md.c 223 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. static int remove_and_add_spares(struct mddev *mddev,
  62. struct md_rdev *this);
  63. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  64. /*
  65. * Default number of read corrections we'll attempt on an rdev
  66. * before ejecting it from the array. We divide the read error
  67. * count by 2 for every hour elapsed between read errors.
  68. */
  69. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  70. /*
  71. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  72. * is 1000 KB/sec, so the extra system load does not show up that much.
  73. * Increase it if you want to have more _guaranteed_ speed. Note that
  74. * the RAID driver will use the maximum available bandwidth if the IO
  75. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  76. * speed limit - in case reconstruction slows down your system despite
  77. * idle IO detection.
  78. *
  79. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  80. * or /sys/block/mdX/md/sync_speed_{min,max}
  81. */
  82. static int sysctl_speed_limit_min = 1000;
  83. static int sysctl_speed_limit_max = 200000;
  84. static inline int speed_min(struct mddev *mddev)
  85. {
  86. return mddev->sync_speed_min ?
  87. mddev->sync_speed_min : sysctl_speed_limit_min;
  88. }
  89. static inline int speed_max(struct mddev *mddev)
  90. {
  91. return mddev->sync_speed_max ?
  92. mddev->sync_speed_max : sysctl_speed_limit_max;
  93. }
  94. static struct ctl_table_header *raid_table_header;
  95. static ctl_table raid_table[] = {
  96. {
  97. .procname = "speed_limit_min",
  98. .data = &sysctl_speed_limit_min,
  99. .maxlen = sizeof(int),
  100. .mode = S_IRUGO|S_IWUSR,
  101. .proc_handler = proc_dointvec,
  102. },
  103. {
  104. .procname = "speed_limit_max",
  105. .data = &sysctl_speed_limit_max,
  106. .maxlen = sizeof(int),
  107. .mode = S_IRUGO|S_IWUSR,
  108. .proc_handler = proc_dointvec,
  109. },
  110. { }
  111. };
  112. static ctl_table raid_dir_table[] = {
  113. {
  114. .procname = "raid",
  115. .maxlen = 0,
  116. .mode = S_IRUGO|S_IXUGO,
  117. .child = raid_table,
  118. },
  119. { }
  120. };
  121. static ctl_table raid_root_table[] = {
  122. {
  123. .procname = "dev",
  124. .maxlen = 0,
  125. .mode = 0555,
  126. .child = raid_dir_table,
  127. },
  128. { }
  129. };
  130. static const struct block_device_operations md_fops;
  131. static int start_readonly;
  132. /* bio_clone_mddev
  133. * like bio_clone, but with a local bio set
  134. */
  135. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  136. struct mddev *mddev)
  137. {
  138. struct bio *b;
  139. if (!mddev || !mddev->bio_set)
  140. return bio_alloc(gfp_mask, nr_iovecs);
  141. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  142. if (!b)
  143. return NULL;
  144. return b;
  145. }
  146. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  147. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  148. struct mddev *mddev)
  149. {
  150. if (!mddev || !mddev->bio_set)
  151. return bio_clone(bio, gfp_mask);
  152. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  153. }
  154. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  155. void md_trim_bio(struct bio *bio, int offset, int size)
  156. {
  157. /* 'bio' is a cloned bio which we need to trim to match
  158. * the given offset and size.
  159. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  160. */
  161. int i;
  162. struct bio_vec *bvec;
  163. int sofar = 0;
  164. size <<= 9;
  165. if (offset == 0 && size == bio->bi_size)
  166. return;
  167. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  168. bio_advance(bio, offset << 9);
  169. bio->bi_size = size;
  170. /* avoid any complications with bi_idx being non-zero*/
  171. if (bio->bi_idx) {
  172. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  173. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  174. bio->bi_vcnt -= bio->bi_idx;
  175. bio->bi_idx = 0;
  176. }
  177. /* Make sure vcnt and last bv are not too big */
  178. bio_for_each_segment(bvec, bio, i) {
  179. if (sofar + bvec->bv_len > size)
  180. bvec->bv_len = size - sofar;
  181. if (bvec->bv_len == 0) {
  182. bio->bi_vcnt = i;
  183. break;
  184. }
  185. sofar += bvec->bv_len;
  186. }
  187. }
  188. EXPORT_SYMBOL_GPL(md_trim_bio);
  189. /*
  190. * We have a system wide 'event count' that is incremented
  191. * on any 'interesting' event, and readers of /proc/mdstat
  192. * can use 'poll' or 'select' to find out when the event
  193. * count increases.
  194. *
  195. * Events are:
  196. * start array, stop array, error, add device, remove device,
  197. * start build, activate spare
  198. */
  199. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  200. static atomic_t md_event_count;
  201. void md_new_event(struct mddev *mddev)
  202. {
  203. atomic_inc(&md_event_count);
  204. wake_up(&md_event_waiters);
  205. }
  206. EXPORT_SYMBOL_GPL(md_new_event);
  207. /* Alternate version that can be called from interrupts
  208. * when calling sysfs_notify isn't needed.
  209. */
  210. static void md_new_event_inintr(struct mddev *mddev)
  211. {
  212. atomic_inc(&md_event_count);
  213. wake_up(&md_event_waiters);
  214. }
  215. /*
  216. * Enables to iterate over all existing md arrays
  217. * all_mddevs_lock protects this list.
  218. */
  219. static LIST_HEAD(all_mddevs);
  220. static DEFINE_SPINLOCK(all_mddevs_lock);
  221. /*
  222. * iterates through all used mddevs in the system.
  223. * We take care to grab the all_mddevs_lock whenever navigating
  224. * the list, and to always hold a refcount when unlocked.
  225. * Any code which breaks out of this loop while own
  226. * a reference to the current mddev and must mddev_put it.
  227. */
  228. #define for_each_mddev(_mddev,_tmp) \
  229. \
  230. for (({ spin_lock(&all_mddevs_lock); \
  231. _tmp = all_mddevs.next; \
  232. _mddev = NULL;}); \
  233. ({ if (_tmp != &all_mddevs) \
  234. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  235. spin_unlock(&all_mddevs_lock); \
  236. if (_mddev) mddev_put(_mddev); \
  237. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  238. _tmp != &all_mddevs;}); \
  239. ({ spin_lock(&all_mddevs_lock); \
  240. _tmp = _tmp->next;}) \
  241. )
  242. /* Rather than calling directly into the personality make_request function,
  243. * IO requests come here first so that we can check if the device is
  244. * being suspended pending a reconfiguration.
  245. * We hold a refcount over the call to ->make_request. By the time that
  246. * call has finished, the bio has been linked into some internal structure
  247. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  248. */
  249. static void md_make_request(struct request_queue *q, struct bio *bio)
  250. {
  251. const int rw = bio_data_dir(bio);
  252. struct mddev *mddev = q->queuedata;
  253. int cpu;
  254. unsigned int sectors;
  255. if (mddev == NULL || mddev->pers == NULL
  256. || !mddev->ready) {
  257. bio_io_error(bio);
  258. return;
  259. }
  260. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  261. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  262. return;
  263. }
  264. smp_rmb(); /* Ensure implications of 'active' are visible */
  265. rcu_read_lock();
  266. if (mddev->suspended) {
  267. DEFINE_WAIT(__wait);
  268. for (;;) {
  269. prepare_to_wait(&mddev->sb_wait, &__wait,
  270. TASK_UNINTERRUPTIBLE);
  271. if (!mddev->suspended)
  272. break;
  273. rcu_read_unlock();
  274. schedule();
  275. rcu_read_lock();
  276. }
  277. finish_wait(&mddev->sb_wait, &__wait);
  278. }
  279. atomic_inc(&mddev->active_io);
  280. rcu_read_unlock();
  281. /*
  282. * save the sectors now since our bio can
  283. * go away inside make_request
  284. */
  285. sectors = bio_sectors(bio);
  286. mddev->pers->make_request(mddev, bio);
  287. cpu = part_stat_lock();
  288. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  289. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  290. part_stat_unlock();
  291. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  292. wake_up(&mddev->sb_wait);
  293. }
  294. /* mddev_suspend makes sure no new requests are submitted
  295. * to the device, and that any requests that have been submitted
  296. * are completely handled.
  297. * Once ->stop is called and completes, the module will be completely
  298. * unused.
  299. */
  300. void mddev_suspend(struct mddev *mddev)
  301. {
  302. BUG_ON(mddev->suspended);
  303. mddev->suspended = 1;
  304. synchronize_rcu();
  305. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  306. mddev->pers->quiesce(mddev, 1);
  307. del_timer_sync(&mddev->safemode_timer);
  308. }
  309. EXPORT_SYMBOL_GPL(mddev_suspend);
  310. void mddev_resume(struct mddev *mddev)
  311. {
  312. mddev->suspended = 0;
  313. wake_up(&mddev->sb_wait);
  314. mddev->pers->quiesce(mddev, 0);
  315. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  316. md_wakeup_thread(mddev->thread);
  317. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  318. }
  319. EXPORT_SYMBOL_GPL(mddev_resume);
  320. int mddev_congested(struct mddev *mddev, int bits)
  321. {
  322. return mddev->suspended;
  323. }
  324. EXPORT_SYMBOL(mddev_congested);
  325. /*
  326. * Generic flush handling for md
  327. */
  328. static void md_end_flush(struct bio *bio, int err)
  329. {
  330. struct md_rdev *rdev = bio->bi_private;
  331. struct mddev *mddev = rdev->mddev;
  332. rdev_dec_pending(rdev, mddev);
  333. if (atomic_dec_and_test(&mddev->flush_pending)) {
  334. /* The pre-request flush has finished */
  335. queue_work(md_wq, &mddev->flush_work);
  336. }
  337. bio_put(bio);
  338. }
  339. static void md_submit_flush_data(struct work_struct *ws);
  340. static void submit_flushes(struct work_struct *ws)
  341. {
  342. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  343. struct md_rdev *rdev;
  344. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  345. atomic_set(&mddev->flush_pending, 1);
  346. rcu_read_lock();
  347. rdev_for_each_rcu(rdev, mddev)
  348. if (rdev->raid_disk >= 0 &&
  349. !test_bit(Faulty, &rdev->flags)) {
  350. /* Take two references, one is dropped
  351. * when request finishes, one after
  352. * we reclaim rcu_read_lock
  353. */
  354. struct bio *bi;
  355. atomic_inc(&rdev->nr_pending);
  356. atomic_inc(&rdev->nr_pending);
  357. rcu_read_unlock();
  358. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  359. bi->bi_end_io = md_end_flush;
  360. bi->bi_private = rdev;
  361. bi->bi_bdev = rdev->bdev;
  362. atomic_inc(&mddev->flush_pending);
  363. submit_bio(WRITE_FLUSH, bi);
  364. rcu_read_lock();
  365. rdev_dec_pending(rdev, mddev);
  366. }
  367. rcu_read_unlock();
  368. if (atomic_dec_and_test(&mddev->flush_pending))
  369. queue_work(md_wq, &mddev->flush_work);
  370. }
  371. static void md_submit_flush_data(struct work_struct *ws)
  372. {
  373. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  374. struct bio *bio = mddev->flush_bio;
  375. if (bio->bi_size == 0)
  376. /* an empty barrier - all done */
  377. bio_endio(bio, 0);
  378. else {
  379. bio->bi_rw &= ~REQ_FLUSH;
  380. mddev->pers->make_request(mddev, bio);
  381. }
  382. mddev->flush_bio = NULL;
  383. wake_up(&mddev->sb_wait);
  384. }
  385. void md_flush_request(struct mddev *mddev, struct bio *bio)
  386. {
  387. spin_lock_irq(&mddev->write_lock);
  388. wait_event_lock_irq(mddev->sb_wait,
  389. !mddev->flush_bio,
  390. mddev->write_lock);
  391. mddev->flush_bio = bio;
  392. spin_unlock_irq(&mddev->write_lock);
  393. INIT_WORK(&mddev->flush_work, submit_flushes);
  394. queue_work(md_wq, &mddev->flush_work);
  395. }
  396. EXPORT_SYMBOL(md_flush_request);
  397. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  398. {
  399. struct mddev *mddev = cb->data;
  400. md_wakeup_thread(mddev->thread);
  401. kfree(cb);
  402. }
  403. EXPORT_SYMBOL(md_unplug);
  404. static inline struct mddev *mddev_get(struct mddev *mddev)
  405. {
  406. atomic_inc(&mddev->active);
  407. return mddev;
  408. }
  409. static void mddev_delayed_delete(struct work_struct *ws);
  410. static void mddev_put(struct mddev *mddev)
  411. {
  412. struct bio_set *bs = NULL;
  413. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  414. return;
  415. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  416. mddev->ctime == 0 && !mddev->hold_active) {
  417. /* Array is not configured at all, and not held active,
  418. * so destroy it */
  419. list_del_init(&mddev->all_mddevs);
  420. bs = mddev->bio_set;
  421. mddev->bio_set = NULL;
  422. if (mddev->gendisk) {
  423. /* We did a probe so need to clean up. Call
  424. * queue_work inside the spinlock so that
  425. * flush_workqueue() after mddev_find will
  426. * succeed in waiting for the work to be done.
  427. */
  428. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  429. queue_work(md_misc_wq, &mddev->del_work);
  430. } else
  431. kfree(mddev);
  432. }
  433. spin_unlock(&all_mddevs_lock);
  434. if (bs)
  435. bioset_free(bs);
  436. }
  437. void mddev_init(struct mddev *mddev)
  438. {
  439. mutex_init(&mddev->open_mutex);
  440. mutex_init(&mddev->reconfig_mutex);
  441. mutex_init(&mddev->bitmap_info.mutex);
  442. INIT_LIST_HEAD(&mddev->disks);
  443. INIT_LIST_HEAD(&mddev->all_mddevs);
  444. init_timer(&mddev->safemode_timer);
  445. atomic_set(&mddev->active, 1);
  446. atomic_set(&mddev->openers, 0);
  447. atomic_set(&mddev->active_io, 0);
  448. spin_lock_init(&mddev->write_lock);
  449. atomic_set(&mddev->flush_pending, 0);
  450. init_waitqueue_head(&mddev->sb_wait);
  451. init_waitqueue_head(&mddev->recovery_wait);
  452. mddev->reshape_position = MaxSector;
  453. mddev->reshape_backwards = 0;
  454. mddev->resync_min = 0;
  455. mddev->resync_max = MaxSector;
  456. mddev->level = LEVEL_NONE;
  457. }
  458. EXPORT_SYMBOL_GPL(mddev_init);
  459. static struct mddev * mddev_find(dev_t unit)
  460. {
  461. struct mddev *mddev, *new = NULL;
  462. if (unit && MAJOR(unit) != MD_MAJOR)
  463. unit &= ~((1<<MdpMinorShift)-1);
  464. retry:
  465. spin_lock(&all_mddevs_lock);
  466. if (unit) {
  467. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  468. if (mddev->unit == unit) {
  469. mddev_get(mddev);
  470. spin_unlock(&all_mddevs_lock);
  471. kfree(new);
  472. return mddev;
  473. }
  474. if (new) {
  475. list_add(&new->all_mddevs, &all_mddevs);
  476. spin_unlock(&all_mddevs_lock);
  477. new->hold_active = UNTIL_IOCTL;
  478. return new;
  479. }
  480. } else if (new) {
  481. /* find an unused unit number */
  482. static int next_minor = 512;
  483. int start = next_minor;
  484. int is_free = 0;
  485. int dev = 0;
  486. while (!is_free) {
  487. dev = MKDEV(MD_MAJOR, next_minor);
  488. next_minor++;
  489. if (next_minor > MINORMASK)
  490. next_minor = 0;
  491. if (next_minor == start) {
  492. /* Oh dear, all in use. */
  493. spin_unlock(&all_mddevs_lock);
  494. kfree(new);
  495. return NULL;
  496. }
  497. is_free = 1;
  498. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  499. if (mddev->unit == dev) {
  500. is_free = 0;
  501. break;
  502. }
  503. }
  504. new->unit = dev;
  505. new->md_minor = MINOR(dev);
  506. new->hold_active = UNTIL_STOP;
  507. list_add(&new->all_mddevs, &all_mddevs);
  508. spin_unlock(&all_mddevs_lock);
  509. return new;
  510. }
  511. spin_unlock(&all_mddevs_lock);
  512. new = kzalloc(sizeof(*new), GFP_KERNEL);
  513. if (!new)
  514. return NULL;
  515. new->unit = unit;
  516. if (MAJOR(unit) == MD_MAJOR)
  517. new->md_minor = MINOR(unit);
  518. else
  519. new->md_minor = MINOR(unit) >> MdpMinorShift;
  520. mddev_init(new);
  521. goto retry;
  522. }
  523. static inline int mddev_lock(struct mddev * mddev)
  524. {
  525. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  526. }
  527. static inline int mddev_is_locked(struct mddev *mddev)
  528. {
  529. return mutex_is_locked(&mddev->reconfig_mutex);
  530. }
  531. static inline int mddev_trylock(struct mddev * mddev)
  532. {
  533. return mutex_trylock(&mddev->reconfig_mutex);
  534. }
  535. static struct attribute_group md_redundancy_group;
  536. static void mddev_unlock(struct mddev * mddev)
  537. {
  538. if (mddev->to_remove) {
  539. /* These cannot be removed under reconfig_mutex as
  540. * an access to the files will try to take reconfig_mutex
  541. * while holding the file unremovable, which leads to
  542. * a deadlock.
  543. * So hold set sysfs_active while the remove in happeing,
  544. * and anything else which might set ->to_remove or my
  545. * otherwise change the sysfs namespace will fail with
  546. * -EBUSY if sysfs_active is still set.
  547. * We set sysfs_active under reconfig_mutex and elsewhere
  548. * test it under the same mutex to ensure its correct value
  549. * is seen.
  550. */
  551. struct attribute_group *to_remove = mddev->to_remove;
  552. mddev->to_remove = NULL;
  553. mddev->sysfs_active = 1;
  554. mutex_unlock(&mddev->reconfig_mutex);
  555. if (mddev->kobj.sd) {
  556. if (to_remove != &md_redundancy_group)
  557. sysfs_remove_group(&mddev->kobj, to_remove);
  558. if (mddev->pers == NULL ||
  559. mddev->pers->sync_request == NULL) {
  560. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  561. if (mddev->sysfs_action)
  562. sysfs_put(mddev->sysfs_action);
  563. mddev->sysfs_action = NULL;
  564. }
  565. }
  566. mddev->sysfs_active = 0;
  567. } else
  568. mutex_unlock(&mddev->reconfig_mutex);
  569. /* As we've dropped the mutex we need a spinlock to
  570. * make sure the thread doesn't disappear
  571. */
  572. spin_lock(&pers_lock);
  573. md_wakeup_thread(mddev->thread);
  574. spin_unlock(&pers_lock);
  575. }
  576. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  577. {
  578. struct md_rdev *rdev;
  579. rdev_for_each(rdev, mddev)
  580. if (rdev->desc_nr == nr)
  581. return rdev;
  582. return NULL;
  583. }
  584. static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
  585. {
  586. struct md_rdev *rdev;
  587. rdev_for_each_rcu(rdev, mddev)
  588. if (rdev->desc_nr == nr)
  589. return rdev;
  590. return NULL;
  591. }
  592. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  593. {
  594. struct md_rdev *rdev;
  595. rdev_for_each(rdev, mddev)
  596. if (rdev->bdev->bd_dev == dev)
  597. return rdev;
  598. return NULL;
  599. }
  600. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  601. {
  602. struct md_rdev *rdev;
  603. rdev_for_each_rcu(rdev, mddev)
  604. if (rdev->bdev->bd_dev == dev)
  605. return rdev;
  606. return NULL;
  607. }
  608. static struct md_personality *find_pers(int level, char *clevel)
  609. {
  610. struct md_personality *pers;
  611. list_for_each_entry(pers, &pers_list, list) {
  612. if (level != LEVEL_NONE && pers->level == level)
  613. return pers;
  614. if (strcmp(pers->name, clevel)==0)
  615. return pers;
  616. }
  617. return NULL;
  618. }
  619. /* return the offset of the super block in 512byte sectors */
  620. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  621. {
  622. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  623. return MD_NEW_SIZE_SECTORS(num_sectors);
  624. }
  625. static int alloc_disk_sb(struct md_rdev * rdev)
  626. {
  627. if (rdev->sb_page)
  628. MD_BUG();
  629. rdev->sb_page = alloc_page(GFP_KERNEL);
  630. if (!rdev->sb_page) {
  631. printk(KERN_ALERT "md: out of memory.\n");
  632. return -ENOMEM;
  633. }
  634. return 0;
  635. }
  636. void md_rdev_clear(struct md_rdev *rdev)
  637. {
  638. if (rdev->sb_page) {
  639. put_page(rdev->sb_page);
  640. rdev->sb_loaded = 0;
  641. rdev->sb_page = NULL;
  642. rdev->sb_start = 0;
  643. rdev->sectors = 0;
  644. }
  645. if (rdev->bb_page) {
  646. put_page(rdev->bb_page);
  647. rdev->bb_page = NULL;
  648. }
  649. kfree(rdev->badblocks.page);
  650. rdev->badblocks.page = NULL;
  651. }
  652. EXPORT_SYMBOL_GPL(md_rdev_clear);
  653. static void super_written(struct bio *bio, int error)
  654. {
  655. struct md_rdev *rdev = bio->bi_private;
  656. struct mddev *mddev = rdev->mddev;
  657. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  658. printk("md: super_written gets error=%d, uptodate=%d\n",
  659. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  660. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  661. md_error(mddev, rdev);
  662. }
  663. if (atomic_dec_and_test(&mddev->pending_writes))
  664. wake_up(&mddev->sb_wait);
  665. bio_put(bio);
  666. }
  667. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  668. sector_t sector, int size, struct page *page)
  669. {
  670. /* write first size bytes of page to sector of rdev
  671. * Increment mddev->pending_writes before returning
  672. * and decrement it on completion, waking up sb_wait
  673. * if zero is reached.
  674. * If an error occurred, call md_error
  675. */
  676. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  677. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  678. bio->bi_sector = sector;
  679. bio_add_page(bio, page, size, 0);
  680. bio->bi_private = rdev;
  681. bio->bi_end_io = super_written;
  682. atomic_inc(&mddev->pending_writes);
  683. submit_bio(WRITE_FLUSH_FUA, bio);
  684. }
  685. void md_super_wait(struct mddev *mddev)
  686. {
  687. /* wait for all superblock writes that were scheduled to complete */
  688. DEFINE_WAIT(wq);
  689. for(;;) {
  690. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  691. if (atomic_read(&mddev->pending_writes)==0)
  692. break;
  693. schedule();
  694. }
  695. finish_wait(&mddev->sb_wait, &wq);
  696. }
  697. static void bi_complete(struct bio *bio, int error)
  698. {
  699. complete((struct completion*)bio->bi_private);
  700. }
  701. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  702. struct page *page, int rw, bool metadata_op)
  703. {
  704. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  705. struct completion event;
  706. int ret;
  707. rw |= REQ_SYNC;
  708. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  709. rdev->meta_bdev : rdev->bdev;
  710. if (metadata_op)
  711. bio->bi_sector = sector + rdev->sb_start;
  712. else if (rdev->mddev->reshape_position != MaxSector &&
  713. (rdev->mddev->reshape_backwards ==
  714. (sector >= rdev->mddev->reshape_position)))
  715. bio->bi_sector = sector + rdev->new_data_offset;
  716. else
  717. bio->bi_sector = sector + rdev->data_offset;
  718. bio_add_page(bio, page, size, 0);
  719. init_completion(&event);
  720. bio->bi_private = &event;
  721. bio->bi_end_io = bi_complete;
  722. submit_bio(rw, bio);
  723. wait_for_completion(&event);
  724. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  725. bio_put(bio);
  726. return ret;
  727. }
  728. EXPORT_SYMBOL_GPL(sync_page_io);
  729. static int read_disk_sb(struct md_rdev * rdev, int size)
  730. {
  731. char b[BDEVNAME_SIZE];
  732. if (!rdev->sb_page) {
  733. MD_BUG();
  734. return -EINVAL;
  735. }
  736. if (rdev->sb_loaded)
  737. return 0;
  738. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  739. goto fail;
  740. rdev->sb_loaded = 1;
  741. return 0;
  742. fail:
  743. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  744. bdevname(rdev->bdev,b));
  745. return -EINVAL;
  746. }
  747. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  748. {
  749. return sb1->set_uuid0 == sb2->set_uuid0 &&
  750. sb1->set_uuid1 == sb2->set_uuid1 &&
  751. sb1->set_uuid2 == sb2->set_uuid2 &&
  752. sb1->set_uuid3 == sb2->set_uuid3;
  753. }
  754. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  755. {
  756. int ret;
  757. mdp_super_t *tmp1, *tmp2;
  758. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  759. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  760. if (!tmp1 || !tmp2) {
  761. ret = 0;
  762. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  763. goto abort;
  764. }
  765. *tmp1 = *sb1;
  766. *tmp2 = *sb2;
  767. /*
  768. * nr_disks is not constant
  769. */
  770. tmp1->nr_disks = 0;
  771. tmp2->nr_disks = 0;
  772. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  773. abort:
  774. kfree(tmp1);
  775. kfree(tmp2);
  776. return ret;
  777. }
  778. static u32 md_csum_fold(u32 csum)
  779. {
  780. csum = (csum & 0xffff) + (csum >> 16);
  781. return (csum & 0xffff) + (csum >> 16);
  782. }
  783. static unsigned int calc_sb_csum(mdp_super_t * sb)
  784. {
  785. u64 newcsum = 0;
  786. u32 *sb32 = (u32*)sb;
  787. int i;
  788. unsigned int disk_csum, csum;
  789. disk_csum = sb->sb_csum;
  790. sb->sb_csum = 0;
  791. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  792. newcsum += sb32[i];
  793. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  794. #ifdef CONFIG_ALPHA
  795. /* This used to use csum_partial, which was wrong for several
  796. * reasons including that different results are returned on
  797. * different architectures. It isn't critical that we get exactly
  798. * the same return value as before (we always csum_fold before
  799. * testing, and that removes any differences). However as we
  800. * know that csum_partial always returned a 16bit value on
  801. * alphas, do a fold to maximise conformity to previous behaviour.
  802. */
  803. sb->sb_csum = md_csum_fold(disk_csum);
  804. #else
  805. sb->sb_csum = disk_csum;
  806. #endif
  807. return csum;
  808. }
  809. /*
  810. * Handle superblock details.
  811. * We want to be able to handle multiple superblock formats
  812. * so we have a common interface to them all, and an array of
  813. * different handlers.
  814. * We rely on user-space to write the initial superblock, and support
  815. * reading and updating of superblocks.
  816. * Interface methods are:
  817. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  818. * loads and validates a superblock on dev.
  819. * if refdev != NULL, compare superblocks on both devices
  820. * Return:
  821. * 0 - dev has a superblock that is compatible with refdev
  822. * 1 - dev has a superblock that is compatible and newer than refdev
  823. * so dev should be used as the refdev in future
  824. * -EINVAL superblock incompatible or invalid
  825. * -othererror e.g. -EIO
  826. *
  827. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  828. * Verify that dev is acceptable into mddev.
  829. * The first time, mddev->raid_disks will be 0, and data from
  830. * dev should be merged in. Subsequent calls check that dev
  831. * is new enough. Return 0 or -EINVAL
  832. *
  833. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  834. * Update the superblock for rdev with data in mddev
  835. * This does not write to disc.
  836. *
  837. */
  838. struct super_type {
  839. char *name;
  840. struct module *owner;
  841. int (*load_super)(struct md_rdev *rdev,
  842. struct md_rdev *refdev,
  843. int minor_version);
  844. int (*validate_super)(struct mddev *mddev,
  845. struct md_rdev *rdev);
  846. void (*sync_super)(struct mddev *mddev,
  847. struct md_rdev *rdev);
  848. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  849. sector_t num_sectors);
  850. int (*allow_new_offset)(struct md_rdev *rdev,
  851. unsigned long long new_offset);
  852. };
  853. /*
  854. * Check that the given mddev has no bitmap.
  855. *
  856. * This function is called from the run method of all personalities that do not
  857. * support bitmaps. It prints an error message and returns non-zero if mddev
  858. * has a bitmap. Otherwise, it returns 0.
  859. *
  860. */
  861. int md_check_no_bitmap(struct mddev *mddev)
  862. {
  863. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  864. return 0;
  865. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  866. mdname(mddev), mddev->pers->name);
  867. return 1;
  868. }
  869. EXPORT_SYMBOL(md_check_no_bitmap);
  870. /*
  871. * load_super for 0.90.0
  872. */
  873. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  874. {
  875. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  876. mdp_super_t *sb;
  877. int ret;
  878. /*
  879. * Calculate the position of the superblock (512byte sectors),
  880. * it's at the end of the disk.
  881. *
  882. * It also happens to be a multiple of 4Kb.
  883. */
  884. rdev->sb_start = calc_dev_sboffset(rdev);
  885. ret = read_disk_sb(rdev, MD_SB_BYTES);
  886. if (ret) return ret;
  887. ret = -EINVAL;
  888. bdevname(rdev->bdev, b);
  889. sb = page_address(rdev->sb_page);
  890. if (sb->md_magic != MD_SB_MAGIC) {
  891. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  892. b);
  893. goto abort;
  894. }
  895. if (sb->major_version != 0 ||
  896. sb->minor_version < 90 ||
  897. sb->minor_version > 91) {
  898. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  899. sb->major_version, sb->minor_version,
  900. b);
  901. goto abort;
  902. }
  903. if (sb->raid_disks <= 0)
  904. goto abort;
  905. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  906. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  907. b);
  908. goto abort;
  909. }
  910. rdev->preferred_minor = sb->md_minor;
  911. rdev->data_offset = 0;
  912. rdev->new_data_offset = 0;
  913. rdev->sb_size = MD_SB_BYTES;
  914. rdev->badblocks.shift = -1;
  915. if (sb->level == LEVEL_MULTIPATH)
  916. rdev->desc_nr = -1;
  917. else
  918. rdev->desc_nr = sb->this_disk.number;
  919. if (!refdev) {
  920. ret = 1;
  921. } else {
  922. __u64 ev1, ev2;
  923. mdp_super_t *refsb = page_address(refdev->sb_page);
  924. if (!uuid_equal(refsb, sb)) {
  925. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  926. b, bdevname(refdev->bdev,b2));
  927. goto abort;
  928. }
  929. if (!sb_equal(refsb, sb)) {
  930. printk(KERN_WARNING "md: %s has same UUID"
  931. " but different superblock to %s\n",
  932. b, bdevname(refdev->bdev, b2));
  933. goto abort;
  934. }
  935. ev1 = md_event(sb);
  936. ev2 = md_event(refsb);
  937. if (ev1 > ev2)
  938. ret = 1;
  939. else
  940. ret = 0;
  941. }
  942. rdev->sectors = rdev->sb_start;
  943. /* Limit to 4TB as metadata cannot record more than that.
  944. * (not needed for Linear and RAID0 as metadata doesn't
  945. * record this size)
  946. */
  947. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  948. rdev->sectors = (2ULL << 32) - 2;
  949. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  950. /* "this cannot possibly happen" ... */
  951. ret = -EINVAL;
  952. abort:
  953. return ret;
  954. }
  955. /*
  956. * validate_super for 0.90.0
  957. */
  958. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  959. {
  960. mdp_disk_t *desc;
  961. mdp_super_t *sb = page_address(rdev->sb_page);
  962. __u64 ev1 = md_event(sb);
  963. rdev->raid_disk = -1;
  964. clear_bit(Faulty, &rdev->flags);
  965. clear_bit(In_sync, &rdev->flags);
  966. clear_bit(WriteMostly, &rdev->flags);
  967. if (mddev->raid_disks == 0) {
  968. mddev->major_version = 0;
  969. mddev->minor_version = sb->minor_version;
  970. mddev->patch_version = sb->patch_version;
  971. mddev->external = 0;
  972. mddev->chunk_sectors = sb->chunk_size >> 9;
  973. mddev->ctime = sb->ctime;
  974. mddev->utime = sb->utime;
  975. mddev->level = sb->level;
  976. mddev->clevel[0] = 0;
  977. mddev->layout = sb->layout;
  978. mddev->raid_disks = sb->raid_disks;
  979. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  980. mddev->events = ev1;
  981. mddev->bitmap_info.offset = 0;
  982. mddev->bitmap_info.space = 0;
  983. /* bitmap can use 60 K after the 4K superblocks */
  984. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  985. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  986. mddev->reshape_backwards = 0;
  987. if (mddev->minor_version >= 91) {
  988. mddev->reshape_position = sb->reshape_position;
  989. mddev->delta_disks = sb->delta_disks;
  990. mddev->new_level = sb->new_level;
  991. mddev->new_layout = sb->new_layout;
  992. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  993. if (mddev->delta_disks < 0)
  994. mddev->reshape_backwards = 1;
  995. } else {
  996. mddev->reshape_position = MaxSector;
  997. mddev->delta_disks = 0;
  998. mddev->new_level = mddev->level;
  999. mddev->new_layout = mddev->layout;
  1000. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1001. }
  1002. if (sb->state & (1<<MD_SB_CLEAN))
  1003. mddev->recovery_cp = MaxSector;
  1004. else {
  1005. if (sb->events_hi == sb->cp_events_hi &&
  1006. sb->events_lo == sb->cp_events_lo) {
  1007. mddev->recovery_cp = sb->recovery_cp;
  1008. } else
  1009. mddev->recovery_cp = 0;
  1010. }
  1011. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1012. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1013. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1014. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1015. mddev->max_disks = MD_SB_DISKS;
  1016. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1017. mddev->bitmap_info.file == NULL) {
  1018. mddev->bitmap_info.offset =
  1019. mddev->bitmap_info.default_offset;
  1020. mddev->bitmap_info.space =
  1021. mddev->bitmap_info.space;
  1022. }
  1023. } else if (mddev->pers == NULL) {
  1024. /* Insist on good event counter while assembling, except
  1025. * for spares (which don't need an event count) */
  1026. ++ev1;
  1027. if (sb->disks[rdev->desc_nr].state & (
  1028. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1029. if (ev1 < mddev->events)
  1030. return -EINVAL;
  1031. } else if (mddev->bitmap) {
  1032. /* if adding to array with a bitmap, then we can accept an
  1033. * older device ... but not too old.
