  867. *
  868. * This changes extent type from 'pre-allocated' to 'regular'. If only
  869. * part of extent is marked as written, the extent will be split into
  870. * two or three.
  871. */
  872. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  873. struct inode *inode, u64 start, u64 end)
  874. {
  875. struct btrfs_root *root = BTRFS_I(inode)->root;
  876. struct extent_buffer *leaf;
  877. struct btrfs_path *path;
  878. struct btrfs_file_extent_item *fi;
  879. struct btrfs_key key;
  880. struct btrfs_key new_key;
  881. u64 bytenr;
  882. u64 num_bytes;
  883. u64 extent_end;
  884. u64 orig_offset;
  885. u64 other_start;
  886. u64 other_end;
  887. u64 split;
  888. int del_nr = 0;
  889. int del_slot = 0;
  890. int recow;
  891. int ret;
  892. u64 ino = btrfs_ino(inode);
  893. path = btrfs_alloc_path();
  894. if (!path)
  895. return -ENOMEM;
  896. again:
  897. recow = 0;
  898. split = start;
  899. key.objectid = ino;
  900. key.type = BTRFS_EXTENT_DATA_KEY;
  901. key.offset = split;
  902. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  903. if (ret < 0)
  904. goto out;
  905. if (ret > 0 && path->slots[0] > 0)
  906. path->slots[0]--;
  907. leaf = path->nodes[0];
  908. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  909. BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
  910. fi = btrfs_item_ptr(leaf, path->slots[0],
  911. struct btrfs_file_extent_item);
  912. BUG_ON(btrfs_file_extent_type(leaf, fi) !=
  913. BTRFS_FILE_EXTENT_PREALLOC);
  914. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  915. BUG_ON(key.offset > start || extent_end < end);
  916. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  917. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  918. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  919. memcpy(&new_key, &key, sizeof(new_key));
  920. if (start == key.offset && end < extent_end) {
  921. other_start = 0;
  922. other_end = start;
  923. if (extent_mergeable(leaf, path->slots[0] - 1,
  924. ino, bytenr, orig_offset,
  925. &other_start, &other_end)) {
  926. new_key.offset = end;
  927. btrfs_set_item_key_safe(trans, root, path, &new_key);
  928. fi = btrfs_item_ptr(leaf, path->slots[0],
  929. struct btrfs_file_extent_item);
  930. btrfs_set_file_extent_generation(leaf, fi,
  931. trans->transid);
  932. btrfs_set_file_extent_num_bytes(leaf, fi,
  933. extent_end - end);
  934. btrfs_set_file_extent_offset(leaf, fi,
  935. end - orig_offset);
  936. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  937. struct btrfs_file_extent_item);
  938. btrfs_set_file_extent_generation(leaf, fi,
  939. trans->transid);
  940. btrfs_set_file_extent_num_bytes(leaf, fi,
  941. end - other_start);
  942. btrfs_mark_buffer_dirty(leaf);
  943. goto out;
  944. }
  945. }
  946. if (start > key.offset && end == extent_end) {
  947. other_start = end;
  948. other_end = 0;
  949. if (extent_mergeable(leaf, path->slots[0] + 1,
  950. ino, bytenr, orig_offset,
  951. &other_start, &other_end)) {
  952. fi = btrfs_item_ptr(leaf, path->slots[0],
  953. struct btrfs_file_extent_item);
  954. btrfs_set_file_extent_num_bytes(leaf, fi,
  955. start - key.offset);
  956. btrfs_set_file_extent_generation(leaf, fi,
  957. trans->transid);
  958. path->slots[0]++;
  959. new_key.offset = start;
  960. btrfs_set_item_key_safe(trans, root, path, &new_key);
  961. fi = btrfs_item_ptr(leaf, path->slots[0],
  962. struct btrfs_file_extent_item);
  963. btrfs_set_file_extent_generation(leaf, fi,
  964. trans->transid);
  965. btrfs_set_file_extent_num_bytes(leaf, fi,
  966. other_end - start);
  967. btrfs_set_file_extent_offset(leaf, fi,
  968. start - orig_offset);
  969. btrfs_mark_buffer_dirty(leaf);
  970. goto out;
  971. }
  972. }
  973. while (start > key.offset || end < extent_end) {
  974. if (key.offset == start)
  975. split = end;
  976. new_key.offset = split;
  977. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  978. if (ret == -EAGAIN) {
  979. btrfs_release_path(path);
  980. goto again;
  981. }
  982. if (ret < 0) {
  983. btrfs_abort_transaction(trans, root, ret);
  984. goto out;
  985. }
  986. leaf = path->nodes[0];
  987. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  988. struct btrfs_file_extent_item);
  989. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  990. btrfs_set_file_extent_num_bytes(leaf, fi,
  991. split - key.offset);
  992. fi = btrfs_item_ptr(leaf, path->slots[0],
  993. struct btrfs_file_extent_item);
  994. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  995. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  996. btrfs_set_file_extent_num_bytes(leaf, fi,
  997. extent_end - split);
  998. btrfs_mark_buffer_dirty(leaf);
  999. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
  1000. root->root_key.objectid,
  1001. ino, orig_offset, 0);
  1002. BUG_ON(ret); /* -ENOMEM */
  1003. if (split == start) {
  1004. key.offset = start;
  1005. } else {
  1006. BUG_ON(start != key.offset);
  1007. path->slots[0]--;
  1008. extent_end = end;
  1009. }
  1010. recow = 1;
  1011. }
  1012. other_start = end;
  1013. other_end = 0;
  1014. if (extent_mergeable(leaf, path->slots[0] + 1,
  1015. ino, bytenr, orig_offset,
  1016. &other_start, &other_end)) {
  1017. if (recow) {
  1018. btrfs_release_path(path);
  1019. goto again;
  1020. }
  1021. extent_end = other_end;
  1022. del_slot = path->slots[0] + 1;
  1023. del_nr++;
  1024. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1025. 0, root->root_key.objectid,
  1026. ino, orig_offset, 0);
  1027. BUG_ON(ret); /* -ENOMEM */
  1028. }
  1029. other_start = 0;
  1030. other_end = start;
  1031. if (extent_mergeable(leaf, path->slots[0] - 1,
  1032. ino, bytenr, orig_offset,
  1033. &other_start, &other_end)) {
  1034. if (recow) {
  1035. btrfs_release_path(path);
  1036. goto again;
  1037. }
