x86.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/msr.h>
  39. #include <asm/desc.h>
  40. #include <asm/mtrr.h>
  41. #define MAX_IO_MSRS 256
  42. #define CR0_RESERVED_BITS \
  43. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  44. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  45. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  46. #define CR4_RESERVED_BITS \
  47. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  48. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  49. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  50. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  51. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  52. /* EFER defaults:
  53. * - enable syscall per default because its emulated by KVM
  54. * - enable LME and LMA per default on 64 bit KVM
  55. */
  56. #ifdef CONFIG_X86_64
  57. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  58. #else
  59. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  60. #endif
  61. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  62. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  63. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  64. struct kvm_cpuid_entry2 __user *entries);
  65. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  66. u32 function, u32 index);
  67. struct kvm_x86_ops *kvm_x86_ops;
  68. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  69. struct kvm_stats_debugfs_item debugfs_entries[] = {
  70. { "pf_fixed", VCPU_STAT(pf_fixed) },
  71. { "pf_guest", VCPU_STAT(pf_guest) },
  72. { "tlb_flush", VCPU_STAT(tlb_flush) },
  73. { "invlpg", VCPU_STAT(invlpg) },
  74. { "exits", VCPU_STAT(exits) },
  75. { "io_exits", VCPU_STAT(io_exits) },
  76. { "mmio_exits", VCPU_STAT(mmio_exits) },
  77. { "signal_exits", VCPU_STAT(signal_exits) },
  78. { "irq_window", VCPU_STAT(irq_window_exits) },
  79. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  80. { "halt_exits", VCPU_STAT(halt_exits) },
  81. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  82. { "hypercalls", VCPU_STAT(hypercalls) },
  83. { "request_irq", VCPU_STAT(request_irq_exits) },
  84. { "request_nmi", VCPU_STAT(request_nmi_exits) },
  85. { "irq_exits", VCPU_STAT(irq_exits) },
  86. { "host_state_reload", VCPU_STAT(host_state_reload) },
  87. { "efer_reload", VCPU_STAT(efer_reload) },
  88. { "fpu_reload", VCPU_STAT(fpu_reload) },
  89. { "insn_emulation", VCPU_STAT(insn_emulation) },
  90. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  91. { "irq_injections", VCPU_STAT(irq_injections) },
  92. { "nmi_injections", VCPU_STAT(nmi_injections) },
  93. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  94. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  95. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  96. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  97. { "mmu_flooded", VM_STAT(mmu_flooded) },
  98. { "mmu_recycled", VM_STAT(mmu_recycled) },
  99. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  100. { "mmu_unsync", VM_STAT(mmu_unsync) },
  101. { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
  102. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  103. { "largepages", VM_STAT(lpages) },
  104. { NULL }
  105. };
  106. unsigned long segment_base(u16 selector)
  107. {
  108. struct descriptor_table gdt;
  109. struct desc_struct *d;
  110. unsigned long table_base;
  111. unsigned long v;
  112. if (selector == 0)
  113. return 0;
  114. asm("sgdt %0" : "=m"(gdt));
  115. table_base = gdt.base;
  116. if (selector & 4) { /* from ldt */
  117. u16 ldt_selector;
  118. asm("sldt %0" : "=g"(ldt_selector));
  119. table_base = segment_base(ldt_selector);
  120. }
  121. d = (struct desc_struct *)(table_base + (selector & ~7));
  122. v = d->base0 | ((unsigned long)d->base1 << 16) |
  123. ((unsigned long)d->base2 << 24);
  124. #ifdef CONFIG_X86_64
  125. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  126. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  127. #endif
  128. return v;
  129. }
  130. EXPORT_SYMBOL_GPL(segment_base);
  131. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  132. {
  133. if (irqchip_in_kernel(vcpu->kvm))
  134. return vcpu->arch.apic_base;
  135. else
  136. return vcpu->arch.apic_base;
  137. }
  138. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  139. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  140. {
  141. /* TODO: reserve bits check */
  142. if (irqchip_in_kernel(vcpu->kvm))
  143. kvm_lapic_set_base(vcpu, data);
  144. else
  145. vcpu->arch.apic_base = data;
  146. }
  147. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  148. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  149. {
  150. WARN_ON(vcpu->arch.exception.pending);
  151. vcpu->arch.exception.pending = true;
  152. vcpu->arch.exception.has_error_code = false;
  153. vcpu->arch.exception.nr = nr;
  154. }
  155. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  156. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  157. u32 error_code)
  158. {
  159. ++vcpu->stat.pf_guest;
  160. if (vcpu->arch.exception.pending) {
  161. if (vcpu->arch.exception.nr == PF_VECTOR) {
  162. printk(KERN_DEBUG "kvm: inject_page_fault:"
  163. " double fault 0x%lx\n", addr);
  164. vcpu->arch.exception.nr = DF_VECTOR;
  165. vcpu->arch.exception.error_code = 0;
  166. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  167. /* triple fault -> shutdown */
  168. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  169. }
  170. return;
  171. }
  172. vcpu->arch.cr2 = addr;
  173. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  174. }
  175. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  176. {
  177. vcpu->arch.nmi_pending = 1;
  178. }
  179. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  180. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  181. {
  182. WARN_ON(vcpu->arch.exception.pending);
  183. vcpu->arch.exception.pending = true;
  184. vcpu->arch.exception.has_error_code = true;
  185. vcpu->arch.exception.nr = nr;
  186. vcpu->arch.exception.error_code = error_code;
  187. }
  188. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  189. static void __queue_exception(struct kvm_vcpu *vcpu)
  190. {
  191. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  192. vcpu->arch.exception.has_error_code,
  193. vcpu->arch.exception.error_code);
  194. }
  195. /*
  196. * Load the pae pdptrs. Return true is they are all valid.
  197. */
  198. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  199. {
  200. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  201. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  202. int i;
  203. int ret;
  204. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  205. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  206. offset * sizeof(u64), sizeof(pdpte));
  207. if (ret < 0) {
  208. ret = 0;
  209. goto out;
  210. }
  211. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  212. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  213. ret = 0;
  214. goto out;
  215. }
  216. }
  217. ret = 1;
  218. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  219. out:
  220. return ret;
  221. }
  222. EXPORT_SYMBOL_GPL(load_pdptrs);
  223. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  224. {
  225. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  226. bool changed = true;
  227. int r;
  228. if (is_long_mode(vcpu) || !is_pae(vcpu))
  229. return false;
  230. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  231. if (r < 0)
  232. goto out;
  233. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  234. out:
  235. return changed;
  236. }
  237. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  238. {
  239. if (cr0 & CR0_RESERVED_BITS) {
  240. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  241. cr0, vcpu->arch.cr0);
  242. kvm_inject_gp(vcpu, 0);
  243. return;
  244. }
  245. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  246. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  247. kvm_inject_gp(vcpu, 0);
  248. return;
  249. }
  250. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  251. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  252. "and a clear PE flag\n");
  253. kvm_inject_gp(vcpu, 0);
  254. return;
  255. }
  256. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  257. #ifdef CONFIG_X86_64
  258. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  259. int cs_db, cs_l;
  260. if (!is_pae(vcpu)) {
  261. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  262. "in long mode while PAE is disabled\n");
  263. kvm_inject_gp(vcpu, 0);
  264. return;
  265. }
  266. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  267. if (cs_l) {
  268. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  269. "in long mode while CS.L == 1\n");
  270. kvm_inject_gp(vcpu, 0);
  271. return;
  272. }
  273. } else
  274. #endif
  275. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  276. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  277. "reserved bits\n");
  278. kvm_inject_gp(vcpu, 0);
  279. return;
  280. }
  281. }
  282. kvm_x86_ops->set_cr0(vcpu, cr0);
  283. vcpu->arch.cr0 = cr0;
  284. kvm_mmu_sync_global(vcpu);
  285. kvm_mmu_reset_context(vcpu);
  286. return;
  287. }
  288. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  289. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  290. {
  291. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  292. KVMTRACE_1D(LMSW, vcpu,
  293. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  294. handler);
  295. }
  296. EXPORT_SYMBOL_GPL(kvm_lmsw);
  297. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  298. {
  299. if (cr4 & CR4_RESERVED_BITS) {
  300. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  301. kvm_inject_gp(vcpu, 0);
  302. return;
  303. }
  304. if (is_long_mode(vcpu)) {
  305. if (!(cr4 & X86_CR4_PAE)) {
  306. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  307. "in long mode\n");
  308. kvm_inject_gp(vcpu, 0);
  309. return;
  310. }
  311. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  312. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  313. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  314. kvm_inject_gp(vcpu, 0);
  315. return;
  316. }
  317. if (cr4 & X86_CR4_VMXE) {
  318. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  319. kvm_inject_gp(vcpu, 0);
  320. return;
  321. }
  322. kvm_x86_ops->set_cr4(vcpu, cr4);
  323. vcpu->arch.cr4 = cr4;
  324. vcpu->arch.mmu.base_role.cr4_pge = !!(cr4 & X86_CR4_PGE);
  325. kvm_mmu_sync_global(vcpu);
  326. kvm_mmu_reset_context(vcpu);
  327. }
  328. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  329. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  330. {
  331. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  332. kvm_mmu_sync_roots(vcpu);
  333. kvm_mmu_flush_tlb(vcpu);
  334. return;
  335. }
  336. if (is_long_mode(vcpu)) {
  337. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  338. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  339. kvm_inject_gp(vcpu, 0);
  340. return;
  341. }
  342. } else {
  343. if (is_pae(vcpu)) {
  344. if (cr3 & CR3_PAE_RESERVED_BITS) {
  345. printk(KERN_DEBUG
  346. "set_cr3: #GP, reserved bits\n");
  347. kvm_inject_gp(vcpu, 0);
  348. return;
  349. }
  350. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  351. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  352. "reserved bits\n");
  353. kvm_inject_gp(vcpu, 0);
  354. return;
  355. }
  356. }
  357. /*
  358. * We don't check reserved bits in nonpae mode, because
  359. * this isn't enforced, and VMware depends on this.
  360. */
  361. }
  362. /*
  363. * Does the new cr3 value map to physical memory? (Note, we
  364. * catch an invalid cr3 even in real-mode, because it would
  365. * cause trouble later on when we turn on paging anyway.)
  366. *
  367. * A real CPU would silently accept an invalid cr3 and would
  368. * attempt to use it - with largely undefined (and often hard
  369. * to debug) behavior on the guest side.
  370. */
  371. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  372. kvm_inject_gp(vcpu, 0);
  373. else {
  374. vcpu->arch.cr3 = cr3;
  375. vcpu->arch.mmu.new_cr3(vcpu);
  376. }
  377. }
  378. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  379. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  380. {
  381. if (cr8 & CR8_RESERVED_BITS) {
  382. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  383. kvm_inject_gp(vcpu, 0);
  384. return;
  385. }
  386. if (irqchip_in_kernel(vcpu->kvm))
  387. kvm_lapic_set_tpr(vcpu, cr8);
  388. else
  389. vcpu->arch.cr8 = cr8;
  390. }
  391. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  392. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  393. {
  394. if (irqchip_in_kernel(vcpu->kvm))
  395. return kvm_lapic_get_cr8(vcpu);
  396. else
  397. return vcpu->arch.cr8;
  398. }
  399. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  400. static inline u32 bit(int bitno)
  401. {
  402. return 1 << (bitno & 31);
  403. }
  404. /*
  405. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  406. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  407. *
  408. * This list is modified at module load time to reflect the
  409. * capabilities of the host cpu.
  410. */
  411. static u32 msrs_to_save[] = {
  412. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  413. MSR_K6_STAR,
  414. #ifdef CONFIG_X86_64
  415. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  416. #endif
  417. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  418. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  419. };
  420. static unsigned num_msrs_to_save;
  421. static u32 emulated_msrs[] = {
  422. MSR_IA32_MISC_ENABLE,
  423. };
  424. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  425. {
  426. if (efer & efer_reserved_bits) {
  427. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  428. efer);
  429. kvm_inject_gp(vcpu, 0);
  430. return;
  431. }
  432. if (is_paging(vcpu)
  433. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  434. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  435. kvm_inject_gp(vcpu, 0);
  436. return;
  437. }
  438. if (efer & EFER_SVME) {
  439. struct kvm_cpuid_entry2 *feat;
  440. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  441. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  442. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  443. kvm_inject_gp(vcpu, 0);
  444. return;
  445. }
  446. }
  447. kvm_x86_ops->set_efer(vcpu, efer);
  448. efer &= ~EFER_LMA;
  449. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  450. vcpu->arch.shadow_efer = efer;
  451. }
  452. void kvm_enable_efer_bits(u64 mask)
  453. {
  454. efer_reserved_bits &= ~mask;
  455. }
  456. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  457. /*
  458. * Writes msr value into into the appropriate "register".
  459. * Returns 0 on success, non-0 otherwise.
  460. * Assumes vcpu_load() was already called.
  461. */
  462. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  463. {
  464. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  465. }
  466. /*
  467. * Adapt set_msr() to msr_io()'s calling convention
  468. */
  469. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  470. {
  471. return kvm_set_msr(vcpu, index, *data);
  472. }
  473. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  474. {
  475. static int version;
  476. struct pvclock_wall_clock wc;
  477. struct timespec now, sys, boot;
  478. if (!wall_clock)
  479. return;
  480. version++;
  481. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  482. /*
  483. * The guest calculates current wall clock time by adding
  484. * system time (updated by kvm_write_guest_time below) to the
  485. * wall clock specified here. guest system time equals host
  486. * system time for us, thus we must fill in host boot time here.