  1034. */
  1035. if (ev1 < mddev->bitmap->events_cleared)
  1036. return 0;
  1037. } else {
  1038. if (ev1 < mddev->events)
  1039. /* just a hot-add of a new device, leave raid_disk at -1 */
  1040. return 0;
  1041. }
  1042. if (mddev->level != LEVEL_MULTIPATH) {
  1043. desc = sb->disks + rdev->desc_nr;
  1044. if (desc->state & (1<<MD_DISK_FAULTY))
  1045. set_bit(Faulty, &rdev->flags);
  1046. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1047. desc->raid_disk < mddev->raid_disks */) {
  1048. set_bit(In_sync, &rdev->flags);
  1049. rdev->raid_disk = desc->raid_disk;
  1050. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1051. /* active but not in sync implies recovery up to
  1052. * reshape position. We don't know exactly where
  1053. * that is, so set to zero for now */
  1054. if (mddev->minor_version >= 91) {
  1055. rdev->recovery_offset = 0;
  1056. rdev->raid_disk = desc->raid_disk;
  1057. }
  1058. }
  1059. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1060. set_bit(WriteMostly, &rdev->flags);
  1061. } else /* MULTIPATH are always insync */
  1062. set_bit(In_sync, &rdev->flags);
  1063. return 0;
  1064. }
  1065. /*
  1066. * sync_super for 0.90.0
  1067. */
  1068. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1069. {
  1070. mdp_super_t *sb;
  1071. struct md_rdev *rdev2;
  1072. int next_spare = mddev->raid_disks;
  1073. /* make rdev->sb match mddev data..
  1074. *
  1075. * 1/ zero out disks
  1076. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1077. * 3/ any empty disks < next_spare become removed
  1078. *
  1079. * disks[0] gets initialised to REMOVED because
  1080. * we cannot be sure from other fields if it has
  1081. * been initialised or not.
  1082. */
  1083. int i;
  1084. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1085. rdev->sb_size = MD_SB_BYTES;
  1086. sb = page_address(rdev->sb_page);
  1087. memset(sb, 0, sizeof(*sb));
  1088. sb->md_magic = MD_SB_MAGIC;
  1089. sb->major_version = mddev->major_version;
  1090. sb->patch_version = mddev->patch_version;
  1091. sb->gvalid_words = 0; /* ignored */
  1092. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1093. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1094. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1095. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1096. sb->ctime = mddev->ctime;
  1097. sb->level = mddev->level;
  1098. sb->size = mddev->dev_sectors / 2;
  1099. sb->raid_disks = mddev->raid_disks;
  1100. sb->md_minor = mddev->md_minor;
  1101. sb->not_persistent = 0;
  1102. sb->utime = mddev->utime;
  1103. sb->state = 0;
  1104. sb->events_hi = (mddev->events>>32);
  1105. sb->events_lo = (u32)mddev->events;
  1106. if (mddev->reshape_position == MaxSector)
  1107. sb->minor_version = 90;
  1108. else {
  1109. sb->minor_version = 91;
  1110. sb->reshape_position = mddev->reshape_position;
  1111. sb->new_level = mddev->new_level;
  1112. sb->delta_disks = mddev->delta_disks;
  1113. sb->new_layout = mddev->new_layout;
  1114. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1115. }
  1116. mddev->minor_version = sb->minor_version;
  1117. if (mddev->in_sync)
  1118. {
  1119. sb->recovery_cp = mddev->recovery_cp;
  1120. sb->cp_events_hi = (mddev->events>>32);
  1121. sb->cp_events_lo = (u32)mddev->events;
  1122. if (mddev->recovery_cp == MaxSector)
  1123. sb->state = (1<< MD_SB_CLEAN);
  1124. } else
  1125. sb->recovery_cp = 0;
  1126. sb->layout = mddev->layout;
  1127. sb->chunk_size = mddev->chunk_sectors << 9;
  1128. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1129. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1130. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1131. rdev_for_each(rdev2, mddev) {
  1132. mdp_disk_t *d;
  1133. int desc_nr;
  1134. int is_active = test_bit(In_sync, &rdev2->flags);
  1135. if (rdev2->raid_disk >= 0 &&
  1136. sb->minor_version >= 91)
  1137. /* we have nowhere to store the recovery_offset,
  1138. * but if it is not below the reshape_position,
  1139. * we can piggy-back on that.
  1140. */
  1141. is_active = 1;
  1142. if (rdev2->raid_disk < 0 ||
  1143. test_bit(Faulty, &rdev2->flags))
  1144. is_active = 0;
  1145. if (is_active)
  1146. desc_nr = rdev2->raid_disk;
  1147. else
  1148. desc_nr = next_spare++;
  1149. rdev2->desc_nr = desc_nr;
  1150. d = &sb->disks[rdev2->desc_nr];
  1151. nr_disks++;
  1152. d->number = rdev2->desc_nr;
  1153. d->major = MAJOR(rdev2->bdev->bd_dev);
  1154. d->minor = MINOR(rdev2->bdev->bd_dev);
  1155. if (is_active)
  1156. d->raid_disk = rdev2->raid_disk;
  1157. else
  1158. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1159. if (test_bit(Faulty, &rdev2->flags))
  1160. d->state = (1<<MD_DISK_FAULTY);
  1161. else if (is_active) {
  1162. d->state = (1<<MD_DISK_ACTIVE);
  1163. if (test_bit(In_sync, &rdev2->flags))
  1164. d->state |= (1<<MD_DISK_SYNC);
  1165. active++;
  1166. working++;
  1167. } else {
  1168. d->state = 0;
  1169. spare++;
  1170. working++;
  1171. }
  1172. if (test_bit(WriteMostly, &rdev2->flags))
  1173. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1174. }
  1175. /* now set the "removed" and "faulty" bits on any missing devices */
  1176. for (i=0 ; i < mddev->raid_disks ; i++) {
  1177. mdp_disk_t *d = &sb->disks[i];
  1178. if (d->state == 0 && d->number == 0) {
  1179. d->number = i;
  1180. d->raid_disk = i;
  1181. d->state = (1<<MD_DISK_REMOVED);
  1182. d->state |= (1<<MD_DISK_FAULTY);
  1183. failed++;
  1184. }
  1185. }
  1186. sb->nr_disks = nr_disks;
  1187. sb->active_disks = active;
  1188. sb->working_disks = working;
  1189. sb->failed_disks = failed;
  1190. sb->spare_disks = spare;
  1191. sb->this_disk = sb->disks[rdev->desc_nr];
  1192. sb->sb_csum = calc_sb_csum(sb);
  1193. }
  1194. /*
  1195. * rdev_size_change for 0.90.0
  1196. */
  1197. static unsigned long long
  1198. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1199. {
  1200. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1201. return 0; /* component must fit device */
  1202. if (rdev->mddev->bitmap_info.offset)
  1203. return 0; /* can't move bitmap */
  1204. rdev->sb_start = calc_dev_sboffset(rdev);
  1205. if (!num_sectors || num_sectors > rdev->sb_start)
  1206. num_sectors = rdev->sb_start;
  1207. /* Limit to 4TB as metadata cannot record more than that.
  1208. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1209. */
  1210. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1211. num_sectors = (2ULL << 32) - 2;
  1212. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1213. rdev->sb_page);
  1214. md_super_wait(rdev->mddev);
  1215. return num_sectors;
  1216. }
  1217. static int
  1218. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1219. {
  1220. /* non-zero offset changes not possible with v0.90 */
  1221. return new_offset == 0;
  1222. }
  1223. /*
  1224. * version 1 superblock
  1225. */
  1226. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1227. {
  1228. __le32 disk_csum;
  1229. u32 csum;
  1230. unsigned long long newcsum;
  1231. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1232. __le32 *isuper = (__le32*)sb;
  1233. disk_csum = sb->sb_csum;
  1234. sb->sb_csum = 0;
  1235. newcsum = 0;
  1236. for (; size >= 4; size -= 4)
  1237. newcsum += le32_to_cpu(*isuper++);
  1238. if (size == 2)
  1239. newcsum += le16_to_cpu(*(__le16*) isuper);
  1240. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1241. sb->sb_csum = disk_csum;
  1242. return cpu_to_le32(csum);
  1243. }
  1244. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1245. int acknowledged);
  1246. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1247. {
  1248. struct mdp_superblock_1 *sb;
  1249. int ret;
  1250. sector_t sb_start;
  1251. sector_t sectors;
  1252. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1253. int bmask;
  1254. /*
  1255. * Calculate the position of the superblock in 512byte sectors.
  1256. * It is always aligned to a 4K boundary and
  1257. * depeding on minor_version, it can be:
  1258. * 0: At least 8K, but less than 12K, from end of device
  1259. * 1: At start of device
  1260. * 2: 4K from start of device.
  1261. */
  1262. switch(minor_version) {
  1263. case 0:
  1264. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1265. sb_start -= 8*2;
  1266. sb_start &= ~(sector_t)(4*2-1);
  1267. break;
  1268. case 1:
  1269. sb_start = 0;
  1270. break;
  1271. case 2:
  1272. sb_start = 8;
  1273. break;
  1274. default:
  1275. return -EINVAL;
  1276. }
  1277. rdev->sb_start = sb_start;
  1278. /* superblock is rarely larger than 1K, but it can be larger,
  1279. * and it is safe to read 4k, so we do that
  1280. */
  1281. ret = read_disk_sb(rdev, 4096);
  1282. if (ret) return ret;
  1283. sb = page_address(rdev->sb_page);
  1284. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1285. sb->major_version != cpu_to_le32(1) ||
  1286. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1287. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1288. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1289. return -EINVAL;
  1290. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1291. printk("md: invalid superblock checksum on %s\n",
  1292. bdevname(rdev->bdev,b));
  1293. return -EINVAL;
  1294. }
  1295. if (le64_to_cpu(sb->data_size) < 10) {
  1296. printk("md: data_size too small on %s\n",
  1297. bdevname(rdev->bdev,b));
  1298. return -EINVAL;
  1299. }
  1300. if (sb->pad0 ||
  1301. sb->pad3[0] ||
  1302. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1303. /* Some padding is non-zero, might be a new feature */
  1304. return -EINVAL;
  1305. rdev->preferred_minor = 0xffff;
  1306. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1307. rdev->new_data_offset = rdev->data_offset;
  1308. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1309. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1310. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1311. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1312. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1313. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1314. if (rdev->sb_size & bmask)
  1315. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1316. if (minor_version
  1317. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1318. return -EINVAL;
  1319. if (minor_version
  1320. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1321. return -EINVAL;
  1322. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1323. rdev->desc_nr = -1;
  1324. else
  1325. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1326. if (!rdev->bb_page) {
  1327. rdev->bb_page = alloc_page(GFP_KERNEL);
  1328. if (!rdev->bb_page)
  1329. return -ENOMEM;
  1330. }
  1331. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1332. rdev->badblocks.count == 0) {
  1333. /* need to load the bad block list.
  1334. * Currently we limit it to one page.
  1335. */
  1336. s32 offset;
  1337. sector_t bb_sector;
  1338. u64 *bbp;
  1339. int i;
  1340. int sectors = le16_to_cpu(sb->bblog_size);
  1341. if (sectors > (PAGE_SIZE / 512))
  1342. return -EINVAL;
  1343. offset = le32_to_cpu(sb->bblog_offset);
  1344. if (offset == 0)
  1345. return -EINVAL;
  1346. bb_sector = (long long)offset;
  1347. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1348. rdev->bb_page, READ, true))
  1349. return -EIO;
  1350. bbp = (u64 *)page_address(rdev->bb_page);
  1351. rdev->badblocks.shift = sb->bblog_shift;
  1352. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1353. u64 bb = le64_to_cpu(*bbp);
  1354. int count = bb & (0x3ff);
  1355. u64 sector = bb >> 10;
  1356. sector <<= sb->bblog_shift;
  1357. count <<= sb->bblog_shift;
  1358. if (bb + 1 == 0)
  1359. break;
  1360. if (md_set_badblocks(&rdev->badblocks,
  1361. sector, count, 1) == 0)
  1362. return -EINVAL;
  1363. }
  1364. } else if (sb->bblog_offset != 0)
  1365. rdev->badblocks.shift = 0;
  1366. if (!refdev) {
  1367. ret = 1;
  1368. } else {
  1369. __u64 ev1, ev2;
  1370. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1371. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1372. sb->level != refsb->level ||
  1373. sb->layout != refsb->layout ||
  1374. sb->chunksize != refsb->chunksize) {
  1375. printk(KERN_WARNING "md: %s has strangely different"
  1376. " superblock to %s\n",
  1377. bdevname(rdev->bdev,b),
  1378. bdevname(refdev->bdev,b2));
  1379. return -EINVAL;
  1380. }
  1381. ev1 = le64_to_cpu(sb->events);
  1382. ev2 = le64_to_cpu(refsb->events);
  1383. if (ev1 > ev2)
  1384. ret = 1;
  1385. else
  1386. ret = 0;
  1387. }
  1388. if (minor_version) {
  1389. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1390. sectors -= rdev->data_offset;
  1391. } else
  1392. sectors = rdev->sb_start;
  1393. if (sectors < le64_to_cpu(sb->data_size))
  1394. return -EINVAL;
  1395. rdev->sectors = le64_to_cpu(sb->data_size);
  1396. return ret;
  1397. }
  1398. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1399. {
  1400. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1401. __u64 ev1 = le64_to_cpu(sb->events);
  1402. rdev->raid_disk = -1;
  1403. clear_bit(Faulty, &rdev->flags);
  1404. clear_bit(In_sync, &rdev->flags);
  1405. clear_bit(WriteMostly, &rdev->flags);
  1406. if (mddev->raid_disks == 0) {
  1407. mddev->major_version = 1;
  1408. mddev->patch_version = 0;
  1409. mddev->external = 0;
  1410. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1411. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1412. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1413. mddev->level = le32_to_cpu(sb->level);
  1414. mddev->clevel[0] = 0;
  1415. mddev->layout = le32_to_cpu(sb->layout);
  1416. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1417. mddev->dev_sectors = le64_to_cpu(sb->size);
  1418. mddev->events = ev1;
  1419. mddev->bitmap_info.offset = 0;
  1420. mddev->bitmap_info.space = 0;
  1421. /* Default location for bitmap is 1K after superblock
  1422. * using 3K - total of 4K
  1423. */
  1424. mddev->bitmap_info.default_offset = 1024 >> 9;
  1425. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1426. mddev->reshape_backwards = 0;
  1427. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1428. memcpy(mddev->uuid, sb->set_uuid, 16);
  1429. mddev->max_disks = (4096-256)/2;
  1430. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1431. mddev->bitmap_info.file == NULL) {
  1432. mddev->bitmap_info.offset =
  1433. (__s32)le32_to_cpu(sb->bitmap_offset);
  1434. /* Metadata doesn't record how much space is available.
  1435. * For 1.0, we assume we can use up to the superblock
  1436. * if before, else to 4K beyond superblock.
  1437. * For others, assume no change is possible.
  1438. */
  1439. if (mddev->minor_version > 0)
  1440. mddev->bitmap_info.space = 0;
  1441. else if (mddev->bitmap_info.offset > 0)
  1442. mddev->bitmap_info.space =
  1443. 8 - mddev->bitmap_info.offset;
  1444. else
  1445. mddev->bitmap_info.space =
  1446. -mddev->bitmap_info.offset;
  1447. }
  1448. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1449. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1450. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1451. mddev->new_level = le32_to_cpu(sb->new_level);
  1452. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1453. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1454. if (mddev->delta_disks < 0 ||
  1455. (mddev->delta_disks == 0 &&
  1456. (le32_to_cpu(sb->feature_map)
  1457. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1458. mddev->reshape_backwards = 1;
  1459. } else {
  1460. mddev->reshape_position = MaxSector;
  1461. mddev->delta_disks = 0;
  1462. mddev->new_level = mddev->level;
  1463. mddev->new_layout = mddev->layout;
  1464. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1465. }
  1466. } else if (mddev->pers == NULL) {
  1467. /* Insist of good event counter while assembling, except for
  1468. * spares (which don't need an event count) */
  1469. ++ev1;
  1470. if (rdev->desc_nr >= 0 &&
  1471. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1472. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1473. if (ev1 < mddev->events)
  1474. return -EINVAL;
  1475. } else if (mddev->bitmap) {
  1476. /* If adding to array with a bitmap, then we can accept an
  1477. * older device, but not too old.
  1478. */
  1479. if (ev1 < mddev->bitmap->events_cleared)
  1480. return 0;
  1481. } else {
  1482. if (ev1 < mddev->events)
  1483. /* just a hot-add of a new device, leave raid_disk at -1 */
  1484. return 0;
  1485. }
  1486. if (mddev->level != LEVEL_MULTIPATH) {
  1487. int role;
  1488. if (rdev->desc_nr < 0 ||
  1489. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1490. role = 0xffff;
  1491. rdev->desc_nr = -1;
  1492. } else
  1493. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1494. switch(role) {
  1495. case 0xffff: /* spare */
  1496. break;
  1497. case 0xfffe: /* faulty */
  1498. set_bit(Faulty, &rdev->flags);
  1499. break;
  1500. default:
  1501. if ((le32_to_cpu(sb->feature_map) &
  1502. MD_FEATURE_RECOVERY_OFFSET))
  1503. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1504. else
  1505. set_bit(In_sync, &rdev->flags);
  1506. rdev->raid_disk = role;
  1507. break;
  1508. }
  1509. if (sb->devflags & WriteMostly1)
  1510. set_bit(WriteMostly, &rdev->flags);
  1511. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1512. set_bit(Replacement, &rdev->flags);
  1513. } else /* MULTIPATH are always insync */
  1514. set_bit(In_sync, &rdev->flags);
  1515. return 0;
  1516. }
  1517. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1518. {
  1519. struct mdp_superblock_1 *sb;
  1520. struct md_rdev *rdev2;
  1521. int max_dev, i;
  1522. /* make rdev->sb match mddev and rdev data. */
  1523. sb = page_address(rdev->sb_page);
  1524. sb->feature_map = 0;
  1525. sb->pad0 = 0;
  1526. sb->recovery_offset = cpu_to_le64(0);
  1527. memset(sb->pad3, 0, sizeof(sb->pad3));
  1528. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1529. sb->events = cpu_to_le64(mddev->events);
  1530. if (mddev->in_sync)
  1531. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1532. else
  1533. sb->resync_offset = cpu_to_le64(0);
  1534. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1535. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1536. sb->size = cpu_to_le64(mddev->dev_sectors);
  1537. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1538. sb->level = cpu_to_le32(mddev->level);
  1539. sb->layout = cpu_to_le32(mddev->layout);
  1540. if (test_bit(WriteMostly, &rdev->flags))
  1541. sb->devflags |= WriteMostly1;
  1542. else
  1543. sb->devflags &= ~WriteMostly1;
  1544. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1545. sb->data_size = cpu_to_le64(rdev->sectors);
  1546. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1547. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1548. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1549. }
  1550. if (rdev->raid_disk >= 0 &&
  1551. !test_bit(In_sync, &rdev->flags)) {
  1552. sb->feature_map |=
  1553. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1554. sb->recovery_offset =
  1555. cpu_to_le64(rdev->recovery_offset);
  1556. }
  1557. if (test_bit(Replacement, &rdev->flags))
  1558. sb->feature_map |=
  1559. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1560. if (mddev->reshape_position != MaxSector) {
  1561. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1562. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1563. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1564. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1565. sb->new_level = cpu_to_le32(mddev->new_level);
  1566. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1567. if (mddev->delta_disks == 0 &&
  1568. mddev->reshape_backwards)
  1569. sb->feature_map
  1570. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1571. if (rdev->new_data_offset != rdev->data_offset) {
  1572. sb->feature_map
  1573. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1574. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1575. - rdev->data_offset));
  1576. }
  1577. }
  1578. if (rdev->badblocks.count == 0)
  1579. /* Nothing to do for bad blocks*/ ;
  1580. else if (sb->bblog_offset == 0)
  1581. /* Cannot record bad blocks on this device */
  1582. md_error(mddev, rdev);
  1583. else {
  1584. struct badblocks *bb = &rdev->badblocks;
  1585. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1586. u64 *p = bb->page;
  1587. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1588. if (bb->changed) {
  1589. unsigned seq;
  1590. retry:
  1591. seq = read_seqbegin(&bb->lock);
  1592. memset(bbp, 0xff, PAGE_SIZE);
  1593. for (i = 0 ; i < bb->count ; i++) {
  1594. u64 internal_bb = p[i];
  1595. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1596. | BB_LEN(internal_bb));
  1597. bbp[i] = cpu_to_le64(store_bb);
  1598. }
  1599. bb->changed = 0;
  1600. if (read_seqretry(&bb->lock, seq))
  1601. goto retry;
  1602. bb->sector = (rdev->sb_start +
  1603. (int)le32_to_cpu(sb->bblog_offset));
  1604. bb->size = le16_to_cpu(sb->bblog_size);
  1605. }
  1606. }
  1607. max_dev = 0;
  1608. rdev_for_each(rdev2, mddev)
  1609. if (rdev2->desc_nr+1 > max_dev)
  1610. max_dev = rdev2->desc_nr+1;
  1611. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1612. int bmask;
  1613. sb->max_dev = cpu_to_le32(max_dev);
  1614. rdev->sb_size = max_dev * 2 + 256;
  1615. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1616. if (rdev->sb_size & bmask)
  1617. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1618. } else
  1619. max_dev = le32_to_cpu(sb->max_dev);
  1620. for (i=0; i<max_dev;i++)
  1621. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1622. rdev_for_each(rdev2, mddev) {
  1623. i = rdev2->desc_nr;
  1624. if (test_bit(Faulty, &rdev2->flags))
  1625. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1626. else if (test_bit(In_sync, &rdev2->flags))
  1627. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1628. else if (rdev2->raid_disk >= 0)
  1629. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1630. else
  1631. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1632. }
  1633. sb->sb_csum = calc_sb_1_csum(sb);
  1634. }
  1635. static unsigned long long
  1636. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1637. {
  1638. struct mdp_superblock_1 *sb;
  1639. sector_t max_sectors;
  1640. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1641. return 0; /* component must fit device */
  1642. if (rdev->data_offset != rdev->new_data_offset)
  1643. return 0; /* too confusing */
  1644. if (rdev->sb_start < rdev->data_offset) {
  1645. /* minor versions 1 and 2; superblock before data */
  1646. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1647. max_sectors -= rdev->data_offset;
  1648. if (!num_sectors || num_sectors > max_sectors)
  1649. num_sectors = max_sectors;
  1650. } else if (rdev->mddev->bitmap_info.offset) {
  1651. /* minor version 0 with bitmap we can't move */
  1652. return 0;
  1653. } else {
  1654. /* minor version 0; superblock after data */
  1655. sector_t sb_start;
  1656. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1657. sb_start &= ~(sector_t)(4*2 - 1);
  1658. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1659. if (!num_sectors || num_sectors > max_sectors)
  1660. num_sectors = max_sectors;
  1661. rdev->sb_start = sb_start;
  1662. }
  1663. sb = page_address(rdev->sb_page);
  1664. sb->data_size = cpu_to_le64(num_sectors);
  1665. sb->super_offset = rdev->sb_start;
  1666. sb->sb_csum = calc_sb_1_csum(sb);
  1667. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1668. rdev->sb_page);
  1669. md_super_wait(rdev->mddev);
  1670. return num_sectors;
  1671. }
  1672. static int
  1673. super_1_allow_new_offset(struct md_rdev *rdev,
  1674. unsigned long long new_offset)
  1675. {
  1676. /* All necessary checks on new >= old have been done */
  1677. struct bitmap *bitmap;
  1678. if (new_offset >= rdev->data_offset)
  1679. return 1;
  1680. /* with 1.0 metadata, there is no metadata to tread on
  1681. * so we can always move back */
  1682. if (rdev->mddev->minor_version == 0)
  1683. return 1;
  1684. /* otherwise we must be sure not to step on
  1685. * any metadata, so stay:
  1686. * 36K beyond start of superblock
  1687. * beyond end of badblocks
  1688. * beyond write-intent bitmap
  1689. */
  1690. if (rdev->sb_start + (32+4)*2 > new_offset)
  1691. return 0;
  1692. bitmap = rdev->mddev->bitmap;
  1693. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1694. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1695. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1696. return 0;
  1697. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1698. return 0;
  1699. return 1;
  1700. }
  1701. static struct super_type super_types[] = {
  1702. [0] = {
  1703. .name = "0.90.0",
  1704. .owner = THIS_MODULE,
  1705. .load_super = super_90_load,
  1706. .validate_super = super_90_validate,
  1707. .sync_super = super_90_sync,
  1708. .rdev_size_change = super_90_rdev_size_change,
  1709. .allow_new_offset = super_90_allow_new_offset,
  1710. },
  1711. [1] = {
  1712. .name = "md-1",
  1713. .owner = THIS_MODULE,
  1714. .load_super = super_1_load,
  1715. .validate_super = super_1_validate,
  1716. .sync_super = super_1_sync,
  1717. .rdev_size_change = super_1_rdev_size_change,
  1718. .allow_new_offset = super_1_allow_new_offset,
  1719. },
  1720. };
  1721. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1722. {
  1723. if (mddev->sync_super) {
  1724. mddev->sync_super(mddev, rdev);
  1725. return;
  1726. }
  1727. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1728. super_types[mddev->major_version].sync_super(mddev, rdev);
  1729. }
  1730. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1731. {
  1732. struct md_rdev *rdev, *rdev2;
  1733. rcu_read_lock();
  1734. rdev_for_each_rcu(rdev, mddev1)
  1735. rdev_for_each_rcu(rdev2, mddev2)
  1736. if (rdev->bdev->bd_contains ==
  1737. rdev2->bdev->bd_contains) {
  1738. rcu_read_unlock();
  1739. return 1;
  1740. }
  1741. rcu_read_unlock();
  1742. return 0;
  1743. }
  1744. static LIST_HEAD(pending_raid_disks);
  1745. /*
  1746. * Try to register data integrity profile for an mddev
  1747. *
  1748. * This is called when an array is started and after a disk has been kicked
  1749. * from the array. It only succeeds if all working and active component devices
  1750. * are integrity capable with matching profiles.
  1751. */
  1752. int md_integrity_register(struct mddev *mddev)
  1753. {
  1754. struct md_rdev *rdev, *reference = NULL;
  1755. if (list_empty(&mddev->disks))
  1756. return 0; /* nothing to do */
  1757. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1758. return 0; /* shouldn't register, or already is */
  1759. rdev_for_each(rdev, mddev) {
  1760. /* skip spares and non-functional disks */
  1761. if (test_bit(Faulty, &rdev->flags))
  1762. continue;
  1763. if (rdev->raid_disk < 0)
  1764. continue;
  1765. if (!reference) {
  1766. /* Use the first rdev as the reference */
  1767. reference = rdev;
  1768. continue;
  1769. }
  1770. /* does this rdev's profile match the reference profile? */
  1771. if (blk_integrity_compare(reference->bdev->bd_disk,
  1772. rdev->bdev->bd_disk) < 0)
  1773. return -EINVAL;
  1774. }
  1775. if (!reference || !bdev_get_integrity(reference->bdev))
  1776. return 0;
  1777. /*
  1778. * All component devices are integrity capable and have matching
  1779. * profiles, register the common profile for the md device.
  1780. */
  1781. if (blk_integrity_register(mddev->gendisk,
  1782. bdev_get_integrity(reference->bdev)) != 0) {
  1783. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1784. mdname(mddev));
  1785. return -EINVAL;
  1786. }
  1787. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1788. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1789. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1790. mdname(mddev));
  1791. return -EINVAL;
  1792. }
  1793. return 0;
  1794. }
  1795. EXPORT_SYMBOL(md_integrity_register);
  1796. /* Disable data integrity if non-capable/non-matching disk is being added */
  1797. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1798. {
  1799. struct blk_integrity *bi_rdev;
  1800. struct blk_integrity *bi_mddev;
  1801. if (!mddev->gendisk)
  1802. return;
  1803. bi_rdev = bdev_get_integrity(rdev->bdev);
  1804. bi_mddev = blk_get_integrity(mddev->gendisk);
  1805. if (!bi_mddev) /* nothing to do */
  1806. return;
  1807. if (rdev->raid_disk < 0) /* skip spares */
  1808. return;
  1809. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1810. rdev->bdev->bd_disk) >= 0)
  1811. return;
  1812. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1813. blk_integrity_unregister(mddev->gendisk);
  1814. }
  1815. EXPORT_SYMBOL(md_integrity_add_rdev);
  1816. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1817. {
  1818. char b[BDEVNAME_SIZE];
  1819. struct kobject *ko;
  1820. char *s;
  1821. int err;
  1822. if (rdev->mddev) {
  1823. MD_BUG();
  1824. return -EINVAL;
  1825. }
  1826. /* prevent duplicates */
  1827. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1828. return -EEXIST;
  1829. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1830. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1831. rdev->sectors < mddev->dev_sectors)) {
  1832. if (mddev->pers) {
  1833. /* Cannot change size, so fail
  1834. * If mddev->level <= 0, then we don't care
  1835. * about aligning sizes (e.g. linear)
  1836. */
  1837. if (mddev->level > 0)
  1838. return -ENOSPC;
  1839. } else
  1840. mddev->dev_sectors = rdev->sectors;
  1841. }
  1842. /* Verify rdev->desc_nr is unique.
  1843. * If it is -1, assign a free number, else
  1844. * check number is not in use
  1845. */
  1846. if (rdev->desc_nr < 0) {
  1847. int choice = 0;
  1848. if (mddev->pers) choice = mddev->raid_disks;
  1849. while (find_rdev_nr(mddev, choice))
  1850. choice++;
  1851. rdev->desc_nr = choice;
  1852. } else {
  1853. if (find_rdev_nr(mddev, rdev->desc_nr))
  1854. return -EBUSY;
  1855. }
  1856. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1857. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1858. mdname(mddev), mddev->max_disks);
  1859. return -EBUSY;
  1860. }
  1861. bdevname(rdev->bdev,b);
  1862. while ( (s=strchr(b, '/')) != NULL)
  1863. *s = '!';
  1864. rdev->mddev = mddev;
  1865. printk(KERN_INFO "md: bind<%s>\n", b);
  1866. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1867. goto fail;
  1868. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1869. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1870. /* failure here is OK */;
  1871. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1872. list_add_rcu(&rdev->same_set, &mddev->disks);
  1873. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1874. /* May as well allow recovery to be retried once */
  1875. mddev->recovery_disabled++;
  1876. return 0;
  1877. fail:
  1878. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1879. b, mdname(mddev));
  1880. return err;
  1881. }
  1882. static void md_delayed_delete(struct work_struct *ws)
  1883. {
  1884. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1885. kobject_del(&rdev->kobj);
  1886. kobject_put(&rdev->kobj);
  1887. }
  1888. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1889. {
  1890. char b[BDEVNAME_SIZE];
  1891. if (!rdev->mddev) {
  1892. MD_BUG();
  1893. return;
  1894. }
  1895. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1896. list_del_rcu(&rdev->same_set);
  1897. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1898. rdev->mddev = NULL;
  1899. sysfs_remove_link(&rdev->kobj, "block");
  1900. sysfs_put(rdev->sysfs_state);
  1901. rdev->sysfs_state = NULL;
  1902. rdev->badblocks.count = 0;
  1903. /* We need to delay this, otherwise we can deadlock when
  1904. * writing to 'remove' to "dev/state". We also need
  1905. * to delay it due to rcu usage.
  1906. */
  1907. synchronize_rcu();
  1908. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1909. kobject_get(&rdev->kobj);
  1910. queue_work(md_misc_wq, &rdev->del_work);
  1911. }
  1912. /*
  1913. * prevent the device from being mounted, repartitioned or
  1914. * otherwise reused by a RAID array (or any other kernel
  1915. * subsystem), by bd_claiming the device.