  1038. key.offset = other_start;
  1039. del_slot = path->slots[0];
  1040. del_nr++;
  1041. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1042. 0, root->root_key.objectid,
  1043. ino, orig_offset, 0);
  1044. BUG_ON(ret); /* -ENOMEM */
  1045. }
  1046. if (del_nr == 0) {
  1047. fi = btrfs_item_ptr(leaf, path->slots[0],
  1048. struct btrfs_file_extent_item);
  1049. btrfs_set_file_extent_type(leaf, fi,
  1050. BTRFS_FILE_EXTENT_REG);
  1051. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1052. btrfs_mark_buffer_dirty(leaf);
  1053. } else {
  1054. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1055. struct btrfs_file_extent_item);
  1056. btrfs_set_file_extent_type(leaf, fi,
  1057. BTRFS_FILE_EXTENT_REG);
  1058. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1059. btrfs_set_file_extent_num_bytes(leaf, fi,
  1060. extent_end - key.offset);
  1061. btrfs_mark_buffer_dirty(leaf);
  1062. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1063. if (ret < 0) {
  1064. btrfs_abort_transaction(trans, root, ret);
  1065. goto out;
  1066. }
  1067. }
  1068. out:
  1069. btrfs_free_path(path);
  1070. return 0;
  1071. }
  1072. /*
  1073. * on error we return an unlocked page and the error value
  1074. * on success we return a locked page and 0
  1075. */
  1076. static int prepare_uptodate_page(struct page *page, u64 pos,
  1077. bool force_uptodate)
  1078. {
  1079. int ret = 0;
  1080. if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
  1081. !PageUptodate(page)) {
  1082. ret = btrfs_readpage(NULL, page);
  1083. if (ret)
  1084. return ret;
  1085. lock_page(page);
  1086. if (!PageUptodate(page)) {
  1087. unlock_page(page);
  1088. return -EIO;
  1089. }
  1090. }
  1091. return 0;
  1092. }
  1093. /*
  1094. * this gets pages into the page cache and locks them down, it also properly
  1095. * waits for data=ordered extents to finish before allowing the pages to be
  1096. * modified.
  1097. */
  1098. static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
  1099. struct page **pages, size_t num_pages,
  1100. loff_t pos, unsigned long first_index,
  1101. size_t write_bytes, bool force_uptodate)
  1102. {
  1103. struct extent_state *cached_state = NULL;
  1104. int i;
  1105. unsigned long index = pos >> PAGE_CACHE_SHIFT;
  1106. struct inode *inode = file_inode(file);
  1107. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1108. int err = 0;
  1109. int faili = 0;
  1110. u64 start_pos;
  1111. u64 last_pos;
  1112. start_pos = pos & ~((u64)root->sectorsize - 1);
  1113. last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
  1114. again:
  1115. for (i = 0; i < num_pages; i++) {
  1116. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1117. mask | __GFP_WRITE);
  1118. if (!pages[i]) {
  1119. faili = i - 1;
  1120. err = -ENOMEM;
  1121. goto fail;
  1122. }
  1123. if (i == 0)
  1124. err = prepare_uptodate_page(pages[i], pos,
  1125. force_uptodate);
  1126. if (i == num_pages - 1)
  1127. err = prepare_uptodate_page(pages[i],
  1128. pos + write_bytes, false);
  1129. if (err) {
  1130. page_cache_release(pages[i]);
  1131. faili = i - 1;
  1132. goto fail;
  1133. }
  1134. wait_on_page_writeback(pages[i]);
  1135. }
  1136. err = 0;
  1137. if (start_pos < inode->i_size) {
  1138. struct btrfs_ordered_extent *ordered;
  1139. lock_extent_bits(&BTRFS_I(inode)->io_tree,
  1140. start_pos, last_pos - 1, 0, &cached_state);
  1141. ordered = btrfs_lookup_first_ordered_extent(inode,
  1142. last_pos - 1);
  1143. if (ordered &&
  1144. ordered->file_offset + ordered->len > start_pos &&
  1145. ordered->file_offset < last_pos) {
  1146. btrfs_put_ordered_extent(ordered);
  1147. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1148. start_pos, last_pos - 1,
  1149. &cached_state, GFP_NOFS);
  1150. for (i = 0; i < num_pages; i++) {
  1151. unlock_page(pages[i]);
  1152. page_cache_release(pages[i]);
  1153. }
  1154. btrfs_wait_ordered_range(inode, start_pos,
  1155. last_pos - start_pos);
  1156. goto again;
  1157. }
  1158. if (ordered)
  1159. btrfs_put_ordered_extent(ordered);
  1160. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
  1161. last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
  1162. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1163. 0, 0, &cached_state, GFP_NOFS);
  1164. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1165. start_pos, last_pos - 1, &cached_state,
  1166. GFP_NOFS);
  1167. }
  1168. for (i = 0; i < num_pages; i++) {
  1169. if (clear_page_dirty_for_io(pages[i]))
  1170. account_page_redirty(pages[i]);
  1171. set_page_extent_mapped(pages[i]);
  1172. WARN_ON(!PageLocked(pages[i]));
  1173. }
  1174. return 0;
  1175. fail:
  1176. while (faili >= 0) {
  1177. unlock_page(pages[faili]);
  1178. page_cache_release(pages[faili]);
  1179. faili--;
  1180. }
  1181. return err;
  1182. }
  1183. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1184. struct iov_iter *i,
  1185. loff_t pos)
  1186. {
  1187. struct inode *inode = file_inode(file);
  1188. struct btrfs_root *root = BTRFS_I(inode)->root;
  1189. struct page **pages = NULL;
  1190. unsigned long first_index;
  1191. size_t num_written = 0;
  1192. int nrptrs;
  1193. int ret = 0;
  1194. bool force_page_uptodate = false;
  1195. nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
  1196. PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
  1197. (sizeof(struct page *)));
  1198. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1199. nrptrs = max(nrptrs, 8);
  1200. pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
  1201. if (!pages)
  1202. return -ENOMEM;
  1203. first_index = pos >> PAGE_CACHE_SHIFT;
  1204. while (iov_iter_count(i) > 0) {
  1205. size_t offset = pos & (PAGE_CACHE_SIZE - 1);
  1206. size_t write_bytes = min(iov_iter_count(i),
  1207. nrptrs * (size_t)PAGE_CACHE_SIZE -
