mm.h 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/bug.h>
  7. #include <linux/list.h>
  8. #include <linux/mmzone.h>
  9. #include <linux/rbtree.h>
  10. #include <linux/atomic.h>
  11. #include <linux/debug_locks.h>
  12. #include <linux/mm_types.h>
  13. #include <linux/range.h>
  14. #include <linux/pfn.h>
  15. #include <linux/bit_spinlock.h>
  16. #include <linux/shrinker.h>
  17. struct mempolicy;
  18. struct anon_vma;
  19. struct anon_vma_chain;
  20. struct file_ra_state;
  21. struct user_struct;
  22. struct writeback_control;
  23. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  24. extern unsigned long max_mapnr;
  25. #endif
  26. extern unsigned long num_physpages;
  27. extern unsigned long totalram_pages;
  28. extern void * high_memory;
  29. extern int page_cluster;
  30. #ifdef CONFIG_SYSCTL
  31. extern int sysctl_legacy_va_layout;
  32. #else
  33. #define sysctl_legacy_va_layout 0
  34. #endif
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/processor.h>
  38. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  39. /* to align the pointer to the (next) page boundary */
  40. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  41. /*
  42. * Linux kernel virtual memory manager primitives.
  43. * The idea being to have a "virtual" mm in the same way
  44. * we have a virtual fs - giving a cleaner interface to the
  45. * mm details, and allowing different kinds of memory mappings
  46. * (from shared memory to executable loading to arbitrary
  47. * mmap() functions).
  48. */
  49. extern struct kmem_cache *vm_area_cachep;
  50. #ifndef CONFIG_MMU
  51. extern struct rb_root nommu_region_tree;
  52. extern struct rw_semaphore nommu_region_sem;
  53. extern unsigned int kobjsize(const void *objp);
  54. #endif
  55. /*
  56. * vm_flags in vm_area_struct, see mm_types.h.
  57. */
  58. #define VM_NONE 0x00000000
  59. #define VM_READ 0x00000001 /* currently active flags */
  60. #define VM_WRITE 0x00000002
  61. #define VM_EXEC 0x00000004
  62. #define VM_SHARED 0x00000008
  63. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  64. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  65. #define VM_MAYWRITE 0x00000020
  66. #define VM_MAYEXEC 0x00000040
  67. #define VM_MAYSHARE 0x00000080
  68. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  69. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  70. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  71. #define VM_LOCKED 0x00002000
  72. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  73. /* Used by sys_madvise() */
  74. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  75. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  76. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  77. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  78. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  79. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  80. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  81. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  82. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  83. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  84. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  85. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  86. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  87. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  88. #if defined(CONFIG_X86)
  89. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  90. #elif defined(CONFIG_PPC)
  91. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  92. #elif defined(CONFIG_PARISC)
  93. # define VM_GROWSUP VM_ARCH_1
  94. #elif defined(CONFIG_IA64)
  95. # define VM_GROWSUP VM_ARCH_1
  96. #elif !defined(CONFIG_MMU)
  97. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  98. #endif
  99. #ifndef VM_GROWSUP
  100. # define VM_GROWSUP VM_NONE
  101. #endif
  102. /* Bits set in the VMA until the stack is in its final location */
  103. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  104. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  105. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  106. #endif
  107. #ifdef CONFIG_STACK_GROWSUP
  108. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  109. #else
  110. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  111. #endif
  112. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  113. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  114. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  115. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  116. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  117. /*
  118. * Special vmas that are non-mergable, non-mlock()able.
  119. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  120. */
  121. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
  122. /*
  123. * mapping from the currently active vm_flags protection bits (the
  124. * low four bits) to a page protection mask..
  125. */
  126. extern pgprot_t protection_map[16];
  127. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  128. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  129. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  130. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  131. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  132. #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
  133. #define FAULT_FLAG_TRIED 0x40 /* second try */
  134. /*
  135. * vm_fault is filled by the the pagefault handler and passed to the vma's
  136. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  137. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  138. *
  139. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  140. * is used, one may implement ->remap_pages to get nonlinear mapping support.