  1916. */
  1917. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1918. {
  1919. int err = 0;
  1920. struct block_device *bdev;
  1921. char b[BDEVNAME_SIZE];
  1922. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1923. shared ? (struct md_rdev *)lock_rdev : rdev);
  1924. if (IS_ERR(bdev)) {
  1925. printk(KERN_ERR "md: could not open %s.\n",
  1926. __bdevname(dev, b));
  1927. return PTR_ERR(bdev);
  1928. }
  1929. rdev->bdev = bdev;
  1930. return err;
  1931. }
  1932. static void unlock_rdev(struct md_rdev *rdev)
  1933. {
  1934. struct block_device *bdev = rdev->bdev;
  1935. rdev->bdev = NULL;
  1936. if (!bdev)
  1937. MD_BUG();
  1938. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1939. }
  1940. void md_autodetect_dev(dev_t dev);
  1941. static void export_rdev(struct md_rdev * rdev)
  1942. {
  1943. char b[BDEVNAME_SIZE];
  1944. printk(KERN_INFO "md: export_rdev(%s)\n",
  1945. bdevname(rdev->bdev,b));
  1946. if (rdev->mddev)
  1947. MD_BUG();
  1948. md_rdev_clear(rdev);
  1949. #ifndef MODULE
  1950. if (test_bit(AutoDetected, &rdev->flags))
  1951. md_autodetect_dev(rdev->bdev->bd_dev);
  1952. #endif
  1953. unlock_rdev(rdev);
  1954. kobject_put(&rdev->kobj);
  1955. }
  1956. static void kick_rdev_from_array(struct md_rdev * rdev)
  1957. {
  1958. unbind_rdev_from_array(rdev);
  1959. export_rdev(rdev);
  1960. }
  1961. static void export_array(struct mddev *mddev)
  1962. {
  1963. struct md_rdev *rdev, *tmp;
  1964. rdev_for_each_safe(rdev, tmp, mddev) {
  1965. if (!rdev->mddev) {
  1966. MD_BUG();
  1967. continue;
  1968. }
  1969. kick_rdev_from_array(rdev);
  1970. }
  1971. if (!list_empty(&mddev->disks))
  1972. MD_BUG();
  1973. mddev->raid_disks = 0;
  1974. mddev->major_version = 0;
  1975. }
  1976. static void print_desc(mdp_disk_t *desc)
  1977. {
  1978. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1979. desc->major,desc->minor,desc->raid_disk,desc->state);
  1980. }
  1981. static void print_sb_90(mdp_super_t *sb)
  1982. {
  1983. int i;
  1984. printk(KERN_INFO
  1985. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1986. sb->major_version, sb->minor_version, sb->patch_version,
  1987. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1988. sb->ctime);
  1989. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1990. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1991. sb->md_minor, sb->layout, sb->chunk_size);
  1992. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1993. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1994. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1995. sb->failed_disks, sb->spare_disks,
  1996. sb->sb_csum, (unsigned long)sb->events_lo);
  1997. printk(KERN_INFO);
  1998. for (i = 0; i < MD_SB_DISKS; i++) {
  1999. mdp_disk_t *desc;
  2000. desc = sb->disks + i;
  2001. if (desc->number || desc->major || desc->minor ||
  2002. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2003. printk(" D %2d: ", i);
  2004. print_desc(desc);
  2005. }
  2006. }
  2007. printk(KERN_INFO "md: THIS: ");
  2008. print_desc(&sb->this_disk);
  2009. }
  2010. static void print_sb_1(struct mdp_superblock_1 *sb)
  2011. {
  2012. __u8 *uuid;
  2013. uuid = sb->set_uuid;
  2014. printk(KERN_INFO
  2015. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2016. "md: Name: \"%s\" CT:%llu\n",
  2017. le32_to_cpu(sb->major_version),
  2018. le32_to_cpu(sb->feature_map),
  2019. uuid,
  2020. sb->set_name,
  2021. (unsigned long long)le64_to_cpu(sb->ctime)
  2022. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2023. uuid = sb->device_uuid;
  2024. printk(KERN_INFO
  2025. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2026. " RO:%llu\n"
  2027. "md: Dev:%08x UUID: %pU\n"
  2028. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2029. "md: (MaxDev:%u) \n",
  2030. le32_to_cpu(sb->level),
  2031. (unsigned long long)le64_to_cpu(sb->size),
  2032. le32_to_cpu(sb->raid_disks),
  2033. le32_to_cpu(sb->layout),
  2034. le32_to_cpu(sb->chunksize),
  2035. (unsigned long long)le64_to_cpu(sb->data_offset),
  2036. (unsigned long long)le64_to_cpu(sb->data_size),
  2037. (unsigned long long)le64_to_cpu(sb->super_offset),
  2038. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2039. le32_to_cpu(sb->dev_number),
  2040. uuid,
  2041. sb->devflags,
  2042. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2043. (unsigned long long)le64_to_cpu(sb->events),
  2044. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2045. le32_to_cpu(sb->sb_csum),
  2046. le32_to_cpu(sb->max_dev)
  2047. );
  2048. }
  2049. static void print_rdev(struct md_rdev *rdev, int major_version)
  2050. {
  2051. char b[BDEVNAME_SIZE];
  2052. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2053. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2054. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2055. rdev->desc_nr);
  2056. if (rdev->sb_loaded) {
  2057. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2058. switch (major_version) {
  2059. case 0:
  2060. print_sb_90(page_address(rdev->sb_page));
  2061. break;
  2062. case 1:
  2063. print_sb_1(page_address(rdev->sb_page));
  2064. break;
  2065. }
  2066. } else
  2067. printk(KERN_INFO "md: no rdev superblock!\n");
  2068. }
  2069. static void md_print_devices(void)
  2070. {
  2071. struct list_head *tmp;
  2072. struct md_rdev *rdev;
  2073. struct mddev *mddev;
  2074. char b[BDEVNAME_SIZE];
  2075. printk("\n");
  2076. printk("md: **********************************\n");
  2077. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2078. printk("md: **********************************\n");
  2079. for_each_mddev(mddev, tmp) {
  2080. if (mddev->bitmap)
  2081. bitmap_print_sb(mddev->bitmap);
  2082. else
  2083. printk("%s: ", mdname(mddev));
  2084. rdev_for_each(rdev, mddev)
  2085. printk("<%s>", bdevname(rdev->bdev,b));
  2086. printk("\n");
  2087. rdev_for_each(rdev, mddev)
  2088. print_rdev(rdev, mddev->major_version);
  2089. }
  2090. printk("md: **********************************\n");
  2091. printk("\n");
  2092. }
  2093. static void sync_sbs(struct mddev * mddev, int nospares)
  2094. {
  2095. /* Update each superblock (in-memory image), but
  2096. * if we are allowed to, skip spares which already
  2097. * have the right event counter, or have one earlier
  2098. * (which would mean they aren't being marked as dirty
  2099. * with the rest of the array)
  2100. */
  2101. struct md_rdev *rdev;
  2102. rdev_for_each(rdev, mddev) {
  2103. if (rdev->sb_events == mddev->events ||
  2104. (nospares &&
  2105. rdev->raid_disk < 0 &&
  2106. rdev->sb_events+1 == mddev->events)) {
  2107. /* Don't update this superblock */
  2108. rdev->sb_loaded = 2;
  2109. } else {
  2110. sync_super(mddev, rdev);
  2111. rdev->sb_loaded = 1;
  2112. }
  2113. }
  2114. }
  2115. static void md_update_sb(struct mddev * mddev, int force_change)
  2116. {
  2117. struct md_rdev *rdev;
  2118. int sync_req;
  2119. int nospares = 0;
  2120. int any_badblocks_changed = 0;
  2121. if (mddev->ro) {
  2122. if (force_change)
  2123. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2124. return;
  2125. }
  2126. repeat:
  2127. /* First make sure individual recovery_offsets are correct */
  2128. rdev_for_each(rdev, mddev) {
  2129. if (rdev->raid_disk >= 0 &&
  2130. mddev->delta_disks >= 0 &&
  2131. !test_bit(In_sync, &rdev->flags) &&
  2132. mddev->curr_resync_completed > rdev->recovery_offset)
  2133. rdev->recovery_offset = mddev->curr_resync_completed;
  2134. }
  2135. if (!mddev->persistent) {
  2136. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2137. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2138. if (!mddev->external) {
  2139. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2140. rdev_for_each(rdev, mddev) {
  2141. if (rdev->badblocks.changed) {
  2142. rdev->badblocks.changed = 0;
  2143. md_ack_all_badblocks(&rdev->badblocks);
  2144. md_error(mddev, rdev);
  2145. }
  2146. clear_bit(Blocked, &rdev->flags);
  2147. clear_bit(BlockedBadBlocks, &rdev->flags);
  2148. wake_up(&rdev->blocked_wait);
  2149. }
  2150. }
  2151. wake_up(&mddev->sb_wait);
  2152. return;
  2153. }
  2154. spin_lock_irq(&mddev->write_lock);
  2155. mddev->utime = get_seconds();
  2156. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2157. force_change = 1;
  2158. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2159. /* just a clean<-> dirty transition, possibly leave spares alone,
  2160. * though if events isn't the right even/odd, we will have to do
  2161. * spares after all
  2162. */
  2163. nospares = 1;
  2164. if (force_change)
  2165. nospares = 0;
  2166. if (mddev->degraded)
  2167. /* If the array is degraded, then skipping spares is both
  2168. * dangerous and fairly pointless.
  2169. * Dangerous because a device that was removed from the array
  2170. * might have a event_count that still looks up-to-date,
  2171. * so it can be re-added without a resync.
  2172. * Pointless because if there are any spares to skip,
  2173. * then a recovery will happen and soon that array won't
  2174. * be degraded any more and the spare can go back to sleep then.
  2175. */
  2176. nospares = 0;
  2177. sync_req = mddev->in_sync;
  2178. /* If this is just a dirty<->clean transition, and the array is clean
  2179. * and 'events' is odd, we can roll back to the previous clean state */
  2180. if (nospares
  2181. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2182. && mddev->can_decrease_events
  2183. && mddev->events != 1) {
  2184. mddev->events--;
  2185. mddev->can_decrease_events = 0;
  2186. } else {
  2187. /* otherwise we have to go forward and ... */
  2188. mddev->events ++;
  2189. mddev->can_decrease_events = nospares;
  2190. }
  2191. if (!mddev->events) {
  2192. /*
  2193. * oops, this 64-bit counter should never wrap.
  2194. * Either we are in around ~1 trillion A.C., assuming
  2195. * 1 reboot per second, or we have a bug:
  2196. */
  2197. MD_BUG();
  2198. mddev->events --;
  2199. }
  2200. rdev_for_each(rdev, mddev) {
  2201. if (rdev->badblocks.changed)
  2202. any_badblocks_changed++;
  2203. if (test_bit(Faulty, &rdev->flags))
  2204. set_bit(FaultRecorded, &rdev->flags);
  2205. }
  2206. sync_sbs(mddev, nospares);
  2207. spin_unlock_irq(&mddev->write_lock);
  2208. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2209. mdname(mddev), mddev->in_sync);
  2210. bitmap_update_sb(mddev->bitmap);
  2211. rdev_for_each(rdev, mddev) {
  2212. char b[BDEVNAME_SIZE];
  2213. if (rdev->sb_loaded != 1)
  2214. continue; /* no noise on spare devices */
  2215. if (!test_bit(Faulty, &rdev->flags) &&
  2216. rdev->saved_raid_disk == -1) {
  2217. md_super_write(mddev,rdev,
  2218. rdev->sb_start, rdev->sb_size,
  2219. rdev->sb_page);
  2220. pr_debug("md: (write) %s's sb offset: %llu\n",
  2221. bdevname(rdev->bdev, b),
  2222. (unsigned long long)rdev->sb_start);
  2223. rdev->sb_events = mddev->events;
  2224. if (rdev->badblocks.size) {
  2225. md_super_write(mddev, rdev,
  2226. rdev->badblocks.sector,
  2227. rdev->badblocks.size << 9,
  2228. rdev->bb_page);
  2229. rdev->badblocks.size = 0;
  2230. }
  2231. } else if (test_bit(Faulty, &rdev->flags))
  2232. pr_debug("md: %s (skipping faulty)\n",
  2233. bdevname(rdev->bdev, b));
  2234. else
  2235. pr_debug("(skipping incremental s/r ");
  2236. if (mddev->level == LEVEL_MULTIPATH)
  2237. /* only need to write one superblock... */
  2238. break;
  2239. }
  2240. md_super_wait(mddev);
  2241. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2242. spin_lock_irq(&mddev->write_lock);
  2243. if (mddev->in_sync != sync_req ||
  2244. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2245. /* have to write it out again */
  2246. spin_unlock_irq(&mddev->write_lock);
  2247. goto repeat;
  2248. }
  2249. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2250. spin_unlock_irq(&mddev->write_lock);
  2251. wake_up(&mddev->sb_wait);
  2252. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2253. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2254. rdev_for_each(rdev, mddev) {
  2255. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2256. clear_bit(Blocked, &rdev->flags);
  2257. if (any_badblocks_changed)
  2258. md_ack_all_badblocks(&rdev->badblocks);
  2259. clear_bit(BlockedBadBlocks, &rdev->flags);
  2260. wake_up(&rdev->blocked_wait);
  2261. }
  2262. }
  2263. /* words written to sysfs files may, or may not, be \n terminated.
  2264. * We want to accept with case. For this we use cmd_match.
  2265. */
  2266. static int cmd_match(const char *cmd, const char *str)
  2267. {
  2268. /* See if cmd, written into a sysfs file, matches
  2269. * str. They must either be the same, or cmd can
  2270. * have a trailing newline
  2271. */
  2272. while (*cmd && *str && *cmd == *str) {
  2273. cmd++;
  2274. str++;
  2275. }
  2276. if (*cmd == '\n')
  2277. cmd++;
  2278. if (*str || *cmd)
  2279. return 0;
  2280. return 1;
  2281. }
  2282. struct rdev_sysfs_entry {
  2283. struct attribute attr;
  2284. ssize_t (*show)(struct md_rdev *, char *);
  2285. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2286. };
  2287. static ssize_t
  2288. state_show(struct md_rdev *rdev, char *page)
  2289. {
  2290. char *sep = "";
  2291. size_t len = 0;
  2292. if (test_bit(Faulty, &rdev->flags) ||
  2293. rdev->badblocks.unacked_exist) {
  2294. len+= sprintf(page+len, "%sfaulty",sep);
  2295. sep = ",";
  2296. }
  2297. if (test_bit(In_sync, &rdev->flags)) {
  2298. len += sprintf(page+len, "%sin_sync",sep);
  2299. sep = ",";
  2300. }
  2301. if (test_bit(WriteMostly, &rdev->flags)) {
  2302. len += sprintf(page+len, "%swrite_mostly",sep);
  2303. sep = ",";
  2304. }
  2305. if (test_bit(Blocked, &rdev->flags) ||
  2306. (rdev->badblocks.unacked_exist
  2307. && !test_bit(Faulty, &rdev->flags))) {
  2308. len += sprintf(page+len, "%sblocked", sep);
  2309. sep = ",";
  2310. }
  2311. if (!test_bit(Faulty, &rdev->flags) &&
  2312. !test_bit(In_sync, &rdev->flags)) {
  2313. len += sprintf(page+len, "%sspare", sep);
  2314. sep = ",";
  2315. }
  2316. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2317. len += sprintf(page+len, "%swrite_error", sep);
  2318. sep = ",";
  2319. }
  2320. if (test_bit(WantReplacement, &rdev->flags)) {
  2321. len += sprintf(page+len, "%swant_replacement", sep);
  2322. sep = ",";
  2323. }
  2324. if (test_bit(Replacement, &rdev->flags)) {
  2325. len += sprintf(page+len, "%sreplacement", sep);
  2326. sep = ",";
  2327. }
  2328. return len+sprintf(page+len, "\n");
  2329. }
  2330. static ssize_t
  2331. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2332. {
  2333. /* can write
  2334. * faulty - simulates an error
  2335. * remove - disconnects the device
  2336. * writemostly - sets write_mostly
  2337. * -writemostly - clears write_mostly
  2338. * blocked - sets the Blocked flags
  2339. * -blocked - clears the Blocked and possibly simulates an error
  2340. * insync - sets Insync providing device isn't active
  2341. * write_error - sets WriteErrorSeen
  2342. * -write_error - clears WriteErrorSeen
  2343. */
  2344. int err = -EINVAL;
  2345. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2346. md_error(rdev->mddev, rdev);
  2347. if (test_bit(Faulty, &rdev->flags))
  2348. err = 0;
  2349. else
  2350. err = -EBUSY;
  2351. } else if (cmd_match(buf, "remove")) {
  2352. if (rdev->raid_disk >= 0)
  2353. err = -EBUSY;
  2354. else {
  2355. struct mddev *mddev = rdev->mddev;
  2356. kick_rdev_from_array(rdev);
  2357. if (mddev->pers)
  2358. md_update_sb(mddev, 1);
  2359. md_new_event(mddev);
  2360. err = 0;
  2361. }
  2362. } else if (cmd_match(buf, "writemostly")) {
  2363. set_bit(WriteMostly, &rdev->flags);
  2364. err = 0;
  2365. } else if (cmd_match(buf, "-writemostly")) {
  2366. clear_bit(WriteMostly, &rdev->flags);
  2367. err = 0;
  2368. } else if (cmd_match(buf, "blocked")) {
  2369. set_bit(Blocked, &rdev->flags);
  2370. err = 0;
  2371. } else if (cmd_match(buf, "-blocked")) {
  2372. if (!test_bit(Faulty, &rdev->flags) &&
  2373. rdev->badblocks.unacked_exist) {
  2374. /* metadata handler doesn't understand badblocks,
  2375. * so we need to fail the device
  2376. */
  2377. md_error(rdev->mddev, rdev);
  2378. }
  2379. clear_bit(Blocked, &rdev->flags);
  2380. clear_bit(BlockedBadBlocks, &rdev->flags);
  2381. wake_up(&rdev->blocked_wait);
  2382. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2383. md_wakeup_thread(rdev->mddev->thread);
  2384. err = 0;
  2385. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2386. set_bit(In_sync, &rdev->flags);
  2387. err = 0;
  2388. } else if (cmd_match(buf, "write_error")) {
  2389. set_bit(WriteErrorSeen, &rdev->flags);
  2390. err = 0;
  2391. } else if (cmd_match(buf, "-write_error")) {
  2392. clear_bit(WriteErrorSeen, &rdev->flags);
  2393. err = 0;
  2394. } else if (cmd_match(buf, "want_replacement")) {
  2395. /* Any non-spare device that is not a replacement can
  2396. * become want_replacement at any time, but we then need to
  2397. * check if recovery is needed.
  2398. */
  2399. if (rdev->raid_disk >= 0 &&
  2400. !test_bit(Replacement, &rdev->flags))
  2401. set_bit(WantReplacement, &rdev->flags);
  2402. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2403. md_wakeup_thread(rdev->mddev->thread);
  2404. err = 0;
  2405. } else if (cmd_match(buf, "-want_replacement")) {
  2406. /* Clearing 'want_replacement' is always allowed.
  2407. * Once replacements starts it is too late though.
  2408. */
  2409. err = 0;
  2410. clear_bit(WantReplacement, &rdev->flags);
  2411. } else if (cmd_match(buf, "replacement")) {
  2412. /* Can only set a device as a replacement when array has not
  2413. * yet been started. Once running, replacement is automatic
  2414. * from spares, or by assigning 'slot'.
  2415. */
  2416. if (rdev->mddev->pers)
  2417. err = -EBUSY;
  2418. else {
  2419. set_bit(Replacement, &rdev->flags);
  2420. err = 0;
  2421. }
  2422. } else if (cmd_match(buf, "-replacement")) {
  2423. /* Similarly, can only clear Replacement before start */
  2424. if (rdev->mddev->pers)
  2425. err = -EBUSY;
  2426. else {
  2427. clear_bit(Replacement, &rdev->flags);
  2428. err = 0;
  2429. }
  2430. }
  2431. if (!err)
  2432. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2433. return err ? err : len;
  2434. }
  2435. static struct rdev_sysfs_entry rdev_state =
  2436. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2437. static ssize_t
  2438. errors_show(struct md_rdev *rdev, char *page)
  2439. {
  2440. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2441. }
  2442. static ssize_t
  2443. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2444. {
  2445. char *e;
  2446. unsigned long n = simple_strtoul(buf, &e, 10);
  2447. if (*buf && (*e == 0 || *e == '\n')) {
  2448. atomic_set(&rdev->corrected_errors, n);
  2449. return len;
  2450. }
  2451. return -EINVAL;
  2452. }
  2453. static struct rdev_sysfs_entry rdev_errors =
  2454. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2455. static ssize_t
  2456. slot_show(struct md_rdev *rdev, char *page)
  2457. {
  2458. if (rdev->raid_disk < 0)
  2459. return sprintf(page, "none\n");
  2460. else
  2461. return sprintf(page, "%d\n", rdev->raid_disk);
  2462. }
  2463. static ssize_t
  2464. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2465. {
  2466. char *e;
  2467. int err;
  2468. int slot = simple_strtoul(buf, &e, 10);
  2469. if (strncmp(buf, "none", 4)==0)
  2470. slot = -1;
  2471. else if (e==buf || (*e && *e!= '\n'))
  2472. return -EINVAL;
  2473. if (rdev->mddev->pers && slot == -1) {
  2474. /* Setting 'slot' on an active array requires also
  2475. * updating the 'rd%d' link, and communicating
  2476. * with the personality with ->hot_*_disk.
  2477. * For now we only support removing
  2478. * failed/spare devices. This normally happens automatically,
  2479. * but not when the metadata is externally managed.
  2480. */
  2481. if (rdev->raid_disk == -1)
  2482. return -EEXIST;
  2483. /* personality does all needed checks */
  2484. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2485. return -EINVAL;
  2486. clear_bit(Blocked, &rdev->flags);
  2487. remove_and_add_spares(rdev->mddev, rdev);
  2488. if (rdev->raid_disk >= 0)
  2489. return -EBUSY;
  2490. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2491. md_wakeup_thread(rdev->mddev->thread);
  2492. } else if (rdev->mddev->pers) {
  2493. /* Activating a spare .. or possibly reactivating
  2494. * if we ever get bitmaps working here.
  2495. */
  2496. if (rdev->raid_disk != -1)
  2497. return -EBUSY;
  2498. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2499. return -EBUSY;
  2500. if (rdev->mddev->pers->hot_add_disk == NULL)
  2501. return -EINVAL;
  2502. if (slot >= rdev->mddev->raid_disks &&
  2503. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2504. return -ENOSPC;
  2505. rdev->raid_disk = slot;
  2506. if (test_bit(In_sync, &rdev->flags))
  2507. rdev->saved_raid_disk = slot;
  2508. else
  2509. rdev->saved_raid_disk = -1;
  2510. clear_bit(In_sync, &rdev->flags);
  2511. err = rdev->mddev->pers->
  2512. hot_add_disk(rdev->mddev, rdev);
  2513. if (err) {
  2514. rdev->raid_disk = -1;
  2515. return err;
  2516. } else
  2517. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2518. if (sysfs_link_rdev(rdev->mddev, rdev))
  2519. /* failure here is OK */;
  2520. /* don't wakeup anyone, leave that to userspace. */
  2521. } else {
  2522. if (slot >= rdev->mddev->raid_disks &&
  2523. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2524. return -ENOSPC;
  2525. rdev->raid_disk = slot;
  2526. /* assume it is working */
  2527. clear_bit(Faulty, &rdev->flags);
  2528. clear_bit(WriteMostly, &rdev->flags);
  2529. set_bit(In_sync, &rdev->flags);
  2530. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2531. }
  2532. return len;
  2533. }
  2534. static struct rdev_sysfs_entry rdev_slot =
  2535. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2536. static ssize_t
  2537. offset_show(struct md_rdev *rdev, char *page)
  2538. {
  2539. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2540. }
  2541. static ssize_t
  2542. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2543. {
  2544. unsigned long long offset;
  2545. if (strict_strtoull(buf, 10, &offset) < 0)
  2546. return -EINVAL;
  2547. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2548. return -EBUSY;
  2549. if (rdev->sectors && rdev->mddev->external)
  2550. /* Must set offset before size, so overlap checks
  2551. * can be sane */
  2552. return -EBUSY;
  2553. rdev->data_offset = offset;
  2554. rdev->new_data_offset = offset;
  2555. return len;
  2556. }
  2557. static struct rdev_sysfs_entry rdev_offset =
  2558. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2559. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2560. {
  2561. return sprintf(page, "%llu\n",
  2562. (unsigned long long)rdev->new_data_offset);
  2563. }
  2564. static ssize_t new_offset_store(struct md_rdev *rdev,
  2565. const char *buf, size_t len)
  2566. {
  2567. unsigned long long new_offset;
  2568. struct mddev *mddev = rdev->mddev;
  2569. if (strict_strtoull(buf, 10, &new_offset) < 0)
  2570. return -EINVAL;
  2571. if (mddev->sync_thread)
  2572. return -EBUSY;
  2573. if (new_offset == rdev->data_offset)
  2574. /* reset is always permitted */
  2575. ;
  2576. else if (new_offset > rdev->data_offset) {
  2577. /* must not push array size beyond rdev_sectors */
  2578. if (new_offset - rdev->data_offset
  2579. + mddev->dev_sectors > rdev->sectors)
  2580. return -E2BIG;
  2581. }
  2582. /* Metadata worries about other space details. */
  2583. /* decreasing the offset is inconsistent with a backwards
  2584. * reshape.
  2585. */
  2586. if (new_offset < rdev->data_offset &&
  2587. mddev->reshape_backwards)
  2588. return -EINVAL;
  2589. /* Increasing offset is inconsistent with forwards
  2590. * reshape. reshape_direction should be set to
  2591. * 'backwards' first.
  2592. */
  2593. if (new_offset > rdev->data_offset &&
  2594. !mddev->reshape_backwards)
  2595. return -EINVAL;
  2596. if (mddev->pers && mddev->persistent &&
  2597. !super_types[mddev->major_version]
  2598. .allow_new_offset(rdev, new_offset))
  2599. return -E2BIG;
  2600. rdev->new_data_offset = new_offset;
  2601. if (new_offset > rdev->data_offset)
  2602. mddev->reshape_backwards = 1;
  2603. else if (new_offset < rdev->data_offset)
  2604. mddev->reshape_backwards = 0;
  2605. return len;
  2606. }
  2607. static struct rdev_sysfs_entry rdev_new_offset =
  2608. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2609. static ssize_t
  2610. rdev_size_show(struct md_rdev *rdev, char *page)
  2611. {
  2612. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2613. }
  2614. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2615. {
  2616. /* check if two start/length pairs overlap */
  2617. if (s1+l1 <= s2)
  2618. return 0;
  2619. if (s2+l2 <= s1)
  2620. return 0;
  2621. return 1;
  2622. }
  2623. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2624. {
  2625. unsigned long long blocks;
  2626. sector_t new;
  2627. if (strict_strtoull(buf, 10, &blocks) < 0)
  2628. return -EINVAL;
  2629. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2630. return -EINVAL; /* sector conversion overflow */
  2631. new = blocks * 2;
  2632. if (new != blocks * 2)
  2633. return -EINVAL; /* unsigned long long to sector_t overflow */
  2634. *sectors = new;
  2635. return 0;
  2636. }
  2637. static ssize_t
  2638. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2639. {
  2640. struct mddev *my_mddev = rdev->mddev;
  2641. sector_t oldsectors = rdev->sectors;
  2642. sector_t sectors;
  2643. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2644. return -EINVAL;
  2645. if (rdev->data_offset != rdev->new_data_offset)
  2646. return -EINVAL; /* too confusing */
  2647. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2648. if (my_mddev->persistent) {
  2649. sectors = super_types[my_mddev->major_version].
  2650. rdev_size_change(rdev, sectors);
  2651. if (!sectors)
  2652. return -EBUSY;
  2653. } else if (!sectors)
  2654. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2655. rdev->data_offset;
  2656. if (!my_mddev->pers->resize)
  2657. /* Cannot change size for RAID0 or Linear etc */
  2658. return -EINVAL;
  2659. }
  2660. if (sectors < my_mddev->dev_sectors)
  2661. return -EINVAL; /* component must fit device */
  2662. rdev->sectors = sectors;
  2663. if (sectors > oldsectors && my_mddev->external) {
  2664. /* need to check that all other rdevs with the same ->bdev
  2665. * do not overlap. We need to unlock the mddev to avoid
  2666. * a deadlock. We have already changed rdev->sectors, and if
  2667. * we have to change it back, we will have the lock again.
  2668. */
  2669. struct mddev *mddev;
  2670. int overlap = 0;
  2671. struct list_head *tmp;
  2672. mddev_unlock(my_mddev);
  2673. for_each_mddev(mddev, tmp) {
  2674. struct md_rdev *rdev2;
  2675. mddev_lock(mddev);
  2676. rdev_for_each(rdev2, mddev)
  2677. if (rdev->bdev == rdev2->bdev &&
  2678. rdev != rdev2 &&
  2679. overlaps(rdev->data_offset, rdev->sectors,
  2680. rdev2->data_offset,
  2681. rdev2->sectors)) {
  2682. overlap = 1;
  2683. break;
  2684. }
  2685. mddev_unlock(mddev);
  2686. if (overlap) {
  2687. mddev_put(mddev);
  2688. break;
  2689. }
  2690. }
  2691. mddev_lock(my_mddev);
  2692. if (overlap) {
  2693. /* Someone else could have slipped in a size
  2694. * change here, but doing so is just silly.
  2695. * We put oldsectors back because we *know* it is
  2696. * safe, and trust userspace not to race with
  2697. * itself
  2698. */
  2699. rdev->sectors = oldsectors;
  2700. return -EBUSY;
  2701. }
  2702. }
  2703. return len;
  2704. }
  2705. static struct rdev_sysfs_entry rdev_size =
  2706. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2707. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2708. {
  2709. unsigned long long recovery_start = rdev->recovery_offset;
  2710. if (test_bit(In_sync, &rdev->flags) ||
  2711. recovery_start == MaxSector)
  2712. return sprintf(page, "none\n");
  2713. return sprintf(page, "%llu\n", recovery_start);
  2714. }
  2715. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2716. {
  2717. unsigned long long recovery_start;
  2718. if (cmd_match(buf, "none"))
  2719. recovery_start = MaxSector;
  2720. else if (strict_strtoull(buf, 10, &recovery_start))
  2721. return -EINVAL;
  2722. if (rdev->mddev->pers &&
  2723. rdev->raid_disk >= 0)
  2724. return -EBUSY;
  2725. rdev->recovery_offset = recovery_start;
  2726. if (recovery_start == MaxSector)
  2727. set_bit(In_sync, &rdev->flags);
  2728. else
  2729. clear_bit(In_sync, &rdev->flags);
  2730. return len;
  2731. }
  2732. static struct rdev_sysfs_entry rdev_recovery_start =
  2733. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2734. static ssize_t
  2735. badblocks_show(struct badblocks *bb, char *page, int unack);
  2736. static ssize_t
  2737. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2738. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2739. {
  2740. return badblocks_show(&rdev->badblocks, page, 0);
  2741. }
  2742. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2743. {
  2744. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2745. /* Maybe that ack was all we needed */
  2746. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2747. wake_up(&rdev->blocked_wait);
  2748. return rv;
  2749. }
  2750. static struct rdev_sysfs_entry rdev_bad_blocks =
  2751. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2752. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2753. {
  2754. return badblocks_show(&rdev->badblocks, page, 1);
  2755. }
  2756. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2757. {
  2758. return badblocks_store(&rdev->badblocks, page, len, 1);
  2759. }
  2760. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2761. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2762. static struct attribute *rdev_default_attrs[] = {
  2763. &rdev_state.attr,
  2764. &rdev_errors.attr,
  2765. &rdev_slot.attr,
  2766. &rdev_offset.attr,
  2767. &rdev_new_offset.attr,
  2768. &rdev_size.attr,
  2769. &rdev_recovery_start.attr,
  2770. &rdev_bad_blocks.attr,
  2771. &rdev_unack_bad_blocks.attr,
  2772. NULL,
  2773. };
  2774. static ssize_t
  2775. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2776. {
  2777. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2778. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2779. struct mddev *mddev = rdev->mddev;
  2780. ssize_t rv;
  2781. if (!entry->show)
  2782. return -EIO;
  2783. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2784. if (!rv) {
  2785. if (rdev->mddev == NULL)
  2786. rv = -EBUSY;
  2787. else
  2788. rv = entry->show(rdev, page);
  2789. mddev_unlock(mddev);
  2790. }
  2791. return rv;
  2792. }
  2793. static ssize_t
  2794. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2795. const char *page, size_t length)
  2796. {
  2797. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2798. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2799. ssize_t rv;
  2800. struct mddev *mddev = rdev->mddev;
  2801. if (!entry->store)
  2802. return -EIO;
  2803. if (!capable(CAP_SYS_ADMIN))
  2804. return -EACCES;
  2805. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2806. if (!rv) {
  2807. if (rdev->mddev == NULL)
  2808. rv = -EBUSY;
  2809. else
  2810. rv = entry->store(rdev, page, length);
  2811. mddev_unlock(mddev);
  2812. }
  2813. return rv;
  2814. }
  2815. static void rdev_free(struct kobject *ko)
  2816. {
  2817. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2818. kfree(rdev);
  2819. }
  2820. static const struct sysfs_ops rdev_sysfs_ops = {
  2821. .show = rdev_attr_show,
  2822. .store = rdev_attr_store,
  2823. };
  2824. static struct kobj_type rdev_ktype = {
  2825. .release = rdev_free,
  2826. .sysfs_ops = &rdev_sysfs_ops,
  2827. .default_attrs = rdev_default_attrs,
  2828. };
  2829. int md_rdev_init(struct md_rdev *rdev)
  2830. {
  2831. rdev->desc_nr = -1;
  2832. rdev->saved_raid_disk = -1;
  2833. rdev->raid_disk = -1;
  2834. rdev->flags = 0;
  2835. rdev->data_offset = 0;
  2836. rdev->new_data_offset = 0;
  2837. rdev->sb_events = 0;
  2838. rdev->last_read_error.tv_sec = 0;
  2839. rdev->last_read_error.tv_nsec = 0;
  2840. rdev->sb_loaded = 0;
  2841. rdev->bb_page = NULL;
  2842. atomic_set(&rdev->nr_pending, 0);
  2843. atomic_set(&rdev->read_errors, 0);
  2844. atomic_set(&rdev->corrected_errors, 0);
  2845. INIT_LIST_HEAD(&rdev->same_set);
  2846. init_waitqueue_head(&rdev->blocked_wait);
  2847. /* Add space to store bad block list.
  2848. * This reserves the space even on arrays where it cannot
  2849. * be used - I wonder if that matters
  2850. */
  2851. rdev->badblocks.count = 0;
  2852. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2853. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2854. seqlock_init(&rdev->badblocks.lock);
  2855. if (rdev->badblocks.page == NULL)
  2856. return -ENOMEM;
  2857. return 0;
  2858. }
  2859. EXPORT_SYMBOL_GPL(md_rdev_init);
  2860. /*
  2861. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2862. *
  2863. * mark the device faulty if:
  2864. *
  2865. * - the device is nonexistent (zero size)
  2866. * - the device has no valid superblock
  2867. *
  2868. * a faulty rdev _never_ has rdev->sb set.
  2869. */
  2870. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2871. {
  2872. char b[BDEVNAME_SIZE];
  2873. int err;
  2874. struct md_rdev *rdev;
  2875. sector_t size;
  2876. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2877. if (!rdev) {
  2878. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2879. return ERR_PTR(-ENOMEM);
  2880. }
  2881. err = md_rdev_init(rdev);
  2882. if (err)
  2883. goto abort_free;
  2884. err = alloc_disk_sb(rdev);
  2885. if (err)
  2886. goto abort_free;
  2887. err = lock_rdev(rdev, newdev, super_format == -2);
  2888. if (err)
  2889. goto abort_free;
  2890. kobject_init(&rdev->kobj, &rdev_ktype);
  2891. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2892. if (!size) {
  2893. printk(KERN_WARNING
  2894. "md: %s has zero or unknown size, marking faulty!\n",
  2895. bdevname(rdev->bdev,b));
  2896. err = -EINVAL;
  2897. goto abort_free;
  2898. }
  2899. if (super_format >= 0) {
  2900. err = super_types[super_format].