  1208. offset);
  1209. size_t num_pages = (write_bytes + offset +
  1210. PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1211. size_t dirty_pages;
  1212. size_t copied;
  1213. WARN_ON(num_pages > nrptrs);
  1214. /*
  1215. * Fault pages before locking them in prepare_pages
  1216. * to avoid recursive lock
  1217. */
  1218. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1219. ret = -EFAULT;
  1220. break;
  1221. }
  1222. ret = btrfs_delalloc_reserve_space(inode,
  1223. num_pages << PAGE_CACHE_SHIFT);
  1224. if (ret)
  1225. break;
  1226. /*
  1227. * This is going to setup the pages array with the number of
  1228. * pages we want, so we don't really need to worry about the
  1229. * contents of pages from loop to loop
  1230. */
  1231. ret = prepare_pages(root, file, pages, num_pages,
  1232. pos, first_index, write_bytes,
  1233. force_page_uptodate);
  1234. if (ret) {
  1235. btrfs_delalloc_release_space(inode,
  1236. num_pages << PAGE_CACHE_SHIFT);
  1237. break;
  1238. }
  1239. copied = btrfs_copy_from_user(pos, num_pages,
  1240. write_bytes, pages, i);
  1241. /*
  1242. * if we have trouble faulting in the pages, fall
  1243. * back to one page at a time
  1244. */
  1245. if (copied < write_bytes)
  1246. nrptrs = 1;
  1247. if (copied == 0) {
  1248. force_page_uptodate = true;
  1249. dirty_pages = 0;
  1250. } else {
  1251. force_page_uptodate = false;
  1252. dirty_pages = (copied + offset +
  1253. PAGE_CACHE_SIZE - 1) >>
  1254. PAGE_CACHE_SHIFT;
  1255. }
  1256. /*
  1257. * If we had a short copy we need to release the excess delaloc
  1258. * bytes we reserved. We need to increment outstanding_extents
  1259. * because btrfs_delalloc_release_space will decrement it, but
  1260. * we still have an outstanding extent for the chunk we actually
  1261. * managed to copy.
  1262. */
  1263. if (num_pages > dirty_pages) {
  1264. if (copied > 0) {
  1265. spin_lock(&BTRFS_I(inode)->lock);
  1266. BTRFS_I(inode)->outstanding_extents++;
  1267. spin_unlock(&BTRFS_I(inode)->lock);
  1268. }
  1269. btrfs_delalloc_release_space(inode,
  1270. (num_pages - dirty_pages) <<
  1271. PAGE_CACHE_SHIFT);
  1272. }
  1273. if (copied > 0) {
  1274. ret = btrfs_dirty_pages(root, inode, pages,
  1275. dirty_pages, pos, copied,
  1276. NULL);
  1277. if (ret) {
  1278. btrfs_delalloc_release_space(inode,
  1279. dirty_pages << PAGE_CACHE_SHIFT);
  1280. btrfs_drop_pages(pages, num_pages);
  1281. break;
  1282. }
  1283. }
  1284. btrfs_drop_pages(pages, num_pages);
  1285. cond_resched();
  1286. balance_dirty_pages_ratelimited(inode->i_mapping);
  1287. if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
  1288. btrfs_btree_balance_dirty(root);
  1289. pos += copied;
  1290. num_written += copied;
  1291. }
  1292. kfree(pages);
  1293. return num_written ? num_written : ret;
  1294. }
  1295. static ssize_t __btrfs_direct_write(struct kiocb *iocb,
  1296. const struct iovec *iov,
  1297. unsigned long nr_segs, loff_t pos,
  1298. loff_t *ppos, size_t count, size_t ocount)
  1299. {
  1300. struct file *file = iocb->ki_filp;
  1301. struct iov_iter i;
  1302. ssize_t written;
  1303. ssize_t written_buffered;
  1304. loff_t endbyte;
  1305. int err;
  1306. written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
  1307. count, ocount);
  1308. if (written < 0 || written == count)
  1309. return written;
  1310. pos += written;
  1311. count -= written;
  1312. iov_iter_init(&i, iov, nr_segs, count, written);
  1313. written_buffered = __btrfs_buffered_write(file, &i, pos);
  1314. if (written_buffered < 0) {
  1315. err = written_buffered;
  1316. goto out;
  1317. }
  1318. endbyte = pos + written_buffered - 1;
  1319. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  1320. if (err)
  1321. goto out;
  1322. written += written_buffered;
  1323. *ppos = pos + written_buffered;
  1324. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
  1325. endbyte >> PAGE_CACHE_SHIFT);
  1326. out:
  1327. return written ? written : err;
  1328. }
  1329. static void update_time_for_write(struct inode *inode)
  1330. {
  1331. struct timespec now;
  1332. if (IS_NOCMTIME(inode))
  1333. return;
  1334. now = current_fs_time(inode->i_sb);
  1335. if (!timespec_equal(&inode->i_mtime, &now))
  1336. inode->i_mtime = now;
  1337. if (!timespec_equal(&inode->i_ctime, &now))
  1338. inode->i_ctime = now;
  1339. if (IS_I_VERSION(inode))
  1340. inode_inc_iversion(inode);
  1341. }
  1342. static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
  1343. const struct iovec *iov,
  1344. unsigned long nr_segs, loff_t pos)
  1345. {
  1346. struct file *file = iocb->ki_filp;
  1347. struct inode *inode = file_inode(file);
  1348. struct btrfs_root *root = BTRFS_I(inode)->root;
  1349. loff_t *ppos = &iocb->ki_pos;
  1350. u64 start_pos;
  1351. ssize_t num_written = 0;
  1352. ssize_t err = 0;
  1353. size_t count, ocount;
  1354. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1355. mutex_lock(&inode->i_mutex);
  1356. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  1357. if (err) {
  1358. mutex_unlock(&inode->i_mutex);
  1359. goto out;
  1360. }
  1361. count = ocount;
  1362. current->backing_dev_info = inode->i_mapping->backing_dev_info;
  1363. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  1364. if (err) {
  1365. mutex_unlock(&inode->i_mutex);
  1366. goto out;
  1367. }
  1368. if (count == 0) {
  1369. mutex_unlock(&inode->i_mutex);
  1370. goto out;
  1371. }
  1372. err = file_remove_suid(file);
  1373. if (err) {
  1374. mutex_unlock(&inode->i_mutex);
  1375. goto out;
  1376. }
  1377. /*
  1378. * If BTRFS flips readonly due to some impossible error
  1379. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1380. * although we have opened a file as writable, we have
  1381. * to stop this write operation to ensure FS consistency.