  141. */
  142. struct vm_fault {
  143. unsigned int flags; /* FAULT_FLAG_xxx flags */
  144. pgoff_t pgoff; /* Logical page offset based on vma */
  145. void __user *virtual_address; /* Faulting virtual address */
  146. struct page *page; /* ->fault handlers should return a
  147. * page here, unless VM_FAULT_NOPAGE
  148. * is set (which is also implied by
  149. * VM_FAULT_ERROR).
  150. */
  151. };
  152. /*
  153. * These are the virtual MM functions - opening of an area, closing and
  154. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  155. * to the functions called when a no-page or a wp-page exception occurs.
  156. */
  157. struct vm_operations_struct {
  158. void (*open)(struct vm_area_struct * area);
  159. void (*close)(struct vm_area_struct * area);
  160. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  161. /* notification that a previously read-only page is about to become
  162. * writable, if an error is returned it will cause a SIGBUS */
  163. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  164. /* called by access_process_vm when get_user_pages() fails, typically
  165. * for use by special VMAs that can switch between memory and hardware
  166. */
  167. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  168. void *buf, int len, int write);
  169. #ifdef CONFIG_NUMA
  170. /*
  171. * set_policy() op must add a reference to any non-NULL @new mempolicy
  172. * to hold the policy upon return. Caller should pass NULL @new to
  173. * remove a policy and fall back to surrounding context--i.e. do not
  174. * install a MPOL_DEFAULT policy, nor the task or system default
  175. * mempolicy.
  176. */
  177. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  178. /*
  179. * get_policy() op must add reference [mpol_get()] to any policy at
  180. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  181. * in mm/mempolicy.c will do this automatically.
  182. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  183. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  184. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  185. * must return NULL--i.e., do not "fallback" to task or system default
  186. * policy.
  187. */
  188. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  189. unsigned long addr);
  190. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  191. const nodemask_t *to, unsigned long flags);
  192. #endif
  193. /* called by sys_remap_file_pages() to populate non-linear mapping */
  194. int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
  195. unsigned long size, pgoff_t pgoff);
  196. };
  197. struct mmu_gather;
  198. struct inode;
  199. #define page_private(page) ((page)->private)
  200. #define set_page_private(page, v) ((page)->private = (v))
  201. /* It's valid only if the page is free path or free_list */
  202. static inline void set_freepage_migratetype(struct page *page, int migratetype)
  203. {
  204. page->index = migratetype;
  205. }
  206. /* It's valid only if the page is free path or free_list */
  207. static inline int get_freepage_migratetype(struct page *page)
  208. {
  209. return page->index;
  210. }
  211. /*
  212. * FIXME: take this include out, include page-flags.h in
  213. * files which need it (119 of them)
  214. */
  215. #include <linux/page-flags.h>
  216. #include <linux/huge_mm.h>
  217. /*
  218. * Methods to modify the page usage count.
  219. *
  220. * What counts for a page usage:
  221. * - cache mapping (page->mapping)
  222. * - private data (page->private)
  223. * - page mapped in a task's page tables, each mapping
  224. * is counted separately
  225. *
  226. * Also, many kernel routines increase the page count before a critical
  227. * routine so they can be sure the page doesn't go away from under them.
  228. */
  229. /*
  230. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  231. */
  232. static inline int put_page_testzero(struct page *page)
  233. {
  234. VM_BUG_ON(atomic_read(&page->_count) == 0);
  235. return atomic_dec_and_test(&page->_count);
  236. }
  237. /*
  238. * Try to grab a ref unless the page has a refcount of zero, return false if
  239. * that is the case.
  240. */
  241. static inline int get_page_unless_zero(struct page *page)
  242. {
  243. return atomic_inc_not_zero(&page->_count);
  244. }
  245. extern int page_is_ram(unsigned long pfn);
  246. /* Support for virtually mapped pages */
  247. struct page *vmalloc_to_page(const void *addr);
  248. unsigned long vmalloc_to_pfn(const void *addr);
  249. /*
  250. * Determine if an address is within the vmalloc range
  251. *
  252. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  253. * is no special casing required.