  487. */
  488. now = current_kernel_time();
  489. ktime_get_ts(&sys);
  490. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  491. wc.sec = boot.tv_sec;
  492. wc.nsec = boot.tv_nsec;
  493. wc.version = version;
  494. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  495. version++;
  496. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  497. }
  498. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  499. {
  500. uint32_t quotient, remainder;
  501. /* Don't try to replace with do_div(), this one calculates
  502. * "(dividend << 32) / divisor" */
  503. __asm__ ( "divl %4"
  504. : "=a" (quotient), "=d" (remainder)
  505. : "0" (0), "1" (dividend), "r" (divisor) );
  506. return quotient;
  507. }
  508. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  509. {
  510. uint64_t nsecs = 1000000000LL;
  511. int32_t shift = 0;
  512. uint64_t tps64;
  513. uint32_t tps32;
  514. tps64 = tsc_khz * 1000LL;
  515. while (tps64 > nsecs*2) {
  516. tps64 >>= 1;
  517. shift--;
  518. }
  519. tps32 = (uint32_t)tps64;
  520. while (tps32 <= (uint32_t)nsecs) {
  521. tps32 <<= 1;
  522. shift++;
  523. }
  524. hv_clock->tsc_shift = shift;
  525. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  526. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  527. __func__, tsc_khz, hv_clock->tsc_shift,
  528. hv_clock->tsc_to_system_mul);
  529. }
  530. static void kvm_write_guest_time(struct kvm_vcpu *v)
  531. {
  532. struct timespec ts;
  533. unsigned long flags;
  534. struct kvm_vcpu_arch *vcpu = &v->arch;
  535. void *shared_kaddr;
  536. if ((!vcpu->time_page))
  537. return;
  538. if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
  539. kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
  540. vcpu->hv_clock_tsc_khz = tsc_khz;
  541. }
  542. /* Keep irq disabled to prevent changes to the clock */
  543. local_irq_save(flags);
  544. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  545. &vcpu->hv_clock.tsc_timestamp);
  546. ktime_get_ts(&ts);
  547. local_irq_restore(flags);
  548. /* With all the info we got, fill in the values */
  549. vcpu->hv_clock.system_time = ts.tv_nsec +
  550. (NSEC_PER_SEC * (u64)ts.tv_sec);
  551. /*
  552. * The interface expects us to write an even number signaling that the
  553. * update is finished. Since the guest won't see the intermediate
  554. * state, we just increase by 2 at the end.
  555. */
  556. vcpu->hv_clock.version += 2;
  557. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  558. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  559. sizeof(vcpu->hv_clock));
  560. kunmap_atomic(shared_kaddr, KM_USER0);
  561. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  562. }
  563. static bool msr_mtrr_valid(unsigned msr)
  564. {
  565. switch (msr) {
  566. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  567. case MSR_MTRRfix64K_00000:
  568. case MSR_MTRRfix16K_80000:
  569. case MSR_MTRRfix16K_A0000:
  570. case MSR_MTRRfix4K_C0000:
  571. case MSR_MTRRfix4K_C8000:
  572. case MSR_MTRRfix4K_D0000:
  573. case MSR_MTRRfix4K_D8000:
  574. case MSR_MTRRfix4K_E0000:
  575. case MSR_MTRRfix4K_E8000:
  576. case MSR_MTRRfix4K_F0000:
  577. case MSR_MTRRfix4K_F8000:
  578. case MSR_MTRRdefType:
  579. case MSR_IA32_CR_PAT:
  580. return true;
  581. case 0x2f8:
  582. return true;
  583. }
  584. return false;
  585. }
  586. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  587. {
  588. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  589. if (!msr_mtrr_valid(msr))
  590. return 1;
  591. if (msr == MSR_MTRRdefType) {
  592. vcpu->arch.mtrr_state.def_type = data;
  593. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  594. } else if (msr == MSR_MTRRfix64K_00000)
  595. p[0] = data;
  596. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  597. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  598. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  599. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  600. else if (msr == MSR_IA32_CR_PAT)
  601. vcpu->arch.pat = data;
  602. else { /* Variable MTRRs */
  603. int idx, is_mtrr_mask;
  604. u64 *pt;
  605. idx = (msr - 0x200) / 2;
  606. is_mtrr_mask = msr - 0x200 - 2 * idx;
  607. if (!is_mtrr_mask)
  608. pt =
  609. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  610. else
  611. pt =
  612. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  613. *pt = data;
  614. }
  615. kvm_mmu_reset_context(vcpu);
  616. return 0;
  617. }
  618. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  619. {
  620. switch (msr) {
  621. case MSR_EFER:
  622. set_efer(vcpu, data);
  623. break;
  624. case MSR_IA32_MC0_STATUS:
  625. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  626. __func__, data);
  627. break;
  628. case MSR_IA32_MCG_STATUS:
  629. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  630. __func__, data);
  631. break;
  632. case MSR_IA32_MCG_CTL:
  633. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  634. __func__, data);
  635. break;
  636. case MSR_IA32_DEBUGCTLMSR:
  637. if (!data) {
  638. /* We support the non-activated case already */
  639. break;
  640. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  641. /* Values other than LBR and BTF are vendor-specific,
  642. thus reserved and should throw a #GP */
  643. return 1;
  644. }
  645. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  646. __func__, data);
  647. break;
  648. case MSR_IA32_UCODE_REV:
  649. case MSR_IA32_UCODE_WRITE:
  650. break;
  651. case 0x200 ... 0x2ff:
  652. return set_msr_mtrr(vcpu, msr, data);
  653. case MSR_IA32_APICBASE:
  654. kvm_set_apic_base(vcpu, data);
  655. break;
  656. case MSR_IA32_MISC_ENABLE:
  657. vcpu->arch.ia32_misc_enable_msr = data;
  658. break;
  659. case MSR_KVM_WALL_CLOCK:
  660. vcpu->kvm->arch.wall_clock = data;
  661. kvm_write_wall_clock(vcpu->kvm, data);
  662. break;
  663. case MSR_KVM_SYSTEM_TIME: {
  664. if (vcpu->arch.time_page) {
  665. kvm_release_page_dirty(vcpu->arch.time_page);
  666. vcpu->arch.time_page = NULL;
  667. }
  668. vcpu->arch.time = data;
  669. /* we verify if the enable bit is set... */
  670. if (!(data & 1))
  671. break;
  672. /* ...but clean it before doing the actual write */
  673. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  674. vcpu->arch.time_page =
  675. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  676. if (is_error_page(vcpu->arch.time_page)) {
  677. kvm_release_page_clean(vcpu->arch.time_page);
  678. vcpu->arch.time_page = NULL;
  679. }
  680. kvm_write_guest_time(vcpu);
  681. break;
  682. }
  683. default:
  684. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  685. return 1;
  686. }
  687. return 0;
  688. }
  689. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  690. /*
  691. * Reads an msr value (of 'msr_index') into 'pdata'.
  692. * Returns 0 on success, non-0 otherwise.
  693. * Assumes vcpu_load() was already called.
  694. */
  695. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  696. {
  697. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  698. }
  699. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  700. {
  701. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  702. if (!msr_mtrr_valid(msr))
  703. return 1;
  704. if (msr == MSR_MTRRdefType)
  705. *pdata = vcpu->arch.mtrr_state.def_type +
  706. (vcpu->arch.mtrr_state.enabled << 10);
  707. else if (msr == MSR_MTRRfix64K_00000)
  708. *pdata = p[0];
  709. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  710. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  711. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  712. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  713. else if (msr == MSR_IA32_CR_PAT)
  714. *pdata = vcpu->arch.pat;
  715. else { /* Variable MTRRs */
  716. int idx, is_mtrr_mask;
  717. u64 *pt;
  718. idx = (msr - 0x200) / 2;
  719. is_mtrr_mask = msr - 0x200 - 2 * idx;
  720. if (!is_mtrr_mask)
  721. pt =
  722. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  723. else
  724. pt =
  725. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  726. *pdata = *pt;
  727. }
  728. return 0;
  729. }
  730. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  731. {
  732. u64 data;
  733. switch (msr) {
  734. case 0xc0010010: /* SYSCFG */
  735. case 0xc0010015: /* HWCR */
  736. case MSR_IA32_PLATFORM_ID:
  737. case MSR_IA32_P5_MC_ADDR:
  738. case MSR_IA32_P5_MC_TYPE:
  739. case MSR_IA32_MC0_CTL:
  740. case MSR_IA32_MCG_STATUS:
  741. case MSR_IA32_MCG_CAP:
  742. case MSR_IA32_MCG_CTL:
  743. case MSR_IA32_MC0_MISC:
  744. case MSR_IA32_MC0_MISC+4:
  745. case MSR_IA32_MC0_MISC+8:
  746. case MSR_IA32_MC0_MISC+12:
  747. case MSR_IA32_MC0_MISC+16:
  748. case MSR_IA32_MC0_MISC+20:
  749. case MSR_IA32_UCODE_REV:
  750. case MSR_IA32_EBL_CR_POWERON:
  751. case MSR_IA32_DEBUGCTLMSR:
  752. case MSR_IA32_LASTBRANCHFROMIP:
  753. case MSR_IA32_LASTBRANCHTOIP:
  754. case MSR_IA32_LASTINTFROMIP:
  755. case MSR_IA32_LASTINTTOIP:
  756. data = 0;
  757. break;
  758. case MSR_MTRRcap:
  759. data = 0x500 | KVM_NR_VAR_MTRR;
  760. break;
  761. case 0x200 ... 0x2ff:
  762. return get_msr_mtrr(vcpu, msr, pdata);
  763. case 0xcd: /* fsb frequency */
  764. data = 3;
  765. break;
  766. case MSR_IA32_APICBASE:
  767. data = kvm_get_apic_base(vcpu);
  768. break;
  769. case MSR_IA32_MISC_ENABLE:
  770. data = vcpu->arch.ia32_misc_enable_msr;
  771. break;
  772. case MSR_IA32_PERF_STATUS:
  773. /* TSC increment by tick */
  774. data = 1000ULL;
  775. /* CPU multiplier */
  776. data |= (((uint64_t)4ULL) << 40);
  777. break;
  778. case MSR_EFER:
  779. data = vcpu->arch.shadow_efer;
  780. break;
  781. case MSR_KVM_WALL_CLOCK:
  782. data = vcpu->kvm->arch.wall_clock;
  783. break;
  784. case MSR_KVM_SYSTEM_TIME:
  785. data = vcpu->arch.time;
  786. break;
  787. default:
  788. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  789. return 1;
  790. }
  791. *pdata = data;
  792. return 0;
  793. }
  794. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  795. /*
  796. * Read or write a bunch of msrs. All parameters are kernel addresses.
  797. *
  798. * @return number of msrs set successfully.
  799. */
  800. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  801. struct kvm_msr_entry *entries,
  802. int (*do_msr)(struct kvm_vcpu *vcpu,
  803. unsigned index, u64 *data))
  804. {
  805. int i;
  806. vcpu_load(vcpu);
  807. down_read(&vcpu->kvm->slots_lock);
  808. for (i = 0; i < msrs->nmsrs; ++i)
  809. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  810. break;
  811. up_read(&vcpu->kvm->slots_lock);
  812. vcpu_put(vcpu);
  813. return i;
  814. }
  815. /*
  816. * Read or write a bunch of msrs. Parameters are user addresses.
  817. *
  818. * @return number of msrs set successfully.