  1382. */
  1383. if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
  1384. mutex_unlock(&inode->i_mutex);
  1385. err = -EROFS;
  1386. goto out;
  1387. }
  1388. /*
  1389. * We reserve space for updating the inode when we reserve space for the
  1390. * extent we are going to write, so we will enospc out there. We don't
  1391. * need to start yet another transaction to update the inode as we will
  1392. * update the inode when we finish writing whatever data we write.
  1393. */
  1394. update_time_for_write(inode);
  1395. start_pos = round_down(pos, root->sectorsize);
  1396. if (start_pos > i_size_read(inode)) {
  1397. err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
  1398. if (err) {
  1399. mutex_unlock(&inode->i_mutex);
  1400. goto out;
  1401. }
  1402. }
  1403. if (sync)
  1404. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1405. if (unlikely(file->f_flags & O_DIRECT)) {
  1406. num_written = __btrfs_direct_write(iocb, iov, nr_segs,
  1407. pos, ppos, count, ocount);
  1408. } else {
  1409. struct iov_iter i;
  1410. iov_iter_init(&i, iov, nr_segs, count, num_written);
  1411. num_written = __btrfs_buffered_write(file, &i, pos);
  1412. if (num_written > 0)
  1413. *ppos = pos + num_written;
  1414. }
  1415. mutex_unlock(&inode->i_mutex);
  1416. /*
  1417. * we want to make sure fsync finds this change
  1418. * but we haven't joined a transaction running right now.
  1419. *
  1420. * Later on, someone is sure to update the inode and get the
  1421. * real transid recorded.
  1422. *
  1423. * We set last_trans now to the fs_info generation + 1,
  1424. * this will either be one more than the running transaction
  1425. * or the generation used for the next transaction if there isn't
  1426. * one running right now.
  1427. *
  1428. * We also have to set last_sub_trans to the current log transid,
  1429. * otherwise subsequent syncs to a file that's been synced in this
  1430. * transaction will appear to have already occured.
  1431. */
  1432. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  1433. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1434. if (num_written > 0 || num_written == -EIOCBQUEUED) {
  1435. err = generic_write_sync(file, pos, num_written);
  1436. if (err < 0 && num_written > 0)
  1437. num_written = err;
  1438. }
  1439. if (sync)
  1440. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1441. out:
  1442. current->backing_dev_info = NULL;
  1443. return num_written ? num_written : err;
  1444. }
  1445. int btrfs_release_file(struct inode *inode, struct file *filp)
  1446. {
  1447. /*
  1448. * ordered_data_close is set by settattr when we are about to truncate
  1449. * a file from a non-zero size to a zero size. This tries to
  1450. * flush down new bytes that may have been written if the
  1451. * application were using truncate to replace a file in place.
  1452. */
  1453. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1454. &BTRFS_I(inode)->runtime_flags)) {
  1455. struct btrfs_trans_handle *trans;
  1456. struct btrfs_root *root = BTRFS_I(inode)->root;
  1457. /*
  1458. * We need to block on a committing transaction to keep us from
  1459. * throwing a ordered operation on to the list and causing
  1460. * something like sync to deadlock trying to flush out this
  1461. * inode.
  1462. */
  1463. trans = btrfs_start_transaction(root, 0);
  1464. if (IS_ERR(trans))
  1465. return PTR_ERR(trans);
  1466. btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
  1467. btrfs_end_transaction(trans, root);
  1468. if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  1469. filemap_flush(inode->i_mapping);
  1470. }
  1471. if (filp->private_data)
  1472. btrfs_ioctl_trans_end(filp);
  1473. return 0;
  1474. }
  1475. /*
  1476. * fsync call for both files and directories. This logs the inode into
  1477. * the tree log instead of forcing full commits whenever possible.
  1478. *
  1479. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1480. * in the metadata btree are up to date for copying to the log.
  1481. *
  1482. * It drops the inode mutex before doing the tree log commit. This is an
  1483. * important optimization for directories because holding the mutex prevents
  1484. * new operations on the dir while we write to disk.
  1485. */
  1486. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1487. {
  1488. struct dentry *dentry = file->f_path.dentry;
  1489. struct inode *inode = dentry->d_inode;
  1490. struct btrfs_root *root = BTRFS_I(inode)->root;
  1491. int ret = 0;
  1492. struct btrfs_trans_handle *trans;
  1493. bool full_sync = 0;
  1494. trace_btrfs_sync_file(file, datasync);
  1495. /*
  1496. * We write the dirty pages in the range and wait until they complete
  1497. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1498. * multi-task, and make the performance up. See
  1499. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1500. */
  1501. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1502. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1503. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  1504. &BTRFS_I(inode)->runtime_flags))
  1505. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1506. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1507. if (ret)
  1508. return ret;
  1509. mutex_lock(&inode->i_mutex);
  1510. /*
  1511. * We flush the dirty pages again to avoid some dirty pages in the
  1512. * range being left.