  254. */
  255. static inline int is_vmalloc_addr(const void *x)
  256. {
  257. #ifdef CONFIG_MMU
  258. unsigned long addr = (unsigned long)x;
  259. return addr >= VMALLOC_START && addr < VMALLOC_END;
  260. #else
  261. return 0;
  262. #endif
  263. }
  264. #ifdef CONFIG_MMU
  265. extern int is_vmalloc_or_module_addr(const void *x);
  266. #else
  267. static inline int is_vmalloc_or_module_addr(const void *x)
  268. {
  269. return 0;
  270. }
  271. #endif
  272. static inline void compound_lock(struct page *page)
  273. {
  274. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  275. VM_BUG_ON(PageSlab(page));
  276. bit_spin_lock(PG_compound_lock, &page->flags);
  277. #endif
  278. }
  279. static inline void compound_unlock(struct page *page)
  280. {
  281. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  282. VM_BUG_ON(PageSlab(page));
  283. bit_spin_unlock(PG_compound_lock, &page->flags);
  284. #endif
  285. }
  286. static inline unsigned long compound_lock_irqsave(struct page *page)
  287. {
  288. unsigned long uninitialized_var(flags);
  289. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  290. local_irq_save(flags);
  291. compound_lock(page);
  292. #endif
  293. return flags;
  294. }
  295. static inline void compound_unlock_irqrestore(struct page *page,
  296. unsigned long flags)
  297. {
  298. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  299. compound_unlock(page);
  300. local_irq_restore(flags);
  301. #endif
  302. }
  303. static inline struct page *compound_head(struct page *page)
  304. {
  305. if (unlikely(PageTail(page)))
  306. return page->first_page;
  307. return page;
  308. }
  309. /*
  310. * The atomic page->_mapcount, starts from -1: so that transitions
  311. * both from it and to it can be tracked, using atomic_inc_and_test
  312. * and atomic_add_negative(-1).
  313. */
  314. static inline void reset_page_mapcount(struct page *page)
  315. {
  316. atomic_set(&(page)->_mapcount, -1);
  317. }
  318. static inline int page_mapcount(struct page *page)
  319. {
  320. return atomic_read(&(page)->_mapcount) + 1;
  321. }
  322. static inline int page_count(struct page *page)
  323. {
  324. return atomic_read(&compound_head(page)->_count);
  325. }
  326. static inline void get_huge_page_tail(struct page *page)
  327. {
  328. /*
  329. * __split_huge_page_refcount() cannot run
  330. * from under us.
  331. */
  332. VM_BUG_ON(page_mapcount(page) < 0);
  333. VM_BUG_ON(atomic_read(&page->_count) != 0);
  334. atomic_inc(&page->_mapcount);
  335. }
  336. extern bool __get_page_tail(struct page *page);
  337. static inline void get_page(struct page *page)
  338. {
  339. if (unlikely(PageTail(page)))
  340. if (likely(__get_page_tail(page)))
  341. return;
  342. /*
  343. * Getting a normal page or the head of a compound page
  344. * requires to already have an elevated page->_count.
  345. */
  346. VM_BUG_ON(atomic_read(&page->_count) <= 0);
  347. atomic_inc(&page->_count);
  348. }
  349. static inline struct page *virt_to_head_page(const void *x)
  350. {
  351. struct page *page = virt_to_page(x);
  352. return compound_head(page);
  353. }
  354. /*
  355. * Setup the page count before being freed into the page allocator for
  356. * the first time (boot or memory hotplug)
  357. */
  358. static inline void init_page_count(struct page *page)
  359. {
  360. atomic_set(&page->_count, 1);
  361. }
  362. /*
  363. * PageBuddy() indicate that the page is free and in the buddy system
  364. * (see mm/page_alloc.c).
  365. *
  366. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  367. * -2 so that an underflow of the page_mapcount() won't be mistaken
  368. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  369. * efficiently by most CPU architectures.
  370. */
  371. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  372. static inline int PageBuddy(struct page *page)
  373. {
  374. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  375. }
  376. static inline void __SetPageBuddy(struct page *page)
  377. {
  378. VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
  379. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  380. }
  381. static inline void __ClearPageBuddy(struct page *page)
  382. {
  383. VM_BUG_ON(!PageBuddy(page));
  384. atomic_set(&page->_mapcount, -1);
  385. }
  386. void put_page(struct page *page);
  387. void put_pages_list(struct list_head *pages);
  388. void split_page(struct page *page, unsigned int order);
  389. int split_free_page(struct page *page);
  390. /*
  391. * Compound pages have a destructor function. Provide a
  392. * prototype for that function and accessor functions.