  2901. load_super(rdev, NULL, super_minor);
  2902. if (err == -EINVAL) {
  2903. printk(KERN_WARNING
  2904. "md: %s does not have a valid v%d.%d "
  2905. "superblock, not importing!\n",
  2906. bdevname(rdev->bdev,b),
  2907. super_format, super_minor);
  2908. goto abort_free;
  2909. }
  2910. if (err < 0) {
  2911. printk(KERN_WARNING
  2912. "md: could not read %s's sb, not importing!\n",
  2913. bdevname(rdev->bdev,b));
  2914. goto abort_free;
  2915. }
  2916. }
  2917. return rdev;
  2918. abort_free:
  2919. if (rdev->bdev)
  2920. unlock_rdev(rdev);
  2921. md_rdev_clear(rdev);
  2922. kfree(rdev);
  2923. return ERR_PTR(err);
  2924. }
  2925. /*
  2926. * Check a full RAID array for plausibility
  2927. */
  2928. static void analyze_sbs(struct mddev * mddev)
  2929. {
  2930. int i;
  2931. struct md_rdev *rdev, *freshest, *tmp;
  2932. char b[BDEVNAME_SIZE];
  2933. freshest = NULL;
  2934. rdev_for_each_safe(rdev, tmp, mddev)
  2935. switch (super_types[mddev->major_version].
  2936. load_super(rdev, freshest, mddev->minor_version)) {
  2937. case 1:
  2938. freshest = rdev;
  2939. break;
  2940. case 0:
  2941. break;
  2942. default:
  2943. printk( KERN_ERR \
  2944. "md: fatal superblock inconsistency in %s"
  2945. " -- removing from array\n",
  2946. bdevname(rdev->bdev,b));
  2947. kick_rdev_from_array(rdev);
  2948. }
  2949. super_types[mddev->major_version].
  2950. validate_super(mddev, freshest);
  2951. i = 0;
  2952. rdev_for_each_safe(rdev, tmp, mddev) {
  2953. if (mddev->max_disks &&
  2954. (rdev->desc_nr >= mddev->max_disks ||
  2955. i > mddev->max_disks)) {
  2956. printk(KERN_WARNING
  2957. "md: %s: %s: only %d devices permitted\n",
  2958. mdname(mddev), bdevname(rdev->bdev, b),
  2959. mddev->max_disks);
  2960. kick_rdev_from_array(rdev);
  2961. continue;
  2962. }
  2963. if (rdev != freshest)
  2964. if (super_types[mddev->major_version].
  2965. validate_super(mddev, rdev)) {
  2966. printk(KERN_WARNING "md: kicking non-fresh %s"
  2967. " from array!\n",
  2968. bdevname(rdev->bdev,b));
  2969. kick_rdev_from_array(rdev);
  2970. continue;
  2971. }
  2972. if (mddev->level == LEVEL_MULTIPATH) {
  2973. rdev->desc_nr = i++;
  2974. rdev->raid_disk = rdev->desc_nr;
  2975. set_bit(In_sync, &rdev->flags);
  2976. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2977. rdev->raid_disk = -1;
  2978. clear_bit(In_sync, &rdev->flags);
  2979. }
  2980. }
  2981. }
  2982. /* Read a fixed-point number.
  2983. * Numbers in sysfs attributes should be in "standard" units where
  2984. * possible, so time should be in seconds.
  2985. * However we internally use a a much smaller unit such as
  2986. * milliseconds or jiffies.
  2987. * This function takes a decimal number with a possible fractional
  2988. * component, and produces an integer which is the result of
  2989. * multiplying that number by 10^'scale'.
  2990. * all without any floating-point arithmetic.
  2991. */
  2992. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2993. {
  2994. unsigned long result = 0;
  2995. long decimals = -1;
  2996. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2997. if (*cp == '.')
  2998. decimals = 0;
  2999. else if (decimals < scale) {
  3000. unsigned int value;
  3001. value = *cp - '0';
  3002. result = result * 10 + value;
  3003. if (decimals >= 0)
  3004. decimals++;
  3005. }
  3006. cp++;
  3007. }
  3008. if (*cp == '\n')
  3009. cp++;
  3010. if (*cp)
  3011. return -EINVAL;
  3012. if (decimals < 0)
  3013. decimals = 0;
  3014. while (decimals < scale) {
  3015. result *= 10;
  3016. decimals ++;
  3017. }
  3018. *res = result;
  3019. return 0;
  3020. }
  3021. static void md_safemode_timeout(unsigned long data);
  3022. static ssize_t
  3023. safe_delay_show(struct mddev *mddev, char *page)
  3024. {
  3025. int msec = (mddev->safemode_delay*1000)/HZ;
  3026. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3027. }
  3028. static ssize_t
  3029. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3030. {
  3031. unsigned long msec;
  3032. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3033. return -EINVAL;
  3034. if (msec == 0)
  3035. mddev->safemode_delay = 0;
  3036. else {
  3037. unsigned long old_delay = mddev->safemode_delay;
  3038. mddev->safemode_delay = (msec*HZ)/1000;
  3039. if (mddev->safemode_delay == 0)
  3040. mddev->safemode_delay = 1;
  3041. if (mddev->safemode_delay < old_delay)
  3042. md_safemode_timeout((unsigned long)mddev);
  3043. }
  3044. return len;
  3045. }
  3046. static struct md_sysfs_entry md_safe_delay =
  3047. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3048. static ssize_t
  3049. level_show(struct mddev *mddev, char *page)
  3050. {
  3051. struct md_personality *p = mddev->pers;
  3052. if (p)
  3053. return sprintf(page, "%s\n", p->name);
  3054. else if (mddev->clevel[0])
  3055. return sprintf(page, "%s\n", mddev->clevel);
  3056. else if (mddev->level != LEVEL_NONE)
  3057. return sprintf(page, "%d\n", mddev->level);
  3058. else
  3059. return 0;
  3060. }
  3061. static ssize_t
  3062. level_store(struct mddev *mddev, const char *buf, size_t len)
  3063. {
  3064. char clevel[16];
  3065. ssize_t rv = len;
  3066. struct md_personality *pers;
  3067. long level;
  3068. void *priv;
  3069. struct md_rdev *rdev;
  3070. if (mddev->pers == NULL) {
  3071. if (len == 0)
  3072. return 0;
  3073. if (len >= sizeof(mddev->clevel))
  3074. return -ENOSPC;
  3075. strncpy(mddev->clevel, buf, len);
  3076. if (mddev->clevel[len-1] == '\n')
  3077. len--;
  3078. mddev->clevel[len] = 0;
  3079. mddev->level = LEVEL_NONE;
  3080. return rv;
  3081. }
  3082. /* request to change the personality. Need to ensure:
  3083. * - array is not engaged in resync/recovery/reshape
  3084. * - old personality can be suspended
  3085. * - new personality will access other array.
  3086. */
  3087. if (mddev->sync_thread ||
  3088. mddev->reshape_position != MaxSector ||
  3089. mddev->sysfs_active)
  3090. return -EBUSY;
  3091. if (!mddev->pers->quiesce) {
  3092. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3093. mdname(mddev), mddev->pers->name);
  3094. return -EINVAL;
  3095. }
  3096. /* Now find the new personality */
  3097. if (len == 0 || len >= sizeof(clevel))
  3098. return -EINVAL;
  3099. strncpy(clevel, buf, len);
  3100. if (clevel[len-1] == '\n')
  3101. len--;
  3102. clevel[len] = 0;
  3103. if (strict_strtol(clevel, 10, &level))
  3104. level = LEVEL_NONE;
  3105. if (request_module("md-%s", clevel) != 0)
  3106. request_module("md-level-%s", clevel);
  3107. spin_lock(&pers_lock);
  3108. pers = find_pers(level, clevel);
  3109. if (!pers || !try_module_get(pers->owner)) {
  3110. spin_unlock(&pers_lock);
  3111. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3112. return -EINVAL;
  3113. }
  3114. spin_unlock(&pers_lock);
  3115. if (pers == mddev->pers) {
  3116. /* Nothing to do! */
  3117. module_put(pers->owner);
  3118. return rv;
  3119. }
  3120. if (!pers->takeover) {
  3121. module_put(pers->owner);
  3122. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3123. mdname(mddev), clevel);
  3124. return -EINVAL;
  3125. }
  3126. rdev_for_each(rdev, mddev)
  3127. rdev->new_raid_disk = rdev->raid_disk;
  3128. /* ->takeover must set new_* and/or delta_disks
  3129. * if it succeeds, and may set them when it fails.
  3130. */
  3131. priv = pers->takeover(mddev);
  3132. if (IS_ERR(priv)) {
  3133. mddev->new_level = mddev->level;
  3134. mddev->new_layout = mddev->layout;
  3135. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3136. mddev->raid_disks -= mddev->delta_disks;
  3137. mddev->delta_disks = 0;
  3138. mddev->reshape_backwards = 0;
  3139. module_put(pers->owner);
  3140. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3141. mdname(mddev), clevel);
  3142. return PTR_ERR(priv);
  3143. }
  3144. /* Looks like we have a winner */
  3145. mddev_suspend(mddev);
  3146. mddev->pers->stop(mddev);
  3147. if (mddev->pers->sync_request == NULL &&
  3148. pers->sync_request != NULL) {
  3149. /* need to add the md_redundancy_group */
  3150. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3151. printk(KERN_WARNING
  3152. "md: cannot register extra attributes for %s\n",
  3153. mdname(mddev));
  3154. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3155. }
  3156. if (mddev->pers->sync_request != NULL &&
  3157. pers->sync_request == NULL) {
  3158. /* need to remove the md_redundancy_group */
  3159. if (mddev->to_remove == NULL)
  3160. mddev->to_remove = &md_redundancy_group;
  3161. }
  3162. if (mddev->pers->sync_request == NULL &&
  3163. mddev->external) {
  3164. /* We are converting from a no-redundancy array
  3165. * to a redundancy array and metadata is managed
  3166. * externally so we need to be sure that writes
  3167. * won't block due to a need to transition
  3168. * clean->dirty
  3169. * until external management is started.
  3170. */
  3171. mddev->in_sync = 0;
  3172. mddev->safemode_delay = 0;
  3173. mddev->safemode = 0;
  3174. }
  3175. rdev_for_each(rdev, mddev) {
  3176. if (rdev->raid_disk < 0)
  3177. continue;
  3178. if (rdev->new_raid_disk >= mddev->raid_disks)
  3179. rdev->new_raid_disk = -1;
  3180. if (rdev->new_raid_disk == rdev->raid_disk)
  3181. continue;
  3182. sysfs_unlink_rdev(mddev, rdev);
  3183. }
  3184. rdev_for_each(rdev, mddev) {
  3185. if (rdev->raid_disk < 0)
  3186. continue;
  3187. if (rdev->new_raid_disk == rdev->raid_disk)
  3188. continue;
  3189. rdev->raid_disk = rdev->new_raid_disk;
  3190. if (rdev->raid_disk < 0)
  3191. clear_bit(In_sync, &rdev->flags);
  3192. else {
  3193. if (sysfs_link_rdev(mddev, rdev))
  3194. printk(KERN_WARNING "md: cannot register rd%d"
  3195. " for %s after level change\n",
  3196. rdev->raid_disk, mdname(mddev));
  3197. }
  3198. }
  3199. module_put(mddev->pers->owner);
  3200. mddev->pers = pers;
  3201. mddev->private = priv;
  3202. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3203. mddev->level = mddev->new_level;
  3204. mddev->layout = mddev->new_layout;
  3205. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3206. mddev->delta_disks = 0;
  3207. mddev->reshape_backwards = 0;
  3208. mddev->degraded = 0;
  3209. if (mddev->pers->sync_request == NULL) {
  3210. /* this is now an array without redundancy, so
  3211. * it must always be in_sync
  3212. */
  3213. mddev->in_sync = 1;
  3214. del_timer_sync(&mddev->safemode_timer);
  3215. }
  3216. pers->run(mddev);
  3217. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3218. mddev_resume(mddev);
  3219. sysfs_notify(&mddev->kobj, NULL, "level");
  3220. md_new_event(mddev);
  3221. return rv;
  3222. }
  3223. static struct md_sysfs_entry md_level =
  3224. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3225. static ssize_t
  3226. layout_show(struct mddev *mddev, char *page)
  3227. {
  3228. /* just a number, not meaningful for all levels */
  3229. if (mddev->reshape_position != MaxSector &&
  3230. mddev->layout != mddev->new_layout)
  3231. return sprintf(page, "%d (%d)\n",
  3232. mddev->new_layout, mddev->layout);
  3233. return sprintf(page, "%d\n", mddev->layout);
  3234. }
  3235. static ssize_t
  3236. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3237. {
  3238. char *e;
  3239. unsigned long n = simple_strtoul(buf, &e, 10);
  3240. if (!*buf || (*e && *e != '\n'))
  3241. return -EINVAL;
  3242. if (mddev->pers) {
  3243. int err;
  3244. if (mddev->pers->check_reshape == NULL)
  3245. return -EBUSY;
  3246. mddev->new_layout = n;
  3247. err = mddev->pers->check_reshape(mddev);
  3248. if (err) {
  3249. mddev->new_layout = mddev->layout;
  3250. return err;
  3251. }
  3252. } else {
  3253. mddev->new_layout = n;
  3254. if (mddev->reshape_position == MaxSector)
  3255. mddev->layout = n;
  3256. }
  3257. return len;
  3258. }
  3259. static struct md_sysfs_entry md_layout =
  3260. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3261. static ssize_t
  3262. raid_disks_show(struct mddev *mddev, char *page)
  3263. {
  3264. if (mddev->raid_disks == 0)
  3265. return 0;
  3266. if (mddev->reshape_position != MaxSector &&
  3267. mddev->delta_disks != 0)
  3268. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3269. mddev->raid_disks - mddev->delta_disks);
  3270. return sprintf(page, "%d\n", mddev->raid_disks);
  3271. }
  3272. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3273. static ssize_t
  3274. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3275. {
  3276. char *e;
  3277. int rv = 0;
  3278. unsigned long n = simple_strtoul(buf, &e, 10);
  3279. if (!*buf || (*e && *e != '\n'))
  3280. return -EINVAL;
  3281. if (mddev->pers)
  3282. rv = update_raid_disks(mddev, n);
  3283. else if (mddev->reshape_position != MaxSector) {
  3284. struct md_rdev *rdev;
  3285. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3286. rdev_for_each(rdev, mddev) {
  3287. if (olddisks < n &&
  3288. rdev->data_offset < rdev->new_data_offset)
  3289. return -EINVAL;
  3290. if (olddisks > n &&
  3291. rdev->data_offset > rdev->new_data_offset)
  3292. return -EINVAL;
  3293. }
  3294. mddev->delta_disks = n - olddisks;
  3295. mddev->raid_disks = n;
  3296. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3297. } else
  3298. mddev->raid_disks = n;
  3299. return rv ? rv : len;
  3300. }
  3301. static struct md_sysfs_entry md_raid_disks =
  3302. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3303. static ssize_t
  3304. chunk_size_show(struct mddev *mddev, char *page)
  3305. {
  3306. if (mddev->reshape_position != MaxSector &&
  3307. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3308. return sprintf(page, "%d (%d)\n",
  3309. mddev->new_chunk_sectors << 9,
  3310. mddev->chunk_sectors << 9);
  3311. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3312. }
  3313. static ssize_t
  3314. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3315. {
  3316. char *e;
  3317. unsigned long n = simple_strtoul(buf, &e, 10);
  3318. if (!*buf || (*e && *e != '\n'))
  3319. return -EINVAL;
  3320. if (mddev->pers) {
  3321. int err;
  3322. if (mddev->pers->check_reshape == NULL)
  3323. return -EBUSY;
  3324. mddev->new_chunk_sectors = n >> 9;
  3325. err = mddev->pers->check_reshape(mddev);
  3326. if (err) {
  3327. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3328. return err;
  3329. }
  3330. } else {
  3331. mddev->new_chunk_sectors = n >> 9;
  3332. if (mddev->reshape_position == MaxSector)
  3333. mddev->chunk_sectors = n >> 9;
  3334. }
  3335. return len;
  3336. }
  3337. static struct md_sysfs_entry md_chunk_size =
  3338. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3339. static ssize_t
  3340. resync_start_show(struct mddev *mddev, char *page)
  3341. {
  3342. if (mddev->recovery_cp == MaxSector)
  3343. return sprintf(page, "none\n");
  3344. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3345. }
  3346. static ssize_t
  3347. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3348. {
  3349. char *e;
  3350. unsigned long long n = simple_strtoull(buf, &e, 10);
  3351. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3352. return -EBUSY;
  3353. if (cmd_match(buf, "none"))
  3354. n = MaxSector;
  3355. else if (!*buf || (*e && *e != '\n'))
  3356. return -EINVAL;
  3357. mddev->recovery_cp = n;
  3358. if (mddev->pers)
  3359. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3360. return len;
  3361. }
  3362. static struct md_sysfs_entry md_resync_start =
  3363. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3364. /*
  3365. * The array state can be:
  3366. *
  3367. * clear
  3368. * No devices, no size, no level
  3369. * Equivalent to STOP_ARRAY ioctl
  3370. * inactive
  3371. * May have some settings, but array is not active
  3372. * all IO results in error
  3373. * When written, doesn't tear down array, but just stops it
  3374. * suspended (not supported yet)
  3375. * All IO requests will block. The array can be reconfigured.
  3376. * Writing this, if accepted, will block until array is quiescent
  3377. * readonly
  3378. * no resync can happen. no superblocks get written.
  3379. * write requests fail
  3380. * read-auto
  3381. * like readonly, but behaves like 'clean' on a write request.
  3382. *
  3383. * clean - no pending writes, but otherwise active.
  3384. * When written to inactive array, starts without resync
  3385. * If a write request arrives then
  3386. * if metadata is known, mark 'dirty' and switch to 'active'.
  3387. * if not known, block and switch to write-pending
  3388. * If written to an active array that has pending writes, then fails.
  3389. * active
  3390. * fully active: IO and resync can be happening.
  3391. * When written to inactive array, starts with resync
  3392. *
  3393. * write-pending
  3394. * clean, but writes are blocked waiting for 'active' to be written.
  3395. *
  3396. * active-idle
  3397. * like active, but no writes have been seen for a while (100msec).
  3398. *
  3399. */
  3400. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3401. write_pending, active_idle, bad_word};
  3402. static char *array_states[] = {
  3403. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3404. "write-pending", "active-idle", NULL };
  3405. static int match_word(const char *word, char **list)
  3406. {
  3407. int n;
  3408. for (n=0; list[n]; n++)
  3409. if (cmd_match(word, list[n]))
  3410. break;
  3411. return n;
  3412. }
  3413. static ssize_t
  3414. array_state_show(struct mddev *mddev, char *page)
  3415. {
  3416. enum array_state st = inactive;
  3417. if (mddev->pers)
  3418. switch(mddev->ro) {
  3419. case 1:
  3420. st = readonly;
  3421. break;
  3422. case 2:
  3423. st = read_auto;
  3424. break;
  3425. case 0:
  3426. if (mddev->in_sync)
  3427. st = clean;
  3428. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3429. st = write_pending;
  3430. else if (mddev->safemode)
  3431. st = active_idle;
  3432. else
  3433. st = active;
  3434. }
  3435. else {
  3436. if (list_empty(&mddev->disks) &&
  3437. mddev->raid_disks == 0 &&
  3438. mddev->dev_sectors == 0)
  3439. st = clear;
  3440. else
  3441. st = inactive;
  3442. }
  3443. return sprintf(page, "%s\n", array_states[st]);
  3444. }
  3445. static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
  3446. static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
  3447. static int do_md_run(struct mddev * mddev);
  3448. static int restart_array(struct mddev *mddev);
  3449. static ssize_t
  3450. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3451. {
  3452. int err = -EINVAL;
  3453. enum array_state st = match_word(buf, array_states);
  3454. switch(st) {
  3455. case bad_word:
  3456. break;
  3457. case clear:
  3458. /* stopping an active array */
  3459. err = do_md_stop(mddev, 0, NULL);
  3460. break;
  3461. case inactive:
  3462. /* stopping an active array */
  3463. if (mddev->pers)
  3464. err = do_md_stop(mddev, 2, NULL);
  3465. else
  3466. err = 0; /* already inactive */
  3467. break;
  3468. case suspended:
  3469. break; /* not supported yet */
  3470. case readonly:
  3471. if (mddev->pers)
  3472. err = md_set_readonly(mddev, NULL);
  3473. else {
  3474. mddev->ro = 1;
  3475. set_disk_ro(mddev->gendisk, 1);
  3476. err = do_md_run(mddev);
  3477. }
  3478. break;
  3479. case read_auto:
  3480. if (mddev->pers) {
  3481. if (mddev->ro == 0)
  3482. err = md_set_readonly(mddev, NULL);
  3483. else if (mddev->ro == 1)
  3484. err = restart_array(mddev);
  3485. if (err == 0) {
  3486. mddev->ro = 2;
  3487. set_disk_ro(mddev->gendisk, 0);
  3488. }
  3489. } else {
  3490. mddev->ro = 2;
  3491. err = do_md_run(mddev);
  3492. }
  3493. break;
  3494. case clean:
  3495. if (mddev->pers) {
  3496. restart_array(mddev);
  3497. spin_lock_irq(&mddev->write_lock);
  3498. if (atomic_read(&mddev->writes_pending) == 0) {
  3499. if (mddev->in_sync == 0) {
  3500. mddev->in_sync = 1;
  3501. if (mddev->safemode == 1)
  3502. mddev->safemode = 0;
  3503. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3504. }
  3505. err = 0;
  3506. } else
  3507. err = -EBUSY;
  3508. spin_unlock_irq(&mddev->write_lock);
  3509. } else
  3510. err = -EINVAL;
  3511. break;
  3512. case active:
  3513. if (mddev->pers) {
  3514. restart_array(mddev);
  3515. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3516. wake_up(&mddev->sb_wait);
  3517. err = 0;
  3518. } else {
  3519. mddev->ro = 0;
  3520. set_disk_ro(mddev->gendisk, 0);
  3521. err = do_md_run(mddev);
  3522. }
  3523. break;
  3524. case write_pending:
  3525. case active_idle:
  3526. /* these cannot be set */
  3527. break;
  3528. }
  3529. if (err)
  3530. return err;
  3531. else {
  3532. if (mddev->hold_active == UNTIL_IOCTL)
  3533. mddev->hold_active = 0;
  3534. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3535. return len;
  3536. }
  3537. }
  3538. static struct md_sysfs_entry md_array_state =
  3539. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3540. static ssize_t
  3541. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3542. return sprintf(page, "%d\n",
  3543. atomic_read(&mddev->max_corr_read_errors));
  3544. }
  3545. static ssize_t
  3546. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3547. {
  3548. char *e;
  3549. unsigned long n = simple_strtoul(buf, &e, 10);
  3550. if (*buf && (*e == 0 || *e == '\n')) {
  3551. atomic_set(&mddev->max_corr_read_errors, n);
  3552. return len;
  3553. }
  3554. return -EINVAL;
  3555. }
  3556. static struct md_sysfs_entry max_corr_read_errors =
  3557. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3558. max_corrected_read_errors_store);
  3559. static ssize_t
  3560. null_show(struct mddev *mddev, char *page)
  3561. {
  3562. return -EINVAL;
  3563. }
  3564. static ssize_t
  3565. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3566. {
  3567. /* buf must be %d:%d\n? giving major and minor numbers */
  3568. /* The new device is added to the array.
  3569. * If the array has a persistent superblock, we read the
  3570. * superblock to initialise info and check validity.
  3571. * Otherwise, only checking done is that in bind_rdev_to_array,
  3572. * which mainly checks size.
  3573. */
  3574. char *e;
  3575. int major = simple_strtoul(buf, &e, 10);
  3576. int minor;
  3577. dev_t dev;
  3578. struct md_rdev *rdev;
  3579. int err;
  3580. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3581. return -EINVAL;
  3582. minor = simple_strtoul(e+1, &e, 10);
  3583. if (*e && *e != '\n')
  3584. return -EINVAL;
  3585. dev = MKDEV(major, minor);
  3586. if (major != MAJOR(dev) ||
  3587. minor != MINOR(dev))
  3588. return -EOVERFLOW;
  3589. if (mddev->persistent) {
  3590. rdev = md_import_device(dev, mddev->major_version,
  3591. mddev->minor_version);
  3592. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3593. struct md_rdev *rdev0
  3594. = list_entry(mddev->disks.next,
  3595. struct md_rdev, same_set);
  3596. err = super_types[mddev->major_version]
  3597. .load_super(rdev, rdev0, mddev->minor_version);
  3598. if (err < 0)
  3599. goto out;
  3600. }
  3601. } else if (mddev->external)
  3602. rdev = md_import_device(dev, -2, -1);
  3603. else
  3604. rdev = md_import_device(dev, -1, -1);
  3605. if (IS_ERR(rdev))
  3606. return PTR_ERR(rdev);
  3607. err = bind_rdev_to_array(rdev, mddev);
  3608. out:
  3609. if (err)
  3610. export_rdev(rdev);
  3611. return err ? err : len;
  3612. }
  3613. static struct md_sysfs_entry md_new_device =
  3614. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3615. static ssize_t
  3616. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3617. {
  3618. char *end;
  3619. unsigned long chunk, end_chunk;
  3620. if (!mddev->bitmap)
  3621. goto out;
  3622. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3623. while (*buf) {
  3624. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3625. if (buf == end) break;
  3626. if (*end == '-') { /* range */
  3627. buf = end + 1;
  3628. end_chunk = simple_strtoul(buf, &end, 0);
  3629. if (buf == end) break;
  3630. }
  3631. if (*end && !isspace(*end)) break;
  3632. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3633. buf = skip_spaces(end);
  3634. }
  3635. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3636. out:
  3637. return len;
  3638. }
  3639. static struct md_sysfs_entry md_bitmap =
  3640. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3641. static ssize_t
  3642. size_show(struct mddev *mddev, char *page)
  3643. {
  3644. return sprintf(page, "%llu\n",
  3645. (unsigned long long)mddev->dev_sectors / 2);
  3646. }
  3647. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3648. static ssize_t
  3649. size_store(struct mddev *mddev, const char *buf, size_t len)
  3650. {
  3651. /* If array is inactive, we can reduce the component size, but
  3652. * not increase it (except from 0).
  3653. * If array is active, we can try an on-line resize
  3654. */
  3655. sector_t sectors;
  3656. int err = strict_blocks_to_sectors(buf, &sectors);
  3657. if (err < 0)
  3658. return err;
  3659. if (mddev->pers) {
  3660. err = update_size(mddev, sectors);
  3661. md_update_sb(mddev, 1);
  3662. } else {
  3663. if (mddev->dev_sectors == 0 ||
  3664. mddev->dev_sectors > sectors)
  3665. mddev->dev_sectors = sectors;
  3666. else
  3667. err = -ENOSPC;
  3668. }
  3669. return err ? err : len;
  3670. }
  3671. static struct md_sysfs_entry md_size =
  3672. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3673. /* Metadata version.
  3674. * This is one of
  3675. * 'none' for arrays with no metadata (good luck...)
  3676. * 'external' for arrays with externally managed metadata,
  3677. * or N.M for internally known formats
  3678. */
  3679. static ssize_t
  3680. metadata_show(struct mddev *mddev, char *page)
  3681. {
  3682. if (mddev->persistent)
  3683. return sprintf(page, "%d.%d\n",
  3684. mddev->major_version, mddev->minor_version);
  3685. else if (mddev->external)
  3686. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3687. else
  3688. return sprintf(page, "none\n");
  3689. }
  3690. static ssize_t
  3691. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3692. {
  3693. int major, minor;
  3694. char *e;
  3695. /* Changing the details of 'external' metadata is
  3696. * always permitted. Otherwise there must be
  3697. * no devices attached to the array.
  3698. */
  3699. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3700. ;
  3701. else if (!list_empty(&mddev->disks))
  3702. return -EBUSY;
  3703. if (cmd_match(buf, "none")) {
  3704. mddev->persistent = 0;
  3705. mddev->external = 0;
  3706. mddev->major_version = 0;
  3707. mddev->minor_version = 90;
  3708. return len;
  3709. }
  3710. if (strncmp(buf, "external:", 9) == 0) {
  3711. size_t namelen = len-9;
  3712. if (namelen >= sizeof(mddev->metadata_type))
  3713. namelen = sizeof(mddev->metadata_type)-1;
  3714. strncpy(mddev->metadata_type, buf+9, namelen);
  3715. mddev->metadata_type[namelen] = 0;
  3716. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3717. mddev->metadata_type[--namelen] = 0;
  3718. mddev->persistent = 0;
  3719. mddev->external = 1;
  3720. mddev->major_version = 0;
  3721. mddev->minor_version = 90;
  3722. return len;
  3723. }
  3724. major = simple_strtoul(buf, &e, 10);
  3725. if (e==buf || *e != '.')