  1513. */
  1514. atomic_inc(&root->log_batch);
  1515. full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1516. &BTRFS_I(inode)->runtime_flags);
  1517. if (full_sync)
  1518. btrfs_wait_ordered_range(inode, start, end - start + 1);
  1519. atomic_inc(&root->log_batch);
  1520. /*
  1521. * check the transaction that last modified this inode
  1522. * and see if its already been committed
  1523. */
  1524. if (!BTRFS_I(inode)->last_trans) {
  1525. mutex_unlock(&inode->i_mutex);
  1526. goto out;
  1527. }
  1528. /*
  1529. * if the last transaction that changed this file was before
  1530. * the current transaction, we can bail out now without any
  1531. * syncing
  1532. */
  1533. smp_mb();
  1534. if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
  1535. BTRFS_I(inode)->last_trans <=
  1536. root->fs_info->last_trans_committed) {
  1537. BTRFS_I(inode)->last_trans = 0;
  1538. /*
  1539. * We'v had everything committed since the last time we were
  1540. * modified so clear this flag in case it was set for whatever
  1541. * reason, it's no longer relevant.
  1542. */
  1543. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1544. &BTRFS_I(inode)->runtime_flags);
  1545. mutex_unlock(&inode->i_mutex);
  1546. goto out;
  1547. }
  1548. /*
  1549. * ok we haven't committed the transaction yet, lets do a commit
  1550. */
  1551. if (file->private_data)
  1552. btrfs_ioctl_trans_end(file);
  1553. trans = btrfs_start_transaction(root, 0);
  1554. if (IS_ERR(trans)) {
  1555. ret = PTR_ERR(trans);
  1556. mutex_unlock(&inode->i_mutex);
  1557. goto out;
  1558. }
  1559. ret = btrfs_log_dentry_safe(trans, root, dentry);
  1560. if (ret < 0) {
  1561. mutex_unlock(&inode->i_mutex);
  1562. goto out;
  1563. }
  1564. /* we've logged all the items and now have a consistent
  1565. * version of the file in the log. It is possible that
  1566. * someone will come in and modify the file, but that's
  1567. * fine because the log is consistent on disk, and we
  1568. * have references to all of the file's extents
  1569. *
  1570. * It is possible that someone will come in and log the
  1571. * file again, but that will end up using the synchronization
  1572. * inside btrfs_sync_log to keep things safe.
  1573. */
  1574. mutex_unlock(&inode->i_mutex);
  1575. if (ret != BTRFS_NO_LOG_SYNC) {
  1576. if (ret > 0) {
  1577. /*
  1578. * If we didn't already wait for ordered extents we need
  1579. * to do that now.
  1580. */
  1581. if (!full_sync)
  1582. btrfs_wait_ordered_range(inode, start,
  1583. end - start + 1);
  1584. ret = btrfs_commit_transaction(trans, root);
  1585. } else {
  1586. ret = btrfs_sync_log(trans, root);
  1587. if (ret == 0) {
  1588. ret = btrfs_end_transaction(trans, root);
  1589. } else {
  1590. if (!full_sync)
  1591. btrfs_wait_ordered_range(inode, start,
  1592. end -
  1593. start + 1);
  1594. ret = btrfs_commit_transaction(trans, root);
  1595. }
  1596. }
  1597. } else {
  1598. ret = btrfs_end_transaction(trans, root);
  1599. }
  1600. out:
  1601. return ret > 0 ? -EIO : ret;
  1602. }
  1603. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1604. .fault = filemap_fault,
  1605. .page_mkwrite = btrfs_page_mkwrite,
  1606. .remap_pages = generic_file_remap_pages,
  1607. };
  1608. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1609. {
  1610. struct address_space *mapping = filp->f_mapping;
  1611. if (!mapping->a_ops->readpage)
  1612. return -ENOEXEC;
  1613. file_accessed(filp);
  1614. vma->vm_ops = &btrfs_file_vm_ops;
  1615. return 0;
  1616. }
  1617. static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
  1618. int slot, u64 start, u64 end)
  1619. {
  1620. struct btrfs_file_extent_item *fi;
  1621. struct btrfs_key key;
  1622. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  1623. return 0;
  1624. btrfs_item_key_to_cpu(leaf, &key, slot);
  1625. if (key.objectid != btrfs_ino(inode) ||
  1626. key.type != BTRFS_EXTENT_DATA_KEY)
  1627. return 0;
  1628. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  1629. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  1630. return 0;
  1631. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  1632. return 0;
  1633. if (key.offset == end)
  1634. return 1;
  1635. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  1636. return 1;
  1637. return 0;
  1638. }
  1639. static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
  1640. struct btrfs_path *path, u64 offset, u64 end)
  1641. {
  1642. struct btrfs_root *root = BTRFS_I(inode)->root;
  1643. struct extent_buffer *leaf;
  1644. struct btrfs_file_extent_item *fi;
  1645. struct extent_map *hole_em;
  1646. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1647. struct btrfs_key key;
  1648. int ret;
  1649. key.objectid = btrfs_ino(inode);
  1650. key.type = BTRFS_EXTENT_DATA_KEY;
  1651. key.offset = offset;
  1652. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1653. if (ret < 0)
  1654. return ret;
  1655. BUG_ON(!ret);
  1656. leaf = path->nodes[0];
  1657. if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
  1658. u64 num_bytes;
  1659. path->slots[0]--;
  1660. fi = btrfs_item_ptr(leaf, path->slots[0],
  1661. struct btrfs_file_extent_item);
  1662. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  1663. end - offset;
  1664. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1665. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1666. btrfs_set_file_extent_offset(leaf, fi, 0);
  1667. btrfs_mark_buffer_dirty(leaf);
  1668. goto out;
  1669. }
  1670. if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
  1671. u64 num_bytes;
  1672. path->slots[0]++;