  393. * These are _only_ valid on the head of a PG_compound page.
  394. */
  395. typedef void compound_page_dtor(struct page *);
  396. static inline void set_compound_page_dtor(struct page *page,
  397. compound_page_dtor *dtor)
  398. {
  399. page[1].lru.next = (void *)dtor;
  400. }
  401. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  402. {
  403. return (compound_page_dtor *)page[1].lru.next;
  404. }
  405. static inline int compound_order(struct page *page)
  406. {
  407. if (!PageHead(page))
  408. return 0;
  409. return (unsigned long)page[1].lru.prev;
  410. }
  411. static inline int compound_trans_order(struct page *page)
  412. {
  413. int order;
  414. unsigned long flags;
  415. if (!PageHead(page))
  416. return 0;
  417. flags = compound_lock_irqsave(page);
  418. order = compound_order(page);
  419. compound_unlock_irqrestore(page, flags);
  420. return order;
  421. }
  422. static inline void set_compound_order(struct page *page, unsigned long order)
  423. {
  424. page[1].lru.prev = (void *)order;
  425. }
  426. #ifdef CONFIG_MMU
  427. /*
  428. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  429. * servicing faults for write access. In the normal case, do always want
  430. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  431. * that do not have writing enabled, when used by access_process_vm.
  432. */
  433. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  434. {
  435. if (likely(vma->vm_flags & VM_WRITE))
  436. pte = pte_mkwrite(pte);
  437. return pte;
  438. }
  439. #endif
  440. /*
  441. * Multiple processes may "see" the same page. E.g. for untouched
  442. * mappings of /dev/null, all processes see the same page full of
  443. * zeroes, and text pages of executables and shared libraries have
  444. * only one copy in memory, at most, normally.
  445. *
  446. * For the non-reserved pages, page_count(page) denotes a reference count.
  447. * page_count() == 0 means the page is free. page->lru is then used for
  448. * freelist management in the buddy allocator.
  449. * page_count() > 0 means the page has been allocated.
  450. *
  451. * Pages are allocated by the slab allocator in order to provide memory
  452. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  453. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  454. * unless a particular usage is carefully commented. (the responsibility of
  455. * freeing the kmalloc memory is the caller's, of course).
  456. *
  457. * A page may be used by anyone else who does a __get_free_page().
  458. * In this case, page_count still tracks the references, and should only
  459. * be used through the normal accessor functions. The top bits of page->flags
  460. * and page->virtual store page management information, but all other fields
  461. * are unused and could be used privately, carefully. The management of this
  462. * page is the responsibility of the one who allocated it, and those who have
  463. * subsequently been given references to it.
  464. *
  465. * The other pages (we may call them "pagecache pages") are completely
  466. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  467. * The following discussion applies only to them.
  468. *
  469. * A pagecache page contains an opaque `private' member, which belongs to the
  470. * page's address_space. Usually, this is the address of a circular list of
  471. * the page's disk buffers. PG_private must be set to tell the VM to call
  472. * into the filesystem to release these pages.
  473. *
  474. * A page may belong to an inode's memory mapping. In this case, page->mapping
  475. * is the pointer to the inode, and page->index is the file offset of the page,
  476. * in units of PAGE_CACHE_SIZE.
  477. *
  478. * If pagecache pages are not associated with an inode, they are said to be
  479. * anonymous pages. These may become associated with the swapcache, and in that
  480. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  481. *
  482. * In either case (swapcache or inode backed), the pagecache itself holds one
  483. * reference to the page. Setting PG_private should also increment the
  484. * refcount. The each user mapping also has a reference to the page.
  485. *
  486. * The pagecache pages are stored in a per-mapping radix tree, which is
  487. * rooted at mapping->page_tree, and indexed by offset.
  488. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  489. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  490. *
  491. * All pagecache pages may be subject to I/O:
  492. * - inode pages may need to be read from disk,
  493. * - inode pages which have been modified and are MAP_SHARED may need
  494. * to be written back to the inode on disk,
  495. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  496. * modified may need to be swapped out to swap space and (later) to be read
  497. * back into memory.