  3726. return -EINVAL;
  3727. buf = e+1;
  3728. minor = simple_strtoul(buf, &e, 10);
  3729. if (e==buf || (*e && *e != '\n') )
  3730. return -EINVAL;
  3731. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3732. return -ENOENT;
  3733. mddev->major_version = major;
  3734. mddev->minor_version = minor;
  3735. mddev->persistent = 1;
  3736. mddev->external = 0;
  3737. return len;
  3738. }
  3739. static struct md_sysfs_entry md_metadata =
  3740. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3741. static ssize_t
  3742. action_show(struct mddev *mddev, char *page)
  3743. {
  3744. char *type = "idle";
  3745. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3746. type = "frozen";
  3747. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3748. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3749. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3750. type = "reshape";
  3751. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3752. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3753. type = "resync";
  3754. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3755. type = "check";
  3756. else
  3757. type = "repair";
  3758. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3759. type = "recover";
  3760. }
  3761. return sprintf(page, "%s\n", type);
  3762. }
  3763. static ssize_t
  3764. action_store(struct mddev *mddev, const char *page, size_t len)
  3765. {
  3766. if (!mddev->pers || !mddev->pers->sync_request)
  3767. return -EINVAL;
  3768. if (cmd_match(page, "frozen"))
  3769. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3770. else
  3771. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3772. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3773. if (mddev->sync_thread) {
  3774. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3775. md_reap_sync_thread(mddev);
  3776. }
  3777. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3778. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3779. return -EBUSY;
  3780. else if (cmd_match(page, "resync"))
  3781. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3782. else if (cmd_match(page, "recover")) {
  3783. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3784. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3785. } else if (cmd_match(page, "reshape")) {
  3786. int err;
  3787. if (mddev->pers->start_reshape == NULL)
  3788. return -EINVAL;
  3789. err = mddev->pers->start_reshape(mddev);
  3790. if (err)
  3791. return err;
  3792. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3793. } else {
  3794. if (cmd_match(page, "check"))
  3795. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3796. else if (!cmd_match(page, "repair"))
  3797. return -EINVAL;
  3798. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3799. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3800. }
  3801. if (mddev->ro == 2) {
  3802. /* A write to sync_action is enough to justify
  3803. * canceling read-auto mode
  3804. */
  3805. mddev->ro = 0;
  3806. md_wakeup_thread(mddev->sync_thread);
  3807. }
  3808. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3809. md_wakeup_thread(mddev->thread);
  3810. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3811. return len;
  3812. }
  3813. static ssize_t
  3814. mismatch_cnt_show(struct mddev *mddev, char *page)
  3815. {
  3816. return sprintf(page, "%llu\n",
  3817. (unsigned long long)
  3818. atomic64_read(&mddev->resync_mismatches));
  3819. }
  3820. static struct md_sysfs_entry md_scan_mode =
  3821. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3822. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3823. static ssize_t
  3824. sync_min_show(struct mddev *mddev, char *page)
  3825. {
  3826. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3827. mddev->sync_speed_min ? "local": "system");
  3828. }
  3829. static ssize_t
  3830. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3831. {
  3832. int min;
  3833. char *e;
  3834. if (strncmp(buf, "system", 6)==0) {
  3835. mddev->sync_speed_min = 0;
  3836. return len;
  3837. }
  3838. min = simple_strtoul(buf, &e, 10);
  3839. if (buf == e || (*e && *e != '\n') || min <= 0)
  3840. return -EINVAL;
  3841. mddev->sync_speed_min = min;
  3842. return len;
  3843. }
  3844. static struct md_sysfs_entry md_sync_min =
  3845. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3846. static ssize_t
  3847. sync_max_show(struct mddev *mddev, char *page)
  3848. {
  3849. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3850. mddev->sync_speed_max ? "local": "system");
  3851. }
  3852. static ssize_t
  3853. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3854. {
  3855. int max;
  3856. char *e;
  3857. if (strncmp(buf, "system", 6)==0) {
  3858. mddev->sync_speed_max = 0;
  3859. return len;
  3860. }
  3861. max = simple_strtoul(buf, &e, 10);
  3862. if (buf == e || (*e && *e != '\n') || max <= 0)
  3863. return -EINVAL;
  3864. mddev->sync_speed_max = max;
  3865. return len;
  3866. }
  3867. static struct md_sysfs_entry md_sync_max =
  3868. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3869. static ssize_t
  3870. degraded_show(struct mddev *mddev, char *page)
  3871. {
  3872. return sprintf(page, "%d\n", mddev->degraded);
  3873. }
  3874. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3875. static ssize_t
  3876. sync_force_parallel_show(struct mddev *mddev, char *page)
  3877. {
  3878. return sprintf(page, "%d\n", mddev->parallel_resync);
  3879. }
  3880. static ssize_t
  3881. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3882. {
  3883. long n;
  3884. if (strict_strtol(buf, 10, &n))
  3885. return -EINVAL;
  3886. if (n != 0 && n != 1)
  3887. return -EINVAL;
  3888. mddev->parallel_resync = n;
  3889. if (mddev->sync_thread)
  3890. wake_up(&resync_wait);
  3891. return len;
  3892. }
  3893. /* force parallel resync, even with shared block devices */
  3894. static struct md_sysfs_entry md_sync_force_parallel =
  3895. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3896. sync_force_parallel_show, sync_force_parallel_store);
  3897. static ssize_t
  3898. sync_speed_show(struct mddev *mddev, char *page)
  3899. {
  3900. unsigned long resync, dt, db;
  3901. if (mddev->curr_resync == 0)
  3902. return sprintf(page, "none\n");
  3903. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3904. dt = (jiffies - mddev->resync_mark) / HZ;
  3905. if (!dt) dt++;
  3906. db = resync - mddev->resync_mark_cnt;
  3907. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3908. }
  3909. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3910. static ssize_t
  3911. sync_completed_show(struct mddev *mddev, char *page)
  3912. {
  3913. unsigned long long max_sectors, resync;
  3914. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3915. return sprintf(page, "none\n");
  3916. if (mddev->curr_resync == 1 ||
  3917. mddev->curr_resync == 2)
  3918. return sprintf(page, "delayed\n");
  3919. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3920. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3921. max_sectors = mddev->resync_max_sectors;
  3922. else
  3923. max_sectors = mddev->dev_sectors;
  3924. resync = mddev->curr_resync_completed;
  3925. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3926. }
  3927. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3928. static ssize_t
  3929. min_sync_show(struct mddev *mddev, char *page)
  3930. {
  3931. return sprintf(page, "%llu\n",
  3932. (unsigned long long)mddev->resync_min);
  3933. }
  3934. static ssize_t
  3935. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3936. {
  3937. unsigned long long min;
  3938. if (strict_strtoull(buf, 10, &min))
  3939. return -EINVAL;
  3940. if (min > mddev->resync_max)
  3941. return -EINVAL;
  3942. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3943. return -EBUSY;
  3944. /* Must be a multiple of chunk_size */
  3945. if (mddev->chunk_sectors) {
  3946. sector_t temp = min;
  3947. if (sector_div(temp, mddev->chunk_sectors))
  3948. return -EINVAL;
  3949. }
  3950. mddev->resync_min = min;
  3951. return len;
  3952. }
  3953. static struct md_sysfs_entry md_min_sync =
  3954. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3955. static ssize_t
  3956. max_sync_show(struct mddev *mddev, char *page)
  3957. {
  3958. if (mddev->resync_max == MaxSector)
  3959. return sprintf(page, "max\n");
  3960. else
  3961. return sprintf(page, "%llu\n",
  3962. (unsigned long long)mddev->resync_max);
  3963. }
  3964. static ssize_t
  3965. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3966. {
  3967. if (strncmp(buf, "max", 3) == 0)
  3968. mddev->resync_max = MaxSector;
  3969. else {
  3970. unsigned long long max;
  3971. if (strict_strtoull(buf, 10, &max))
  3972. return -EINVAL;
  3973. if (max < mddev->resync_min)
  3974. return -EINVAL;
  3975. if (max < mddev->resync_max &&
  3976. mddev->ro == 0 &&
  3977. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3978. return -EBUSY;
  3979. /* Must be a multiple of chunk_size */
  3980. if (mddev->chunk_sectors) {
  3981. sector_t temp = max;
  3982. if (sector_div(temp, mddev->chunk_sectors))
  3983. return -EINVAL;
  3984. }
  3985. mddev->resync_max = max;
  3986. }
  3987. wake_up(&mddev->recovery_wait);
  3988. return len;
  3989. }
  3990. static struct md_sysfs_entry md_max_sync =
  3991. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3992. static ssize_t
  3993. suspend_lo_show(struct mddev *mddev, char *page)
  3994. {
  3995. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3996. }
  3997. static ssize_t
  3998. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  3999. {
  4000. char *e;
  4001. unsigned long long new = simple_strtoull(buf, &e, 10);
  4002. unsigned long long old = mddev->suspend_lo;
  4003. if (mddev->pers == NULL ||
  4004. mddev->pers->quiesce == NULL)
  4005. return -EINVAL;
  4006. if (buf == e || (*e && *e != '\n'))
  4007. return -EINVAL;
  4008. mddev->suspend_lo = new;
  4009. if (new >= old)
  4010. /* Shrinking suspended region */
  4011. mddev->pers->quiesce(mddev, 2);
  4012. else {
  4013. /* Expanding suspended region - need to wait */
  4014. mddev->pers->quiesce(mddev, 1);
  4015. mddev->pers->quiesce(mddev, 0);
  4016. }
  4017. return len;
  4018. }
  4019. static struct md_sysfs_entry md_suspend_lo =
  4020. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4021. static ssize_t
  4022. suspend_hi_show(struct mddev *mddev, char *page)
  4023. {
  4024. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4025. }
  4026. static ssize_t
  4027. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4028. {
  4029. char *e;
  4030. unsigned long long new = simple_strtoull(buf, &e, 10);
  4031. unsigned long long old = mddev->suspend_hi;
  4032. if (mddev->pers == NULL ||
  4033. mddev->pers->quiesce == NULL)
  4034. return -EINVAL;
  4035. if (buf == e || (*e && *e != '\n'))
  4036. return -EINVAL;
  4037. mddev->suspend_hi = new;
  4038. if (new <= old)
  4039. /* Shrinking suspended region */
  4040. mddev->pers->quiesce(mddev, 2);
  4041. else {
  4042. /* Expanding suspended region - need to wait */
  4043. mddev->pers->quiesce(mddev, 1);
  4044. mddev->pers->quiesce(mddev, 0);
  4045. }
  4046. return len;
  4047. }
  4048. static struct md_sysfs_entry md_suspend_hi =
  4049. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4050. static ssize_t
  4051. reshape_position_show(struct mddev *mddev, char *page)
  4052. {
  4053. if (mddev->reshape_position != MaxSector)
  4054. return sprintf(page, "%llu\n",
  4055. (unsigned long long)mddev->reshape_position);
  4056. strcpy(page, "none\n");
  4057. return 5;
  4058. }
  4059. static ssize_t
  4060. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4061. {
  4062. struct md_rdev *rdev;
  4063. char *e;
  4064. unsigned long long new = simple_strtoull(buf, &e, 10);
  4065. if (mddev->pers)
  4066. return -EBUSY;
  4067. if (buf == e || (*e && *e != '\n'))
  4068. return -EINVAL;
  4069. mddev->reshape_position = new;
  4070. mddev->delta_disks = 0;
  4071. mddev->reshape_backwards = 0;
  4072. mddev->new_level = mddev->level;
  4073. mddev->new_layout = mddev->layout;
  4074. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4075. rdev_for_each(rdev, mddev)
  4076. rdev->new_data_offset = rdev->data_offset;
  4077. return len;
  4078. }
  4079. static struct md_sysfs_entry md_reshape_position =
  4080. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4081. reshape_position_store);
  4082. static ssize_t
  4083. reshape_direction_show(struct mddev *mddev, char *page)
  4084. {
  4085. return sprintf(page, "%s\n",
  4086. mddev->reshape_backwards ? "backwards" : "forwards");
  4087. }
  4088. static ssize_t
  4089. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4090. {
  4091. int backwards = 0;
  4092. if (cmd_match(buf, "forwards"))
  4093. backwards = 0;
  4094. else if (cmd_match(buf, "backwards"))
  4095. backwards = 1;
  4096. else
  4097. return -EINVAL;
  4098. if (mddev->reshape_backwards == backwards)
  4099. return len;
  4100. /* check if we are allowed to change */
  4101. if (mddev->delta_disks)
  4102. return -EBUSY;
  4103. if (mddev->persistent &&
  4104. mddev->major_version == 0)
  4105. return -EINVAL;
  4106. mddev->reshape_backwards = backwards;
  4107. return len;
  4108. }
  4109. static struct md_sysfs_entry md_reshape_direction =
  4110. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4111. reshape_direction_store);
  4112. static ssize_t
  4113. array_size_show(struct mddev *mddev, char *page)
  4114. {
  4115. if (mddev->external_size)
  4116. return sprintf(page, "%llu\n",
  4117. (unsigned long long)mddev->array_sectors/2);
  4118. else
  4119. return sprintf(page, "default\n");
  4120. }
  4121. static ssize_t
  4122. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4123. {
  4124. sector_t sectors;
  4125. if (strncmp(buf, "default", 7) == 0) {
  4126. if (mddev->pers)
  4127. sectors = mddev->pers->size(mddev, 0, 0);
  4128. else
  4129. sectors = mddev->array_sectors;
  4130. mddev->external_size = 0;
  4131. } else {
  4132. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4133. return -EINVAL;
  4134. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4135. return -E2BIG;
  4136. mddev->external_size = 1;
  4137. }
  4138. mddev->array_sectors = sectors;
  4139. if (mddev->pers) {
  4140. set_capacity(mddev->gendisk, mddev->array_sectors);
  4141. revalidate_disk(mddev->gendisk);
  4142. }
  4143. return len;
  4144. }
  4145. static struct md_sysfs_entry md_array_size =
  4146. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4147. array_size_store);
  4148. static struct attribute *md_default_attrs[] = {
  4149. &md_level.attr,
  4150. &md_layout.attr,
  4151. &md_raid_disks.attr,
  4152. &md_chunk_size.attr,
  4153. &md_size.attr,
  4154. &md_resync_start.attr,
  4155. &md_metadata.attr,
  4156. &md_new_device.attr,
  4157. &md_safe_delay.attr,
  4158. &md_array_state.attr,
  4159. &md_reshape_position.attr,
  4160. &md_reshape_direction.attr,
  4161. &md_array_size.attr,
  4162. &max_corr_read_errors.attr,
  4163. NULL,
  4164. };
  4165. static struct attribute *md_redundancy_attrs[] = {
  4166. &md_scan_mode.attr,
  4167. &md_mismatches.attr,
  4168. &md_sync_min.attr,
  4169. &md_sync_max.attr,
  4170. &md_sync_speed.attr,
  4171. &md_sync_force_parallel.attr,
  4172. &md_sync_completed.attr,
  4173. &md_min_sync.attr,
  4174. &md_max_sync.attr,
  4175. &md_suspend_lo.attr,
  4176. &md_suspend_hi.attr,
  4177. &md_bitmap.attr,
  4178. &md_degraded.attr,
  4179. NULL,
  4180. };
  4181. static struct attribute_group md_redundancy_group = {
  4182. .name = NULL,
  4183. .attrs = md_redundancy_attrs,
  4184. };
  4185. static ssize_t
  4186. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4187. {
  4188. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4189. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4190. ssize_t rv;
  4191. if (!entry->show)
  4192. return -EIO;
  4193. spin_lock(&all_mddevs_lock);
  4194. if (list_empty(&mddev->all_mddevs)) {
  4195. spin_unlock(&all_mddevs_lock);
  4196. return -EBUSY;
  4197. }
  4198. mddev_get(mddev);
  4199. spin_unlock(&all_mddevs_lock);
  4200. rv = mddev_lock(mddev);
  4201. if (!rv) {
  4202. rv = entry->show(mddev, page);
  4203. mddev_unlock(mddev);
  4204. }
  4205. mddev_put(mddev);
  4206. return rv;
  4207. }
  4208. static ssize_t
  4209. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4210. const char *page, size_t length)
  4211. {
  4212. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4213. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4214. ssize_t rv;
  4215. if (!entry->store)
  4216. return -EIO;
  4217. if (!capable(CAP_SYS_ADMIN))
  4218. return -EACCES;
  4219. spin_lock(&all_mddevs_lock);
  4220. if (list_empty(&mddev->all_mddevs)) {
  4221. spin_unlock(&all_mddevs_lock);
  4222. return -EBUSY;
  4223. }
  4224. mddev_get(mddev);
  4225. spin_unlock(&all_mddevs_lock);
  4226. if (entry->store == new_dev_store)
  4227. flush_workqueue(md_misc_wq);
  4228. rv = mddev_lock(mddev);
  4229. if (!rv) {
  4230. rv = entry->store(mddev, page, length);
  4231. mddev_unlock(mddev);
  4232. }
  4233. mddev_put(mddev);
  4234. return rv;
  4235. }
  4236. static void md_free(struct kobject *ko)
  4237. {
  4238. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4239. if (mddev->sysfs_state)
  4240. sysfs_put(mddev->sysfs_state);
  4241. if (mddev->gendisk) {
  4242. del_gendisk(mddev->gendisk);
  4243. put_disk(mddev->gendisk);
  4244. }
  4245. if (mddev->queue)
  4246. blk_cleanup_queue(mddev->queue);
  4247. kfree(mddev);
  4248. }
  4249. static const struct sysfs_ops md_sysfs_ops = {
  4250. .show = md_attr_show,
  4251. .store = md_attr_store,
  4252. };
  4253. static struct kobj_type md_ktype = {
  4254. .release = md_free,
  4255. .sysfs_ops = &md_sysfs_ops,
  4256. .default_attrs = md_default_attrs,
  4257. };
  4258. int mdp_major = 0;
  4259. static void mddev_delayed_delete(struct work_struct *ws)
  4260. {
  4261. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4262. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4263. kobject_del(&mddev->kobj);
  4264. kobject_put(&mddev->kobj);
  4265. }
  4266. static int md_alloc(dev_t dev, char *name)
  4267. {
  4268. static DEFINE_MUTEX(disks_mutex);
  4269. struct mddev *mddev = mddev_find(dev);
  4270. struct gendisk *disk;
  4271. int partitioned;
  4272. int shift;
  4273. int unit;
  4274. int error;
  4275. if (!mddev)
  4276. return -ENODEV;
  4277. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4278. shift = partitioned ? MdpMinorShift : 0;
  4279. unit = MINOR(mddev->unit) >> shift;
  4280. /* wait for any previous instance of this device to be
  4281. * completely removed (mddev_delayed_delete).
  4282. */
  4283. flush_workqueue(md_misc_wq);
  4284. mutex_lock(&disks_mutex);
  4285. error = -EEXIST;
  4286. if (mddev->gendisk)
  4287. goto abort;
  4288. if (name) {
  4289. /* Need to ensure that 'name' is not a duplicate.
  4290. */
  4291. struct mddev *mddev2;
  4292. spin_lock(&all_mddevs_lock);
  4293. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4294. if (mddev2->gendisk &&
  4295. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4296. spin_unlock(&all_mddevs_lock);
  4297. goto abort;
  4298. }
  4299. spin_unlock(&all_mddevs_lock);
  4300. }
  4301. error = -ENOMEM;
  4302. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4303. if (!mddev->queue)
  4304. goto abort;
  4305. mddev->queue->queuedata = mddev;
  4306. blk_queue_make_request(mddev->queue, md_make_request);
  4307. blk_set_stacking_limits(&mddev->queue->limits);
  4308. disk = alloc_disk(1 << shift);
  4309. if (!disk) {
  4310. blk_cleanup_queue(mddev->queue);
  4311. mddev->queue = NULL;
  4312. goto abort;
  4313. }
  4314. disk->major = MAJOR(mddev->unit);
  4315. disk->first_minor = unit << shift;
  4316. if (name)
  4317. strcpy(disk->disk_name, name);
  4318. else if (partitioned)
  4319. sprintf(disk->disk_name, "md_d%d", unit);
  4320. else
  4321. sprintf(disk->disk_name, "md%d", unit);
  4322. disk->fops = &md_fops;
  4323. disk->private_data = mddev;
  4324. disk->queue = mddev->queue;
  4325. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4326. /* Allow extended partitions. This makes the
  4327. * 'mdp' device redundant, but we can't really
  4328. * remove it now.
  4329. */
  4330. disk->flags |= GENHD_FL_EXT_DEVT;
  4331. mddev->gendisk = disk;
  4332. /* As soon as we call add_disk(), another thread could get
  4333. * through to md_open, so make sure it doesn't get too far
  4334. */
  4335. mutex_lock(&mddev->open_mutex);
  4336. add_disk(disk);
  4337. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4338. &disk_to_dev(disk)->kobj, "%s", "md");
  4339. if (error) {
  4340. /* This isn't possible, but as kobject_init_and_add is marked
  4341. * __must_check, we must do something with the result
  4342. */
  4343. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4344. disk->disk_name);
  4345. error = 0;
  4346. }
  4347. if (mddev->kobj.sd &&
  4348. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4349. printk(KERN_DEBUG "pointless warning\n");
  4350. mutex_unlock(&mddev->open_mutex);
  4351. abort:
  4352. mutex_unlock(&disks_mutex);
  4353. if (!error && mddev->kobj.sd) {
  4354. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4355. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4356. }
  4357. mddev_put(mddev);
  4358. return error;
  4359. }
  4360. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4361. {
  4362. md_alloc(dev, NULL);
  4363. return NULL;
  4364. }
  4365. static int add_named_array(const char *val, struct kernel_param *kp)
  4366. {
  4367. /* val must be "md_*" where * is not all digits.
  4368. * We allocate an array with a large free minor number, and
  4369. * set the name to val. val must not already be an active name.
  4370. */
  4371. int len = strlen(val);
  4372. char buf[DISK_NAME_LEN];
  4373. while (len && val[len-1] == '\n')
  4374. len--;
  4375. if (len >= DISK_NAME_LEN)
  4376. return -E2BIG;
  4377. strlcpy(buf, val, len+1);
  4378. if (strncmp(buf, "md_", 3) != 0)
  4379. return -EINVAL;
  4380. return md_alloc(0, buf);
  4381. }
  4382. static void md_safemode_timeout(unsigned long data)
  4383. {
  4384. struct mddev *mddev = (struct mddev *) data;
  4385. if (!atomic_read(&mddev->writes_pending)) {
  4386. mddev->safemode = 1;
  4387. if (mddev->external)
  4388. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4389. }
  4390. md_wakeup_thread(mddev->thread);
  4391. }
  4392. static int start_dirty_degraded;
  4393. int md_run(struct mddev *mddev)
  4394. {
  4395. int err;
  4396. struct md_rdev *rdev;
  4397. struct md_personality *pers;
  4398. if (list_empty(&mddev->disks))
  4399. /* cannot run an array with no devices.. */
  4400. return -EINVAL;
  4401. if (mddev->pers)
  4402. return -EBUSY;
  4403. /* Cannot run until previous stop completes properly */
  4404. if (mddev->sysfs_active)
  4405. return -EBUSY;
  4406. /*
  4407. * Analyze all RAID superblock(s)
  4408. */
  4409. if (!mddev->raid_disks) {
  4410. if (!mddev->persistent)
  4411. return -EINVAL;
  4412. analyze_sbs(mddev);
  4413. }
  4414. if (mddev->level != LEVEL_NONE)
  4415. request_module("md-level-%d", mddev->level);
  4416. else if (mddev->clevel[0])
  4417. request_module("md-%s", mddev->clevel);
  4418. /*
  4419. * Drop all container device buffers, from now on
  4420. * the only valid external interface is through the md
  4421. * device.
  4422. */
  4423. rdev_for_each(rdev, mddev) {
  4424. if (test_bit(Faulty, &rdev->flags))
  4425. continue;
  4426. sync_blockdev(rdev->bdev);
  4427. invalidate_bdev(rdev->bdev);
  4428. /* perform some consistency tests on the device.
  4429. * We don't want the data to overlap the metadata,
  4430. * Internal Bitmap issues have been handled elsewhere.
  4431. */
  4432. if (rdev->meta_bdev) {
  4433. /* Nothing to check */;
  4434. } else if (rdev->data_offset < rdev->sb_start) {
  4435. if (mddev->dev_sectors &&
  4436. rdev->data_offset + mddev->dev_sectors
  4437. > rdev->sb_start) {
  4438. printk("md: %s: data overlaps metadata\n",
  4439. mdname(mddev));
  4440. return -EINVAL;
  4441. }
  4442. } else {
  4443. if (rdev->sb_start + rdev->sb_size/512
  4444. > rdev->data_offset) {
  4445. printk("md: %s: metadata overlaps data\n",
  4446. mdname(mddev));
  4447. return -EINVAL;
  4448. }
  4449. }
  4450. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4451. }
  4452. if (mddev->bio_set == NULL)
  4453. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4454. spin_lock(&pers_lock);
  4455. pers = find_pers(mddev->level, mddev->clevel);
  4456. if (!pers || !try_module_get(pers->owner)) {
  4457. spin_unlock(&pers_lock);
  4458. if (mddev->level != LEVEL_NONE)
  4459. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4460. mddev->level);
  4461. else
  4462. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4463. mddev->clevel);
  4464. return -EINVAL;
  4465. }
  4466. mddev->pers = pers;
  4467. spin_unlock(&pers_lock);
  4468. if (mddev->level != pers->level) {
  4469. mddev->level = pers->level;
  4470. mddev->new_level = pers->level;
  4471. }
  4472. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4473. if (mddev->reshape_position != MaxSector &&
  4474. pers->start_reshape == NULL) {
  4475. /* This personality cannot handle reshaping... */
  4476. mddev->pers = NULL;
  4477. module_put(pers->owner);
  4478. return -EINVAL;
  4479. }
  4480. if (pers->sync_request) {
  4481. /* Warn if this is a potentially silly
  4482. * configuration.
  4483. */
  4484. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4485. struct md_rdev *rdev2;
  4486. int warned = 0;
  4487. rdev_for_each(rdev, mddev)
  4488. rdev_for_each(rdev2, mddev) {
  4489. if (rdev < rdev2 &&
  4490. rdev->bdev->bd_contains ==
  4491. rdev2->bdev->bd_contains) {
  4492. printk(KERN_WARNING
  4493. "%s: WARNING: %s appears to be"
  4494. " on the same physical disk as"
  4495. " %s.\n",
  4496. mdname(mddev),
  4497. bdevname(rdev->bdev,b),
  4498. bdevname(rdev2->bdev,b2));
  4499. warned = 1;
  4500. }
  4501. }
  4502. if (warned)
  4503. printk(KERN_WARNING
  4504. "True protection against single-disk"
  4505. " failure might be compromised.\n");
  4506. }
  4507. mddev->recovery = 0;
  4508. /* may be over-ridden by personality */
  4509. mddev->resync_max_sectors = mddev->dev_sectors;
  4510. mddev->ok_start_degraded = start_dirty_degraded;
  4511. if (start_readonly && mddev->ro == 0)
  4512. mddev->ro = 2; /* read-only, but switch on first write */
  4513. err = mddev->pers->run(mddev);
  4514. if (err)
  4515. printk(KERN_ERR "md: pers->run() failed ...\n");
  4516. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4517. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4518. " but 'external_size' not in effect?\n", __func__);
  4519. printk(KERN_ERR
  4520. "md: invalid array_size %llu > default size %llu\n",
  4521. (unsigned long long)mddev->array_sectors / 2,
  4522. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4523. err = -EINVAL;
  4524. mddev->pers->stop(mddev);
  4525. }
  4526. if (err == 0 && mddev->pers->sync_request &&
  4527. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4528. err = bitmap_create(mddev);
  4529. if (err) {
  4530. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4531. mdname(mddev), err);
  4532. mddev->pers->stop(mddev);
  4533. }
  4534. }
  4535. if (err) {
  4536. module_put(mddev->pers->owner);
  4537. mddev->pers = NULL;
  4538. bitmap_destroy(mddev);
  4539. return err;
  4540. }
  4541. if (mddev->pers->sync_request) {
  4542. if (mddev->kobj.sd &&
  4543. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4544. printk(KERN_WARNING
  4545. "md: cannot register extra attributes for %s\n",
  4546. mdname(mddev));
  4547. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4548. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4549. mddev->ro = 0;
  4550. atomic_set(&mddev->writes_pending,0);
  4551. atomic_set(&mddev->max_corr_read_errors,
  4552. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4553. mddev->safemode = 0;
  4554. mddev->safemode_timer.function = md_safemode_timeout;
  4555. mddev->safemode_timer.data = (unsigned long) mddev;
  4556. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4557. mddev->in_sync = 1;
  4558. smp_wmb();
  4559. mddev->ready = 1;
  4560. rdev_for_each(rdev, mddev)
  4561. if (rdev->raid_disk >= 0)
  4562. if (sysfs_link_rdev(mddev, rdev))
  4563. /* failure here is OK */;
  4564. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4565. if (mddev->flags)
  4566. md_update_sb(mddev, 0);
  4567. md_new_event(mddev);
  4568. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4569. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4570. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4571. return 0;
  4572. }
  4573. EXPORT_SYMBOL_GPL(md_run);
  4574. static int do_md_run(struct mddev *mddev)
  4575. {
  4576. int err;
  4577. err = md_run(mddev);
  4578. if (err)
  4579. goto out;
  4580. err = bitmap_load(mddev);
  4581. if (err) {
  4582. bitmap_destroy(mddev);
  4583. goto out;
  4584. }
  4585. md_wakeup_thread(mddev->thread);
  4586. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4587. set_capacity(mddev->gendisk, mddev->array_sectors);
  4588. revalidate_disk(mddev->gendisk);
  4589. mddev->changed = 1;
  4590. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4591. out:
  4592. return err;
  4593. }
  4594. static int restart_array(struct mddev *mddev)
  4595. {
  4596. struct gendisk *disk = mddev->gendisk;
  4597. /* Complain if it has no devices */
  4598. if (list_empty(&mddev->disks))
  4599. return -ENXIO;
  4600. if (!mddev->pers)
  4601. return -EINVAL;
  4602. if (!mddev->ro)
  4603. return -EBUSY;
  4604. mddev->safemode = 0;
  4605. mddev->ro = 0;
  4606. set_disk_ro(disk, 0);
  4607. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4608. mdname(mddev));
  4609. /* Kick recovery or resync if necessary */
  4610. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4611. md_wakeup_thread(mddev->thread);
  4612. md_wakeup_thread(mddev->sync_thread);
  4613. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4614. return 0;
  4615. }
  4616. /* similar to deny_write_access, but accounts for our holding a reference
  4617. * to the file ourselves */
  4618. static int deny_bitmap_write_access(struct file * file)
  4619. {
  4620. struct inode *inode = file->f_mapping->host;
  4621. spin_lock(&inode->i_lock);
  4622. if (atomic_read(&inode->i_writecount) > 1) {
  4623. spin_unlock(&inode->i_lock);
  4624. return -ETXTBSY;
  4625. }
  4626. atomic_set(&inode->i_writecount, -1);
  4627. spin_unlock(&inode->i_lock);
  4628. return 0;
  4629. }
  4630. void restore_bitmap_write_access(struct file *file)
  4631. {
  4632. struct inode *inode = file->f_mapping->host;
  4633. spin_lock(&inode->i_lock);
  4634. atomic_set(&inode->i_writecount, 1);
  4635. spin_unlock(&inode->i_lock);
  4636. }
  4637. static void md_clean(struct mddev *mddev)
  4638. {
  4639. mddev->array_sectors = 0;
  4640. mddev->external_size = 0;
  4641. mddev->dev_sectors = 0;
  4642. mddev->raid_disks = 0;
  4643. mddev->recovery_cp = 0;
  4644. mddev->resync_min = 0;
  4645. mddev->resync_max = MaxSector;
  4646. mddev->reshape_position = MaxSector;
  4647. mddev->external = 0;
  4648. mddev->persistent = 0;
  4649. mddev->level = LEVEL_NONE;
  4650. mddev->clevel[0] = 0;
  4651. mddev->flags = 0;
  4652. mddev->ro = 0;
  4653. mddev->metadata_type[0] = 0;
  4654. mddev->chunk_sectors = 0;
  4655. mddev->ctime = mddev->utime = 0;
  4656. mddev->layout = 0;
  4657. mddev->max_disks = 0;
  4658. mddev->events = 0;
  4659. mddev->can_decrease_events = 0;
  4660. mddev->delta_disks = 0;
  4661. mddev->reshape_backwards = 0;
  4662. mddev->new_level = LEVEL_NONE;
  4663. mddev->new_layout = 0;
  4664. mddev->new_chunk_sectors = 0;
  4665. mddev->curr_resync = 0;
  4666. atomic64_set(&mddev->resync_mismatches, 0);
  4667. mddev->suspend_lo = mddev->suspend_hi = 0;
  4668. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4669. mddev->recovery = 0;
  4670. mddev->in_sync = 0;
  4671. mddev->changed = 0;
  4672. mddev->degraded = 0;
  4673. mddev->safemode = 0;
  4674. mddev->merge_check_needed = 0;
  4675. mddev->bitmap_info.offset = 0;
  4676. mddev->bitmap_info.default_offset = 0;
  4677. mddev->bitmap_info.default_space = 0;
  4678. mddev->bitmap_info.chunksize = 0;
  4679. mddev->bitmap_info.daemon_sleep = 0;
  4680. mddev->bitmap_info.max_write_behind = 0;
  4681. }
  4682. static void __md_stop_writes(struct mddev *mddev)
  4683. {
  4684. if (mddev->sync_thread) {
  4685. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4686. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4687. md_reap_sync_thread(mddev);
  4688. }
  4689. del_timer_sync(&mddev->safemode_timer);
  4690. bitmap_flush(mddev);
  4691. md_super_wait(mddev);
  4692. if (mddev->ro == 0 &&
  4693. (!mddev->in_sync || mddev->flags)) {
  4694. /* mark array as shutdown cleanly */
  4695. mddev->in_sync = 1;
  4696. md_update_sb(mddev, 1);
  4697. }
  4698. }
  4699. void md_stop_writes(struct mddev *mddev)
  4700. {
  4701. mddev_lock(mddev);
  4702. __md_stop_writes(mddev);
  4703. mddev_unlock(mddev);
  4704. }
  4705. EXPORT_SYMBOL_GPL(md_stop_writes);
  4706. static void __md_stop(struct mddev *mddev)
  4707. {
  4708. mddev->ready = 0;
  4709. mddev->pers->stop(mddev);
  4710. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4711. mddev->to_remove = &md_redundancy_group;
  4712. module_put(mddev->pers->owner);
  4713. mddev->pers = NULL;
  4714. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4715. }
  4716. void md_stop(struct mddev *mddev)
  4717. {
  4718. /* stop the array and free an attached data structures.
  4719. * This is called from dm-raid
  4720. */
  4721. __md_stop(mddev);
  4722. bitmap_destroy(mddev);
  4723. if (mddev->bio_set)
  4724. bioset_free(mddev->bio_set);
  4725. }
  4726. EXPORT_SYMBOL_GPL(md_stop);
  4727. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4728. {
  4729. int err = 0;
  4730. mutex_lock(&mddev->open_mutex);
  4731. if (atomic_read(&mddev->openers) > !!bdev) {
  4732. printk("md: %s still in use.\n",mdname(mddev));
  4733. err = -EBUSY;
  4734. goto out;
  4735. }
  4736. if (bdev)
  4737. sync_blockdev(bdev);
  4738. if (mddev->pers) {
  4739. __md_stop_writes(mddev);
  4740. err = -ENXIO;
  4741. if (mddev->ro==1)
  4742. goto out;
  4743. mddev->ro = 1;
  4744. set_disk_ro(mddev->gendisk, 1);
  4745. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4746. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4747. err = 0;
  4748. }
  4749. out:
  4750. mutex_unlock(&mddev->open_mutex);
  4751. return err;
  4752. }
  4753. /* mode:
  4754. * 0 - completely stop and dis-assemble array
  4755. * 2 - stop but do not disassemble array
  4756. */
  4757. static int do_md_stop(struct mddev * mddev, int mode,
  4758. struct block_device *bdev)
  4759. {
  4760. struct gendisk *disk = mddev->gendisk;
  4761. struct md_rdev *rdev;
  4762. mutex_lock(&mddev->open_mutex);
  4763. if (atomic_read(&mddev->openers) > !!bdev ||
  4764. mddev->sysfs_active) {
  4765. printk("md: %s still in use.\n",mdname(mddev));
  4766. mutex_unlock(&mddev->open_mutex);
  4767. return -EBUSY;
  4768. }
  4769. if (bdev)
  4770. /* It is possible IO was issued on some other
  4771. * open file which was closed before we took ->open_mutex.
  4772. * As that was not the last close __blkdev_put will not
  4773. * have called sync_blockdev, so we must.
  4774. */
  4775. sync_blockdev(bdev);
  4776. if (mddev->pers) {
  4777. if (mddev->ro)
  4778. set_disk_ro(disk, 0);
  4779. __md_stop_writes(mddev);
  4780. __md_stop(mddev);
  4781. mddev->queue->merge_bvec_fn = NULL;
  4782. mddev->queue->backing_dev_info.congested_fn = NULL;
  4783. /* tell userspace to handle 'inactive' */
  4784. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4785. rdev_for_each(rdev, mddev)
  4786. if (rdev->raid_disk >= 0)
  4787. sysfs_unlink_rdev(mddev, rdev);
  4788. set_capacity(disk, 0);
  4789. mutex_unlock(&mddev->open_mutex);
  4790. mddev->changed = 1;
  4791. revalidate_disk(disk);
  4792. if (mddev->ro)
  4793. mddev->ro = 0;
  4794. } else
  4795. mutex_unlock(&mddev->open_mutex);
  4796. /*
  4797. * Free resources if final stop
  4798. */
  4799. if (mode == 0) {
  4800. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4801. bitmap_destroy(mddev);
  4802. if (mddev->bitmap_info.file) {
  4803. restore_bitmap_write_access(mddev->bitmap_info.file);
  4804. fput(mddev->bitmap_info.file);
  4805. mddev->bitmap_info.file = NULL;
  4806. }
  4807. mddev->bitmap_info.offset = 0;
  4808. export_array(mddev);
  4809. md_clean(mddev);
  4810. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4811. if (mddev->hold_active == UNTIL_STOP)
  4812. mddev->hold_active = 0;
  4813. }
  4814. blk_integrity_unregister(disk);
  4815. md_new_event(mddev);
  4816. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4817. return 0;
  4818. }
  4819. #ifndef MODULE
  4820. static void autorun_array(struct mddev *mddev)
  4821. {
  4822. struct md_rdev *rdev;
  4823. int err;
  4824. if (list_empty(&mddev->disks))
  4825. return;
  4826. printk(KERN_INFO "md: running: ");
  4827. rdev_for_each(rdev, mddev) {
  4828. char b[BDEVNAME_SIZE];
  4829. printk("<%s>", bdevname(rdev->bdev,b));
  4830. }
  4831. printk("\n");
  4832. err = do_md_run(mddev);
  4833. if (err) {
  4834. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4835. do_md_stop(mddev, 0, NULL);
  4836. }
  4837. }
  4838. /*
  4839. * lets try to run arrays based on all disks that have arrived
  4840. * until now. (those are in pending_raid_disks)
  4841. *
  4842. * the method: pick the first pending disk, collect all disks with
  4843. * the same UUID, remove all from the pending list and put them into
  4844. * the 'same_array' list. Then order this list based on superblock
  4845. * update time (freshest comes first), kick out 'old' disks and
  4846. * compare superblocks. If everything's fine then run it.