  1673. key.offset = offset;
  1674. btrfs_set_item_key_safe(trans, root, path, &key);
  1675. fi = btrfs_item_ptr(leaf, path->slots[0],
  1676. struct btrfs_file_extent_item);
  1677. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  1678. offset;
  1679. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1680. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1681. btrfs_set_file_extent_offset(leaf, fi, 0);
  1682. btrfs_mark_buffer_dirty(leaf);
  1683. goto out;
  1684. }
  1685. btrfs_release_path(path);
  1686. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  1687. 0, 0, end - offset, 0, end - offset,
  1688. 0, 0, 0);
  1689. if (ret)
  1690. return ret;
  1691. out:
  1692. btrfs_release_path(path);
  1693. hole_em = alloc_extent_map();
  1694. if (!hole_em) {
  1695. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1696. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1697. &BTRFS_I(inode)->runtime_flags);
  1698. } else {
  1699. hole_em->start = offset;
  1700. hole_em->len = end - offset;
  1701. hole_em->orig_start = offset;
  1702. hole_em->block_start = EXTENT_MAP_HOLE;
  1703. hole_em->block_len = 0;
  1704. hole_em->orig_block_len = 0;
  1705. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  1706. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  1707. hole_em->generation = trans->transid;
  1708. do {
  1709. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1710. write_lock(&em_tree->lock);
  1711. ret = add_extent_mapping(em_tree, hole_em);
  1712. if (!ret)
  1713. list_move(&hole_em->list,
  1714. &em_tree->modified_extents);
  1715. write_unlock(&em_tree->lock);
  1716. } while (ret == -EEXIST);
  1717. free_extent_map(hole_em);
  1718. if (ret)
  1719. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1720. &BTRFS_I(inode)->runtime_flags);
  1721. }
  1722. return 0;
  1723. }
  1724. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  1725. {
  1726. struct btrfs_root *root = BTRFS_I(inode)->root;
  1727. struct extent_state *cached_state = NULL;
  1728. struct btrfs_path *path;
  1729. struct btrfs_block_rsv *rsv;
  1730. struct btrfs_trans_handle *trans;
  1731. u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
  1732. u64 lockend = round_down(offset + len,
  1733. BTRFS_I(inode)->root->sectorsize) - 1;
  1734. u64 cur_offset = lockstart;
  1735. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  1736. u64 drop_end;
  1737. int ret = 0;
  1738. int err = 0;
  1739. bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
  1740. ((offset + len - 1) >> PAGE_CACHE_SHIFT));
  1741. btrfs_wait_ordered_range(inode, offset, len);
  1742. mutex_lock(&inode->i_mutex);
  1743. /*
  1744. * We needn't truncate any page which is beyond the end of the file
  1745. * because we are sure there is no data there.
  1746. */
  1747. /*
  1748. * Only do this if we are in the same page and we aren't doing the
  1749. * entire page.
  1750. */
  1751. if (same_page && len < PAGE_CACHE_SIZE) {
  1752. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
  1753. ret = btrfs_truncate_page(inode, offset, len, 0);
  1754. mutex_unlock(&inode->i_mutex);
  1755. return ret;
  1756. }
  1757. /* zero back part of the first page */
  1758. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1759. ret = btrfs_truncate_page(inode, offset, 0, 0);
  1760. if (ret) {
  1761. mutex_unlock(&inode->i_mutex);
  1762. return ret;
  1763. }
  1764. }
  1765. /* zero the front end of the last page */
  1766. if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1767. ret = btrfs_truncate_page(inode, offset + len, 0, 1);
  1768. if (ret) {
  1769. mutex_unlock(&inode->i_mutex);
  1770. return ret;
  1771. }
  1772. }
  1773. if (lockend < lockstart) {
  1774. mutex_unlock(&inode->i_mutex);
  1775. return 0;
  1776. }
  1777. while (1) {
  1778. struct btrfs_ordered_extent *ordered;
  1779. truncate_pagecache_range(inode, lockstart, lockend);
  1780. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1781. 0, &cached_state);
  1782. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  1783. /*
  1784. * We need to make sure we have no ordered extents in this range
  1785. * and nobody raced in and read a page in this range, if we did
  1786. * we need to try again.
  1787. */
  1788. if ((!ordered ||
  1789. (ordered->file_offset + ordered->len < lockstart ||
  1790. ordered->file_offset > lockend)) &&
  1791. !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1792. lockend, EXTENT_UPTODATE, 0,
  1793. cached_state)) {
  1794. if (ordered)
  1795. btrfs_put_ordered_extent(ordered);
  1796. break;
  1797. }
  1798. if (ordered)
  1799. btrfs_put_ordered_extent(ordered);
  1800. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  1801. lockend, &cached_state, GFP_NOFS);
  1802. btrfs_wait_ordered_range(inode, lockstart,
  1803. lockend - lockstart + 1);
  1804. }
  1805. path = btrfs_alloc_path();
  1806. if (!path) {
  1807. ret = -ENOMEM;
  1808. goto out;
  1809. }
  1810. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  1811. if (!rsv) {
  1812. ret = -ENOMEM;
  1813. goto out_free;
  1814. }
  1815. rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
  1816. rsv->failfast = 1;
  1817. /*
  1818. * 1 - update the inode
  1819. * 1 - removing the extents in the range
  1820. * 1 - adding the hole extent
  1821. */
  1822. trans = btrfs_start_transaction(root, 3);
  1823. if (IS_ERR(trans)) {
  1824. err = PTR_ERR(trans);
  1825. goto out_free;
  1826. }
  1827. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  1828. min_size);
  1829. BUG_ON(ret);
  1830. trans->block_rsv = rsv;
  1831. while (cur_offset < lockend) {