  498. */
  499. /*
  500. * The zone field is never updated after free_area_init_core()
  501. * sets it, so none of the operations on it need to be atomic.
  502. */
  503. /*
  504. * page->flags layout:
  505. *
  506. * There are three possibilities for how page->flags get
  507. * laid out. The first is for the normal case, without
  508. * sparsemem. The second is for sparsemem when there is
  509. * plenty of space for node and section. The last is when
  510. * we have run out of space and have to fall back to an
  511. * alternate (slower) way of determining the node.
  512. *
  513. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  514. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  515. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  516. */
  517. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  518. #define SECTIONS_WIDTH SECTIONS_SHIFT
  519. #else
  520. #define SECTIONS_WIDTH 0
  521. #endif
  522. #define ZONES_WIDTH ZONES_SHIFT
  523. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  524. #define NODES_WIDTH NODES_SHIFT
  525. #else
  526. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  527. #error "Vmemmap: No space for nodes field in page flags"
  528. #endif
  529. #define NODES_WIDTH 0
  530. #endif
  531. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  532. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  533. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  534. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  535. /*
  536. * We are going to use the flags for the page to node mapping if its in
  537. * there. This includes the case where there is no node, so it is implicit.
  538. */
  539. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  540. #define NODE_NOT_IN_PAGE_FLAGS
  541. #endif
  542. /*
  543. * Define the bit shifts to access each section. For non-existent
  544. * sections we define the shift as 0; that plus a 0 mask ensures
  545. * the compiler will optimise away reference to them.
  546. */
  547. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  548. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  549. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  550. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  551. #ifdef NODE_NOT_IN_PAGE_FLAGS
  552. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  553. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  554. SECTIONS_PGOFF : ZONES_PGOFF)
  555. #else
  556. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  557. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  558. NODES_PGOFF : ZONES_PGOFF)
  559. #endif
  560. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  561. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  562. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  563. #endif
  564. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  565. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  566. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  567. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  568. static inline enum zone_type page_zonenum(const struct page *page)
  569. {
  570. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  571. }
  572. /*
  573. * The identification function is only used by the buddy allocator for
  574. * determining if two pages could be buddies. We are not really
  575. * identifying a zone since we could be using a the section number
  576. * id if we have not node id available in page flags.
  577. * We guarantee only that it will return the same value for two
  578. * combinable pages in a zone.
  579. */
  580. static inline int page_zone_id(struct page *page)
  581. {
  582. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  583. }
  584. static inline int zone_to_nid(struct zone *zone)
  585. {
  586. #ifdef CONFIG_NUMA
  587. return zone->node;
  588. #else
  589. return 0;
  590. #endif
  591. }
  592. #ifdef NODE_NOT_IN_PAGE_FLAGS
  593. extern int page_to_nid(const struct page *page);
  594. #else
  595. static inline int page_to_nid(const struct page *page)
  596. {
  597. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  598. }
  599. #endif
  600. #ifdef CONFIG_NUMA_BALANCING
  601. static inline int page_xchg_last_nid(struct page *page, int nid)
  602. {
  603. return xchg(&page->_last_nid, nid);
  604. }
  605. static inline int page_last_nid(struct page *page)
  606. {
  607. return page->_last_nid;
  608. }
  609. static inline void reset_page_last_nid(struct page *page)
  610. {
  611. page->_last_nid = -1;
  612. }
  613. #else
  614. static inline int page_xchg_last_nid(struct page *page, int nid)
  615. {
  616. return page_to_nid(page);
  617. }
  618. static inline int page_last_nid(struct page *page)
  619. {
  620. return page_to_nid(page);
  621. }
  622. static inline void reset_page_last_nid(struct page *page)
  623. {
  624. }
  625. #endif
  626. static inline struct zone *page_zone(const struct page *page)
  627. {
  628. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  629. }
  630. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  631. static inline void set_page_section(struct page *page, unsigned long section)