  819. */
  820. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  821. int (*do_msr)(struct kvm_vcpu *vcpu,
  822. unsigned index, u64 *data),
  823. int writeback)
  824. {
  825. struct kvm_msrs msrs;
  826. struct kvm_msr_entry *entries;
  827. int r, n;
  828. unsigned size;
  829. r = -EFAULT;
  830. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  831. goto out;
  832. r = -E2BIG;
  833. if (msrs.nmsrs >= MAX_IO_MSRS)
  834. goto out;
  835. r = -ENOMEM;
  836. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  837. entries = vmalloc(size);
  838. if (!entries)
  839. goto out;
  840. r = -EFAULT;
  841. if (copy_from_user(entries, user_msrs->entries, size))
  842. goto out_free;
  843. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  844. if (r < 0)
  845. goto out_free;
  846. r = -EFAULT;
  847. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  848. goto out_free;
  849. r = n;
  850. out_free:
  851. vfree(entries);
  852. out:
  853. return r;
  854. }
  855. int kvm_dev_ioctl_check_extension(long ext)
  856. {
  857. int r;
  858. switch (ext) {
  859. case KVM_CAP_IRQCHIP:
  860. case KVM_CAP_HLT:
  861. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  862. case KVM_CAP_SET_TSS_ADDR:
  863. case KVM_CAP_EXT_CPUID:
  864. case KVM_CAP_PIT:
  865. case KVM_CAP_NOP_IO_DELAY:
  866. case KVM_CAP_MP_STATE:
  867. case KVM_CAP_SYNC_MMU:
  868. r = 1;
  869. break;
  870. case KVM_CAP_COALESCED_MMIO:
  871. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  872. break;
  873. case KVM_CAP_VAPIC:
  874. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  875. break;
  876. case KVM_CAP_NR_VCPUS:
  877. r = KVM_MAX_VCPUS;
  878. break;
  879. case KVM_CAP_NR_MEMSLOTS:
  880. r = KVM_MEMORY_SLOTS;
  881. break;
  882. case KVM_CAP_PV_MMU:
  883. r = !tdp_enabled;
  884. break;
  885. case KVM_CAP_IOMMU:
  886. r = iommu_found();
  887. break;
  888. case KVM_CAP_CLOCKSOURCE:
  889. r = boot_cpu_has(X86_FEATURE_CONSTANT_TSC);
  890. break;
  891. default:
  892. r = 0;
  893. break;
  894. }
  895. return r;
  896. }
  897. long kvm_arch_dev_ioctl(struct file *filp,
  898. unsigned int ioctl, unsigned long arg)
  899. {
  900. void __user *argp = (void __user *)arg;
  901. long r;
  902. switch (ioctl) {
  903. case KVM_GET_MSR_INDEX_LIST: {
  904. struct kvm_msr_list __user *user_msr_list = argp;
  905. struct kvm_msr_list msr_list;
  906. unsigned n;
  907. r = -EFAULT;
  908. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  909. goto out;
  910. n = msr_list.nmsrs;
  911. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  912. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  913. goto out;
  914. r = -E2BIG;
  915. if (n < num_msrs_to_save)
  916. goto out;
  917. r = -EFAULT;
  918. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  919. num_msrs_to_save * sizeof(u32)))
  920. goto out;
  921. if (copy_to_user(user_msr_list->indices
  922. + num_msrs_to_save * sizeof(u32),
  923. &emulated_msrs,
  924. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  925. goto out;
  926. r = 0;
  927. break;
  928. }
  929. case KVM_GET_SUPPORTED_CPUID: {
  930. struct kvm_cpuid2 __user *cpuid_arg = argp;
  931. struct kvm_cpuid2 cpuid;
  932. r = -EFAULT;
  933. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  934. goto out;
  935. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  936. cpuid_arg->entries);
  937. if (r)
  938. goto out;
  939. r = -EFAULT;
  940. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  941. goto out;
  942. r = 0;
  943. break;
  944. }
  945. default:
  946. r = -EINVAL;
  947. }
  948. out:
  949. return r;
  950. }
  951. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  952. {
  953. kvm_x86_ops->vcpu_load(vcpu, cpu);
  954. kvm_write_guest_time(vcpu);
  955. }
  956. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  957. {
  958. kvm_x86_ops->vcpu_put(vcpu);
  959. kvm_put_guest_fpu(vcpu);
  960. }
  961. static int is_efer_nx(void)
  962. {
  963. u64 efer;
  964. rdmsrl(MSR_EFER, efer);
  965. return efer & EFER_NX;
  966. }
  967. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  968. {
  969. int i;
  970. struct kvm_cpuid_entry2 *e, *entry;
  971. entry = NULL;
  972. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  973. e = &vcpu->arch.cpuid_entries[i];
  974. if (e->function == 0x80000001) {
  975. entry = e;
  976. break;
  977. }
  978. }
  979. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  980. entry->edx &= ~(1 << 20);
  981. printk(KERN_INFO "kvm: guest NX capability removed\n");
  982. }
  983. }
  984. /* when an old userspace process fills a new kernel module */
  985. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  986. struct kvm_cpuid *cpuid,
  987. struct kvm_cpuid_entry __user *entries)
  988. {
  989. int r, i;
  990. struct kvm_cpuid_entry *cpuid_entries;
  991. r = -E2BIG;
  992. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  993. goto out;
  994. r = -ENOMEM;
  995. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  996. if (!cpuid_entries)
  997. goto out;
  998. r = -EFAULT;
  999. if (copy_from_user(cpuid_entries, entries,
  1000. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1001. goto out_free;
  1002. for (i = 0; i < cpuid->nent; i++) {
  1003. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1004. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1005. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1006. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1007. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1008. vcpu->arch.cpuid_entries[i].index = 0;
  1009. vcpu->arch.cpuid_entries[i].flags = 0;
  1010. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1011. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1012. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1013. }
  1014. vcpu->arch.cpuid_nent = cpuid->nent;
  1015. cpuid_fix_nx_cap(vcpu);
  1016. r = 0;
  1017. out_free:
  1018. vfree(cpuid_entries);
  1019. out:
  1020. return r;
  1021. }
  1022. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1023. struct kvm_cpuid2 *cpuid,
  1024. struct kvm_cpuid_entry2 __user *entries)
  1025. {
  1026. int r;
  1027. r = -E2BIG;
  1028. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1029. goto out;
  1030. r = -EFAULT;
  1031. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1032. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1033. goto out;
  1034. vcpu->arch.cpuid_nent = cpuid->nent;
  1035. return 0;
  1036. out:
  1037. return r;
  1038. }
  1039. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1040. struct kvm_cpuid2 *cpuid,
  1041. struct kvm_cpuid_entry2 __user *entries)
  1042. {
  1043. int r;
  1044. r = -E2BIG;
  1045. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1046. goto out;
  1047. r = -EFAULT;
  1048. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1049. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1050. goto out;
  1051. return 0;
  1052. out:
  1053. cpuid->nent = vcpu->arch.cpuid_nent;
  1054. return r;
  1055. }
  1056. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1057. u32 index)
  1058. {
  1059. entry->function = function;
  1060. entry->index = index;
  1061. cpuid_count(entry->function, entry->index,
  1062. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1063. entry->flags = 0;
  1064. }
  1065. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1066. u32 index, int *nent, int maxnent)
  1067. {
  1068. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  1069. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1070. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1071. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1072. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1073. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  1074. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1075. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  1076. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  1077. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  1078. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  1079. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1080. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1081. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1082. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1083. bit(X86_FEATURE_PGE) |
  1084. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1085. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  1086. bit(X86_FEATURE_SYSCALL) |
  1087. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  1088. #ifdef CONFIG_X86_64
  1089. bit(X86_FEATURE_LM) |
  1090. #endif
  1091. bit(X86_FEATURE_MMXEXT) |
  1092. bit(X86_FEATURE_3DNOWEXT) |
  1093. bit(X86_FEATURE_3DNOW);
  1094. const u32 kvm_supported_word3_x86_features =
  1095. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  1096. const u32 kvm_supported_word6_x86_features =
  1097. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
  1098. bit(X86_FEATURE_SVM);
  1099. /* all func 2 cpuid_count() should be called on the same cpu */
  1100. get_cpu();
  1101. do_cpuid_1_ent(entry, function, index);
  1102. ++*nent;
  1103. switch (function) {
  1104. case 0:
  1105. entry->eax = min(entry->eax, (u32)0xb);
  1106. break;
  1107. case 1:
  1108. entry->edx &= kvm_supported_word0_x86_features;
  1109. entry->ecx &= kvm_supported_word3_x86_features;
  1110. break;
  1111. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1112. * may return different values. This forces us to get_cpu() before
  1113. * issuing the first command, and also to emulate this annoying behavior
  1114. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1115. case 2: {
  1116. int t, times = entry->eax & 0xff;
  1117. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1118. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1119. for (t = 1; t < times && *nent < maxnent; ++t) {
  1120. do_cpuid_1_ent(&entry[t], function, 0);
  1121. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1122. ++*nent;
  1123. }
  1124. break;
  1125. }
  1126. /* function 4 and 0xb have additional index. */
  1127. case 4: {
  1128. int i, cache_type;
  1129. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1130. /* read more entries until cache_type is zero */
  1131. for (i = 1; *nent < maxnent; ++i) {
  1132. cache_type = entry[i - 1].eax & 0x1f;
  1133. if (!cache_type)
  1134. break;
  1135. do_cpuid_1_ent(&entry[i], function, i);
  1136. entry[i].flags |=
  1137. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1138. ++*nent;
  1139. }
  1140. break;
  1141. }
  1142. case 0xb: {
  1143. int i, level_type;
  1144. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1145. /* read more entries until level_type is zero */
  1146. for (i = 1; *nent < maxnent; ++i) {
  1147. level_type = entry[i - 1].ecx & 0xff00;
  1148. if (!level_type)
  1149. break;
  1150. do_cpuid_1_ent(&entry[i], function, i);
  1151. entry[i].flags |=
  1152. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1153. ++*nent;
  1154. }
  1155. break;
  1156. }
  1157. case 0x80000000:
  1158. entry->eax = min(entry->eax, 0x8000001a);
  1159. break;
  1160. case 0x80000001:
  1161. entry->edx &= kvm_supported_word1_x86_features;
  1162. entry->ecx &= kvm_supported_word6_x86_features;
  1163. break;
  1164. }
  1165. put_cpu();
  1166. }
  1167. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1168. struct kvm_cpuid_entry2 __user *entries)
  1169. {
  1170. struct kvm_cpuid_entry2 *cpuid_entries;
  1171. int limit, nent = 0, r = -E2BIG;
  1172. u32 func;
  1173. if (cpuid->nent < 1)
  1174. goto out;
  1175. r = -ENOMEM;
  1176. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1177. if (!cpuid_entries)
  1178. goto out;
  1179. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1180. limit = cpuid_entries[0].eax;
  1181. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1182. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1183. &nent, cpuid->nent);
  1184. r = -E2BIG;
  1185. if (nent >= cpuid->nent)
  1186. goto out_free;
  1187. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1188. limit = cpuid_entries[nent - 1].eax;
  1189. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1190. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1191. &nent, cpuid->nent);
  1192. r = -EFAULT;
  1193. if (copy_to_user(entries, cpuid_entries,
  1194. nent * sizeof(struct kvm_cpuid_entry2)))
  1195. goto out_free;
  1196. cpuid->nent = nent;
  1197. r = 0;
  1198. out_free:
  1199. vfree(cpuid_entries);
  1200. out:
  1201. return r;
  1202. }
  1203. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1204. struct kvm_lapic_state *s)
  1205. {
  1206. vcpu_load(vcpu);
  1207. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1208. vcpu_put(vcpu);
  1209. return 0;
  1210. }
  1211. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1212. struct kvm_lapic_state *s)
  1213. {
  1214. vcpu_load(vcpu);
  1215. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1216. kvm_apic_post_state_restore(vcpu);
  1217. vcpu_put(vcpu);
  1218. return 0;
  1219. }
  1220. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1221. struct kvm_interrupt *irq)
  1222. {
  1223. if (irq->irq < 0 || irq->irq >= 256)
  1224. return -EINVAL;
  1225. if (irqchip_in_kernel(vcpu->kvm))
  1226. return -ENXIO;
  1227. vcpu_load(vcpu);
  1228. set_bit(irq->irq, vcpu->arch.irq_pending);
  1229. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1230. vcpu_put(vcpu);
  1231. return 0;
  1232. }
  1233. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1234. {
  1235. vcpu_load(vcpu);
  1236. kvm_inject_nmi(vcpu);
  1237. vcpu_put(vcpu);
  1238. return 0;
  1239. }
  1240. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1241. struct kvm_tpr_access_ctl *tac)
  1242. {
  1243. if (tac->flags)
  1244. return -EINVAL;
  1245. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1246. return 0;
  1247. }
  1248. long kvm_arch_vcpu_ioctl(struct file *filp,
  1249. unsigned int ioctl, unsigned long arg)
  1250. {
  1251. struct kvm_vcpu *vcpu = filp->private_data;
  1252. void __user *argp = (void __user *)arg;
  1253. int r;
  1254. struct kvm_lapic_state *lapic = NULL;
  1255. switch (ioctl) {
  1256. case KVM_GET_LAPIC: {
  1257. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1258. r = -ENOMEM;
  1259. if (!lapic)
  1260. goto out;
  1261. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1262. if (r)
  1263. goto out;
  1264. r = -EFAULT;
  1265. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1266. goto out;
  1267. r = 0;
  1268. break;
  1269. }
  1270. case KVM_SET_LAPIC: {
  1271. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1272. r = -ENOMEM;
  1273. if (!lapic)
  1274. goto out;
  1275. r = -EFAULT;
  1276. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1277. goto out;
  1278. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1279. if (r)
  1280. goto out;
  1281. r = 0;
  1282. break;
  1283. }
  1284. case KVM_INTERRUPT: {
  1285. struct kvm_interrupt irq;
  1286. r = -EFAULT;
  1287. if (copy_from_user(&irq, argp, sizeof irq))
  1288. goto out;
  1289. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1290. if (r)
  1291. goto out;
  1292. r = 0;
  1293. break;
  1294. }
  1295. case KVM_NMI: {
  1296. r = kvm_vcpu_ioctl_nmi(vcpu);
  1297. if (r)
  1298. goto out;
  1299. r = 0;
  1300. break;
  1301. }
  1302. case KVM_SET_CPUID: {
  1303. struct kvm_cpuid __user *cpuid_arg = argp;
  1304. struct kvm_cpuid cpuid;
  1305. r = -EFAULT;
  1306. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1307. goto out;
  1308. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1309. if (r)
  1310. goto out;
  1311. break;
  1312. }
  1313. case KVM_SET_CPUID2: {
  1314. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1315. struct kvm_cpuid2 cpuid;
  1316. r = -EFAULT;
  1317. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1318. goto out;
  1319. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1320. cpuid_arg->entries);
  1321. if (r)
  1322. goto out;
  1323. break;
  1324. }
  1325. case KVM_GET_CPUID2: {
  1326. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1327. struct kvm_cpuid2 cpuid;
  1328. r = -EFAULT;
  1329. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1330. goto out;
  1331. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1332. cpuid_arg->entries);
  1333. if (r)
  1334. goto out;
  1335. r = -EFAULT;
  1336. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1337. goto out;
  1338. r = 0;
  1339. break;
  1340. }
  1341. case KVM_GET_MSRS:
  1342. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1343. break;
  1344. case KVM_SET_MSRS:
  1345. r = msr_io(vcpu, argp, do_set_msr, 0);
  1346. break;
  1347. case KVM_TPR_ACCESS_REPORTING: {
  1348. struct kvm_tpr_access_ctl tac;
  1349. r = -EFAULT;
  1350. if (copy_from_user(&tac, argp, sizeof tac))
  1351. goto out;
  1352. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1353. if (r)
  1354. goto out;
  1355. r = -EFAULT;
  1356. if (copy_to_user(argp, &tac, sizeof tac))
  1357. goto out;
  1358. r = 0;
  1359. break;
  1360. };
  1361. case KVM_SET_VAPIC_ADDR: {
  1362. struct kvm_vapic_addr va;
  1363. r = -EINVAL;
  1364. if (!irqchip_in_kernel(vcpu->kvm))
  1365. goto out;
  1366. r = -EFAULT;
  1367. if (copy_from_user(&va, argp, sizeof va))
  1368. goto out;
  1369. r = 0;
  1370. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1371. break;
  1372. }
  1373. default:
  1374. r = -EINVAL;
  1375. }
  1376. out:
  1377. if (lapic)
  1378. kfree(lapic);
  1379. return r;
  1380. }
  1381. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1382. {
  1383. int ret;
  1384. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1385. return -1;
  1386. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1387. return ret;
  1388. }
  1389. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1390. u32 kvm_nr_mmu_pages)
  1391. {
  1392. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1393. return -EINVAL;
  1394. down_write(&kvm->slots_lock);
  1395. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1396. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1397. up_write(&kvm->slots_lock);
  1398. return 0;
  1399. }
  1400. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1401. {
  1402. return kvm->arch.n_alloc_mmu_pages;
  1403. }
  1404. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1405. {
  1406. int i;
  1407. struct kvm_mem_alias *alias;
  1408. for (i = 0; i < kvm->arch.naliases; ++i) {
  1409. alias = &kvm->arch.aliases[i];
  1410. if (gfn >= alias->base_gfn
  1411. && gfn < alias->base_gfn + alias->npages)
  1412. return alias->target_gfn + gfn - alias->base_gfn;
  1413. }
  1414. return gfn;
  1415. }
  1416. /*
  1417. * Set a new alias region. Aliases map a portion of physical memory into
  1418. * another portion. This is useful for memory windows, for example the PC
  1419. * VGA region.