  1832. ret = __btrfs_drop_extents(trans, root, inode, path,
  1833. cur_offset, lockend + 1,
  1834. &drop_end, 1);
  1835. if (ret != -ENOSPC)
  1836. break;
  1837. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1838. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1839. if (ret) {
  1840. err = ret;
  1841. break;
  1842. }
  1843. cur_offset = drop_end;
  1844. ret = btrfs_update_inode(trans, root, inode);
  1845. if (ret) {
  1846. err = ret;
  1847. break;
  1848. }
  1849. btrfs_end_transaction(trans, root);
  1850. btrfs_btree_balance_dirty(root);
  1851. trans = btrfs_start_transaction(root, 3);
  1852. if (IS_ERR(trans)) {
  1853. ret = PTR_ERR(trans);
  1854. trans = NULL;
  1855. break;
  1856. }
  1857. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  1858. rsv, min_size);
  1859. BUG_ON(ret); /* shouldn't happen */
  1860. trans->block_rsv = rsv;
  1861. }
  1862. if (ret) {
  1863. err = ret;
  1864. goto out_trans;
  1865. }
  1866. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1867. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1868. if (ret) {
  1869. err = ret;
  1870. goto out_trans;
  1871. }
  1872. out_trans:
  1873. if (!trans)
  1874. goto out_free;
  1875. inode_inc_iversion(inode);
  1876. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1877. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1878. ret = btrfs_update_inode(trans, root, inode);
  1879. btrfs_end_transaction(trans, root);
  1880. btrfs_btree_balance_dirty(root);
  1881. out_free:
  1882. btrfs_free_path(path);
  1883. btrfs_free_block_rsv(root, rsv);
  1884. out:
  1885. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1886. &cached_state, GFP_NOFS);
  1887. mutex_unlock(&inode->i_mutex);
  1888. if (ret && !err)
  1889. err = ret;
  1890. return err;
  1891. }
  1892. static long btrfs_fallocate(struct file *file, int mode,
  1893. loff_t offset, loff_t len)
  1894. {
  1895. struct inode *inode = file_inode(file);
  1896. struct extent_state *cached_state = NULL;
  1897. struct btrfs_root *root = BTRFS_I(inode)->root;
  1898. u64 cur_offset;
  1899. u64 last_byte;
  1900. u64 alloc_start;
  1901. u64 alloc_end;
  1902. u64 alloc_hint = 0;
  1903. u64 locked_end;
  1904. struct extent_map *em;
  1905. int blocksize = BTRFS_I(inode)->root->sectorsize;
  1906. int ret;
  1907. alloc_start = round_down(offset, blocksize);
  1908. alloc_end = round_up(offset + len, blocksize);
  1909. /* Make sure we aren't being give some crap mode */
  1910. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  1911. return -EOPNOTSUPP;
  1912. if (mode & FALLOC_FL_PUNCH_HOLE)
  1913. return btrfs_punch_hole(inode, offset, len);
  1914. /*
  1915. * Make sure we have enough space before we do the
  1916. * allocation.
  1917. */
  1918. ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
  1919. if (ret)
  1920. return ret;
  1921. if (root->fs_info->quota_enabled) {
  1922. ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
  1923. if (ret)
  1924. goto out_reserve_fail;
  1925. }
  1926. /*
  1927. * wait for ordered IO before we have any locks. We'll loop again
  1928. * below with the locks held.
  1929. */
  1930. btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
  1931. mutex_lock(&inode->i_mutex);
  1932. ret = inode_newsize_ok(inode, alloc_end);
  1933. if (ret)
  1934. goto out;
  1935. if (alloc_start > inode->i_size) {
  1936. ret = btrfs_cont_expand(inode, i_size_read(inode),
  1937. alloc_start);
  1938. if (ret)
  1939. goto out;
  1940. }
  1941. locked_end = alloc_end - 1;
  1942. while (1) {
  1943. struct btrfs_ordered_extent *ordered;
  1944. /* the extent lock is ordered inside the running
  1945. * transaction
  1946. */
  1947. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  1948. locked_end, 0, &cached_state);
  1949. ordered = btrfs_lookup_first_ordered_extent(inode,
  1950. alloc_end - 1);
  1951. if (ordered &&
  1952. ordered->file_offset + ordered->len > alloc_start &&
  1953. ordered->file_offset < alloc_end) {
  1954. btrfs_put_ordered_extent(ordered);
  1955. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1956. alloc_start, locked_end,
  1957. &cached_state, GFP_NOFS);
  1958. /*
  1959. * we can't wait on the range with the transaction
  1960. * running or with the extent lock held
  1961. */
  1962. btrfs_wait_ordered_range(inode, alloc_start,
  1963. alloc_end - alloc_start);
  1964. } else {
  1965. if (ordered)
  1966. btrfs_put_ordered_extent(ordered);
  1967. break;
  1968. }
  1969. }
  1970. cur_offset = alloc_start;
  1971. while (1) {
  1972. u64 actual_end;
  1973. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  1974. alloc_end - cur_offset, 0);
  1975. if (IS_ERR_OR_NULL(em)) {
  1976. if (!em)
  1977. ret = -ENOMEM;
  1978. else
  1979. ret = PTR_ERR(em);
  1980. break;
  1981. }
  1982. last_byte = min(extent_map_end(em), alloc_end);
  1983. actual_end = min_t(u64, extent_map_end(em), offset + len);
  1984. last_byte = ALIGN(last_byte, blocksize);
  1985. if (em->block_start == EXTENT_MAP_HOLE ||
  1986. (cur_offset >= inode->i_size &&
  1987. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  1988. ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
  1989. last_byte - cur_offset,
  1990. 1 << inode->i_blkbits,
  1991. offset + len,
  1992. &alloc_hint);
  1993. if (ret < 0) {
  1994. free_extent_map(em);
  1995. break;
  1996. }
  1997. } else if (actual_end > inode->i_size &&
  1998. !(mode & FALLOC_FL_KEEP_SIZE)) {
  1999. /*
  2000. * We didn't need to allocate any more space, but we
  2001. * still extended the size of the file so we need to
  2002. * update i_size.