  4847. *
  4848. * If "unit" is allocated, then bump its reference count
  4849. */
  4850. static void autorun_devices(int part)
  4851. {
  4852. struct md_rdev *rdev0, *rdev, *tmp;
  4853. struct mddev *mddev;
  4854. char b[BDEVNAME_SIZE];
  4855. printk(KERN_INFO "md: autorun ...\n");
  4856. while (!list_empty(&pending_raid_disks)) {
  4857. int unit;
  4858. dev_t dev;
  4859. LIST_HEAD(candidates);
  4860. rdev0 = list_entry(pending_raid_disks.next,
  4861. struct md_rdev, same_set);
  4862. printk(KERN_INFO "md: considering %s ...\n",
  4863. bdevname(rdev0->bdev,b));
  4864. INIT_LIST_HEAD(&candidates);
  4865. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4866. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4867. printk(KERN_INFO "md: adding %s ...\n",
  4868. bdevname(rdev->bdev,b));
  4869. list_move(&rdev->same_set, &candidates);
  4870. }
  4871. /*
  4872. * now we have a set of devices, with all of them having
  4873. * mostly sane superblocks. It's time to allocate the
  4874. * mddev.
  4875. */
  4876. if (part) {
  4877. dev = MKDEV(mdp_major,
  4878. rdev0->preferred_minor << MdpMinorShift);
  4879. unit = MINOR(dev) >> MdpMinorShift;
  4880. } else {
  4881. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4882. unit = MINOR(dev);
  4883. }
  4884. if (rdev0->preferred_minor != unit) {
  4885. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4886. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4887. break;
  4888. }
  4889. md_probe(dev, NULL, NULL);
  4890. mddev = mddev_find(dev);
  4891. if (!mddev || !mddev->gendisk) {
  4892. if (mddev)
  4893. mddev_put(mddev);
  4894. printk(KERN_ERR
  4895. "md: cannot allocate memory for md drive.\n");
  4896. break;
  4897. }
  4898. if (mddev_lock(mddev))
  4899. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4900. mdname(mddev));
  4901. else if (mddev->raid_disks || mddev->major_version
  4902. || !list_empty(&mddev->disks)) {
  4903. printk(KERN_WARNING
  4904. "md: %s already running, cannot run %s\n",
  4905. mdname(mddev), bdevname(rdev0->bdev,b));
  4906. mddev_unlock(mddev);
  4907. } else {
  4908. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4909. mddev->persistent = 1;
  4910. rdev_for_each_list(rdev, tmp, &candidates) {
  4911. list_del_init(&rdev->same_set);
  4912. if (bind_rdev_to_array(rdev, mddev))
  4913. export_rdev(rdev);
  4914. }
  4915. autorun_array(mddev);
  4916. mddev_unlock(mddev);
  4917. }
  4918. /* on success, candidates will be empty, on error
  4919. * it won't...
  4920. */
  4921. rdev_for_each_list(rdev, tmp, &candidates) {
  4922. list_del_init(&rdev->same_set);
  4923. export_rdev(rdev);
  4924. }
  4925. mddev_put(mddev);
  4926. }
  4927. printk(KERN_INFO "md: ... autorun DONE.\n");
  4928. }
  4929. #endif /* !MODULE */
  4930. static int get_version(void __user * arg)
  4931. {
  4932. mdu_version_t ver;
  4933. ver.major = MD_MAJOR_VERSION;
  4934. ver.minor = MD_MINOR_VERSION;
  4935. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4936. if (copy_to_user(arg, &ver, sizeof(ver)))
  4937. return -EFAULT;
  4938. return 0;
  4939. }
  4940. static int get_array_info(struct mddev * mddev, void __user * arg)
  4941. {
  4942. mdu_array_info_t info;
  4943. int nr,working,insync,failed,spare;
  4944. struct md_rdev *rdev;
  4945. nr = working = insync = failed = spare = 0;
  4946. rcu_read_lock();
  4947. rdev_for_each_rcu(rdev, mddev) {
  4948. nr++;
  4949. if (test_bit(Faulty, &rdev->flags))
  4950. failed++;
  4951. else {
  4952. working++;
  4953. if (test_bit(In_sync, &rdev->flags))
  4954. insync++;
  4955. else
  4956. spare++;
  4957. }
  4958. }
  4959. rcu_read_unlock();
  4960. info.major_version = mddev->major_version;
  4961. info.minor_version = mddev->minor_version;
  4962. info.patch_version = MD_PATCHLEVEL_VERSION;
  4963. info.ctime = mddev->ctime;
  4964. info.level = mddev->level;
  4965. info.size = mddev->dev_sectors / 2;
  4966. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4967. info.size = -1;
  4968. info.nr_disks = nr;
  4969. info.raid_disks = mddev->raid_disks;
  4970. info.md_minor = mddev->md_minor;
  4971. info.not_persistent= !mddev->persistent;
  4972. info.utime = mddev->utime;
  4973. info.state = 0;
  4974. if (mddev->in_sync)
  4975. info.state = (1<<MD_SB_CLEAN);
  4976. if (mddev->bitmap && mddev->bitmap_info.offset)
  4977. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4978. info.active_disks = insync;
  4979. info.working_disks = working;
  4980. info.failed_disks = failed;
  4981. info.spare_disks = spare;
  4982. info.layout = mddev->layout;
  4983. info.chunk_size = mddev->chunk_sectors << 9;
  4984. if (copy_to_user(arg, &info, sizeof(info)))
  4985. return -EFAULT;
  4986. return 0;
  4987. }
  4988. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4989. {
  4990. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4991. char *ptr, *buf = NULL;
  4992. int err = -ENOMEM;
  4993. if (md_allow_write(mddev))
  4994. file = kmalloc(sizeof(*file), GFP_NOIO);
  4995. else
  4996. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4997. if (!file)
  4998. goto out;
  4999. /* bitmap disabled, zero the first byte and copy out */
  5000. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  5001. file->pathname[0] = '\0';
  5002. goto copy_out;
  5003. }
  5004. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  5005. if (!buf)
  5006. goto out;
  5007. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  5008. buf, sizeof(file->pathname));
  5009. if (IS_ERR(ptr))
  5010. goto out;
  5011. strcpy(file->pathname, ptr);
  5012. copy_out:
  5013. err = 0;
  5014. if (copy_to_user(arg, file, sizeof(*file)))
  5015. err = -EFAULT;
  5016. out:
  5017. kfree(buf);
  5018. kfree(file);
  5019. return err;
  5020. }
  5021. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5022. {
  5023. mdu_disk_info_t info;
  5024. struct md_rdev *rdev;
  5025. if (copy_from_user(&info, arg, sizeof(info)))
  5026. return -EFAULT;
  5027. rcu_read_lock();
  5028. rdev = find_rdev_nr_rcu(mddev, info.number);
  5029. if (rdev) {
  5030. info.major = MAJOR(rdev->bdev->bd_dev);
  5031. info.minor = MINOR(rdev->bdev->bd_dev);
  5032. info.raid_disk = rdev->raid_disk;
  5033. info.state = 0;
  5034. if (test_bit(Faulty, &rdev->flags))
  5035. info.state |= (1<<MD_DISK_FAULTY);
  5036. else if (test_bit(In_sync, &rdev->flags)) {
  5037. info.state |= (1<<MD_DISK_ACTIVE);
  5038. info.state |= (1<<MD_DISK_SYNC);
  5039. }
  5040. if (test_bit(WriteMostly, &rdev->flags))
  5041. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5042. } else {
  5043. info.major = info.minor = 0;
  5044. info.raid_disk = -1;
  5045. info.state = (1<<MD_DISK_REMOVED);
  5046. }
  5047. rcu_read_unlock();
  5048. if (copy_to_user(arg, &info, sizeof(info)))
  5049. return -EFAULT;
  5050. return 0;
  5051. }
  5052. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5053. {
  5054. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5055. struct md_rdev *rdev;
  5056. dev_t dev = MKDEV(info->major,info->minor);
  5057. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5058. return -EOVERFLOW;
  5059. if (!mddev->raid_disks) {
  5060. int err;
  5061. /* expecting a device which has a superblock */
  5062. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5063. if (IS_ERR(rdev)) {
  5064. printk(KERN_WARNING
  5065. "md: md_import_device returned %ld\n",
  5066. PTR_ERR(rdev));
  5067. return PTR_ERR(rdev);
  5068. }
  5069. if (!list_empty(&mddev->disks)) {
  5070. struct md_rdev *rdev0
  5071. = list_entry(mddev->disks.next,
  5072. struct md_rdev, same_set);
  5073. err = super_types[mddev->major_version]
  5074. .load_super(rdev, rdev0, mddev->minor_version);
  5075. if (err < 0) {
  5076. printk(KERN_WARNING
  5077. "md: %s has different UUID to %s\n",
  5078. bdevname(rdev->bdev,b),
  5079. bdevname(rdev0->bdev,b2));
  5080. export_rdev(rdev);
  5081. return -EINVAL;
  5082. }
  5083. }
  5084. err = bind_rdev_to_array(rdev, mddev);
  5085. if (err)
  5086. export_rdev(rdev);
  5087. return err;
  5088. }
  5089. /*
  5090. * add_new_disk can be used once the array is assembled
  5091. * to add "hot spares". They must already have a superblock
  5092. * written
  5093. */
  5094. if (mddev->pers) {
  5095. int err;
  5096. if (!mddev->pers->hot_add_disk) {
  5097. printk(KERN_WARNING
  5098. "%s: personality does not support diskops!\n",
  5099. mdname(mddev));
  5100. return -EINVAL;
  5101. }
  5102. if (mddev->persistent)
  5103. rdev = md_import_device(dev, mddev->major_version,
  5104. mddev->minor_version);
  5105. else
  5106. rdev = md_import_device(dev, -1, -1);
  5107. if (IS_ERR(rdev)) {
  5108. printk(KERN_WARNING
  5109. "md: md_import_device returned %ld\n",
  5110. PTR_ERR(rdev));
  5111. return PTR_ERR(rdev);
  5112. }
  5113. /* set saved_raid_disk if appropriate */
  5114. if (!mddev->persistent) {
  5115. if (info->state & (1<<MD_DISK_SYNC) &&
  5116. info->raid_disk < mddev->raid_disks) {
  5117. rdev->raid_disk = info->raid_disk;
  5118. set_bit(In_sync, &rdev->flags);
  5119. } else
  5120. rdev->raid_disk = -1;
  5121. } else
  5122. super_types[mddev->major_version].
  5123. validate_super(mddev, rdev);
  5124. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5125. rdev->raid_disk != info->raid_disk) {
  5126. /* This was a hot-add request, but events doesn't
  5127. * match, so reject it.
  5128. */
  5129. export_rdev(rdev);
  5130. return -EINVAL;
  5131. }
  5132. if (test_bit(In_sync, &rdev->flags))
  5133. rdev->saved_raid_disk = rdev->raid_disk;
  5134. else
  5135. rdev->saved_raid_disk = -1;
  5136. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5137. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5138. set_bit(WriteMostly, &rdev->flags);
  5139. else
  5140. clear_bit(WriteMostly, &rdev->flags);
  5141. rdev->raid_disk = -1;
  5142. err = bind_rdev_to_array(rdev, mddev);
  5143. if (!err && !mddev->pers->hot_remove_disk) {
  5144. /* If there is hot_add_disk but no hot_remove_disk
  5145. * then added disks for geometry changes,
  5146. * and should be added immediately.
  5147. */
  5148. super_types[mddev->major_version].
  5149. validate_super(mddev, rdev);
  5150. err = mddev->pers->hot_add_disk(mddev, rdev);
  5151. if (err)
  5152. unbind_rdev_from_array(rdev);
  5153. }
  5154. if (err)
  5155. export_rdev(rdev);
  5156. else
  5157. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5158. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5159. if (mddev->degraded)
  5160. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5161. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5162. if (!err)
  5163. md_new_event(mddev);
  5164. md_wakeup_thread(mddev->thread);
  5165. return err;
  5166. }
  5167. /* otherwise, add_new_disk is only allowed
  5168. * for major_version==0 superblocks
  5169. */
  5170. if (mddev->major_version != 0) {
  5171. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5172. mdname(mddev));
  5173. return -EINVAL;
  5174. }
  5175. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5176. int err;
  5177. rdev = md_import_device(dev, -1, 0);
  5178. if (IS_ERR(rdev)) {
  5179. printk(KERN_WARNING
  5180. "md: error, md_import_device() returned %ld\n",
  5181. PTR_ERR(rdev));
  5182. return PTR_ERR(rdev);
  5183. }
  5184. rdev->desc_nr = info->number;
  5185. if (info->raid_disk < mddev->raid_disks)
  5186. rdev->raid_disk = info->raid_disk;
  5187. else
  5188. rdev->raid_disk = -1;
  5189. if (rdev->raid_disk < mddev->raid_disks)
  5190. if (info->state & (1<<MD_DISK_SYNC))
  5191. set_bit(In_sync, &rdev->flags);
  5192. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5193. set_bit(WriteMostly, &rdev->flags);
  5194. if (!mddev->persistent) {
  5195. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5196. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5197. } else
  5198. rdev->sb_start = calc_dev_sboffset(rdev);
  5199. rdev->sectors = rdev->sb_start;
  5200. err = bind_rdev_to_array(rdev, mddev);
  5201. if (err) {
  5202. export_rdev(rdev);
  5203. return err;
  5204. }
  5205. }
  5206. return 0;
  5207. }
  5208. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5209. {
  5210. char b[BDEVNAME_SIZE];
  5211. struct md_rdev *rdev;
  5212. rdev = find_rdev(mddev, dev);
  5213. if (!rdev)
  5214. return -ENXIO;
  5215. clear_bit(Blocked, &rdev->flags);
  5216. remove_and_add_spares(mddev, rdev);
  5217. if (rdev->raid_disk >= 0)
  5218. goto busy;
  5219. kick_rdev_from_array(rdev);
  5220. md_update_sb(mddev, 1);
  5221. md_new_event(mddev);
  5222. return 0;
  5223. busy:
  5224. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5225. bdevname(rdev->bdev,b), mdname(mddev));
  5226. return -EBUSY;
  5227. }
  5228. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5229. {
  5230. char b[BDEVNAME_SIZE];
  5231. int err;
  5232. struct md_rdev *rdev;
  5233. if (!mddev->pers)
  5234. return -ENODEV;
  5235. if (mddev->major_version != 0) {
  5236. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5237. " version-0 superblocks.\n",
  5238. mdname(mddev));
  5239. return -EINVAL;
  5240. }
  5241. if (!mddev->pers->hot_add_disk) {
  5242. printk(KERN_WARNING
  5243. "%s: personality does not support diskops!\n",
  5244. mdname(mddev));
  5245. return -EINVAL;
  5246. }
  5247. rdev = md_import_device(dev, -1, 0);
  5248. if (IS_ERR(rdev)) {
  5249. printk(KERN_WARNING
  5250. "md: error, md_import_device() returned %ld\n",
  5251. PTR_ERR(rdev));
  5252. return -EINVAL;
  5253. }
  5254. if (mddev->persistent)
  5255. rdev->sb_start = calc_dev_sboffset(rdev);
  5256. else
  5257. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5258. rdev->sectors = rdev->sb_start;
  5259. if (test_bit(Faulty, &rdev->flags)) {
  5260. printk(KERN_WARNING
  5261. "md: can not hot-add faulty %s disk to %s!\n",
  5262. bdevname(rdev->bdev,b), mdname(mddev));
  5263. err = -EINVAL;
  5264. goto abort_export;
  5265. }
  5266. clear_bit(In_sync, &rdev->flags);
  5267. rdev->desc_nr = -1;
  5268. rdev->saved_raid_disk = -1;
  5269. err = bind_rdev_to_array(rdev, mddev);
  5270. if (err)
  5271. goto abort_export;
  5272. /*
  5273. * The rest should better be atomic, we can have disk failures
  5274. * noticed in interrupt contexts ...
  5275. */
  5276. rdev->raid_disk = -1;
  5277. md_update_sb(mddev, 1);
  5278. /*
  5279. * Kick recovery, maybe this spare has to be added to the
  5280. * array immediately.
  5281. */
  5282. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5283. md_wakeup_thread(mddev->thread);
  5284. md_new_event(mddev);
  5285. return 0;
  5286. abort_export:
  5287. export_rdev(rdev);
  5288. return err;
  5289. }
  5290. static int set_bitmap_file(struct mddev *mddev, int fd)
  5291. {
  5292. int err;
  5293. if (mddev->pers) {
  5294. if (!mddev->pers->quiesce)
  5295. return -EBUSY;
  5296. if (mddev->recovery || mddev->sync_thread)
  5297. return -EBUSY;
  5298. /* we should be able to change the bitmap.. */
  5299. }
  5300. if (fd >= 0) {
  5301. if (mddev->bitmap)
  5302. return -EEXIST; /* cannot add when bitmap is present */
  5303. mddev->bitmap_info.file = fget(fd);
  5304. if (mddev->bitmap_info.file == NULL) {
  5305. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5306. mdname(mddev));
  5307. return -EBADF;
  5308. }
  5309. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5310. if (err) {
  5311. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5312. mdname(mddev));
  5313. fput(mddev->bitmap_info.file);
  5314. mddev->bitmap_info.file = NULL;
  5315. return err;
  5316. }
  5317. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5318. } else if (mddev->bitmap == NULL)
  5319. return -ENOENT; /* cannot remove what isn't there */
  5320. err = 0;
  5321. if (mddev->pers) {
  5322. mddev->pers->quiesce(mddev, 1);
  5323. if (fd >= 0) {
  5324. err = bitmap_create(mddev);
  5325. if (!err)
  5326. err = bitmap_load(mddev);
  5327. }
  5328. if (fd < 0 || err) {
  5329. bitmap_destroy(mddev);
  5330. fd = -1; /* make sure to put the file */
  5331. }
  5332. mddev->pers->quiesce(mddev, 0);
  5333. }
  5334. if (fd < 0) {
  5335. if (mddev->bitmap_info.file) {
  5336. restore_bitmap_write_access(mddev->bitmap_info.file);
  5337. fput(mddev->bitmap_info.file);
  5338. }
  5339. mddev->bitmap_info.file = NULL;
  5340. }
  5341. return err;
  5342. }
  5343. /*
  5344. * set_array_info is used two different ways
  5345. * The original usage is when creating a new array.
  5346. * In this usage, raid_disks is > 0 and it together with
  5347. * level, size, not_persistent,layout,chunksize determine the
  5348. * shape of the array.
  5349. * This will always create an array with a type-0.90.0 superblock.
  5350. * The newer usage is when assembling an array.
  5351. * In this case raid_disks will be 0, and the major_version field is
  5352. * use to determine which style super-blocks are to be found on the devices.
  5353. * The minor and patch _version numbers are also kept incase the
  5354. * super_block handler wishes to interpret them.
  5355. */
  5356. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5357. {
  5358. if (info->raid_disks == 0) {
  5359. /* just setting version number for superblock loading */
  5360. if (info->major_version < 0 ||
  5361. info->major_version >= ARRAY_SIZE(super_types) ||
  5362. super_types[info->major_version].name == NULL) {
  5363. /* maybe try to auto-load a module? */
  5364. printk(KERN_INFO
  5365. "md: superblock version %d not known\n",
  5366. info->major_version);
  5367. return -EINVAL;
  5368. }
  5369. mddev->major_version = info->major_version;
  5370. mddev->minor_version = info->minor_version;
  5371. mddev->patch_version = info->patch_version;
  5372. mddev->persistent = !info->not_persistent;
  5373. /* ensure mddev_put doesn't delete this now that there
  5374. * is some minimal configuration.
  5375. */
  5376. mddev->ctime = get_seconds();
  5377. return 0;
  5378. }
  5379. mddev->major_version = MD_MAJOR_VERSION;
  5380. mddev->minor_version = MD_MINOR_VERSION;
  5381. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5382. mddev->ctime = get_seconds();
  5383. mddev->level = info->level;
  5384. mddev->clevel[0] = 0;
  5385. mddev->dev_sectors = 2 * (sector_t)info->size;
  5386. mddev->raid_disks = info->raid_disks;
  5387. /* don't set md_minor, it is determined by which /dev/md* was
  5388. * openned
  5389. */
  5390. if (info->state & (1<<MD_SB_CLEAN))
  5391. mddev->recovery_cp = MaxSector;
  5392. else
  5393. mddev->recovery_cp = 0;
  5394. mddev->persistent = ! info->not_persistent;
  5395. mddev->external = 0;
  5396. mddev->layout = info->layout;
  5397. mddev->chunk_sectors = info->chunk_size >> 9;
  5398. mddev->max_disks = MD_SB_DISKS;
  5399. if (mddev->persistent)
  5400. mddev->flags = 0;
  5401. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5402. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5403. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5404. mddev->bitmap_info.offset = 0;
  5405. mddev->reshape_position = MaxSector;
  5406. /*
  5407. * Generate a 128 bit UUID
  5408. */
  5409. get_random_bytes(mddev->uuid, 16);
  5410. mddev->new_level = mddev->level;
  5411. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5412. mddev->new_layout = mddev->layout;
  5413. mddev->delta_disks = 0;
  5414. mddev->reshape_backwards = 0;
  5415. return 0;
  5416. }
  5417. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5418. {
  5419. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5420. if (mddev->external_size)
  5421. return;
  5422. mddev->array_sectors = array_sectors;
  5423. }
  5424. EXPORT_SYMBOL(md_set_array_sectors);
  5425. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5426. {
  5427. struct md_rdev *rdev;
  5428. int rv;
  5429. int fit = (num_sectors == 0);
  5430. if (mddev->pers->resize == NULL)
  5431. return -EINVAL;
  5432. /* The "num_sectors" is the number of sectors of each device that
  5433. * is used. This can only make sense for arrays with redundancy.
  5434. * linear and raid0 always use whatever space is available. We can only
  5435. * consider changing this number if no resync or reconstruction is
  5436. * happening, and if the new size is acceptable. It must fit before the
  5437. * sb_start or, if that is <data_offset, it must fit before the size
  5438. * of each device. If num_sectors is zero, we find the largest size
  5439. * that fits.
  5440. */
  5441. if (mddev->sync_thread)
  5442. return -EBUSY;
  5443. rdev_for_each(rdev, mddev) {
  5444. sector_t avail = rdev->sectors;
  5445. if (fit && (num_sectors == 0 || num_sectors > avail))
  5446. num_sectors = avail;
  5447. if (avail < num_sectors)
  5448. return -ENOSPC;
  5449. }
  5450. rv = mddev->pers->resize(mddev, num_sectors);
  5451. if (!rv)
  5452. revalidate_disk(mddev->gendisk);
  5453. return rv;
  5454. }
  5455. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5456. {
  5457. int rv;
  5458. struct md_rdev *rdev;
  5459. /* change the number of raid disks */
  5460. if (mddev->pers->check_reshape == NULL)
  5461. return -EINVAL;
  5462. if (raid_disks <= 0 ||
  5463. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5464. return -EINVAL;
  5465. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5466. return -EBUSY;
  5467. rdev_for_each(rdev, mddev) {
  5468. if (mddev->raid_disks < raid_disks &&
  5469. rdev->data_offset < rdev->new_data_offset)
  5470. return -EINVAL;
  5471. if (mddev->raid_disks > raid_disks &&
  5472. rdev->data_offset > rdev->new_data_offset)
  5473. return -EINVAL;
  5474. }
  5475. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5476. if (mddev->delta_disks < 0)
  5477. mddev->reshape_backwards = 1;
  5478. else if (mddev->delta_disks > 0)
  5479. mddev->reshape_backwards = 0;
  5480. rv = mddev->pers->check_reshape(mddev);
  5481. if (rv < 0) {
  5482. mddev->delta_disks = 0;
  5483. mddev->reshape_backwards = 0;
  5484. }
  5485. return rv;
  5486. }
  5487. /*
  5488. * update_array_info is used to change the configuration of an
  5489. * on-line array.
  5490. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5491. * fields in the info are checked against the array.
  5492. * Any differences that cannot be handled will cause an error.
  5493. * Normally, only one change can be managed at a time.
  5494. */
  5495. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5496. {
  5497. int rv = 0;
  5498. int cnt = 0;
  5499. int state = 0;
  5500. /* calculate expected state,ignoring low bits */
  5501. if (mddev->bitmap && mddev->bitmap_info.offset)
  5502. state |= (1 << MD_SB_BITMAP_PRESENT);
  5503. if (mddev->major_version != info->major_version ||
  5504. mddev->minor_version != info->minor_version ||
  5505. /* mddev->patch_version != info->patch_version || */
  5506. mddev->ctime != info->ctime ||
  5507. mddev->level != info->level ||
  5508. /* mddev->layout != info->layout || */
  5509. !mddev->persistent != info->not_persistent||
  5510. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5511. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5512. ((state^info->state) & 0xfffffe00)
  5513. )
  5514. return -EINVAL;
  5515. /* Check there is only one change */
  5516. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5517. cnt++;
  5518. if (mddev->raid_disks != info->raid_disks)
  5519. cnt++;
  5520. if (mddev->layout != info->layout)
  5521. cnt++;
  5522. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5523. cnt++;
  5524. if (cnt == 0)
  5525. return 0;
  5526. if (cnt > 1)
  5527. return -EINVAL;
  5528. if (mddev->layout != info->layout) {
  5529. /* Change layout
  5530. * we don't need to do anything at the md level, the
  5531. * personality will take care of it all.
  5532. */
  5533. if (mddev->pers->check_reshape == NULL)
  5534. return -EINVAL;
  5535. else {
  5536. mddev->new_layout = info->layout;
  5537. rv = mddev->pers->check_reshape(mddev);
  5538. if (rv)
  5539. mddev->new_layout = mddev->layout;
  5540. return rv;
  5541. }
  5542. }
  5543. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5544. rv = update_size(mddev, (sector_t)info->size * 2);
  5545. if (mddev->raid_disks != info->raid_disks)
  5546. rv = update_raid_disks(mddev, info->raid_disks);
  5547. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5548. if (mddev->pers->quiesce == NULL)
  5549. return -EINVAL;
  5550. if (mddev->recovery || mddev->sync_thread)
  5551. return -EBUSY;
  5552. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5553. /* add the bitmap */
  5554. if (mddev->bitmap)
  5555. return -EEXIST;
  5556. if (mddev->bitmap_info.default_offset == 0)
  5557. return -EINVAL;
  5558. mddev->bitmap_info.offset =
  5559. mddev->bitmap_info.default_offset;
  5560. mddev->bitmap_info.space =
  5561. mddev->bitmap_info.default_space;
  5562. mddev->pers->quiesce(mddev, 1);
  5563. rv = bitmap_create(mddev);
  5564. if (!rv)
  5565. rv = bitmap_load(mddev);
  5566. if (rv)
  5567. bitmap_destroy(mddev);
  5568. mddev->pers->quiesce(mddev, 0);
  5569. } else {
  5570. /* remove the bitmap */
  5571. if (!mddev->bitmap)
  5572. return -ENOENT;
  5573. if (mddev->bitmap->storage.file)
  5574. return -EINVAL;
  5575. mddev->pers->quiesce(mddev, 1);
  5576. bitmap_destroy(mddev);
  5577. mddev->pers->quiesce(mddev, 0);
  5578. mddev->bitmap_info.offset = 0;
  5579. }
  5580. }
  5581. md_update_sb(mddev, 1);
  5582. return rv;
  5583. }
  5584. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5585. {
  5586. struct md_rdev *rdev;
  5587. int err = 0;
  5588. if (mddev->pers == NULL)
  5589. return -ENODEV;
  5590. rcu_read_lock();
  5591. rdev = find_rdev_rcu(mddev, dev);
  5592. if (!rdev)
  5593. err = -ENODEV;
  5594. else {
  5595. md_error(mddev, rdev);
  5596. if (!test_bit(Faulty, &rdev->flags))
  5597. err = -EBUSY;
  5598. }
  5599. rcu_read_unlock();
  5600. return err;
  5601. }
  5602. /*
  5603. * We have a problem here : there is no easy way to give a CHS
  5604. * virtual geometry. We currently pretend that we have a 2 heads
  5605. * 4 sectors (with a BIG number of cylinders...). This drives
  5606. * dosfs just mad... ;-)
  5607. */
  5608. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5609. {
  5610. struct mddev *mddev = bdev->bd_disk->private_data;
  5611. geo->heads = 2;
  5612. geo->sectors = 4;
  5613. geo->cylinders = mddev->array_sectors / 8;
  5614. return 0;
  5615. }
  5616. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5617. unsigned int cmd, unsigned long arg)
  5618. {
  5619. int err = 0;
  5620. void __user *argp = (void __user *)arg;
  5621. struct mddev *mddev = NULL;
  5622. int ro;
  5623. switch (cmd) {
  5624. case RAID_VERSION:
  5625. case GET_ARRAY_INFO:
  5626. case GET_DISK_INFO:
  5627. break;
  5628. default:
  5629. if (!capable(CAP_SYS_ADMIN))
  5630. return -EACCES;
  5631. }
  5632. /*
  5633. * Commands dealing with the RAID driver but not any
  5634. * particular array:
  5635. */
  5636. switch (cmd) {
  5637. case RAID_VERSION:
  5638. err = get_version(argp);
  5639. goto done;
  5640. case PRINT_RAID_DEBUG:
  5641. err = 0;
  5642. md_print_devices();
  5643. goto done;
  5644. #ifndef MODULE
  5645. case RAID_AUTORUN:
  5646. err = 0;
  5647. autostart_arrays(arg);
  5648. goto done;
  5649. #endif
  5650. default:;
  5651. }
  5652. /*
  5653. * Commands creating/starting a new array:
  5654. */
  5655. mddev = bdev->bd_disk->private_data;
  5656. if (!mddev) {
  5657. BUG();
  5658. goto abort;
  5659. }
  5660. /* Some actions do not requires the mutex */
  5661. switch (cmd) {
  5662. case GET_ARRAY_INFO:
  5663. if (!mddev->raid_disks && !mddev->external)
  5664. err = -ENODEV;
  5665. else
  5666. err = get_array_info(mddev, argp);
  5667. goto abort;
  5668. case GET_DISK_INFO:
  5669. if (!mddev->raid_disks && !mddev->external)
  5670. err = -ENODEV;
  5671. else
  5672. err = get_disk_info(mddev, argp);
  5673. goto abort;
  5674. case SET_DISK_FAULTY:
  5675. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5676. goto abort;
  5677. }
  5678. if (cmd == ADD_NEW_DISK)
  5679. /* need to ensure md_delayed_delete() has completed */
  5680. flush_workqueue(md_misc_wq);
  5681. err = mddev_lock(mddev);
  5682. if (err) {
  5683. printk(KERN_INFO
  5684. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5685. err, cmd);
  5686. goto abort;
  5687. }
  5688. if (cmd == SET_ARRAY_INFO) {
  5689. mdu_array_info_t info;
  5690. if (!arg)
  5691. memset(&info, 0, sizeof(info));
  5692. else if (copy_from_user(&info, argp, sizeof(info))) {
  5693. err = -EFAULT;
  5694. goto abort_unlock;
  5695. }
  5696. if (mddev->pers) {
  5697. err = update_array_info(mddev, &info);
  5698. if (err) {
  5699. printk(KERN_WARNING "md: couldn't update"
  5700. " array info. %d\n", err);
  5701. goto abort_unlock;
  5702. }
  5703. goto done_unlock;
  5704. }
  5705. if (!list_empty(&mddev->disks)) {
  5706. printk(KERN_WARNING
  5707. "md: array %s already has disks!\n",
  5708. mdname(mddev));
  5709. err = -EBUSY;
  5710. goto abort_unlock;
  5711. }
  5712. if (mddev->raid_disks) {
  5713. printk(KERN_WARNING
  5714. "md: array %s already initialised!\n",
  5715. mdname(mddev));
  5716. err = -EBUSY;
  5717. goto abort_unlock;
  5718. }
  5719. err = set_array_info(mddev, &info);
  5720. if (err) {
  5721. printk(KERN_WARNING "md: couldn't set"
  5722. " array info. %d\n", err);
  5723. goto abort_unlock;
  5724. }
  5725. goto done_unlock;
  5726. }
  5727. /*
  5728. * Commands querying/configuring an existing array:
  5729. */
  5730. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5731. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5732. if ((!mddev->raid_disks && !mddev->external)
  5733. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5734. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5735. && cmd != GET_BITMAP_FILE) {
  5736. err = -ENODEV;
  5737. goto abort_unlock;
  5738. }
  5739. /*
  5740. * Commands even a read-only array can execute:
  5741. */
  5742. switch (cmd) {
  5743. case GET_BITMAP_FILE:
  5744. err = get_bitmap_file(mddev, argp);
  5745. goto done_unlock;
  5746. case RESTART_ARRAY_RW:
  5747. err = restart_array(mddev);
  5748. goto done_unlock;
  5749. case STOP_ARRAY:
  5750. err = do_md_stop(mddev, 0, bdev);
  5751. goto done_unlock;
  5752. case STOP_ARRAY_RO:
  5753. err = md_set_readonly(mddev, bdev);
  5754. goto done_unlock;
  5755. case HOT_REMOVE_DISK:
  5756. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5757. goto done_unlock;
  5758. case ADD_NEW_DISK:
  5759. /* We can support ADD_NEW_DISK on read-only arrays
  5760. * on if we are re-adding a preexisting device.