  1420. */
  1421. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1422. struct kvm_memory_alias *alias)
  1423. {
  1424. int r, n;
  1425. struct kvm_mem_alias *p;
  1426. r = -EINVAL;
  1427. /* General sanity checks */
  1428. if (alias->memory_size & (PAGE_SIZE - 1))
  1429. goto out;
  1430. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1431. goto out;
  1432. if (alias->slot >= KVM_ALIAS_SLOTS)
  1433. goto out;
  1434. if (alias->guest_phys_addr + alias->memory_size
  1435. < alias->guest_phys_addr)
  1436. goto out;
  1437. if (alias->target_phys_addr + alias->memory_size
  1438. < alias->target_phys_addr)
  1439. goto out;
  1440. down_write(&kvm->slots_lock);
  1441. spin_lock(&kvm->mmu_lock);
  1442. p = &kvm->arch.aliases[alias->slot];
  1443. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1444. p->npages = alias->memory_size >> PAGE_SHIFT;
  1445. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1446. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1447. if (kvm->arch.aliases[n - 1].npages)
  1448. break;
  1449. kvm->arch.naliases = n;
  1450. spin_unlock(&kvm->mmu_lock);
  1451. kvm_mmu_zap_all(kvm);
  1452. up_write(&kvm->slots_lock);
  1453. return 0;
  1454. out:
  1455. return r;
  1456. }
  1457. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1458. {
  1459. int r;
  1460. r = 0;
  1461. switch (chip->chip_id) {
  1462. case KVM_IRQCHIP_PIC_MASTER:
  1463. memcpy(&chip->chip.pic,
  1464. &pic_irqchip(kvm)->pics[0],
  1465. sizeof(struct kvm_pic_state));
  1466. break;
  1467. case KVM_IRQCHIP_PIC_SLAVE:
  1468. memcpy(&chip->chip.pic,
  1469. &pic_irqchip(kvm)->pics[1],
  1470. sizeof(struct kvm_pic_state));
  1471. break;
  1472. case KVM_IRQCHIP_IOAPIC:
  1473. memcpy(&chip->chip.ioapic,
  1474. ioapic_irqchip(kvm),
  1475. sizeof(struct kvm_ioapic_state));
  1476. break;
  1477. default:
  1478. r = -EINVAL;
  1479. break;
  1480. }
  1481. return r;
  1482. }
  1483. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1484. {
  1485. int r;
  1486. r = 0;
  1487. switch (chip->chip_id) {
  1488. case KVM_IRQCHIP_PIC_MASTER:
  1489. memcpy(&pic_irqchip(kvm)->pics[0],
  1490. &chip->chip.pic,
  1491. sizeof(struct kvm_pic_state));
  1492. break;
  1493. case KVM_IRQCHIP_PIC_SLAVE:
  1494. memcpy(&pic_irqchip(kvm)->pics[1],
  1495. &chip->chip.pic,
  1496. sizeof(struct kvm_pic_state));
  1497. break;
  1498. case KVM_IRQCHIP_IOAPIC:
  1499. memcpy(ioapic_irqchip(kvm),
  1500. &chip->chip.ioapic,
  1501. sizeof(struct kvm_ioapic_state));
  1502. break;
  1503. default:
  1504. r = -EINVAL;
  1505. break;
  1506. }
  1507. kvm_pic_update_irq(pic_irqchip(kvm));
  1508. return r;
  1509. }
  1510. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1511. {
  1512. int r = 0;
  1513. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1514. return r;
  1515. }
  1516. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1517. {
  1518. int r = 0;
  1519. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1520. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1521. return r;
  1522. }
  1523. /*
  1524. * Get (and clear) the dirty memory log for a memory slot.
  1525. */
  1526. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1527. struct kvm_dirty_log *log)
  1528. {
  1529. int r;
  1530. int n;
  1531. struct kvm_memory_slot *memslot;
  1532. int is_dirty = 0;
  1533. down_write(&kvm->slots_lock);
  1534. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1535. if (r)
  1536. goto out;
  1537. /* If nothing is dirty, don't bother messing with page tables. */
  1538. if (is_dirty) {
  1539. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1540. kvm_flush_remote_tlbs(kvm);
  1541. memslot = &kvm->memslots[log->slot];
  1542. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1543. memset(memslot->dirty_bitmap, 0, n);
  1544. }
  1545. r = 0;
  1546. out:
  1547. up_write(&kvm->slots_lock);
  1548. return r;
  1549. }
  1550. long kvm_arch_vm_ioctl(struct file *filp,
  1551. unsigned int ioctl, unsigned long arg)
  1552. {
  1553. struct kvm *kvm = filp->private_data;
  1554. void __user *argp = (void __user *)arg;
  1555. int r = -EINVAL;
  1556. /*
  1557. * This union makes it completely explicit to gcc-3.x
  1558. * that these two variables' stack usage should be
  1559. * combined, not added together.
  1560. */
  1561. union {
  1562. struct kvm_pit_state ps;
  1563. struct kvm_memory_alias alias;
  1564. } u;
  1565. switch (ioctl) {
  1566. case KVM_SET_TSS_ADDR:
  1567. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1568. if (r < 0)
  1569. goto out;
  1570. break;
  1571. case KVM_SET_MEMORY_REGION: {
  1572. struct kvm_memory_region kvm_mem;
  1573. struct kvm_userspace_memory_region kvm_userspace_mem;
  1574. r = -EFAULT;
  1575. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1576. goto out;
  1577. kvm_userspace_mem.slot = kvm_mem.slot;
  1578. kvm_userspace_mem.flags = kvm_mem.flags;
  1579. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1580. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1581. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1582. if (r)
  1583. goto out;
  1584. break;
  1585. }
  1586. case KVM_SET_NR_MMU_PAGES:
  1587. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1588. if (r)
  1589. goto out;
  1590. break;
  1591. case KVM_GET_NR_MMU_PAGES:
  1592. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1593. break;
  1594. case KVM_SET_MEMORY_ALIAS:
  1595. r = -EFAULT;
  1596. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1597. goto out;
  1598. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1599. if (r)
  1600. goto out;
  1601. break;
  1602. case KVM_CREATE_IRQCHIP:
  1603. r = -ENOMEM;
  1604. kvm->arch.vpic = kvm_create_pic(kvm);
  1605. if (kvm->arch.vpic) {
  1606. r = kvm_ioapic_init(kvm);
  1607. if (r) {
  1608. kfree(kvm->arch.vpic);
  1609. kvm->arch.vpic = NULL;
  1610. goto out;
  1611. }
  1612. } else
  1613. goto out;
  1614. break;
  1615. case KVM_CREATE_PIT:
  1616. r = -ENOMEM;
  1617. kvm->arch.vpit = kvm_create_pit(kvm);
  1618. if (kvm->arch.vpit)
  1619. r = 0;
  1620. break;
  1621. case KVM_IRQ_LINE: {
  1622. struct kvm_irq_level irq_event;
  1623. r = -EFAULT;
  1624. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1625. goto out;
  1626. if (irqchip_in_kernel(kvm)) {
  1627. mutex_lock(&kvm->lock);
  1628. kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1629. irq_event.irq, irq_event.level);
  1630. mutex_unlock(&kvm->lock);
  1631. r = 0;
  1632. }
  1633. break;
  1634. }
  1635. case KVM_GET_IRQCHIP: {
  1636. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1637. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1638. r = -ENOMEM;
  1639. if (!chip)
  1640. goto out;
  1641. r = -EFAULT;
  1642. if (copy_from_user(chip, argp, sizeof *chip))
  1643. goto get_irqchip_out;
  1644. r = -ENXIO;
  1645. if (!irqchip_in_kernel(kvm))
  1646. goto get_irqchip_out;
  1647. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1648. if (r)
  1649. goto get_irqchip_out;
  1650. r = -EFAULT;
  1651. if (copy_to_user(argp, chip, sizeof *chip))
  1652. goto get_irqchip_out;
  1653. r = 0;
  1654. get_irqchip_out:
  1655. kfree(chip);
  1656. if (r)
  1657. goto out;
  1658. break;
  1659. }
  1660. case KVM_SET_IRQCHIP: {
  1661. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1662. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1663. r = -ENOMEM;
  1664. if (!chip)
  1665. goto out;
  1666. r = -EFAULT;
  1667. if (copy_from_user(chip, argp, sizeof *chip))
  1668. goto set_irqchip_out;
  1669. r = -ENXIO;
  1670. if (!irqchip_in_kernel(kvm))
  1671. goto set_irqchip_out;
  1672. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1673. if (r)
  1674. goto set_irqchip_out;
  1675. r = 0;
  1676. set_irqchip_out:
  1677. kfree(chip);
  1678. if (r)
  1679. goto out;
  1680. break;
  1681. }
  1682. case KVM_GET_PIT: {
  1683. r = -EFAULT;
  1684. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1685. goto out;
  1686. r = -ENXIO;
  1687. if (!kvm->arch.vpit)
  1688. goto out;
  1689. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1690. if (r)
  1691. goto out;
  1692. r = -EFAULT;
  1693. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1694. goto out;
  1695. r = 0;
  1696. break;
  1697. }
  1698. case KVM_SET_PIT: {
  1699. r = -EFAULT;
  1700. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1701. goto out;
  1702. r = -ENXIO;
  1703. if (!kvm->arch.vpit)
  1704. goto out;
  1705. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1706. if (r)
  1707. goto out;
  1708. r = 0;
  1709. break;
  1710. }
  1711. default:
  1712. ;
  1713. }
  1714. out:
  1715. return r;
  1716. }
  1717. static void kvm_init_msr_list(void)
  1718. {
  1719. u32 dummy[2];
  1720. unsigned i, j;
  1721. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1722. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1723. continue;
  1724. if (j < i)
  1725. msrs_to_save[j] = msrs_to_save[i];
  1726. j++;
  1727. }
  1728. num_msrs_to_save = j;
  1729. }
  1730. /*
  1731. * Only apic need an MMIO device hook, so shortcut now..
  1732. */
  1733. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1734. gpa_t addr, int len,
  1735. int is_write)
  1736. {
  1737. struct kvm_io_device *dev;
  1738. if (vcpu->arch.apic) {
  1739. dev = &vcpu->arch.apic->dev;
  1740. if (dev->in_range(dev, addr, len, is_write))
  1741. return dev;
  1742. }
  1743. return NULL;
  1744. }
  1745. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1746. gpa_t addr, int len,
  1747. int is_write)
  1748. {
  1749. struct kvm_io_device *dev;
  1750. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1751. if (dev == NULL)
  1752. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1753. is_write);
  1754. return dev;
  1755. }
  1756. int emulator_read_std(unsigned long addr,
  1757. void *val,
  1758. unsigned int bytes,
  1759. struct kvm_vcpu *vcpu)
  1760. {
  1761. void *data = val;
  1762. int r = X86EMUL_CONTINUE;
  1763. while (bytes) {
  1764. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1765. unsigned offset = addr & (PAGE_SIZE-1);
  1766. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1767. int ret;
  1768. if (gpa == UNMAPPED_GVA) {
  1769. r = X86EMUL_PROPAGATE_FAULT;
  1770. goto out;
  1771. }
  1772. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1773. if (ret < 0) {
  1774. r = X86EMUL_UNHANDLEABLE;
  1775. goto out;
  1776. }
  1777. bytes -= tocopy;
  1778. data += tocopy;
  1779. addr += tocopy;
  1780. }
  1781. out:
  1782. return r;
  1783. }
  1784. EXPORT_SYMBOL_GPL(emulator_read_std);
  1785. static int emulator_read_emulated(unsigned long addr,
  1786. void *val,
  1787. unsigned int bytes,
  1788. struct kvm_vcpu *vcpu)
  1789. {
  1790. struct kvm_io_device *mmio_dev;
  1791. gpa_t gpa;
  1792. if (vcpu->mmio_read_completed) {
  1793. memcpy(val, vcpu->mmio_data, bytes);
  1794. vcpu->mmio_read_completed = 0;
  1795. return X86EMUL_CONTINUE;
  1796. }
  1797. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1798. /* For APIC access vmexit */
  1799. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1800. goto mmio;
  1801. if (emulator_read_std(addr, val, bytes, vcpu)
  1802. == X86EMUL_CONTINUE)
  1803. return X86EMUL_CONTINUE;
  1804. if (gpa == UNMAPPED_GVA)
  1805. return X86EMUL_PROPAGATE_FAULT;
  1806. mmio:
  1807. /*
  1808. * Is this MMIO handled locally?
  1809. */
  1810. mutex_lock(&vcpu->kvm->lock);
  1811. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1812. if (mmio_dev) {
  1813. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1814. mutex_unlock(&vcpu->kvm->lock);
  1815. return X86EMUL_CONTINUE;
  1816. }
  1817. mutex_unlock(&vcpu->kvm->lock);
  1818. vcpu->mmio_needed = 1;
  1819. vcpu->mmio_phys_addr = gpa;
  1820. vcpu->mmio_size = bytes;
  1821. vcpu->mmio_is_write = 0;
  1822. return X86EMUL_UNHANDLEABLE;
  1823. }
  1824. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1825. const void *val, int bytes)
  1826. {
  1827. int ret;
  1828. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1829. if (ret < 0)
  1830. return 0;
  1831. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  1832. return 1;
  1833. }
  1834. static int emulator_write_emulated_onepage(unsigned long addr,
  1835. const void *val,
  1836. unsigned int bytes,
  1837. struct kvm_vcpu *vcpu)
  1838. {
  1839. struct kvm_io_device *mmio_dev;
  1840. gpa_t gpa;
  1841. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1842. if (gpa == UNMAPPED_GVA) {
  1843. kvm_inject_page_fault(vcpu, addr, 2);
  1844. return X86EMUL_PROPAGATE_FAULT;
  1845. }
  1846. /* For APIC access vmexit */
  1847. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1848. goto mmio;
  1849. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1850. return X86EMUL_CONTINUE;
  1851. mmio:
  1852. /*
  1853. * Is this MMIO handled locally?