  2003. */
  2004. inode->i_ctime = CURRENT_TIME;
  2005. i_size_write(inode, actual_end);
  2006. btrfs_ordered_update_i_size(inode, actual_end, NULL);
  2007. }
  2008. free_extent_map(em);
  2009. cur_offset = last_byte;
  2010. if (cur_offset >= alloc_end) {
  2011. ret = 0;
  2012. break;
  2013. }
  2014. }
  2015. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2016. &cached_state, GFP_NOFS);
  2017. out:
  2018. mutex_unlock(&inode->i_mutex);
  2019. if (root->fs_info->quota_enabled)
  2020. btrfs_qgroup_free(root, alloc_end - alloc_start);
  2021. out_reserve_fail:
  2022. /* Let go of our reservation. */
  2023. btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
  2024. return ret;
  2025. }
  2026. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2027. {
  2028. struct btrfs_root *root = BTRFS_I(inode)->root;
  2029. struct extent_map *em;
  2030. struct extent_state *cached_state = NULL;
  2031. u64 lockstart = *offset;
  2032. u64 lockend = i_size_read(inode);
  2033. u64 start = *offset;
  2034. u64 orig_start = *offset;
  2035. u64 len = i_size_read(inode);
  2036. u64 last_end = 0;
  2037. int ret = 0;
  2038. lockend = max_t(u64, root->sectorsize, lockend);
  2039. if (lockend <= lockstart)
  2040. lockend = lockstart + root->sectorsize;
  2041. lockend--;
  2042. len = lockend - lockstart + 1;
  2043. len = max_t(u64, len, root->sectorsize);
  2044. if (inode->i_size == 0)
  2045. return -ENXIO;
  2046. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
  2047. &cached_state);
  2048. /*
  2049. * Delalloc is such a pain. If we have a hole and we have pending
  2050. * delalloc for a portion of the hole we will get back a hole that
  2051. * exists for the entire range since it hasn't been actually written
  2052. * yet. So to take care of this case we need to look for an extent just
  2053. * before the position we want in case there is outstanding delalloc
  2054. * going on here.
  2055. */
  2056. if (whence == SEEK_HOLE && start != 0) {
  2057. if (start <= root->sectorsize)
  2058. em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
  2059. root->sectorsize, 0);
  2060. else
  2061. em = btrfs_get_extent_fiemap(inode, NULL, 0,
  2062. start - root->sectorsize,
  2063. root->sectorsize, 0);
  2064. if (IS_ERR(em)) {
  2065. ret = PTR_ERR(em);
  2066. goto out;
  2067. }
  2068. last_end = em->start + em->len;
  2069. if (em->block_start == EXTENT_MAP_DELALLOC)
  2070. last_end = min_t(u64, last_end, inode->i_size);
  2071. free_extent_map(em);
  2072. }
  2073. while (1) {
  2074. em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
  2075. if (IS_ERR(em)) {
  2076. ret = PTR_ERR(em);
  2077. break;
  2078. }
  2079. if (em->block_start == EXTENT_MAP_HOLE) {
  2080. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2081. if (last_end <= orig_start) {
  2082. free_extent_map(em);
  2083. ret = -ENXIO;
  2084. break;
  2085. }
  2086. }
  2087. if (whence == SEEK_HOLE) {
  2088. *offset = start;
  2089. free_extent_map(em);
  2090. break;
  2091. }
  2092. } else {
  2093. if (whence == SEEK_DATA) {
  2094. if (em->block_start == EXTENT_MAP_DELALLOC) {
  2095. if (start >= inode->i_size) {
  2096. free_extent_map(em);
  2097. ret = -ENXIO;
  2098. break;
  2099. }
  2100. }
  2101. if (!test_bit(EXTENT_FLAG_PREALLOC,
  2102. &em->flags)) {
  2103. *offset = start;
  2104. free_extent_map(em);
  2105. break;
  2106. }
  2107. }
  2108. }
  2109. start = em->start + em->len;
  2110. last_end = em->start + em->len;
  2111. if (em->block_start == EXTENT_MAP_DELALLOC)
  2112. last_end = min_t(u64, last_end, inode->i_size);
  2113. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2114. free_extent_map(em);
  2115. ret = -ENXIO;
  2116. break;
  2117. }
  2118. free_extent_map(em);
  2119. cond_resched();
  2120. }
  2121. if (!ret)
  2122. *offset = min(*offset, inode->i_size);
  2123. out:
  2124. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2125. &cached_state, GFP_NOFS);
  2126. return ret;
  2127. }
  2128. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2129. {
  2130. struct inode *inode = file->f_mapping->host;
  2131. int ret;
  2132. mutex_lock(&inode->i_mutex);
  2133. switch (whence) {
  2134. case SEEK_END:
  2135. case SEEK_CUR:
  2136. offset = generic_file_llseek(file, offset, whence);
  2137. goto out;
  2138. case SEEK_DATA:
  2139. case SEEK_HOLE:
  2140. if (offset >= i_size_read(inode)) {
  2141. mutex_unlock(&inode->i_mutex);
  2142. return -ENXIO;
  2143. }
  2144. ret = find_desired_extent(inode, &offset, whence);
  2145. if (ret) {
  2146. mutex_unlock(&inode->i_mutex);
  2147. return ret;
  2148. }
  2149. }
  2150. if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
  2151. offset = -EINVAL;
  2152. goto out;
  2153. }
  2154. if (offset > inode->i_sb->s_maxbytes) {
  2155. offset = -EINVAL;
  2156. goto out;
  2157. }
  2158. /* Special lock needed here? */
  2159. if (offset != file->f_pos) {
  2160. file->f_pos = offset;
  2161. file->f_version = 0;
  2162. }
  2163. out:
  2164. mutex_unlock(&inode->i_mutex);
  2165. return offset;
  2166. }
  2167. const struct file_operations btrfs_file_operations = {
  2168. .llseek = btrfs_file_llseek,
  2169. .read = do_sync_read,
  2170. .write = do_sync_write,
  2171. .aio_read = generic_file_aio_read,
  2172. .splice_read = generic_file_splice_read,
  2173. .aio_write = btrfs_file_aio_write,
  2174. .mmap = btrfs_file_mmap,
  2175. .open = generic_file_open,
  2176. .release = btrfs_release_file,
  2177. .fsync = btrfs_sync_file,
  2178. .fallocate = btrfs_fallocate,
  2179. .unlocked_ioctl = btrfs_ioctl,
  2180. #ifdef CONFIG_COMPAT
  2181. .compat_ioctl = btrfs_ioctl,
  2182. #endif
  2183. };
  2184. void btrfs_auto_defrag_exit(void)
  2185. {
  2186. if (btrfs_inode_defrag_cachep)
  2187. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2188. }
  2189. int btrfs_auto_defrag_init(void)
  2190. {
  2191. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2192. sizeof(struct inode_defrag), 0,
  2193. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  2194. NULL);
  2195. if (!btrfs_inode_defrag_cachep)
  2196. return -ENOMEM;
  2197. return 0;
  2198. }