  5761. * So require mddev->pers and MD_DISK_SYNC.
  5762. */
  5763. if (mddev->pers) {
  5764. mdu_disk_info_t info;
  5765. if (copy_from_user(&info, argp, sizeof(info)))
  5766. err = -EFAULT;
  5767. else if (!(info.state & (1<<MD_DISK_SYNC)))
  5768. /* Need to clear read-only for this */
  5769. break;
  5770. else
  5771. err = add_new_disk(mddev, &info);
  5772. goto done_unlock;
  5773. }
  5774. break;
  5775. case BLKROSET:
  5776. if (get_user(ro, (int __user *)(arg))) {
  5777. err = -EFAULT;
  5778. goto done_unlock;
  5779. }
  5780. err = -EINVAL;
  5781. /* if the bdev is going readonly the value of mddev->ro
  5782. * does not matter, no writes are coming
  5783. */
  5784. if (ro)
  5785. goto done_unlock;
  5786. /* are we are already prepared for writes? */
  5787. if (mddev->ro != 1)
  5788. goto done_unlock;
  5789. /* transitioning to readauto need only happen for
  5790. * arrays that call md_write_start
  5791. */
  5792. if (mddev->pers) {
  5793. err = restart_array(mddev);
  5794. if (err == 0) {
  5795. mddev->ro = 2;
  5796. set_disk_ro(mddev->gendisk, 0);
  5797. }
  5798. }
  5799. goto done_unlock;
  5800. }
  5801. /*
  5802. * The remaining ioctls are changing the state of the
  5803. * superblock, so we do not allow them on read-only arrays.
  5804. * However non-MD ioctls (e.g. get-size) will still come through
  5805. * here and hit the 'default' below, so only disallow
  5806. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5807. */
  5808. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5809. if (mddev->ro == 2) {
  5810. mddev->ro = 0;
  5811. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5812. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5813. /* mddev_unlock will wake thread */
  5814. /* If a device failed while we were read-only, we
  5815. * need to make sure the metadata is updated now.
  5816. */
  5817. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  5818. mddev_unlock(mddev);
  5819. wait_event(mddev->sb_wait,
  5820. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  5821. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5822. mddev_lock(mddev);
  5823. }
  5824. } else {
  5825. err = -EROFS;
  5826. goto abort_unlock;
  5827. }
  5828. }
  5829. switch (cmd) {
  5830. case ADD_NEW_DISK:
  5831. {
  5832. mdu_disk_info_t info;
  5833. if (copy_from_user(&info, argp, sizeof(info)))
  5834. err = -EFAULT;
  5835. else
  5836. err = add_new_disk(mddev, &info);
  5837. goto done_unlock;
  5838. }
  5839. case HOT_ADD_DISK:
  5840. err = hot_add_disk(mddev, new_decode_dev(arg));
  5841. goto done_unlock;
  5842. case RUN_ARRAY:
  5843. err = do_md_run(mddev);
  5844. goto done_unlock;
  5845. case SET_BITMAP_FILE:
  5846. err = set_bitmap_file(mddev, (int)arg);
  5847. goto done_unlock;
  5848. default:
  5849. err = -EINVAL;
  5850. goto abort_unlock;
  5851. }
  5852. done_unlock:
  5853. abort_unlock:
  5854. if (mddev->hold_active == UNTIL_IOCTL &&
  5855. err != -EINVAL)
  5856. mddev->hold_active = 0;
  5857. mddev_unlock(mddev);
  5858. return err;
  5859. done:
  5860. if (err)
  5861. MD_BUG();
  5862. abort:
  5863. return err;
  5864. }
  5865. #ifdef CONFIG_COMPAT
  5866. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5867. unsigned int cmd, unsigned long arg)
  5868. {
  5869. switch (cmd) {
  5870. case HOT_REMOVE_DISK:
  5871. case HOT_ADD_DISK:
  5872. case SET_DISK_FAULTY:
  5873. case SET_BITMAP_FILE:
  5874. /* These take in integer arg, do not convert */
  5875. break;
  5876. default:
  5877. arg = (unsigned long)compat_ptr(arg);
  5878. break;
  5879. }
  5880. return md_ioctl(bdev, mode, cmd, arg);
  5881. }
  5882. #endif /* CONFIG_COMPAT */
  5883. static int md_open(struct block_device *bdev, fmode_t mode)
  5884. {
  5885. /*
  5886. * Succeed if we can lock the mddev, which confirms that
  5887. * it isn't being stopped right now.
  5888. */
  5889. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5890. int err;
  5891. if (!mddev)
  5892. return -ENODEV;
  5893. if (mddev->gendisk != bdev->bd_disk) {
  5894. /* we are racing with mddev_put which is discarding this
  5895. * bd_disk.
  5896. */
  5897. mddev_put(mddev);
  5898. /* Wait until bdev->bd_disk is definitely gone */
  5899. flush_workqueue(md_misc_wq);
  5900. /* Then retry the open from the top */
  5901. return -ERESTARTSYS;
  5902. }
  5903. BUG_ON(mddev != bdev->bd_disk->private_data);
  5904. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5905. goto out;
  5906. err = 0;
  5907. atomic_inc(&mddev->openers);
  5908. mutex_unlock(&mddev->open_mutex);
  5909. check_disk_change(bdev);
  5910. out:
  5911. return err;
  5912. }
  5913. static void md_release(struct gendisk *disk, fmode_t mode)
  5914. {
  5915. struct mddev *mddev = disk->private_data;
  5916. BUG_ON(!mddev);
  5917. atomic_dec(&mddev->openers);
  5918. mddev_put(mddev);
  5919. }
  5920. static int md_media_changed(struct gendisk *disk)
  5921. {
  5922. struct mddev *mddev = disk->private_data;
  5923. return mddev->changed;
  5924. }
  5925. static int md_revalidate(struct gendisk *disk)
  5926. {
  5927. struct mddev *mddev = disk->private_data;
  5928. mddev->changed = 0;
  5929. return 0;
  5930. }
  5931. static const struct block_device_operations md_fops =
  5932. {
  5933. .owner = THIS_MODULE,
  5934. .open = md_open,
  5935. .release = md_release,
  5936. .ioctl = md_ioctl,
  5937. #ifdef CONFIG_COMPAT
  5938. .compat_ioctl = md_compat_ioctl,
  5939. #endif
  5940. .getgeo = md_getgeo,
  5941. .media_changed = md_media_changed,
  5942. .revalidate_disk= md_revalidate,
  5943. };
  5944. static int md_thread(void * arg)
  5945. {
  5946. struct md_thread *thread = arg;
  5947. /*
  5948. * md_thread is a 'system-thread', it's priority should be very
  5949. * high. We avoid resource deadlocks individually in each
  5950. * raid personality. (RAID5 does preallocation) We also use RR and
  5951. * the very same RT priority as kswapd, thus we will never get
  5952. * into a priority inversion deadlock.
  5953. *
  5954. * we definitely have to have equal or higher priority than
  5955. * bdflush, otherwise bdflush will deadlock if there are too
  5956. * many dirty RAID5 blocks.
  5957. */
  5958. allow_signal(SIGKILL);
  5959. while (!kthread_should_stop()) {
  5960. /* We need to wait INTERRUPTIBLE so that
  5961. * we don't add to the load-average.
  5962. * That means we need to be sure no signals are
  5963. * pending
  5964. */
  5965. if (signal_pending(current))
  5966. flush_signals(current);
  5967. wait_event_interruptible_timeout
  5968. (thread->wqueue,
  5969. test_bit(THREAD_WAKEUP, &thread->flags)
  5970. || kthread_should_stop(),
  5971. thread->timeout);
  5972. clear_bit(THREAD_WAKEUP, &thread->flags);
  5973. if (!kthread_should_stop())
  5974. thread->run(thread);
  5975. }
  5976. return 0;
  5977. }
  5978. void md_wakeup_thread(struct md_thread *thread)
  5979. {
  5980. if (thread) {
  5981. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5982. set_bit(THREAD_WAKEUP, &thread->flags);
  5983. wake_up(&thread->wqueue);
  5984. }
  5985. }
  5986. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  5987. struct mddev *mddev, const char *name)
  5988. {
  5989. struct md_thread *thread;
  5990. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5991. if (!thread)
  5992. return NULL;
  5993. init_waitqueue_head(&thread->wqueue);
  5994. thread->run = run;
  5995. thread->mddev = mddev;
  5996. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5997. thread->tsk = kthread_run(md_thread, thread,
  5998. "%s_%s",
  5999. mdname(thread->mddev),
  6000. name);
  6001. if (IS_ERR(thread->tsk)) {
  6002. kfree(thread);
  6003. return NULL;
  6004. }
  6005. return thread;
  6006. }
  6007. void md_unregister_thread(struct md_thread **threadp)
  6008. {
  6009. struct md_thread *thread = *threadp;
  6010. if (!thread)
  6011. return;
  6012. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6013. /* Locking ensures that mddev_unlock does not wake_up a
  6014. * non-existent thread
  6015. */
  6016. spin_lock(&pers_lock);
  6017. *threadp = NULL;
  6018. spin_unlock(&pers_lock);
  6019. kthread_stop(thread->tsk);
  6020. kfree(thread);
  6021. }
  6022. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6023. {
  6024. if (!mddev) {
  6025. MD_BUG();
  6026. return;
  6027. }
  6028. if (!rdev || test_bit(Faulty, &rdev->flags))
  6029. return;
  6030. if (!mddev->pers || !mddev->pers->error_handler)
  6031. return;
  6032. mddev->pers->error_handler(mddev,rdev);
  6033. if (mddev->degraded)
  6034. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6035. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6036. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6037. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6038. md_wakeup_thread(mddev->thread);
  6039. if (mddev->event_work.func)
  6040. queue_work(md_misc_wq, &mddev->event_work);
  6041. md_new_event_inintr(mddev);
  6042. }
  6043. /* seq_file implementation /proc/mdstat */
  6044. static void status_unused(struct seq_file *seq)
  6045. {
  6046. int i = 0;
  6047. struct md_rdev *rdev;
  6048. seq_printf(seq, "unused devices: ");
  6049. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6050. char b[BDEVNAME_SIZE];
  6051. i++;
  6052. seq_printf(seq, "%s ",
  6053. bdevname(rdev->bdev,b));
  6054. }
  6055. if (!i)
  6056. seq_printf(seq, "<none>");
  6057. seq_printf(seq, "\n");
  6058. }
  6059. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6060. {
  6061. sector_t max_sectors, resync, res;
  6062. unsigned long dt, db;
  6063. sector_t rt;
  6064. int scale;
  6065. unsigned int per_milli;
  6066. if (mddev->curr_resync <= 3)
  6067. resync = 0;
  6068. else
  6069. resync = mddev->curr_resync
  6070. - atomic_read(&mddev->recovery_active);
  6071. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6072. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6073. max_sectors = mddev->resync_max_sectors;
  6074. else
  6075. max_sectors = mddev->dev_sectors;
  6076. /*
  6077. * Should not happen.
  6078. */
  6079. if (!max_sectors) {
  6080. MD_BUG();
  6081. return;
  6082. }
  6083. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6084. * in a sector_t, and (max_sectors>>scale) will fit in a
  6085. * u32, as those are the requirements for sector_div.
  6086. * Thus 'scale' must be at least 10
  6087. */
  6088. scale = 10;
  6089. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6090. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6091. scale++;
  6092. }
  6093. res = (resync>>scale)*1000;
  6094. sector_div(res, (u32)((max_sectors>>scale)+1));
  6095. per_milli = res;
  6096. {
  6097. int i, x = per_milli/50, y = 20-x;
  6098. seq_printf(seq, "[");
  6099. for (i = 0; i < x; i++)
  6100. seq_printf(seq, "=");
  6101. seq_printf(seq, ">");
  6102. for (i = 0; i < y; i++)
  6103. seq_printf(seq, ".");
  6104. seq_printf(seq, "] ");
  6105. }
  6106. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6107. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6108. "reshape" :
  6109. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6110. "check" :
  6111. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6112. "resync" : "recovery"))),
  6113. per_milli/10, per_milli % 10,
  6114. (unsigned long long) resync/2,
  6115. (unsigned long long) max_sectors/2);
  6116. /*
  6117. * dt: time from mark until now
  6118. * db: blocks written from mark until now
  6119. * rt: remaining time
  6120. *
  6121. * rt is a sector_t, so could be 32bit or 64bit.
  6122. * So we divide before multiply in case it is 32bit and close
  6123. * to the limit.
  6124. * We scale the divisor (db) by 32 to avoid losing precision
  6125. * near the end of resync when the number of remaining sectors
  6126. * is close to 'db'.
  6127. * We then divide rt by 32 after multiplying by db to compensate.
  6128. * The '+1' avoids division by zero if db is very small.
  6129. */
  6130. dt = ((jiffies - mddev->resync_mark) / HZ);
  6131. if (!dt) dt++;
  6132. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6133. - mddev->resync_mark_cnt;
  6134. rt = max_sectors - resync; /* number of remaining sectors */
  6135. sector_div(rt, db/32+1);
  6136. rt *= dt;
  6137. rt >>= 5;
  6138. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6139. ((unsigned long)rt % 60)/6);
  6140. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6141. }
  6142. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6143. {
  6144. struct list_head *tmp;
  6145. loff_t l = *pos;
  6146. struct mddev *mddev;
  6147. if (l >= 0x10000)
  6148. return NULL;
  6149. if (!l--)
  6150. /* header */
  6151. return (void*)1;
  6152. spin_lock(&all_mddevs_lock);
  6153. list_for_each(tmp,&all_mddevs)
  6154. if (!l--) {
  6155. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6156. mddev_get(mddev);
  6157. spin_unlock(&all_mddevs_lock);
  6158. return mddev;
  6159. }
  6160. spin_unlock(&all_mddevs_lock);
  6161. if (!l--)
  6162. return (void*)2;/* tail */
  6163. return NULL;
  6164. }
  6165. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6166. {
  6167. struct list_head *tmp;
  6168. struct mddev *next_mddev, *mddev = v;
  6169. ++*pos;
  6170. if (v == (void*)2)
  6171. return NULL;
  6172. spin_lock(&all_mddevs_lock);
  6173. if (v == (void*)1)
  6174. tmp = all_mddevs.next;
  6175. else
  6176. tmp = mddev->all_mddevs.next;
  6177. if (tmp != &all_mddevs)
  6178. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6179. else {
  6180. next_mddev = (void*)2;
  6181. *pos = 0x10000;
  6182. }
  6183. spin_unlock(&all_mddevs_lock);
  6184. if (v != (void*)1)
  6185. mddev_put(mddev);
  6186. return next_mddev;
  6187. }
  6188. static void md_seq_stop(struct seq_file *seq, void *v)
  6189. {
  6190. struct mddev *mddev = v;
  6191. if (mddev && v != (void*)1 && v != (void*)2)
  6192. mddev_put(mddev);
  6193. }
  6194. static int md_seq_show(struct seq_file *seq, void *v)
  6195. {
  6196. struct mddev *mddev = v;
  6197. sector_t sectors;
  6198. struct md_rdev *rdev;
  6199. if (v == (void*)1) {
  6200. struct md_personality *pers;
  6201. seq_printf(seq, "Personalities : ");
  6202. spin_lock(&pers_lock);
  6203. list_for_each_entry(pers, &pers_list, list)
  6204. seq_printf(seq, "[%s] ", pers->name);
  6205. spin_unlock(&pers_lock);
  6206. seq_printf(seq, "\n");
  6207. seq->poll_event = atomic_read(&md_event_count);
  6208. return 0;
  6209. }
  6210. if (v == (void*)2) {
  6211. status_unused(seq);
  6212. return 0;
  6213. }
  6214. if (mddev_lock(mddev) < 0)
  6215. return -EINTR;
  6216. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6217. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6218. mddev->pers ? "" : "in");
  6219. if (mddev->pers) {
  6220. if (mddev->ro==1)
  6221. seq_printf(seq, " (read-only)");
  6222. if (mddev->ro==2)
  6223. seq_printf(seq, " (auto-read-only)");
  6224. seq_printf(seq, " %s", mddev->pers->name);
  6225. }
  6226. sectors = 0;
  6227. rdev_for_each(rdev, mddev) {
  6228. char b[BDEVNAME_SIZE];
  6229. seq_printf(seq, " %s[%d]",
  6230. bdevname(rdev->bdev,b), rdev->desc_nr);
  6231. if (test_bit(WriteMostly, &rdev->flags))
  6232. seq_printf(seq, "(W)");
  6233. if (test_bit(Faulty, &rdev->flags)) {
  6234. seq_printf(seq, "(F)");
  6235. continue;
  6236. }
  6237. if (rdev->raid_disk < 0)
  6238. seq_printf(seq, "(S)"); /* spare */
  6239. if (test_bit(Replacement, &rdev->flags))
  6240. seq_printf(seq, "(R)");
  6241. sectors += rdev->sectors;
  6242. }
  6243. if (!list_empty(&mddev->disks)) {
  6244. if (mddev->pers)
  6245. seq_printf(seq, "\n %llu blocks",
  6246. (unsigned long long)
  6247. mddev->array_sectors / 2);
  6248. else
  6249. seq_printf(seq, "\n %llu blocks",
  6250. (unsigned long long)sectors / 2);
  6251. }
  6252. if (mddev->persistent) {
  6253. if (mddev->major_version != 0 ||
  6254. mddev->minor_version != 90) {
  6255. seq_printf(seq," super %d.%d",
  6256. mddev->major_version,
  6257. mddev->minor_version);
  6258. }
  6259. } else if (mddev->external)
  6260. seq_printf(seq, " super external:%s",
  6261. mddev->metadata_type);
  6262. else
  6263. seq_printf(seq, " super non-persistent");
  6264. if (mddev->pers) {
  6265. mddev->pers->status(seq, mddev);
  6266. seq_printf(seq, "\n ");
  6267. if (mddev->pers->sync_request) {
  6268. if (mddev->curr_resync > 2) {
  6269. status_resync(seq, mddev);
  6270. seq_printf(seq, "\n ");
  6271. } else if (mddev->curr_resync >= 1)
  6272. seq_printf(seq, "\tresync=DELAYED\n ");
  6273. else if (mddev->recovery_cp < MaxSector)
  6274. seq_printf(seq, "\tresync=PENDING\n ");
  6275. }
  6276. } else
  6277. seq_printf(seq, "\n ");
  6278. bitmap_status(seq, mddev->bitmap);
  6279. seq_printf(seq, "\n");
  6280. }
  6281. mddev_unlock(mddev);
  6282. return 0;
  6283. }
  6284. static const struct seq_operations md_seq_ops = {
  6285. .start = md_seq_start,
  6286. .next = md_seq_next,
  6287. .stop = md_seq_stop,
  6288. .show = md_seq_show,
  6289. };
  6290. static int md_seq_open(struct inode *inode, struct file *file)
  6291. {
  6292. struct seq_file *seq;
  6293. int error;
  6294. error = seq_open(file, &md_seq_ops);
  6295. if (error)
  6296. return error;
  6297. seq = file->private_data;
  6298. seq->poll_event = atomic_read(&md_event_count);
  6299. return error;
  6300. }
  6301. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6302. {
  6303. struct seq_file *seq = filp->private_data;
  6304. int mask;
  6305. poll_wait(filp, &md_event_waiters, wait);
  6306. /* always allow read */
  6307. mask = POLLIN | POLLRDNORM;
  6308. if (seq->poll_event != atomic_read(&md_event_count))
  6309. mask |= POLLERR | POLLPRI;
  6310. return mask;
  6311. }
  6312. static const struct file_operations md_seq_fops = {
  6313. .owner = THIS_MODULE,
  6314. .open = md_seq_open,
  6315. .read = seq_read,
  6316. .llseek = seq_lseek,
  6317. .release = seq_release_private,
  6318. .poll = mdstat_poll,
  6319. };
  6320. int register_md_personality(struct md_personality *p)
  6321. {
  6322. spin_lock(&pers_lock);
  6323. list_add_tail(&p->list, &pers_list);
  6324. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6325. spin_unlock(&pers_lock);
  6326. return 0;
  6327. }
  6328. int unregister_md_personality(struct md_personality *p)
  6329. {
  6330. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6331. spin_lock(&pers_lock);
  6332. list_del_init(&p->list);
  6333. spin_unlock(&pers_lock);
  6334. return 0;
  6335. }
  6336. static int is_mddev_idle(struct mddev *mddev, int init)
  6337. {
  6338. struct md_rdev * rdev;
  6339. int idle;
  6340. int curr_events;
  6341. idle = 1;
  6342. rcu_read_lock();
  6343. rdev_for_each_rcu(rdev, mddev) {
  6344. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6345. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6346. (int)part_stat_read(&disk->part0, sectors[1]) -
  6347. atomic_read(&disk->sync_io);
  6348. /* sync IO will cause sync_io to increase before the disk_stats
  6349. * as sync_io is counted when a request starts, and
  6350. * disk_stats is counted when it completes.
  6351. * So resync activity will cause curr_events to be smaller than
  6352. * when there was no such activity.
  6353. * non-sync IO will cause disk_stat to increase without
  6354. * increasing sync_io so curr_events will (eventually)
  6355. * be larger than it was before. Once it becomes
  6356. * substantially larger, the test below will cause
  6357. * the array to appear non-idle, and resync will slow
  6358. * down.
  6359. * If there is a lot of outstanding resync activity when
  6360. * we set last_event to curr_events, then all that activity
  6361. * completing might cause the array to appear non-idle
  6362. * and resync will be slowed down even though there might
  6363. * not have been non-resync activity. This will only
  6364. * happen once though. 'last_events' will soon reflect
  6365. * the state where there is little or no outstanding
  6366. * resync requests, and further resync activity will
  6367. * always make curr_events less than last_events.
  6368. *
  6369. */
  6370. if (init || curr_events - rdev->last_events > 64) {
  6371. rdev->last_events = curr_events;
  6372. idle = 0;
  6373. }
  6374. }
  6375. rcu_read_unlock();
  6376. return idle;
  6377. }
  6378. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6379. {
  6380. /* another "blocks" (512byte) blocks have been synced */
  6381. atomic_sub(blocks, &mddev->recovery_active);
  6382. wake_up(&mddev->recovery_wait);
  6383. if (!ok) {
  6384. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6385. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6386. md_wakeup_thread(mddev->thread);
  6387. // stop recovery, signal do_sync ....
  6388. }
  6389. }
  6390. /* md_write_start(mddev, bi)
  6391. * If we need to update some array metadata (e.g. 'active' flag
  6392. * in superblock) before writing, schedule a superblock update
  6393. * and wait for it to complete.
  6394. */
  6395. void md_write_start(struct mddev *mddev, struct bio *bi)
  6396. {
  6397. int did_change = 0;
  6398. if (bio_data_dir(bi) != WRITE)
  6399. return;
  6400. BUG_ON(mddev->ro == 1);
  6401. if (mddev->ro == 2) {
  6402. /* need to switch to read/write */
  6403. mddev->ro = 0;
  6404. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6405. md_wakeup_thread(mddev->thread);
  6406. md_wakeup_thread(mddev->sync_thread);
  6407. did_change = 1;
  6408. }
  6409. atomic_inc(&mddev->writes_pending);
  6410. if (mddev->safemode == 1)
  6411. mddev->safemode = 0;
  6412. if (mddev->in_sync) {
  6413. spin_lock_irq(&mddev->write_lock);
  6414. if (mddev->in_sync) {
  6415. mddev->in_sync = 0;
  6416. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6417. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6418. md_wakeup_thread(mddev->thread);
  6419. did_change = 1;
  6420. }
  6421. spin_unlock_irq(&mddev->write_lock);
  6422. }
  6423. if (did_change)
  6424. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6425. wait_event(mddev->sb_wait,
  6426. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6427. }
  6428. void md_write_end(struct mddev *mddev)
  6429. {
  6430. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6431. if (mddev->safemode == 2)
  6432. md_wakeup_thread(mddev->thread);
  6433. else if (mddev->safemode_delay)
  6434. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6435. }
  6436. }
  6437. /* md_allow_write(mddev)
  6438. * Calling this ensures that the array is marked 'active' so that writes
  6439. * may proceed without blocking. It is important to call this before
  6440. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6441. * Must be called with mddev_lock held.
  6442. *
  6443. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6444. * is dropped, so return -EAGAIN after notifying userspace.
  6445. */
  6446. int md_allow_write(struct mddev *mddev)
  6447. {
  6448. if (!mddev->pers)
  6449. return 0;
  6450. if (mddev->ro)
  6451. return 0;
  6452. if (!mddev->pers->sync_request)
  6453. return 0;
  6454. spin_lock_irq(&mddev->write_lock);
  6455. if (mddev->in_sync) {
  6456. mddev->in_sync = 0;
  6457. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6458. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6459. if (mddev->safemode_delay &&
  6460. mddev->safemode == 0)
  6461. mddev->safemode = 1;
  6462. spin_unlock_irq(&mddev->write_lock);
  6463. md_update_sb(mddev, 0);
  6464. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6465. } else
  6466. spin_unlock_irq(&mddev->write_lock);
  6467. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6468. return -EAGAIN;
  6469. else
  6470. return 0;
  6471. }
  6472. EXPORT_SYMBOL_GPL(md_allow_write);
  6473. #define SYNC_MARKS 10
  6474. #define SYNC_MARK_STEP (3*HZ)
  6475. #define UPDATE_FREQUENCY (5*60*HZ)
  6476. void md_do_sync(struct md_thread *thread)
  6477. {
  6478. struct mddev *mddev = thread->mddev;
  6479. struct mddev *mddev2;
  6480. unsigned int currspeed = 0,
  6481. window;
  6482. sector_t max_sectors,j, io_sectors;
  6483. unsigned long mark[SYNC_MARKS];
  6484. unsigned long update_time;
  6485. sector_t mark_cnt[SYNC_MARKS];
  6486. int last_mark,m;
  6487. struct list_head *tmp;
  6488. sector_t last_check;
  6489. int skipped = 0;
  6490. struct md_rdev *rdev;
  6491. char *desc;
  6492. struct blk_plug plug;
  6493. /* just incase thread restarts... */
  6494. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6495. return;
  6496. if (mddev->ro) /* never try to sync a read-only array */
  6497. return;
  6498. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6499. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6500. desc = "data-check";
  6501. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6502. desc = "requested-resync";
  6503. else
  6504. desc = "resync";
  6505. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6506. desc = "reshape";
  6507. else
  6508. desc = "recovery";
  6509. /* we overload curr_resync somewhat here.
  6510. * 0 == not engaged in resync at all
  6511. * 2 == checking that there is no conflict with another sync
  6512. * 1 == like 2, but have yielded to allow conflicting resync to
  6513. * commense
  6514. * other == active in resync - this many blocks
  6515. *
  6516. * Before starting a resync we must have set curr_resync to
  6517. * 2, and then checked that every "conflicting" array has curr_resync
  6518. * less than ours. When we find one that is the same or higher
  6519. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6520. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6521. * This will mean we have to start checking from the beginning again.
  6522. *
  6523. */
  6524. do {
  6525. mddev->curr_resync = 2;
  6526. try_again:
  6527. if (kthread_should_stop())
  6528. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6529. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6530. goto skip;
  6531. for_each_mddev(mddev2, tmp) {
  6532. if (mddev2 == mddev)
  6533. continue;
  6534. if (!mddev->parallel_resync
  6535. && mddev2->curr_resync
  6536. && match_mddev_units(mddev, mddev2)) {
  6537. DEFINE_WAIT(wq);
  6538. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6539. /* arbitrarily yield */
  6540. mddev->curr_resync = 1;
  6541. wake_up(&resync_wait);
  6542. }
  6543. if (mddev > mddev2 && mddev->curr_resync == 1)
  6544. /* no need to wait here, we can wait the next
  6545. * time 'round when curr_resync == 2
  6546. */
  6547. continue;
  6548. /* We need to wait 'interruptible' so as not to
  6549. * contribute to the load average, and not to
  6550. * be caught by 'softlockup'
  6551. */
  6552. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6553. if (!kthread_should_stop() &&
  6554. mddev2->curr_resync >= mddev->curr_resync) {
  6555. printk(KERN_INFO "md: delaying %s of %s"
  6556. " until %s has finished (they"
  6557. " share one or more physical units)\n",
  6558. desc, mdname(mddev), mdname(mddev2));
  6559. mddev_put(mddev2);
  6560. if (signal_pending(current))
  6561. flush_signals(current);
  6562. schedule();
  6563. finish_wait(&resync_wait, &wq);
  6564. goto try_again;
  6565. }
  6566. finish_wait(&resync_wait, &wq);
  6567. }
  6568. }
  6569. } while (mddev->curr_resync < 2);
  6570. j = 0;
  6571. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6572. /* resync follows the size requested by the personality,
  6573. * which defaults to physical size, but can be virtual size
  6574. */
  6575. max_sectors = mddev->resync_max_sectors;
  6576. atomic64_set(&mddev->resync_mismatches, 0);
  6577. /* we don't use the checkpoint if there's a bitmap */
  6578. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6579. j = mddev->resync_min;
  6580. else if (!mddev->bitmap)
  6581. j = mddev->recovery_cp;
  6582. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6583. max_sectors = mddev->resync_max_sectors;
  6584. else {
  6585. /* recovery follows the physical size of devices */
  6586. max_sectors = mddev->dev_sectors;
  6587. j = MaxSector;
  6588. rcu_read_lock();
  6589. rdev_for_each_rcu(rdev, mddev)
  6590. if (rdev->raid_disk >= 0 &&
  6591. !test_bit(Faulty, &rdev->flags) &&
  6592. !test_bit(In_sync, &rdev->flags) &&
  6593. rdev->recovery_offset < j)
  6594. j = rdev->recovery_offset;
  6595. rcu_read_unlock();
  6596. }
  6597. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6598. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6599. " %d KB/sec/disk.\n", speed_min(mddev));
  6600. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6601. "(but not more than %d KB/sec) for %s.\n",
  6602. speed_max(mddev), desc);
  6603. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6604. io_sectors = 0;
  6605. for (m = 0; m < SYNC_MARKS; m++) {
  6606. mark[m] = jiffies;
  6607. mark_cnt[m] = io_sectors;
  6608. }
  6609. last_mark = 0;
  6610. mddev->resync_mark = mark[last_mark];
  6611. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6612. /*
  6613. * Tune reconstruction:
  6614. */
  6615. window = 32*(PAGE_SIZE/512);
  6616. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6617. window/2, (unsigned long long)max_sectors/2);
  6618. atomic_set(&mddev->recovery_active, 0);
  6619. last_check = 0;
  6620. if (j>2) {
  6621. printk(KERN_INFO
  6622. "md: resuming %s of %s from checkpoint.\n",
  6623. desc, mdname(mddev));
  6624. mddev->curr_resync = j;
  6625. } else
  6626. mddev->curr_resync = 3; /* no longer delayed */
  6627. mddev->curr_resync_completed = j;
  6628. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6629. md_new_event(mddev);
  6630. update_time = jiffies;
  6631. blk_start_plug(&plug);
  6632. while (j < max_sectors) {
  6633. sector_t sectors;
  6634. skipped = 0;
  6635. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6636. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6637. (mddev->curr_resync - mddev->curr_resync_completed)
  6638. > (max_sectors >> 4)) ||
  6639. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6640. (j - mddev->curr_resync_completed)*2
  6641. >= mddev->resync_max - mddev->curr_resync_completed
  6642. )) {
  6643. /* time to update curr_resync_completed */
  6644. wait_event(mddev->recovery_wait,
  6645. atomic_read(&mddev->recovery_active) == 0);
  6646. mddev->curr_resync_completed = j;
  6647. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6648. j > mddev->recovery_cp)
  6649. mddev->recovery_cp = j;
  6650. update_time = jiffies;
  6651. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6652. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6653. }
  6654. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6655. /* As this condition is controlled by user-space,
  6656. * we can block indefinitely, so use '_interruptible'
  6657. * to avoid triggering warnings.
  6658. */
  6659. flush_signals(current); /* just in case */
  6660. wait_event_interruptible(mddev->recovery_wait,
  6661. mddev->resync_max > j
  6662. || kthread_should_stop());
  6663. }
  6664. if (kthread_should_stop())
  6665. goto interrupted;
  6666. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6667. currspeed < speed_min(mddev));
  6668. if (sectors == 0) {
  6669. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6670. goto out;
  6671. }
  6672. if (!skipped) { /* actual IO requested */
  6673. io_sectors += sectors;
  6674. atomic_add(sectors, &mddev->recovery_active);
  6675. }
  6676. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6677. break;
  6678. j += sectors;
  6679. if (j > 2)
  6680. mddev->curr_resync = j;
  6681. mddev->curr_mark_cnt = io_sectors;
  6682. if (last_check == 0)
  6683. /* this is the earliest that rebuild will be
  6684. * visible in /proc/mdstat
  6685. */
  6686. md_new_event(mddev);
  6687. if (last_check + window > io_sectors || j == max_sectors)
  6688. continue;
  6689. last_check = io_sectors;
  6690. repeat:
  6691. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6692. /* step marks */
  6693. int next = (last_mark+1) % SYNC_MARKS;
  6694. mddev->resync_mark = mark[next];
  6695. mddev->resync_mark_cnt = mark_cnt[next];
  6696. mark[next] = jiffies;
  6697. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6698. last_mark = next;
  6699. }
  6700. if (kthread_should_stop())
  6701. goto interrupted;
  6702. /*
  6703. * this loop exits only if either when we are slower than
  6704. * the 'hard' speed limit, or the system was IO-idle for
  6705. * a jiffy.