  1854. */
  1855. mutex_lock(&vcpu->kvm->lock);
  1856. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1857. if (mmio_dev) {
  1858. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1859. mutex_unlock(&vcpu->kvm->lock);
  1860. return X86EMUL_CONTINUE;
  1861. }
  1862. mutex_unlock(&vcpu->kvm->lock);
  1863. vcpu->mmio_needed = 1;
  1864. vcpu->mmio_phys_addr = gpa;
  1865. vcpu->mmio_size = bytes;
  1866. vcpu->mmio_is_write = 1;
  1867. memcpy(vcpu->mmio_data, val, bytes);
  1868. return X86EMUL_CONTINUE;
  1869. }
  1870. int emulator_write_emulated(unsigned long addr,
  1871. const void *val,
  1872. unsigned int bytes,
  1873. struct kvm_vcpu *vcpu)
  1874. {
  1875. /* Crossing a page boundary? */
  1876. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1877. int rc, now;
  1878. now = -addr & ~PAGE_MASK;
  1879. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1880. if (rc != X86EMUL_CONTINUE)
  1881. return rc;
  1882. addr += now;
  1883. val += now;
  1884. bytes -= now;
  1885. }
  1886. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1887. }
  1888. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1889. static int emulator_cmpxchg_emulated(unsigned long addr,
  1890. const void *old,
  1891. const void *new,
  1892. unsigned int bytes,
  1893. struct kvm_vcpu *vcpu)
  1894. {
  1895. static int reported;
  1896. if (!reported) {
  1897. reported = 1;
  1898. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1899. }
  1900. #ifndef CONFIG_X86_64
  1901. /* guests cmpxchg8b have to be emulated atomically */
  1902. if (bytes == 8) {
  1903. gpa_t gpa;
  1904. struct page *page;
  1905. char *kaddr;
  1906. u64 val;
  1907. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1908. if (gpa == UNMAPPED_GVA ||
  1909. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1910. goto emul_write;
  1911. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1912. goto emul_write;
  1913. val = *(u64 *)new;
  1914. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1915. kaddr = kmap_atomic(page, KM_USER0);
  1916. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1917. kunmap_atomic(kaddr, KM_USER0);
  1918. kvm_release_page_dirty(page);
  1919. }
  1920. emul_write:
  1921. #endif
  1922. return emulator_write_emulated(addr, new, bytes, vcpu);
  1923. }
  1924. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1925. {
  1926. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1927. }
  1928. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1929. {
  1930. kvm_mmu_invlpg(vcpu, address);
  1931. return X86EMUL_CONTINUE;
  1932. }
  1933. int emulate_clts(struct kvm_vcpu *vcpu)
  1934. {
  1935. KVMTRACE_0D(CLTS, vcpu, handler);
  1936. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1937. return X86EMUL_CONTINUE;
  1938. }
  1939. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1940. {
  1941. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1942. switch (dr) {
  1943. case 0 ... 3:
  1944. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1945. return X86EMUL_CONTINUE;
  1946. default:
  1947. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  1948. return X86EMUL_UNHANDLEABLE;
  1949. }
  1950. }
  1951. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1952. {
  1953. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1954. int exception;
  1955. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1956. if (exception) {
  1957. /* FIXME: better handling */
  1958. return X86EMUL_UNHANDLEABLE;
  1959. }
  1960. return X86EMUL_CONTINUE;
  1961. }
  1962. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1963. {
  1964. u8 opcodes[4];
  1965. unsigned long rip = kvm_rip_read(vcpu);
  1966. unsigned long rip_linear;
  1967. if (!printk_ratelimit())
  1968. return;
  1969. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1970. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1971. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1972. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1973. }
  1974. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1975. static struct x86_emulate_ops emulate_ops = {
  1976. .read_std = emulator_read_std,
  1977. .read_emulated = emulator_read_emulated,
  1978. .write_emulated = emulator_write_emulated,
  1979. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1980. };
  1981. static void cache_all_regs(struct kvm_vcpu *vcpu)
  1982. {
  1983. kvm_register_read(vcpu, VCPU_REGS_RAX);
  1984. kvm_register_read(vcpu, VCPU_REGS_RSP);
  1985. kvm_register_read(vcpu, VCPU_REGS_RIP);
  1986. vcpu->arch.regs_dirty = ~0;
  1987. }
  1988. int emulate_instruction(struct kvm_vcpu *vcpu,
  1989. struct kvm_run *run,
  1990. unsigned long cr2,
  1991. u16 error_code,
  1992. int emulation_type)
  1993. {
  1994. int r;
  1995. struct decode_cache *c;
  1996. kvm_clear_exception_queue(vcpu);
  1997. vcpu->arch.mmio_fault_cr2 = cr2;
  1998. /*
  1999. * TODO: fix x86_emulate.c to use guest_read/write_register
  2000. * instead of direct ->regs accesses, can save hundred cycles
  2001. * on Intel for instructions that don't read/change RSP, for
  2002. * for example.
  2003. */
  2004. cache_all_regs(vcpu);
  2005. vcpu->mmio_is_write = 0;
  2006. vcpu->arch.pio.string = 0;
  2007. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2008. int cs_db, cs_l;
  2009. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2010. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2011. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2012. vcpu->arch.emulate_ctxt.mode =
  2013. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2014. ? X86EMUL_MODE_REAL : cs_l
  2015. ? X86EMUL_MODE_PROT64 : cs_db
  2016. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2017. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2018. /* Reject the instructions other than VMCALL/VMMCALL when
  2019. * try to emulate invalid opcode */
  2020. c = &vcpu->arch.emulate_ctxt.decode;
  2021. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2022. (!(c->twobyte && c->b == 0x01 &&
  2023. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2024. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2025. return EMULATE_FAIL;
  2026. ++vcpu->stat.insn_emulation;
  2027. if (r) {
  2028. ++vcpu->stat.insn_emulation_fail;
  2029. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2030. return EMULATE_DONE;
  2031. return EMULATE_FAIL;
  2032. }
  2033. }
  2034. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2035. if (vcpu->arch.pio.string)
  2036. return EMULATE_DO_MMIO;
  2037. if ((r || vcpu->mmio_is_write) && run) {
  2038. run->exit_reason = KVM_EXIT_MMIO;
  2039. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2040. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2041. run->mmio.len = vcpu->mmio_size;
  2042. run->mmio.is_write = vcpu->mmio_is_write;
  2043. }
  2044. if (r) {
  2045. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2046. return EMULATE_DONE;
  2047. if (!vcpu->mmio_needed) {
  2048. kvm_report_emulation_failure(vcpu, "mmio");
  2049. return EMULATE_FAIL;
  2050. }
  2051. return EMULATE_DO_MMIO;
  2052. }
  2053. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2054. if (vcpu->mmio_is_write) {
  2055. vcpu->mmio_needed = 0;
  2056. return EMULATE_DO_MMIO;
  2057. }
  2058. return EMULATE_DONE;
  2059. }
  2060. EXPORT_SYMBOL_GPL(emulate_instruction);
  2061. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  2062. {
  2063. int i;
  2064. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  2065. if (vcpu->arch.pio.guest_pages[i]) {
  2066. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  2067. vcpu->arch.pio.guest_pages[i] = NULL;
  2068. }
  2069. }
  2070. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2071. {
  2072. void *p = vcpu->arch.pio_data;
  2073. void *q;
  2074. unsigned bytes;
  2075. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  2076. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  2077. PAGE_KERNEL);
  2078. if (!q) {
  2079. free_pio_guest_pages(vcpu);
  2080. return -ENOMEM;
  2081. }
  2082. q += vcpu->arch.pio.guest_page_offset;
  2083. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2084. if (vcpu->arch.pio.in)
  2085. memcpy(q, p, bytes);
  2086. else
  2087. memcpy(p, q, bytes);
  2088. q -= vcpu->arch.pio.guest_page_offset;
  2089. vunmap(q);
  2090. free_pio_guest_pages(vcpu);
  2091. return 0;
  2092. }
  2093. int complete_pio(struct kvm_vcpu *vcpu)
  2094. {
  2095. struct kvm_pio_request *io = &vcpu->arch.pio;
  2096. long delta;
  2097. int r;
  2098. unsigned long val;
  2099. if (!io->string) {
  2100. if (io->in) {
  2101. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2102. memcpy(&val, vcpu->arch.pio_data, io->size);
  2103. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2104. }
  2105. } else {
  2106. if (io->in) {
  2107. r = pio_copy_data(vcpu);
  2108. if (r)
  2109. return r;
  2110. }
  2111. delta = 1;
  2112. if (io->rep) {
  2113. delta *= io->cur_count;
  2114. /*
  2115. * The size of the register should really depend on
  2116. * current address size.
  2117. */
  2118. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2119. val -= delta;
  2120. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2121. }
  2122. if (io->down)
  2123. delta = -delta;
  2124. delta *= io->size;
  2125. if (io->in) {
  2126. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2127. val += delta;
  2128. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2129. } else {
  2130. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2131. val += delta;
  2132. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2133. }
  2134. }
  2135. io->count -= io->cur_count;
  2136. io->cur_count = 0;
  2137. return 0;
  2138. }
  2139. static void kernel_pio(struct kvm_io_device *pio_dev,
  2140. struct kvm_vcpu *vcpu,
  2141. void *pd)
  2142. {
  2143. /* TODO: String I/O for in kernel device */
  2144. mutex_lock(&vcpu->kvm->lock);
  2145. if (vcpu->arch.pio.in)
  2146. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2147. vcpu->arch.pio.size,
  2148. pd);
  2149. else
  2150. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2151. vcpu->arch.pio.size,
  2152. pd);
  2153. mutex_unlock(&vcpu->kvm->lock);
  2154. }
  2155. static void pio_string_write(struct kvm_io_device *pio_dev,
  2156. struct kvm_vcpu *vcpu)
  2157. {
  2158. struct kvm_pio_request *io = &vcpu->arch.pio;
  2159. void *pd = vcpu->arch.pio_data;
  2160. int i;
  2161. mutex_lock(&vcpu->kvm->lock);
  2162. for (i = 0; i < io->cur_count; i++) {
  2163. kvm_iodevice_write(pio_dev, io->port,
  2164. io->size,
  2165. pd);
  2166. pd += io->size;
  2167. }
  2168. mutex_unlock(&vcpu->kvm->lock);
  2169. }
  2170. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2171. gpa_t addr, int len,
  2172. int is_write)
  2173. {
  2174. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2175. }
  2176. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2177. int size, unsigned port)
  2178. {
  2179. struct kvm_io_device *pio_dev;
  2180. unsigned long val;
  2181. vcpu->run->exit_reason = KVM_EXIT_IO;
  2182. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2183. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2184. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2185. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2186. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2187. vcpu->arch.pio.in = in;
  2188. vcpu->arch.pio.string = 0;
  2189. vcpu->arch.pio.down = 0;
  2190. vcpu->arch.pio.guest_page_offset = 0;
  2191. vcpu->arch.pio.rep = 0;
  2192. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2193. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2194. handler);
  2195. else
  2196. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2197. handler);
  2198. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2199. memcpy(vcpu->arch.pio_data, &val, 4);
  2200. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2201. if (pio_dev) {
  2202. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2203. complete_pio(vcpu);
  2204. return 1;
  2205. }
  2206. return 0;
  2207. }
  2208. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2209. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2210. int size, unsigned long count, int down,
  2211. gva_t address, int rep, unsigned port)
  2212. {
  2213. unsigned now, in_page;
  2214. int i, ret = 0;
  2215. int nr_pages = 1;
  2216. struct page *page;
  2217. struct kvm_io_device *pio_dev;
  2218. vcpu->run->exit_reason = KVM_EXIT_IO;
  2219. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2220. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2221. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2222. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2223. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2224. vcpu->arch.pio.in = in;
  2225. vcpu->arch.pio.string = 1;
  2226. vcpu->arch.pio.down = down;
  2227. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  2228. vcpu->arch.pio.rep = rep;
  2229. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2230. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2231. handler);
  2232. else
  2233. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2234. handler);
  2235. if (!count) {
  2236. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2237. return 1;
  2238. }
  2239. if (!down)
  2240. in_page = PAGE_SIZE - offset_in_page(address);
  2241. else
  2242. in_page = offset_in_page(address) + size;
  2243. now = min(count, (unsigned long)in_page / size);
  2244. if (!now) {
  2245. /*
  2246. * String I/O straddles page boundary. Pin two guest pages
  2247. * so that we satisfy atomicity constraints. Do just one
  2248. * transaction to avoid complexity.
  2249. */
  2250. nr_pages = 2;
  2251. now = 1;
  2252. }
  2253. if (down) {
  2254. /*
  2255. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2256. */
  2257. pr_unimpl(vcpu, "guest string pio down\n");
  2258. kvm_inject_gp(vcpu, 0);
  2259. return 1;
  2260. }
  2261. vcpu->run->io.count = now;
  2262. vcpu->arch.pio.cur_count = now;
  2263. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2264. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2265. for (i = 0; i < nr_pages; ++i) {
  2266. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2267. vcpu->arch.pio.guest_pages[i] = page;
  2268. if (!page) {
  2269. kvm_inject_gp(vcpu, 0);
  2270. free_pio_guest_pages(vcpu);
  2271. return 1;
  2272. }
  2273. }
  2274. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2275. vcpu->arch.pio.cur_count,
  2276. !vcpu->arch.pio.in);
  2277. if (!vcpu->arch.pio.in) {
  2278. /* string PIO write */
  2279. ret = pio_copy_data(vcpu);
  2280. if (ret >= 0 && pio_dev) {
  2281. pio_string_write(pio_dev, vcpu);
  2282. complete_pio(vcpu);
  2283. if (vcpu->arch.pio.count == 0)
  2284. ret = 1;
  2285. }
  2286. } else if (pio_dev)
  2287. pr_unimpl(vcpu, "no string pio read support yet, "
  2288. "port %x size %d count %ld\n",
  2289. port, size, count);
  2290. return ret;
  2291. }
  2292. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2293. int kvm_arch_init(void *opaque)
  2294. {
  2295. int r;
  2296. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2297. if (kvm_x86_ops) {
  2298. printk(KERN_ERR "kvm: already loaded the other module\n");
  2299. r = -EEXIST;
  2300. goto out;
  2301. }
  2302. if (!ops->cpu_has_kvm_support()) {
  2303. printk(KERN_ERR "kvm: no hardware support\n");
  2304. r = -EOPNOTSUPP;
  2305. goto out;
  2306. }
  2307. if (ops->disabled_by_bios()) {
  2308. printk(KERN_ERR "kvm: disabled by bios\n");
  2309. r = -EOPNOTSUPP;
  2310. goto out;
  2311. }
  2312. r = kvm_mmu_module_init();
  2313. if (r)
  2314. goto out;
  2315. kvm_init_msr_list();
  2316. kvm_x86_ops = ops;
  2317. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2318. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2319. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2320. PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
  2321. return 0;
  2322. out:
  2323. return r;
  2324. }
  2325. void kvm_arch_exit(void)
  2326. {
  2327. kvm_x86_ops = NULL;
  2328. kvm_mmu_module_exit();
  2329. }
  2330. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2331. {
  2332. ++vcpu->stat.halt_exits;
  2333. KVMTRACE_0D(HLT, vcpu, handler);
  2334. if (irqchip_in_kernel(vcpu->kvm)) {
  2335. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2336. return 1;
  2337. } else {
  2338. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2339. return 0;
  2340. }
  2341. }
  2342. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2343. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2344. unsigned long a1)
  2345. {
  2346. if (is_long_mode(vcpu))
  2347. return a0;
  2348. else
  2349. return a0 | ((gpa_t)a1 << 32);
  2350. }
  2351. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2352. {
  2353. unsigned long nr, a0, a1, a2, a3, ret;
  2354. int r = 1;
  2355. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2356. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2357. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2358. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2359. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2360. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2361. if (!is_long_mode(vcpu)) {
  2362. nr &= 0xFFFFFFFF;
  2363. a0 &= 0xFFFFFFFF;
  2364. a1 &= 0xFFFFFFFF;
  2365. a2 &= 0xFFFFFFFF;
  2366. a3 &= 0xFFFFFFFF;
  2367. }
  2368. switch (nr) {
  2369. case KVM_HC_VAPIC_POLL_IRQ:
  2370. ret = 0;
  2371. break;
  2372. case KVM_HC_MMU_OP:
  2373. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2374. break;
  2375. default:
  2376. ret = -KVM_ENOSYS;
  2377. break;
  2378. }
  2379. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2380. ++vcpu->stat.hypercalls;
  2381. return r;
  2382. }
  2383. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2384. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2385. {
  2386. char instruction[3];
  2387. int ret = 0;
  2388. unsigned long rip = kvm_rip_read(vcpu);
  2389. /*
  2390. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2391. * to ensure that the updated hypercall appears atomically across all
  2392. * VCPUs.