  6706. * the system might be non-idle CPU-wise, but we only care
  6707. * about not overloading the IO subsystem. (things like an
  6708. * e2fsck being done on the RAID array should execute fast)
  6709. */
  6710. cond_resched();
  6711. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6712. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6713. if (currspeed > speed_min(mddev)) {
  6714. if ((currspeed > speed_max(mddev)) ||
  6715. !is_mddev_idle(mddev, 0)) {
  6716. msleep(500);
  6717. goto repeat;
  6718. }
  6719. }
  6720. }
  6721. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6722. /*
  6723. * this also signals 'finished resyncing' to md_stop
  6724. */
  6725. out:
  6726. blk_finish_plug(&plug);
  6727. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6728. /* tell personality that we are finished */
  6729. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6730. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6731. mddev->curr_resync > 2) {
  6732. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6733. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6734. if (mddev->curr_resync >= mddev->recovery_cp) {
  6735. printk(KERN_INFO
  6736. "md: checkpointing %s of %s.\n",
  6737. desc, mdname(mddev));
  6738. if (test_bit(MD_RECOVERY_ERROR,
  6739. &mddev->recovery))
  6740. mddev->recovery_cp =
  6741. mddev->curr_resync_completed;
  6742. else
  6743. mddev->recovery_cp =
  6744. mddev->curr_resync;
  6745. }
  6746. } else
  6747. mddev->recovery_cp = MaxSector;
  6748. } else {
  6749. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6750. mddev->curr_resync = MaxSector;
  6751. rcu_read_lock();
  6752. rdev_for_each_rcu(rdev, mddev)
  6753. if (rdev->raid_disk >= 0 &&
  6754. mddev->delta_disks >= 0 &&
  6755. !test_bit(Faulty, &rdev->flags) &&
  6756. !test_bit(In_sync, &rdev->flags) &&
  6757. rdev->recovery_offset < mddev->curr_resync)
  6758. rdev->recovery_offset = mddev->curr_resync;
  6759. rcu_read_unlock();
  6760. }
  6761. }
  6762. skip:
  6763. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6764. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6765. /* We completed so min/max setting can be forgotten if used. */
  6766. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6767. mddev->resync_min = 0;
  6768. mddev->resync_max = MaxSector;
  6769. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6770. mddev->resync_min = mddev->curr_resync_completed;
  6771. mddev->curr_resync = 0;
  6772. wake_up(&resync_wait);
  6773. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6774. md_wakeup_thread(mddev->thread);
  6775. return;
  6776. interrupted:
  6777. /*
  6778. * got a signal, exit.
  6779. */
  6780. printk(KERN_INFO
  6781. "md: md_do_sync() got signal ... exiting\n");
  6782. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6783. goto out;
  6784. }
  6785. EXPORT_SYMBOL_GPL(md_do_sync);
  6786. static int remove_and_add_spares(struct mddev *mddev,
  6787. struct md_rdev *this)
  6788. {
  6789. struct md_rdev *rdev;
  6790. int spares = 0;
  6791. int removed = 0;
  6792. rdev_for_each(rdev, mddev)
  6793. if ((this == NULL || rdev == this) &&
  6794. rdev->raid_disk >= 0 &&
  6795. !test_bit(Blocked, &rdev->flags) &&
  6796. (test_bit(Faulty, &rdev->flags) ||
  6797. ! test_bit(In_sync, &rdev->flags)) &&
  6798. atomic_read(&rdev->nr_pending)==0) {
  6799. if (mddev->pers->hot_remove_disk(
  6800. mddev, rdev) == 0) {
  6801. sysfs_unlink_rdev(mddev, rdev);
  6802. rdev->raid_disk = -1;
  6803. removed++;
  6804. }
  6805. }
  6806. if (removed && mddev->kobj.sd)
  6807. sysfs_notify(&mddev->kobj, NULL, "degraded");
  6808. if (this)
  6809. goto no_add;
  6810. rdev_for_each(rdev, mddev) {
  6811. if (rdev->raid_disk >= 0 &&
  6812. !test_bit(In_sync, &rdev->flags) &&
  6813. !test_bit(Faulty, &rdev->flags))
  6814. spares++;
  6815. if (rdev->raid_disk >= 0)
  6816. continue;
  6817. if (test_bit(Faulty, &rdev->flags))
  6818. continue;
  6819. if (mddev->ro &&
  6820. rdev->saved_raid_disk < 0)
  6821. continue;
  6822. rdev->recovery_offset = 0;
  6823. if (rdev->saved_raid_disk >= 0 && mddev->in_sync) {
  6824. spin_lock_irq(&mddev->write_lock);
  6825. if (mddev->in_sync)
  6826. /* OK, this device, which is in_sync,
  6827. * will definitely be noticed before
  6828. * the next write, so recovery isn't
  6829. * needed.
  6830. */
  6831. rdev->recovery_offset = mddev->recovery_cp;
  6832. spin_unlock_irq(&mddev->write_lock);
  6833. }
  6834. if (mddev->ro && rdev->recovery_offset != MaxSector)
  6835. /* not safe to add this disk now */
  6836. continue;
  6837. if (mddev->pers->
  6838. hot_add_disk(mddev, rdev) == 0) {
  6839. if (sysfs_link_rdev(mddev, rdev))
  6840. /* failure here is OK */;
  6841. spares++;
  6842. md_new_event(mddev);
  6843. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6844. }
  6845. }
  6846. no_add:
  6847. if (removed)
  6848. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6849. return spares;
  6850. }
  6851. /*
  6852. * This routine is regularly called by all per-raid-array threads to
  6853. * deal with generic issues like resync and super-block update.
  6854. * Raid personalities that don't have a thread (linear/raid0) do not
  6855. * need this as they never do any recovery or update the superblock.
  6856. *
  6857. * It does not do any resync itself, but rather "forks" off other threads
  6858. * to do that as needed.
  6859. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6860. * "->recovery" and create a thread at ->sync_thread.
  6861. * When the thread finishes it sets MD_RECOVERY_DONE
  6862. * and wakeups up this thread which will reap the thread and finish up.
  6863. * This thread also removes any faulty devices (with nr_pending == 0).
  6864. *
  6865. * The overall approach is:
  6866. * 1/ if the superblock needs updating, update it.
  6867. * 2/ If a recovery thread is running, don't do anything else.
  6868. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6869. * 4/ If there are any faulty devices, remove them.
  6870. * 5/ If array is degraded, try to add spares devices
  6871. * 6/ If array has spares or is not in-sync, start a resync thread.
  6872. */
  6873. void md_check_recovery(struct mddev *mddev)
  6874. {
  6875. if (mddev->suspended)
  6876. return;
  6877. if (mddev->bitmap)
  6878. bitmap_daemon_work(mddev);
  6879. if (signal_pending(current)) {
  6880. if (mddev->pers->sync_request && !mddev->external) {
  6881. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6882. mdname(mddev));
  6883. mddev->safemode = 2;
  6884. }
  6885. flush_signals(current);
  6886. }
  6887. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6888. return;
  6889. if ( ! (
  6890. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6891. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6892. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6893. (mddev->external == 0 && mddev->safemode == 1) ||
  6894. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6895. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6896. ))
  6897. return;
  6898. if (mddev_trylock(mddev)) {
  6899. int spares = 0;
  6900. if (mddev->ro) {
  6901. /* On a read-only array we can:
  6902. * - remove failed devices
  6903. * - add already-in_sync devices if the array itself
  6904. * is in-sync.
  6905. * As we only add devices that are already in-sync,
  6906. * we can activate the spares immediately.
  6907. */
  6908. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6909. remove_and_add_spares(mddev, NULL);
  6910. mddev->pers->spare_active(mddev);
  6911. goto unlock;
  6912. }
  6913. if (!mddev->external) {
  6914. int did_change = 0;
  6915. spin_lock_irq(&mddev->write_lock);
  6916. if (mddev->safemode &&
  6917. !atomic_read(&mddev->writes_pending) &&
  6918. !mddev->in_sync &&
  6919. mddev->recovery_cp == MaxSector) {
  6920. mddev->in_sync = 1;
  6921. did_change = 1;
  6922. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6923. }
  6924. if (mddev->safemode == 1)
  6925. mddev->safemode = 0;
  6926. spin_unlock_irq(&mddev->write_lock);
  6927. if (did_change)
  6928. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6929. }
  6930. if (mddev->flags)
  6931. md_update_sb(mddev, 0);
  6932. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6933. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6934. /* resync/recovery still happening */
  6935. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6936. goto unlock;
  6937. }
  6938. if (mddev->sync_thread) {
  6939. md_reap_sync_thread(mddev);
  6940. goto unlock;
  6941. }
  6942. /* Set RUNNING before clearing NEEDED to avoid
  6943. * any transients in the value of "sync_action".
  6944. */
  6945. mddev->curr_resync_completed = 0;
  6946. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6947. /* Clear some bits that don't mean anything, but
  6948. * might be left set
  6949. */
  6950. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6951. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6952. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6953. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6954. goto unlock;
  6955. /* no recovery is running.
  6956. * remove any failed drives, then
  6957. * add spares if possible.
  6958. * Spares are also removed and re-added, to allow
  6959. * the personality to fail the re-add.
  6960. */
  6961. if (mddev->reshape_position != MaxSector) {
  6962. if (mddev->pers->check_reshape == NULL ||
  6963. mddev->pers->check_reshape(mddev) != 0)
  6964. /* Cannot proceed */
  6965. goto unlock;
  6966. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6967. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6968. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  6969. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6970. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6971. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6972. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6973. } else if (mddev->recovery_cp < MaxSector) {
  6974. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6975. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6976. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6977. /* nothing to be done ... */
  6978. goto unlock;
  6979. if (mddev->pers->sync_request) {
  6980. if (spares) {
  6981. /* We are adding a device or devices to an array
  6982. * which has the bitmap stored on all devices.
  6983. * So make sure all bitmap pages get written
  6984. */
  6985. bitmap_write_all(mddev->bitmap);
  6986. }
  6987. mddev->sync_thread = md_register_thread(md_do_sync,
  6988. mddev,
  6989. "resync");
  6990. if (!mddev->sync_thread) {
  6991. printk(KERN_ERR "%s: could not start resync"
  6992. " thread...\n",
  6993. mdname(mddev));
  6994. /* leave the spares where they are, it shouldn't hurt */
  6995. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6996. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6997. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6998. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6999. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7000. } else
  7001. md_wakeup_thread(mddev->sync_thread);
  7002. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7003. md_new_event(mddev);
  7004. }
  7005. unlock:
  7006. if (!mddev->sync_thread) {
  7007. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7008. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7009. &mddev->recovery))
  7010. if (mddev->sysfs_action)
  7011. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7012. }
  7013. mddev_unlock(mddev);
  7014. }
  7015. }
  7016. void md_reap_sync_thread(struct mddev *mddev)
  7017. {
  7018. struct md_rdev *rdev;
  7019. /* resync has finished, collect result */
  7020. md_unregister_thread(&mddev->sync_thread);
  7021. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7022. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7023. /* success...*/
  7024. /* activate any spares */
  7025. if (mddev->pers->spare_active(mddev)) {
  7026. sysfs_notify(&mddev->kobj, NULL,
  7027. "degraded");
  7028. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7029. }
  7030. }
  7031. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7032. mddev->pers->finish_reshape)
  7033. mddev->pers->finish_reshape(mddev);
  7034. /* If array is no-longer degraded, then any saved_raid_disk
  7035. * information must be scrapped. Also if any device is now
  7036. * In_sync we must scrape the saved_raid_disk for that device
  7037. * do the superblock for an incrementally recovered device
  7038. * written out.
  7039. */
  7040. rdev_for_each(rdev, mddev)
  7041. if (!mddev->degraded ||
  7042. test_bit(In_sync, &rdev->flags))
  7043. rdev->saved_raid_disk = -1;
  7044. md_update_sb(mddev, 1);
  7045. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7046. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7047. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7048. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7049. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7050. /* flag recovery needed just to double check */
  7051. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7052. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7053. md_new_event(mddev);
  7054. if (mddev->event_work.func)
  7055. queue_work(md_misc_wq, &mddev->event_work);
  7056. }
  7057. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7058. {
  7059. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7060. wait_event_timeout(rdev->blocked_wait,
  7061. !test_bit(Blocked, &rdev->flags) &&
  7062. !test_bit(BlockedBadBlocks, &rdev->flags),
  7063. msecs_to_jiffies(5000));
  7064. rdev_dec_pending(rdev, mddev);
  7065. }
  7066. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7067. void md_finish_reshape(struct mddev *mddev)
  7068. {
  7069. /* called be personality module when reshape completes. */
  7070. struct md_rdev *rdev;
  7071. rdev_for_each(rdev, mddev) {
  7072. if (rdev->data_offset > rdev->new_data_offset)
  7073. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7074. else
  7075. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7076. rdev->data_offset = rdev->new_data_offset;
  7077. }
  7078. }
  7079. EXPORT_SYMBOL(md_finish_reshape);
  7080. /* Bad block management.
  7081. * We can record which blocks on each device are 'bad' and so just
  7082. * fail those blocks, or that stripe, rather than the whole device.
  7083. * Entries in the bad-block table are 64bits wide. This comprises:
  7084. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7085. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7086. * A 'shift' can be set so that larger blocks are tracked and
  7087. * consequently larger devices can be covered.
  7088. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7089. *
  7090. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7091. * might need to retry if it is very unlucky.
  7092. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7093. * so we use the write_seqlock_irq variant.
  7094. *
  7095. * When looking for a bad block we specify a range and want to
  7096. * know if any block in the range is bad. So we binary-search
  7097. * to the last range that starts at-or-before the given endpoint,
  7098. * (or "before the sector after the target range")
  7099. * then see if it ends after the given start.
  7100. * We return
  7101. * 0 if there are no known bad blocks in the range
  7102. * 1 if there are known bad block which are all acknowledged
  7103. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7104. * plus the start/length of the first bad section we overlap.
  7105. */
  7106. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7107. sector_t *first_bad, int *bad_sectors)
  7108. {
  7109. int hi;
  7110. int lo;
  7111. u64 *p = bb->page;
  7112. int rv;
  7113. sector_t target = s + sectors;
  7114. unsigned seq;
  7115. if (bb->shift > 0) {
  7116. /* round the start down, and the end up */
  7117. s >>= bb->shift;
  7118. target += (1<<bb->shift) - 1;
  7119. target >>= bb->shift;
  7120. sectors = target - s;
  7121. }
  7122. /* 'target' is now the first block after the bad range */
  7123. retry:
  7124. seq = read_seqbegin(&bb->lock);
  7125. lo = 0;
  7126. rv = 0;
  7127. hi = bb->count;
  7128. /* Binary search between lo and hi for 'target'
  7129. * i.e. for the last range that starts before 'target'
  7130. */
  7131. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7132. * are known not to be the last range before target.
  7133. * VARIANT: hi-lo is the number of possible
  7134. * ranges, and decreases until it reaches 1
  7135. */
  7136. while (hi - lo > 1) {
  7137. int mid = (lo + hi) / 2;
  7138. sector_t a = BB_OFFSET(p[mid]);
  7139. if (a < target)
  7140. /* This could still be the one, earlier ranges
  7141. * could not. */
  7142. lo = mid;
  7143. else
  7144. /* This and later ranges are definitely out. */
  7145. hi = mid;
  7146. }
  7147. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7148. if (hi > lo) {
  7149. /* need to check all range that end after 's' to see if
  7150. * any are unacknowledged.
  7151. */
  7152. while (lo >= 0 &&
  7153. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7154. if (BB_OFFSET(p[lo]) < target) {
  7155. /* starts before the end, and finishes after
  7156. * the start, so they must overlap
  7157. */
  7158. if (rv != -1 && BB_ACK(p[lo]))
  7159. rv = 1;
  7160. else
  7161. rv = -1;
  7162. *first_bad = BB_OFFSET(p[lo]);
  7163. *bad_sectors = BB_LEN(p[lo]);
  7164. }
  7165. lo--;
  7166. }
  7167. }
  7168. if (read_seqretry(&bb->lock, seq))
  7169. goto retry;
  7170. return rv;
  7171. }
  7172. EXPORT_SYMBOL_GPL(md_is_badblock);
  7173. /*
  7174. * Add a range of bad blocks to the table.
  7175. * This might extend the table, or might contract it
  7176. * if two adjacent ranges can be merged.
  7177. * We binary-search to find the 'insertion' point, then
  7178. * decide how best to handle it.
  7179. */
  7180. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7181. int acknowledged)
  7182. {
  7183. u64 *p;
  7184. int lo, hi;
  7185. int rv = 1;
  7186. if (bb->shift < 0)
  7187. /* badblocks are disabled */
  7188. return 0;
  7189. if (bb->shift) {
  7190. /* round the start down, and the end up */
  7191. sector_t next = s + sectors;
  7192. s >>= bb->shift;
  7193. next += (1<<bb->shift) - 1;
  7194. next >>= bb->shift;
  7195. sectors = next - s;
  7196. }
  7197. write_seqlock_irq(&bb->lock);
  7198. p = bb->page;
  7199. lo = 0;
  7200. hi = bb->count;
  7201. /* Find the last range that starts at-or-before 's' */
  7202. while (hi - lo > 1) {
  7203. int mid = (lo + hi) / 2;
  7204. sector_t a = BB_OFFSET(p[mid]);
  7205. if (a <= s)
  7206. lo = mid;
  7207. else
  7208. hi = mid;
  7209. }
  7210. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7211. hi = lo;
  7212. if (hi > lo) {
  7213. /* we found a range that might merge with the start
  7214. * of our new range
  7215. */
  7216. sector_t a = BB_OFFSET(p[lo]);
  7217. sector_t e = a + BB_LEN(p[lo]);
  7218. int ack = BB_ACK(p[lo]);
  7219. if (e >= s) {
  7220. /* Yes, we can merge with a previous range */
  7221. if (s == a && s + sectors >= e)
  7222. /* new range covers old */
  7223. ack = acknowledged;
  7224. else
  7225. ack = ack && acknowledged;
  7226. if (e < s + sectors)
  7227. e = s + sectors;
  7228. if (e - a <= BB_MAX_LEN) {
  7229. p[lo] = BB_MAKE(a, e-a, ack);
  7230. s = e;
  7231. } else {
  7232. /* does not all fit in one range,
  7233. * make p[lo] maximal
  7234. */
  7235. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7236. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7237. s = a + BB_MAX_LEN;
  7238. }
  7239. sectors = e - s;
  7240. }
  7241. }
  7242. if (sectors && hi < bb->count) {
  7243. /* 'hi' points to the first range that starts after 's'.
  7244. * Maybe we can merge with the start of that range */
  7245. sector_t a = BB_OFFSET(p[hi]);
  7246. sector_t e = a + BB_LEN(p[hi]);
  7247. int ack = BB_ACK(p[hi]);
  7248. if (a <= s + sectors) {
  7249. /* merging is possible */
  7250. if (e <= s + sectors) {
  7251. /* full overlap */
  7252. e = s + sectors;
  7253. ack = acknowledged;
  7254. } else
  7255. ack = ack && acknowledged;
  7256. a = s;
  7257. if (e - a <= BB_MAX_LEN) {
  7258. p[hi] = BB_MAKE(a, e-a, ack);
  7259. s = e;
  7260. } else {
  7261. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7262. s = a + BB_MAX_LEN;
  7263. }
  7264. sectors = e - s;
  7265. lo = hi;
  7266. hi++;
  7267. }
  7268. }
  7269. if (sectors == 0 && hi < bb->count) {
  7270. /* we might be able to combine lo and hi */
  7271. /* Note: 's' is at the end of 'lo' */
  7272. sector_t a = BB_OFFSET(p[hi]);
  7273. int lolen = BB_LEN(p[lo]);
  7274. int hilen = BB_LEN(p[hi]);
  7275. int newlen = lolen + hilen - (s - a);
  7276. if (s >= a && newlen < BB_MAX_LEN) {
  7277. /* yes, we can combine them */
  7278. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7279. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7280. memmove(p + hi, p + hi + 1,
  7281. (bb->count - hi - 1) * 8);
  7282. bb->count--;
  7283. }
  7284. }
  7285. while (sectors) {
  7286. /* didn't merge (it all).
  7287. * Need to add a range just before 'hi' */
  7288. if (bb->count >= MD_MAX_BADBLOCKS) {
  7289. /* No room for more */
  7290. rv = 0;
  7291. break;
  7292. } else {
  7293. int this_sectors = sectors;
  7294. memmove(p + hi + 1, p + hi,
  7295. (bb->count - hi) * 8);
  7296. bb->count++;
  7297. if (this_sectors > BB_MAX_LEN)
  7298. this_sectors = BB_MAX_LEN;
  7299. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7300. sectors -= this_sectors;
  7301. s += this_sectors;
  7302. }
  7303. }
  7304. bb->changed = 1;
  7305. if (!acknowledged)
  7306. bb->unacked_exist = 1;
  7307. write_sequnlock_irq(&bb->lock);
  7308. return rv;
  7309. }
  7310. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7311. int is_new)
  7312. {
  7313. int rv;
  7314. if (is_new)
  7315. s += rdev->new_data_offset;
  7316. else
  7317. s += rdev->data_offset;
  7318. rv = md_set_badblocks(&rdev->badblocks,
  7319. s, sectors, 0);
  7320. if (rv) {
  7321. /* Make sure they get written out promptly */
  7322. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7323. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7324. md_wakeup_thread(rdev->mddev->thread);
  7325. }
  7326. return rv;
  7327. }
  7328. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7329. /*
  7330. * Remove a range of bad blocks from the table.
  7331. * This may involve extending the table if we spilt a region,
  7332. * but it must not fail. So if the table becomes full, we just
  7333. * drop the remove request.
  7334. */
  7335. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7336. {
  7337. u64 *p;
  7338. int lo, hi;
  7339. sector_t target = s + sectors;
  7340. int rv = 0;
  7341. if (bb->shift > 0) {
  7342. /* When clearing we round the start up and the end down.
  7343. * This should not matter as the shift should align with
  7344. * the block size and no rounding should ever be needed.
  7345. * However it is better the think a block is bad when it
  7346. * isn't than to think a block is not bad when it is.
  7347. */
  7348. s += (1<<bb->shift) - 1;
  7349. s >>= bb->shift;
  7350. target >>= bb->shift;
  7351. sectors = target - s;
  7352. }
  7353. write_seqlock_irq(&bb->lock);
  7354. p = bb->page;
  7355. lo = 0;
  7356. hi = bb->count;
  7357. /* Find the last range that starts before 'target' */
  7358. while (hi - lo > 1) {
  7359. int mid = (lo + hi) / 2;
  7360. sector_t a = BB_OFFSET(p[mid]);
  7361. if (a < target)
  7362. lo = mid;
  7363. else
  7364. hi = mid;
  7365. }
  7366. if (hi > lo) {
  7367. /* p[lo] is the last range that could overlap the
  7368. * current range. Earlier ranges could also overlap,
  7369. * but only this one can overlap the end of the range.
  7370. */
  7371. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7372. /* Partial overlap, leave the tail of this range */
  7373. int ack = BB_ACK(p[lo]);
  7374. sector_t a = BB_OFFSET(p[lo]);
  7375. sector_t end = a + BB_LEN(p[lo]);
  7376. if (a < s) {
  7377. /* we need to split this range */
  7378. if (bb->count >= MD_MAX_BADBLOCKS) {
  7379. rv = 0;
  7380. goto out;
  7381. }
  7382. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7383. bb->count++;
  7384. p[lo] = BB_MAKE(a, s-a, ack);
  7385. lo++;
  7386. }
  7387. p[lo] = BB_MAKE(target, end - target, ack);
  7388. /* there is no longer an overlap */
  7389. hi = lo;
  7390. lo--;
  7391. }
  7392. while (lo >= 0 &&
  7393. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7394. /* This range does overlap */
  7395. if (BB_OFFSET(p[lo]) < s) {
  7396. /* Keep the early parts of this range. */
  7397. int ack = BB_ACK(p[lo]);
  7398. sector_t start = BB_OFFSET(p[lo]);
  7399. p[lo] = BB_MAKE(start, s - start, ack);
  7400. /* now low doesn't overlap, so.. */
  7401. break;
  7402. }
  7403. lo--;
  7404. }
  7405. /* 'lo' is strictly before, 'hi' is strictly after,
  7406. * anything between needs to be discarded
  7407. */
  7408. if (hi - lo > 1) {
  7409. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7410. bb->count -= (hi - lo - 1);
  7411. }
  7412. }
  7413. bb->changed = 1;
  7414. out:
  7415. write_sequnlock_irq(&bb->lock);
  7416. return rv;
  7417. }
  7418. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7419. int is_new)
  7420. {
  7421. if (is_new)
  7422. s += rdev->new_data_offset;
  7423. else
  7424. s += rdev->data_offset;
  7425. return md_clear_badblocks(&rdev->badblocks,
  7426. s, sectors);
  7427. }
  7428. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7429. /*
  7430. * Acknowledge all bad blocks in a list.
  7431. * This only succeeds if ->changed is clear. It is used by
  7432. * in-kernel metadata updates
  7433. */
  7434. void md_ack_all_badblocks(struct badblocks *bb)
  7435. {
  7436. if (bb->page == NULL || bb->changed)
  7437. /* no point even trying */
  7438. return;
  7439. write_seqlock_irq(&bb->lock);
  7440. if (bb->changed == 0 && bb->unacked_exist) {
  7441. u64 *p = bb->page;
  7442. int i;
  7443. for (i = 0; i < bb->count ; i++) {
  7444. if (!BB_ACK(p[i])) {
  7445. sector_t start = BB_OFFSET(p[i]);
  7446. int len = BB_LEN(p[i]);
  7447. p[i] = BB_MAKE(start, len, 1);
  7448. }
  7449. }
  7450. bb->unacked_exist = 0;
  7451. }
  7452. write_sequnlock_irq(&bb->lock);
  7453. }
  7454. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7455. /* sysfs access to bad-blocks list.
  7456. * We present two files.
  7457. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7458. * are recorded as bad. The list is truncated to fit within
  7459. * the one-page limit of sysfs.
  7460. * Writing "sector length" to this file adds an acknowledged
  7461. * bad block list.
  7462. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7463. * been acknowledged. Writing to this file adds bad blocks
  7464. * without acknowledging them. This is largely for testing.
  7465. */
  7466. static ssize_t
  7467. badblocks_show(struct badblocks *bb, char *page, int unack)
  7468. {
  7469. size_t len;
  7470. int i;
  7471. u64 *p = bb->page;
  7472. unsigned seq;
  7473. if (bb->shift < 0)
  7474. return 0;
  7475. retry:
  7476. seq = read_seqbegin(&bb->lock);
  7477. len = 0;
  7478. i = 0;
  7479. while (len < PAGE_SIZE && i < bb->count) {
  7480. sector_t s = BB_OFFSET(p[i]);
  7481. unsigned int length = BB_LEN(p[i]);
  7482. int ack = BB_ACK(p[i]);
  7483. i++;
  7484. if (unack && ack)
  7485. continue;
  7486. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7487. (unsigned long long)s << bb->shift,
  7488. length << bb->shift);
  7489. }
  7490. if (unack && len == 0)
  7491. bb->unacked_exist = 0;
  7492. if (read_seqretry(&bb->lock, seq))
  7493. goto retry;
  7494. return len;
  7495. }
  7496. #define DO_DEBUG 1
  7497. static ssize_t
  7498. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7499. {
  7500. unsigned long long sector;
  7501. int length;
  7502. char newline;
  7503. #ifdef DO_DEBUG
  7504. /* Allow clearing via sysfs *only* for testing/debugging.
  7505. * Normally only a successful write may clear a badblock
  7506. */
  7507. int clear = 0;
  7508. if (page[0] == '-') {
  7509. clear = 1;
  7510. page++;
  7511. }
  7512. #endif /* DO_DEBUG */
  7513. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7514. case 3:
  7515. if (newline != '\n')
  7516. return -EINVAL;
  7517. case 2:
  7518. if (length <= 0)
  7519. return -EINVAL;
  7520. break;
  7521. default:
  7522. return -EINVAL;
  7523. }
  7524. #ifdef DO_DEBUG
  7525. if (clear) {
  7526. md_clear_badblocks(bb, sector, length);
  7527. return len;
  7528. }
  7529. #endif /* DO_DEBUG */
  7530. if (md_set_badblocks(bb, sector, length, !unack))
  7531. return len;
  7532. else
  7533. return -ENOSPC;
  7534. }
  7535. static int md_notify_reboot(struct notifier_block *this,
  7536. unsigned long code, void *x)
  7537. {
  7538. struct list_head *tmp;
  7539. struct mddev *mddev;
  7540. int need_delay = 0;
  7541. for_each_mddev(mddev, tmp) {
  7542. if (mddev_trylock(mddev)) {
  7543. if (mddev->pers)
  7544. __md_stop_writes(mddev);
  7545. mddev->safemode = 2;
  7546. mddev_unlock(mddev);
  7547. }
  7548. need_delay = 1;
  7549. }
  7550. /*
  7551. * certain more exotic SCSI devices are known to be
  7552. * volatile wrt too early system reboots. While the
  7553. * right place to handle this issue is the given
  7554. * driver, we do want to have a safe RAID driver ...
  7555. */
  7556. if (need_delay)
  7557. mdelay(1000*1);
  7558. return NOTIFY_DONE;
  7559. }
  7560. static struct notifier_block md_notifier = {
  7561. .notifier_call = md_notify_reboot,
  7562. .next = NULL,
  7563. .priority = INT_MAX, /* before any real devices */
  7564. };
  7565. static void md_geninit(void)
  7566. {
  7567. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7568. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7569. }
  7570. static int __init md_init(void)
  7571. {
  7572. int ret = -ENOMEM;
  7573. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7574. if (!md_wq)
  7575. goto err_wq;
  7576. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7577. if (!md_misc_wq)
  7578. goto err_misc_wq;
  7579. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7580. goto err_md;
  7581. if ((ret = register_blkdev(0, "mdp")) < 0)
  7582. goto err_mdp;
  7583. mdp_major = ret;
  7584. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7585. md_probe, NULL, NULL);
  7586. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7587. md_probe, NULL, NULL);
  7588. register_reboot_notifier(&md_notifier);
  7589. raid_table_header = register_sysctl_table(raid_root_table);
  7590. md_geninit();
  7591. return 0;
  7592. err_mdp:
  7593. unregister_blkdev(MD_MAJOR, "md");
  7594. err_md:
  7595. destroy_workqueue(md_misc_wq);
  7596. err_misc_wq:
  7597. destroy_workqueue(md_wq);
  7598. err_wq:
  7599. return ret;
  7600. }
  7601. #ifndef MODULE
  7602. /*
  7603. * Searches all registered partitions for autorun RAID arrays
  7604. * at boot time.
  7605. */
  7606. static LIST_HEAD(all_detected_devices);
  7607. struct detected_devices_node {
  7608. struct list_head list;
  7609. dev_t dev;
  7610. };
  7611. void md_autodetect_dev(dev_t dev)
  7612. {
  7613. struct detected_devices_node *node_detected_dev;
  7614. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7615. if (node_detected_dev) {
  7616. node_detected_dev->dev = dev;
  7617. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7618. } else {
  7619. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7620. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7621. }
  7622. }
  7623. static void autostart_arrays(int part)
  7624. {
  7625. struct md_rdev *rdev;
  7626. struct detected_devices_node *node_detected_dev;
  7627. dev_t dev;
  7628. int i_scanned, i_passed;
  7629. i_scanned = 0;
  7630. i_passed = 0;
  7631. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7632. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7633. i_scanned++;
  7634. node_detected_dev = list_entry(all_detected_devices.next,
  7635. struct detected_devices_node, list);
  7636. list_del(&node_detected_dev->list);
  7637. dev = node_detected_dev->dev;
  7638. kfree(node_detected_dev);
  7639. rdev = md_import_device(dev,0, 90);
  7640. if (IS_ERR(rdev))
  7641. continue;
  7642. if (test_bit(Faulty, &rdev->flags)) {
  7643. MD_BUG();
  7644. continue;
  7645. }
  7646. set_bit(AutoDetected, &rdev->flags);
  7647. list_add(&rdev->same_set, &pending_raid_disks);
  7648. i_passed++;
  7649. }
  7650. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7651. i_scanned, i_passed);
  7652. autorun_devices(part);
  7653. }
  7654. #endif /* !MODULE */
  7655. static __exit void md_exit(void)
  7656. {
  7657. struct mddev *mddev;
  7658. struct list_head *tmp;
  7659. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7660. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7661. unregister_blkdev(MD_MAJOR,"md");
  7662. unregister_blkdev(mdp_major, "mdp");
  7663. unregister_reboot_notifier(&md_notifier);
  7664. unregister_sysctl_table(raid_table_header);
  7665. remove_proc_entry("mdstat", NULL);
  7666. for_each_mddev(mddev, tmp) {
  7667. export_array(mddev);
  7668. mddev->hold_active = 0;
  7669. }
  7670. destroy_workqueue(md_misc_wq);
  7671. destroy_workqueue(md_wq);
  7672. }
  7673. subsys_initcall(md_init);
  7674. module_exit(md_exit)
  7675. static int get_ro(char *buffer, struct kernel_param *kp)
  7676. {
  7677. return sprintf(buffer, "%d", start_readonly);
  7678. }
  7679. static int set_ro(const char *val, struct kernel_param *kp)
  7680. {
  7681. char *e;
  7682. int num = simple_strtoul(val, &e, 10);
  7683. if (*val && (*e == '\0' || *e == '\n')) {
  7684. start_readonly = num;
  7685. return 0;
  7686. }
  7687. return -EINVAL;
  7688. }
  7689. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7690. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7691. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7692. EXPORT_SYMBOL(register_md_personality);
  7693. EXPORT_SYMBOL(unregister_md_personality);
  7694. EXPORT_SYMBOL(md_error);
  7695. EXPORT_SYMBOL(md_done_sync);
  7696. EXPORT_SYMBOL(md_write_start);
  7697. EXPORT_SYMBOL(md_write_end);
  7698. EXPORT_SYMBOL(md_register_thread);
  7699. EXPORT_SYMBOL(md_unregister_thread);
  7700. EXPORT_SYMBOL(md_wakeup_thread);
  7701. EXPORT_SYMBOL(md_check_recovery);
  7702. EXPORT_SYMBOL(md_reap_sync_thread);
  7703. MODULE_LICENSE("GPL");
  7704. MODULE_DESCRIPTION("MD RAID framework");
  7705. MODULE_ALIAS("md");
  7706. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);