  2393. */
  2394. kvm_mmu_zap_all(vcpu->kvm);
  2395. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2396. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2397. != X86EMUL_CONTINUE)
  2398. ret = -EFAULT;
  2399. return ret;
  2400. }
  2401. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2402. {
  2403. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2404. }
  2405. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2406. {
  2407. struct descriptor_table dt = { limit, base };
  2408. kvm_x86_ops->set_gdt(vcpu, &dt);
  2409. }
  2410. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2411. {
  2412. struct descriptor_table dt = { limit, base };
  2413. kvm_x86_ops->set_idt(vcpu, &dt);
  2414. }
  2415. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2416. unsigned long *rflags)
  2417. {
  2418. kvm_lmsw(vcpu, msw);
  2419. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2420. }
  2421. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2422. {
  2423. unsigned long value;
  2424. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2425. switch (cr) {
  2426. case 0:
  2427. value = vcpu->arch.cr0;
  2428. break;
  2429. case 2:
  2430. value = vcpu->arch.cr2;
  2431. break;
  2432. case 3:
  2433. value = vcpu->arch.cr3;
  2434. break;
  2435. case 4:
  2436. value = vcpu->arch.cr4;
  2437. break;
  2438. case 8:
  2439. value = kvm_get_cr8(vcpu);
  2440. break;
  2441. default:
  2442. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2443. return 0;
  2444. }
  2445. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2446. (u32)((u64)value >> 32), handler);
  2447. return value;
  2448. }
  2449. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2450. unsigned long *rflags)
  2451. {
  2452. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2453. (u32)((u64)val >> 32), handler);
  2454. switch (cr) {
  2455. case 0:
  2456. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2457. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2458. break;
  2459. case 2:
  2460. vcpu->arch.cr2 = val;
  2461. break;
  2462. case 3:
  2463. kvm_set_cr3(vcpu, val);
  2464. break;
  2465. case 4:
  2466. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2467. break;
  2468. case 8:
  2469. kvm_set_cr8(vcpu, val & 0xfUL);
  2470. break;
  2471. default:
  2472. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2473. }
  2474. }
  2475. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2476. {
  2477. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2478. int j, nent = vcpu->arch.cpuid_nent;
  2479. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2480. /* when no next entry is found, the current entry[i] is reselected */
  2481. for (j = i + 1; ; j = (j + 1) % nent) {
  2482. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2483. if (ej->function == e->function) {
  2484. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2485. return j;
  2486. }
  2487. }
  2488. return 0; /* silence gcc, even though control never reaches here */
  2489. }
  2490. /* find an entry with matching function, matching index (if needed), and that
  2491. * should be read next (if it's stateful) */
  2492. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2493. u32 function, u32 index)
  2494. {
  2495. if (e->function != function)
  2496. return 0;
  2497. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2498. return 0;
  2499. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2500. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2501. return 0;
  2502. return 1;
  2503. }
  2504. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2505. u32 function, u32 index)
  2506. {
  2507. int i;
  2508. struct kvm_cpuid_entry2 *best = NULL;
  2509. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2510. struct kvm_cpuid_entry2 *e;
  2511. e = &vcpu->arch.cpuid_entries[i];
  2512. if (is_matching_cpuid_entry(e, function, index)) {
  2513. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2514. move_to_next_stateful_cpuid_entry(vcpu, i);
  2515. best = e;
  2516. break;
  2517. }
  2518. /*
  2519. * Both basic or both extended?
  2520. */
  2521. if (((e->function ^ function) & 0x80000000) == 0)
  2522. if (!best || e->function > best->function)
  2523. best = e;
  2524. }
  2525. return best;
  2526. }
  2527. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2528. {
  2529. u32 function, index;
  2530. struct kvm_cpuid_entry2 *best;
  2531. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2532. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2533. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2534. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2535. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2536. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2537. best = kvm_find_cpuid_entry(vcpu, function, index);
  2538. if (best) {
  2539. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2540. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2541. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2542. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2543. }
  2544. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2545. KVMTRACE_5D(CPUID, vcpu, function,
  2546. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2547. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2548. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2549. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2550. }
  2551. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2552. /*
  2553. * Check if userspace requested an interrupt window, and that the
  2554. * interrupt window is open.
  2555. *
  2556. * No need to exit to userspace if we already have an interrupt queued.
  2557. */
  2558. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2559. struct kvm_run *kvm_run)
  2560. {
  2561. return (!vcpu->arch.irq_summary &&
  2562. kvm_run->request_interrupt_window &&
  2563. vcpu->arch.interrupt_window_open &&
  2564. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2565. }
  2566. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2567. struct kvm_run *kvm_run)
  2568. {
  2569. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2570. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2571. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2572. if (irqchip_in_kernel(vcpu->kvm))
  2573. kvm_run->ready_for_interrupt_injection = 1;
  2574. else
  2575. kvm_run->ready_for_interrupt_injection =
  2576. (vcpu->arch.interrupt_window_open &&
  2577. vcpu->arch.irq_summary == 0);
  2578. }
  2579. static void vapic_enter(struct kvm_vcpu *vcpu)
  2580. {
  2581. struct kvm_lapic *apic = vcpu->arch.apic;
  2582. struct page *page;
  2583. if (!apic || !apic->vapic_addr)
  2584. return;
  2585. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2586. vcpu->arch.apic->vapic_page = page;
  2587. }
  2588. static void vapic_exit(struct kvm_vcpu *vcpu)
  2589. {
  2590. struct kvm_lapic *apic = vcpu->arch.apic;
  2591. if (!apic || !apic->vapic_addr)
  2592. return;
  2593. down_read(&vcpu->kvm->slots_lock);
  2594. kvm_release_page_dirty(apic->vapic_page);
  2595. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2596. up_read(&vcpu->kvm->slots_lock);
  2597. }
  2598. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2599. {
  2600. int r;
  2601. if (vcpu->requests)
  2602. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2603. kvm_mmu_unload(vcpu);
  2604. r = kvm_mmu_reload(vcpu);
  2605. if (unlikely(r))
  2606. goto out;
  2607. if (vcpu->requests) {
  2608. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2609. __kvm_migrate_timers(vcpu);
  2610. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2611. kvm_mmu_sync_roots(vcpu);
  2612. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2613. kvm_x86_ops->tlb_flush(vcpu);
  2614. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2615. &vcpu->requests)) {
  2616. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2617. r = 0;
  2618. goto out;
  2619. }
  2620. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2621. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2622. r = 0;
  2623. goto out;
  2624. }
  2625. }
  2626. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2627. kvm_inject_pending_timer_irqs(vcpu);
  2628. preempt_disable();
  2629. kvm_x86_ops->prepare_guest_switch(vcpu);
  2630. kvm_load_guest_fpu(vcpu);
  2631. local_irq_disable();
  2632. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2633. local_irq_enable();
  2634. preempt_enable();
  2635. r = 1;
  2636. goto out;
  2637. }
  2638. vcpu->guest_mode = 1;
  2639. /*
  2640. * Make sure that guest_mode assignment won't happen after
  2641. * testing the pending IRQ vector bitmap.
  2642. */
  2643. smp_wmb();
  2644. if (vcpu->arch.exception.pending)
  2645. __queue_exception(vcpu);
  2646. else if (irqchip_in_kernel(vcpu->kvm))
  2647. kvm_x86_ops->inject_pending_irq(vcpu);
  2648. else
  2649. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2650. kvm_lapic_sync_to_vapic(vcpu);
  2651. up_read(&vcpu->kvm->slots_lock);
  2652. kvm_guest_enter();
  2653. get_debugreg(vcpu->arch.host_dr6, 6);
  2654. get_debugreg(vcpu->arch.host_dr7, 7);
  2655. if (unlikely(vcpu->arch.switch_db_regs)) {
  2656. get_debugreg(vcpu->arch.host_db[0], 0);
  2657. get_debugreg(vcpu->arch.host_db[1], 1);
  2658. get_debugreg(vcpu->arch.host_db[2], 2);
  2659. get_debugreg(vcpu->arch.host_db[3], 3);
  2660. set_debugreg(0, 7);
  2661. set_debugreg(vcpu->arch.eff_db[0], 0);
  2662. set_debugreg(vcpu->arch.eff_db[1], 1);
  2663. set_debugreg(vcpu->arch.eff_db[2], 2);
  2664. set_debugreg(vcpu->arch.eff_db[3], 3);
  2665. }
  2666. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2667. kvm_x86_ops->run(vcpu, kvm_run);
  2668. if (unlikely(vcpu->arch.switch_db_regs)) {
  2669. set_debugreg(0, 7);
  2670. set_debugreg(vcpu->arch.host_db[0], 0);
  2671. set_debugreg(vcpu->arch.host_db[1], 1);
  2672. set_debugreg(vcpu->arch.host_db[2], 2);
  2673. set_debugreg(vcpu->arch.host_db[3], 3);
  2674. }
  2675. set_debugreg(vcpu->arch.host_dr6, 6);
  2676. set_debugreg(vcpu->arch.host_dr7, 7);
  2677. vcpu->guest_mode = 0;
  2678. local_irq_enable();
  2679. ++vcpu->stat.exits;
  2680. /*
  2681. * We must have an instruction between local_irq_enable() and
  2682. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2683. * the interrupt shadow. The stat.exits increment will do nicely.
  2684. * But we need to prevent reordering, hence this barrier():
  2685. */
  2686. barrier();
  2687. kvm_guest_exit();
  2688. preempt_enable();
  2689. down_read(&vcpu->kvm->slots_lock);
  2690. /*
  2691. * Profile KVM exit RIPs:
  2692. */
  2693. if (unlikely(prof_on == KVM_PROFILING)) {
  2694. unsigned long rip = kvm_rip_read(vcpu);
  2695. profile_hit(KVM_PROFILING, (void *)rip);
  2696. }
  2697. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2698. vcpu->arch.exception.pending = false;
  2699. kvm_lapic_sync_from_vapic(vcpu);
  2700. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2701. out:
  2702. return r;
  2703. }
  2704. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2705. {
  2706. int r;
  2707. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2708. pr_debug("vcpu %d received sipi with vector # %x\n",
  2709. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2710. kvm_lapic_reset(vcpu);
  2711. r = kvm_arch_vcpu_reset(vcpu);
  2712. if (r)
  2713. return r;
  2714. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2715. }
  2716. down_read(&vcpu->kvm->slots_lock);
  2717. vapic_enter(vcpu);
  2718. r = 1;
  2719. while (r > 0) {
  2720. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2721. r = vcpu_enter_guest(vcpu, kvm_run);
  2722. else {
  2723. up_read(&vcpu->kvm->slots_lock);
  2724. kvm_vcpu_block(vcpu);
  2725. down_read(&vcpu->kvm->slots_lock);
  2726. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2727. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  2728. vcpu->arch.mp_state =
  2729. KVM_MP_STATE_RUNNABLE;
  2730. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  2731. r = -EINTR;
  2732. }
  2733. if (r > 0) {
  2734. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2735. r = -EINTR;
  2736. kvm_run->exit_reason = KVM_EXIT_INTR;
  2737. ++vcpu->stat.request_irq_exits;
  2738. }
  2739. if (signal_pending(current)) {
  2740. r = -EINTR;
  2741. kvm_run->exit_reason = KVM_EXIT_INTR;
  2742. ++vcpu->stat.signal_exits;
  2743. }
  2744. if (need_resched()) {
  2745. up_read(&vcpu->kvm->slots_lock);
  2746. kvm_resched(vcpu);
  2747. down_read(&vcpu->kvm->slots_lock);
  2748. }
  2749. }
  2750. }
  2751. up_read(&vcpu->kvm->slots_lock);
  2752. post_kvm_run_save(vcpu, kvm_run);
  2753. vapic_exit(vcpu);
  2754. return r;
  2755. }
  2756. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2757. {
  2758. int r;
  2759. sigset_t sigsaved;
  2760. vcpu_load(vcpu);
  2761. if (vcpu->sigset_active)
  2762. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2763. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2764. kvm_vcpu_block(vcpu);
  2765. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  2766. r = -EAGAIN;
  2767. goto out;
  2768. }
  2769. /* re-sync apic's tpr */
  2770. if (!irqchip_in_kernel(vcpu->kvm))
  2771. kvm_set_cr8(vcpu, kvm_run->cr8);
  2772. if (vcpu->arch.pio.cur_count) {
  2773. r = complete_pio(vcpu);
  2774. if (r)
  2775. goto out;
  2776. }
  2777. #if CONFIG_HAS_IOMEM
  2778. if (vcpu->mmio_needed) {
  2779. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2780. vcpu->mmio_read_completed = 1;
  2781. vcpu->mmio_needed = 0;
  2782. down_read(&vcpu->kvm->slots_lock);
  2783. r = emulate_instruction(vcpu, kvm_run,
  2784. vcpu->arch.mmio_fault_cr2, 0,
  2785. EMULTYPE_NO_DECODE);
  2786. up_read(&vcpu->kvm->slots_lock);
  2787. if (r == EMULATE_DO_MMIO) {
  2788. /*
  2789. * Read-modify-write. Back to userspace.
  2790. */
  2791. r = 0;
  2792. goto out;
  2793. }
  2794. }
  2795. #endif
  2796. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  2797. kvm_register_write(vcpu, VCPU_REGS_RAX,
  2798. kvm_run->hypercall.ret);
  2799. r = __vcpu_run(vcpu, kvm_run);
  2800. out:
  2801. if (vcpu->sigset_active)
  2802. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2803. vcpu_put(vcpu);
  2804. return r;
  2805. }
  2806. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2807. {
  2808. vcpu_load(vcpu);
  2809. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2810. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2811. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2812. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2813. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2814. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2815. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  2816. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  2817. #ifdef CONFIG_X86_64
  2818. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  2819. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  2820. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  2821. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  2822. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  2823. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  2824. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  2825. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  2826. #endif
  2827. regs->rip = kvm_rip_read(vcpu);
  2828. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2829. /*
  2830. * Don't leak debug flags in case they were set for guest debugging
  2831. */
  2832. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2833. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2834. vcpu_put(vcpu);
  2835. return 0;
  2836. }
  2837. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2838. {
  2839. vcpu_load(vcpu);
  2840. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  2841. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  2842. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  2843. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  2844. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  2845. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  2846. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  2847. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  2848. #ifdef CONFIG_X86_64
  2849. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  2850. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  2851. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  2852. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  2853. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  2854. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  2855. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  2856. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  2857. #endif
  2858. kvm_rip_write(vcpu, regs->rip);
  2859. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2860. vcpu->arch.exception.pending = false;
  2861. vcpu_put(vcpu);
  2862. return 0;
  2863. }
  2864. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2865. struct kvm_segment *var, int seg)
  2866. {
  2867. kvm_x86_ops->get_segment(vcpu, var, seg);
  2868. }
  2869. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2870. {
  2871. struct kvm_segment cs;
  2872. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2873. *db = cs.db;
  2874. *l = cs.l;
  2875. }
  2876. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2877. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2878. struct kvm_sregs *sregs)
  2879. {
  2880. struct descriptor_table dt;
  2881. int pending_vec;
  2882. vcpu_load(vcpu);
  2883. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2884. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2885. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2886. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2887. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2888. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2889. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2890. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2891. kvm_x86_ops->get_idt(vcpu, &dt);
  2892. sregs->idt.limit = dt.limit;
  2893. sregs->idt.base = dt.base;
  2894. kvm_x86_ops->get_gdt(vcpu, &dt);
  2895. sregs->gdt.limit = dt.limit;
  2896. sregs->gdt.base = dt.base;
  2897. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2898. sregs->cr0 = vcpu->arch.cr0;
  2899. sregs->cr2 = vcpu->arch.cr2;
  2900. sregs->cr3 = vcpu->arch.cr3;
  2901. sregs->cr4 = vcpu->arch.cr4;
  2902. sregs->cr8 = kvm_get_cr8(vcpu);
  2903. sregs->efer = vcpu->arch.shadow_efer;
  2904. sregs->apic_base = kvm_get_apic_base(vcpu);
  2905. if (irqchip_in_kernel(vcpu->kvm)) {
  2906. memset(sregs->interrupt_bitmap, 0,
  2907. sizeof sregs->interrupt_bitmap);
  2908. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2909. if (pending_vec >= 0)
  2910. set_bit(pending_vec,
  2911. (unsigned long *)sregs->interrupt_bitmap);
  2912. } else
  2913. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2914. sizeof sregs->interrupt_bitmap);
  2915. vcpu_put(vcpu);
  2916. return 0;
  2917. }
  2918. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  2919. struct kvm_mp_state *mp_state)
  2920. {
  2921. vcpu_load(vcpu);
  2922. mp_state->mp_state = vcpu->arch.mp_state;
  2923. vcpu_put(vcpu);
  2924. return 0;
  2925. }
  2926. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  2927. struct kvm_mp_state *mp_state)
  2928. {
  2929. vcpu_load(vcpu);
  2930. vcpu->arch.mp_state = mp_state->mp_state;
  2931. vcpu_put(vcpu);
  2932. return 0;
  2933. }
  2934. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2935. struct kvm_segment *var, int seg)
  2936. {
  2937. kvm_x86_ops->set_segment(vcpu, var, seg);
  2938. }
  2939. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2940. struct kvm_segment *kvm_desct)
  2941. {
  2942. kvm_desct->base = seg_desc->base0;
  2943. kvm_desct->base |= seg_desc->base1 << 16;
  2944. kvm_desct->base |= seg_desc->base2 << 24;
  2945. kvm_desct->limit = seg_desc->limit0;
  2946. kvm_desct->limit |= seg_desc->limit << 16;
  2947. if (seg_desc->g) {
  2948. kvm_desct->limit <<= 12;
  2949. kvm_desct->limit |= 0xfff;
  2950. }
  2951. kvm_desct->selector = selector;
  2952. kvm_desct->type = seg_desc->type;
  2953. kvm_desct->present = seg_desc->p;
  2954. kvm_desct->dpl = seg_desc->dpl;
  2955. kvm_desct->db = seg_desc->d;
  2956. kvm_desct->s = seg_desc->s;
  2957. kvm_desct->l = seg_desc->l;
  2958. kvm_desct->g = seg_desc->g;
  2959. kvm_desct->avl = seg_desc->avl;
  2960. if (!selector)
  2961. kvm_desct->unusable = 1;
  2962. else
  2963. kvm_desct->unusable = 0;
  2964. kvm_desct->padding = 0;
  2965. }
  2966. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  2967. u16 selector,
  2968. struct descriptor_table *dtable)
  2969. {
  2970. if (selector & 1 << 2) {
  2971. struct kvm_segment kvm_seg;
  2972. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  2973. if (kvm_seg.unusable)
  2974. dtable->limit = 0;
  2975. else
  2976. dtable->limit = kvm_seg.limit;
  2977. dtable->base = kvm_seg.base;
  2978. }
  2979. else
  2980. kvm_x86_ops->get_gdt(vcpu, dtable);
  2981. }
  2982. /* allowed just for 8 bytes segments */
  2983. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2984. struct desc_struct *seg_desc)
  2985. {
  2986. gpa_t gpa;
  2987. struct descriptor_table dtable;
  2988. u16 index = selector >> 3;
  2989. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  2990. if (dtable.limit < index * 8 + 7) {
  2991. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  2992. return 1;
  2993. }
  2994. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2995. gpa += index * 8;
  2996. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  2997. }
  2998. /* allowed just for 8 bytes segments */
  2999. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3000. struct desc_struct *seg_desc)
  3001. {
  3002. gpa_t gpa;
  3003. struct descriptor_table dtable;
  3004. u16 index = selector >> 3;
  3005. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3006. if (dtable.limit < index * 8 + 7)
  3007. return 1;
  3008. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3009. gpa += index * 8;
  3010. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3011. }
  3012. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3013. struct desc_struct *seg_desc)
  3014. {
  3015. u32 base_addr;
  3016. base_addr = seg_desc->base0;
  3017. base_addr |= (seg_desc->base1 << 16);
  3018. base_addr |= (seg_desc->base2 << 24);
  3019. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3020. }
  3021. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3022. {
  3023. struct kvm_segment kvm_seg;
  3024. kvm_get_segment(vcpu, &kvm_seg, seg);
  3025. return kvm_seg.selector;
  3026. }
  3027. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3028. u16 selector,
  3029. struct kvm_segment *kvm_seg)
  3030. {
  3031. struct desc_struct seg_desc;
  3032. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3033. return 1;
  3034. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3035. return 0;
  3036. }
  3037. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3038. {
  3039. struct kvm_segment segvar = {
  3040. .base = selector << 4,
  3041. .limit = 0xffff,
  3042. .selector = selector,
  3043. .type = 3,
  3044. .present = 1,
  3045. .dpl = 3,
  3046. .db = 0,
  3047. .s = 1,
  3048. .l = 0,
  3049. .g = 0,
  3050. .avl = 0,
  3051. .unusable = 0,
  3052. };
  3053. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3054. return 0;
  3055. }
  3056. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3057. int type_bits, int seg)
  3058. {
  3059. struct kvm_segment kvm_seg;
  3060. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3061. return kvm_load_realmode_segment(vcpu, selector, seg);
  3062. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3063. return 1;
  3064. kvm_seg.type |= type_bits;
  3065. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3066. seg != VCPU_SREG_LDTR)
  3067. if (!kvm_seg.s)
  3068. kvm_seg.unusable = 1;
  3069. kvm_set_segment(vcpu, &kvm_seg, seg);
  3070. return 0;
  3071. }
  3072. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3073. struct tss_segment_32 *tss)
  3074. {
  3075. tss->cr3 = vcpu->arch.cr3;
  3076. tss->eip = kvm_rip_read(vcpu);
  3077. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3078. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3079. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3080. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3081. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3082. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3083. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3084. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3085. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3086. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3087. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3088. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3089. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3090. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3091. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3092. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3093. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3094. }
  3095. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3096. struct tss_segment_32 *tss)
  3097. {
  3098. kvm_set_cr3(vcpu, tss->cr3);
  3099. kvm_rip_write(vcpu, tss->eip);
  3100. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3101. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3102. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3103. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3104. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3105. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3106. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3107. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3108. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3109. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3110. return 1;
  3111. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3112. return 1;
  3113. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3114. return 1;
  3115. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3116. return 1;
  3117. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3118. return 1;
  3119. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3120. return 1;
  3121. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3122. return 1;
  3123. return 0;
  3124. }
  3125. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3126. struct tss_segment_16 *tss)
  3127. {
  3128. tss->ip = kvm_rip_read(vcpu);
  3129. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3130. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3131. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3132. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3133. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3134. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3135. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3136. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3137. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3138. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3139. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3140. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3141. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3142. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3143. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3144. }
  3145. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3146. struct tss_segment_16 *tss)
  3147. {
  3148. kvm_rip_write(vcpu, tss->ip);
  3149. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3150. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3151. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3152. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3153. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3154. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3155. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3156. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3157. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3158. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3159. return 1;
  3160. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3161. return 1;
  3162. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3163. return 1;
  3164. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3165. return 1;
  3166. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3167. return 1;
  3168. return 0;
  3169. }
  3170. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3171. u32 old_tss_base,
  3172. struct desc_struct *nseg_desc)
  3173. {
  3174. struct tss_segment_16 tss_segment_16;
  3175. int ret = 0;
  3176. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3177. sizeof tss_segment_16))
  3178. goto out;
  3179. save_state_to_tss16(vcpu, &tss_segment_16);
  3180. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3181. sizeof tss_segment_16))
  3182. goto out;
  3183. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3184. &tss_segment_16, sizeof tss_segment_16))
  3185. goto out;
  3186. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3187. goto out;
  3188. ret = 1;
  3189. out:
  3190. return ret;
  3191. }
  3192. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3193. u32 old_tss_base,
  3194. struct desc_struct *nseg_desc)
  3195. {
  3196. struct tss_segment_32 tss_segment_32;
  3197. int ret = 0;
  3198. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3199. sizeof tss_segment_32))
  3200. goto out;
  3201. save_state_to_tss32(vcpu, &tss_segment_32);
  3202. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3203. sizeof tss_segment_32))
  3204. goto out;
  3205. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3206. &tss_segment_32, sizeof tss_segment_32))
  3207. goto out;
  3208. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3209. goto out;
  3210. ret = 1;
  3211. out:
  3212. return ret;
  3213. }
  3214. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3215. {
  3216. struct kvm_segment tr_seg;
  3217. struct desc_struct cseg_desc;
  3218. struct desc_struct nseg_desc;
  3219. int ret = 0;
  3220. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3221. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3222. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3223. /* FIXME: Handle errors. Failure to read either TSS or their
  3224. * descriptors should generate a pagefault.
  3225. */
  3226. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3227. goto out;
  3228. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3229. goto out;
  3230. if (reason != TASK_SWITCH_IRET) {
  3231. int cpl;
  3232. cpl = kvm_x86_ops->get_cpl(vcpu);
  3233. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3234. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3235. return 1;
  3236. }
  3237. }
  3238. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3239. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3240. return 1;
  3241. }
  3242. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3243. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3244. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3245. }
  3246. if (reason == TASK_SWITCH_IRET) {
  3247. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3248. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3249. }
  3250. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3251. if (nseg_desc.type & 8)
  3252. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
  3253. &nseg_desc);
  3254. else
  3255. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
  3256. &nseg_desc);
  3257. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3258. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3259. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3260. }
  3261. if (reason != TASK_SWITCH_IRET) {
  3262. nseg_desc.type |= (1 << 1);
  3263. save_guest_segment_descriptor(vcpu, tss_selector,
  3264. &nseg_desc);
  3265. }
  3266. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3267. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3268. tr_seg.type = 11;
  3269. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3270. out:
  3271. return ret;
  3272. }
  3273. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3274. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3275. struct kvm_sregs *sregs)
  3276. {
  3277. int mmu_reset_needed = 0;
  3278. int i, pending_vec, max_bits;
  3279. struct descriptor_table dt;
  3280. vcpu_load(vcpu);
  3281. dt.limit = sregs->idt.limit;
  3282. dt.base = sregs->idt.base;
  3283. kvm_x86_ops->set_idt(vcpu, &dt);
  3284. dt.limit = sregs->gdt.limit;
  3285. dt.base = sregs->gdt.base;
  3286. kvm_x86_ops->set_gdt(vcpu, &dt);
  3287. vcpu->arch.cr2 = sregs->cr2;
  3288. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3289. vcpu->arch.cr3 = sregs->cr3;
  3290. kvm_set_cr8(vcpu, sregs->cr8);
  3291. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3292. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3293. kvm_set_apic_base(vcpu, sregs->apic_base);
  3294. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3295. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3296. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3297. vcpu->arch.cr0 = sregs->cr0;
  3298. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3299. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3300. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3301. load_pdptrs(vcpu, vcpu->arch.cr3);
  3302. if (mmu_reset_needed)
  3303. kvm_mmu_reset_context(vcpu);
  3304. if (!irqchip_in_kernel(vcpu->kvm)) {
  3305. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3306. sizeof vcpu->arch.irq_pending);
  3307. vcpu->arch.irq_summary = 0;
  3308. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3309. if (vcpu->arch.irq_pending[i])
  3310. __set_bit(i, &vcpu->arch.irq_summary);
  3311. } else {
  3312. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3313. pending_vec = find_first_bit(
  3314. (const unsigned long *)sregs->interrupt_bitmap,
  3315. max_bits);
  3316. /* Only pending external irq is handled here */
  3317. if (pending_vec < max_bits) {
  3318. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3319. pr_debug("Set back pending irq %d\n",
  3320. pending_vec);
  3321. }
  3322. kvm_pic_clear_isr_ack(vcpu->kvm);
  3323. }
  3324. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3325. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3326. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3327. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3328. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3329. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3330. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3331. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3332. /* Older userspace won't unhalt the vcpu on reset. */
  3333. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3334. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3335. !(vcpu->arch.cr0 & X86_CR0_PE))
  3336. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3337. vcpu_put(vcpu);
  3338. return 0;
  3339. }
  3340. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3341. struct kvm_guest_debug *dbg)
  3342. {
  3343. int i, r;
  3344. vcpu_load(vcpu);
  3345. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3346. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3347. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3348. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3349. vcpu->arch.switch_db_regs =
  3350. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3351. } else {
  3352. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3353. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3354. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3355. }
  3356. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3357. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3358. kvm_queue_exception(vcpu, DB_VECTOR);
  3359. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3360. kvm_queue_exception(vcpu, BP_VECTOR);
  3361. vcpu_put(vcpu);
  3362. return r;
  3363. }
  3364. /*
  3365. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3366. * we have asm/x86/processor.h
  3367. */
  3368. struct fxsave {
  3369. u16 cwd;
  3370. u16 swd;
  3371. u16 twd;
  3372. u16 fop;
  3373. u64 rip;
  3374. u64 rdp;
  3375. u32 mxcsr;
  3376. u32 mxcsr_mask;
  3377. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3378. #ifdef CONFIG_X86_64
  3379. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3380. #else
  3381. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3382. #endif
  3383. };
  3384. /*
  3385. * Translate a guest virtual address to a guest physical address.
  3386. */
  3387. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3388. struct kvm_translation *tr)
  3389. {
  3390. unsigned long vaddr = tr->linear_address;
  3391. gpa_t gpa;
  3392. vcpu_load(vcpu);
  3393. down_read(&vcpu->kvm->slots_lock);
  3394. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3395. up_read(&vcpu->kvm->slots_lock);
  3396. tr->physical_address = gpa;
  3397. tr->valid = gpa != UNMAPPED_GVA;
  3398. tr->writeable = 1;
  3399. tr->usermode = 0;
  3400. vcpu_put(vcpu);
  3401. return 0;
  3402. }
  3403. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3404. {
  3405. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3406. vcpu_load(vcpu);
  3407. memcpy(fpu->fpr, fxsave->st_space, 128);
  3408. fpu->fcw = fxsave->cwd;
  3409. fpu->fsw = fxsave->swd;
  3410. fpu->ftwx = fxsave->twd;
  3411. fpu->last_opcode = fxsave->fop;
  3412. fpu->last_ip = fxsave->rip;
  3413. fpu->last_dp = fxsave->rdp;
  3414. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3415. vcpu_put(vcpu);
  3416. return 0;
  3417. }
  3418. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3419. {
  3420. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3421. vcpu_load(vcpu);
  3422. memcpy(fxsave->st_space, fpu->fpr, 128);
  3423. fxsave->cwd = fpu->fcw;
  3424. fxsave->swd = fpu->fsw;
  3425. fxsave->twd = fpu->ftwx;
  3426. fxsave->fop = fpu->last_opcode;
  3427. fxsave->rip = fpu->last_ip;
  3428. fxsave->rdp = fpu->last_dp;
  3429. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3430. vcpu_put(vcpu);
  3431. return 0;
  3432. }
  3433. void fx_init(struct kvm_vcpu *vcpu)
  3434. {
  3435. unsigned after_mxcsr_mask;
  3436. /*
  3437. * Touch the fpu the first time in non atomic context as if
  3438. * this is the first fpu instruction the exception handler
  3439. * will fire before the instruction returns and it'll have to
  3440. * allocate ram with GFP_KERNEL.
  3441. */
  3442. if (!used_math())
  3443. kvm_fx_save(&vcpu->arch.host_fx_image);
  3444. /* Initialize guest FPU by resetting ours and saving into guest's */
  3445. preempt_disable();
  3446. kvm_fx_save(&vcpu->arch.host_fx_image);
  3447. kvm_fx_finit();
  3448. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3449. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3450. preempt_enable();
  3451. vcpu->arch.cr0 |= X86_CR0_ET;
  3452. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3453. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3454. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3455. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3456. }
  3457. EXPORT_SYMBOL_GPL(fx_init);
  3458. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3459. {
  3460. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3461. return;
  3462. vcpu->guest_fpu_loaded = 1;
  3463. kvm_fx_save(&vcpu->arch.host_fx_image);
  3464. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3465. }
  3466. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3467. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3468. {
  3469. if (!vcpu->guest_fpu_loaded)
  3470. return;
  3471. vcpu->guest_fpu_loaded = 0;
  3472. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3473. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3474. ++vcpu->stat.fpu_reload;
  3475. }
  3476. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3477. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3478. {
  3479. kvm_x86_ops->vcpu_free(vcpu);
  3480. }
  3481. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3482. unsigned int id)
  3483. {
  3484. return kvm_x86_ops->vcpu_create(kvm, id);
  3485. }
  3486. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3487. {
  3488. int r;
  3489. /* We do fxsave: this must be aligned. */
  3490. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3491. vcpu->arch.mtrr_state.have_fixed = 1;
  3492. vcpu_load(vcpu);
  3493. r = kvm_arch_vcpu_reset(vcpu);
  3494. if (r == 0)
  3495. r = kvm_mmu_setup(vcpu);
  3496. vcpu_put(vcpu);
  3497. if (r < 0)
  3498. goto free_vcpu;
  3499. return 0;
  3500. free_vcpu:
  3501. kvm_x86_ops->vcpu_free(vcpu);
  3502. return r;
  3503. }
  3504. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3505. {
  3506. vcpu_load(vcpu);
  3507. kvm_mmu_unload(vcpu);
  3508. vcpu_put(vcpu);
  3509. kvm_x86_ops->vcpu_free(vcpu);
  3510. }
  3511. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3512. {
  3513. vcpu->arch.nmi_pending = false;
  3514. vcpu->arch.nmi_injected = false;
  3515. vcpu->arch.switch_db_regs = 0;
  3516. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3517. vcpu->arch.dr6 = DR6_FIXED_1;
  3518. vcpu->arch.dr7 = DR7_FIXED_1;
  3519. return kvm_x86_ops->vcpu_reset(vcpu);
  3520. }
  3521. void kvm_arch_hardware_enable(void *garbage)
  3522. {
  3523. kvm_x86_ops->hardware_enable(garbage);
  3524. }
  3525. void kvm_arch_hardware_disable(void *garbage)
  3526. {
  3527. kvm_x86_ops->hardware_disable(garbage);
  3528. }
  3529. int kvm_arch_hardware_setup(void)
  3530. {
  3531. return kvm_x86_ops->hardware_setup();
  3532. }
  3533. void kvm_arch_hardware_unsetup(void)
  3534. {
  3535. kvm_x86_ops->hardware_unsetup();
  3536. }
  3537. void kvm_arch_check_processor_compat(void *rtn)
  3538. {
  3539. kvm_x86_ops->check_processor_compatibility(rtn);
  3540. }
  3541. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3542. {
  3543. struct page *page;
  3544. struct kvm *kvm;
  3545. int r;
  3546. BUG_ON(vcpu->kvm == NULL);
  3547. kvm = vcpu->kvm;
  3548. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3549. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3550. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3551. else
  3552. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3553. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3554. if (!page) {
  3555. r = -ENOMEM;
  3556. goto fail;
  3557. }
  3558. vcpu->arch.pio_data = page_address(page);
  3559. r = kvm_mmu_create(vcpu);
  3560. if (r < 0)
  3561. goto fail_free_pio_data;
  3562. if (irqchip_in_kernel(kvm)) {
  3563. r = kvm_create_lapic(vcpu);
  3564. if (r < 0)
  3565. goto fail_mmu_destroy;
  3566. }
  3567. return 0;
  3568. fail_mmu_destroy:
  3569. kvm_mmu_destroy(vcpu);
  3570. fail_free_pio_data:
  3571. free_page((unsigned long)vcpu->arch.pio_data);
  3572. fail:
  3573. return r;
  3574. }
  3575. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3576. {
  3577. kvm_free_lapic(vcpu);
  3578. down_read(&vcpu->kvm->slots_lock);
  3579. kvm_mmu_destroy(vcpu);
  3580. up_read(&vcpu->kvm->slots_lock);
  3581. free_page((unsigned long)vcpu->arch.pio_data);
  3582. }
  3583. struct kvm *kvm_arch_create_vm(void)
  3584. {
  3585. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3586. if (!kvm)
  3587. return ERR_PTR(-ENOMEM);
  3588. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3589. INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
  3590. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3591. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3592. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  3593. return kvm;
  3594. }
  3595. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3596. {
  3597. vcpu_load(vcpu);
  3598. kvm_mmu_unload(vcpu);
  3599. vcpu_put(vcpu);
  3600. }
  3601. static void kvm_free_vcpus(struct kvm *kvm)
  3602. {
  3603. unsigned int i;
  3604. /*
  3605. * Unpin any mmu pages first.
  3606. */
  3607. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3608. if (kvm->vcpus[i])
  3609. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3610. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3611. if (kvm->vcpus[i]) {
  3612. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3613. kvm->vcpus[i] = NULL;
  3614. }
  3615. }
  3616. }
  3617. void kvm_arch_sync_events(struct kvm *kvm)
  3618. {
  3619. kvm_free_all_assigned_devices(kvm);
  3620. }
  3621. void kvm_arch_destroy_vm(struct kvm *kvm)
  3622. {
  3623. kvm_iommu_unmap_guest(kvm);
  3624. kvm_free_pit(kvm);
  3625. kfree(kvm->arch.vpic);
  3626. kfree(kvm->arch.vioapic);
  3627. kvm_free_vcpus(kvm);
  3628. kvm_free_physmem(kvm);
  3629. if (kvm->arch.apic_access_page)
  3630. put_page(kvm->arch.apic_access_page);
  3631. if (kvm->arch.ept_identity_pagetable)
  3632. put_page(kvm->arch.ept_identity_pagetable);
  3633. kfree(kvm);
  3634. }
  3635. int kvm_arch_set_memory_region(struct kvm *kvm,
  3636. struct kvm_userspace_memory_region *mem,
  3637. struct kvm_memory_slot old,
  3638. int user_alloc)
  3639. {
  3640. int npages = mem->memory_size >> PAGE_SHIFT;
  3641. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3642. /*To keep backward compatibility with older userspace,
  3643. *x86 needs to hanlde !user_alloc case.
  3644. */
  3645. if (!user_alloc) {
  3646. if (npages && !old.rmap) {
  3647. unsigned long userspace_addr;
  3648. down_write(&current->mm->mmap_sem);
  3649. userspace_addr = do_mmap(NULL, 0,
  3650. npages * PAGE_SIZE,
  3651. PROT_READ | PROT_WRITE,
  3652. MAP_PRIVATE | MAP_ANONYMOUS,
  3653. 0);
  3654. up_write(&current->mm->mmap_sem);
  3655. if (IS_ERR((void *)userspace_addr))
  3656. return PTR_ERR((void *)userspace_addr);
  3657. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3658. spin_lock(&kvm->mmu_lock);
  3659. memslot->userspace_addr = userspace_addr;
  3660. spin_unlock(&kvm->mmu_lock);
  3661. } else {
  3662. if (!old.user_alloc && old.rmap) {
  3663. int ret;
  3664. down_write(&current->mm->mmap_sem);
  3665. ret = do_munmap(current->mm, old.userspace_addr,
  3666. old.npages * PAGE_SIZE);
  3667. up_write(&current->mm->mmap_sem);
  3668. if (ret < 0)
  3669. printk(KERN_WARNING
  3670. "kvm_vm_ioctl_set_memory_region: "
  3671. "failed to munmap memory\n");
  3672. }
  3673. }
  3674. }
  3675. if (!kvm->arch.n_requested_mmu_pages) {
  3676. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3677. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3678. }
  3679. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3680. kvm_flush_remote_tlbs(kvm);
  3681. return 0;
  3682. }
  3683. void kvm_arch_flush_shadow(struct kvm *kvm)
  3684. {
  3685. kvm_mmu_zap_all(kvm);
  3686. }
  3687. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3688. {
  3689. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3690. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  3691. || vcpu->arch.nmi_pending;
  3692. }
  3693. static void vcpu_kick_intr(void *info)
  3694. {
  3695. #ifdef DEBUG
  3696. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3697. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3698. #endif
  3699. }
  3700. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3701. {
  3702. int ipi_pcpu = vcpu->cpu;
  3703. int cpu = get_cpu();
  3704. if (waitqueue_active(&vcpu->wq)) {
  3705. wake_up_interruptible(&vcpu->wq);
  3706. ++vcpu->stat.halt_wakeup;
  3707. }
  3708. /*
  3709. * We may be called synchronously with irqs disabled in guest mode,
  3710. * So need not to call smp_call_function_single() in that case.
  3711. */
  3712. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3713. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  3714. put_cpu();
  3715. }