  632. {
  633. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  634. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  635. }
  636. static inline unsigned long page_to_section(const struct page *page)
  637. {
  638. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  639. }
  640. #endif
  641. static inline void set_page_zone(struct page *page, enum zone_type zone)
  642. {
  643. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  644. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  645. }
  646. static inline void set_page_node(struct page *page, unsigned long node)
  647. {
  648. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  649. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  650. }
  651. static inline void set_page_links(struct page *page, enum zone_type zone,
  652. unsigned long node, unsigned long pfn)
  653. {
  654. set_page_zone(page, zone);
  655. set_page_node(page, node);
  656. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  657. set_page_section(page, pfn_to_section_nr(pfn));
  658. #endif
  659. }
  660. /*
  661. * Some inline functions in vmstat.h depend on page_zone()
  662. */
  663. #include <linux/vmstat.h>
  664. static __always_inline void *lowmem_page_address(const struct page *page)
  665. {
  666. return __va(PFN_PHYS(page_to_pfn(page)));
  667. }
  668. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  669. #define HASHED_PAGE_VIRTUAL
  670. #endif
  671. #if defined(WANT_PAGE_VIRTUAL)
  672. #define page_address(page) ((page)->virtual)
  673. #define set_page_address(page, address) \
  674. do { \
  675. (page)->virtual = (address); \
  676. } while(0)
  677. #define page_address_init() do { } while(0)
  678. #endif
  679. #if defined(HASHED_PAGE_VIRTUAL)
  680. void *page_address(const struct page *page);
  681. void set_page_address(struct page *page, void *virtual);
  682. void page_address_init(void);
  683. #endif
  684. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  685. #define page_address(page) lowmem_page_address(page)
  686. #define set_page_address(page, address) do { } while(0)
  687. #define page_address_init() do { } while(0)
  688. #endif
  689. /*
  690. * On an anonymous page mapped into a user virtual memory area,
  691. * page->mapping points to its anon_vma, not to a struct address_space;
  692. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  693. *
  694. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  695. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  696. * and then page->mapping points, not to an anon_vma, but to a private
  697. * structure which KSM associates with that merged page. See ksm.h.
  698. *
  699. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  700. *
  701. * Please note that, confusingly, "page_mapping" refers to the inode
  702. * address_space which maps the page from disk; whereas "page_mapped"
  703. * refers to user virtual address space into which the page is mapped.
  704. */
  705. #define PAGE_MAPPING_ANON 1
  706. #define PAGE_MAPPING_KSM 2
  707. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  708. extern struct address_space swapper_space;
  709. static inline struct address_space *page_mapping(struct page *page)
  710. {
  711. struct address_space *mapping = page->mapping;
  712. VM_BUG_ON(PageSlab(page));
  713. if (unlikely(PageSwapCache(page)))
  714. mapping = &swapper_space;
  715. else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  716. mapping = NULL;
  717. return mapping;
  718. }
  719. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  720. static inline void *page_rmapping(struct page *page)
  721. {
  722. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  723. }
  724. extern struct address_space *__page_file_mapping(struct page *);
  725. static inline
  726. struct address_space *page_file_mapping(struct page *page)
  727. {
  728. if (unlikely(PageSwapCache(page)))
  729. return __page_file_mapping(page);
  730. return page->mapping;
  731. }
  732. static inline int PageAnon(struct page *page)
  733. {
  734. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  735. }
  736. /*
  737. * Return the pagecache index of the passed page. Regular pagecache pages
  738. * use ->index whereas swapcache pages use ->private
  739. */
  740. static inline pgoff_t page_index(struct page *page)
  741. {
  742. if (unlikely(PageSwapCache(page)))
  743. return page_private(page);
  744. return page->index;
  745. }
  746. extern pgoff_t __page_file_index(struct page *page);
  747. /*
  748. * Return the file index of the page. Regular pagecache pages use ->index
  749. * whereas swapcache pages use swp_offset(->private)
  750. */
  751. static inline pgoff_t page_file_index(struct page *page)
  752. {
  753. if (unlikely(PageSwapCache(page)))
  754. return __page_file_index(page);
  755. return page->index;
  756. }
  757. /*
  758. * Return true if this page is mapped into pagetables.
  759. */
  760. static inline int page_mapped(struct page *page)
  761. {
  762. return atomic_read(&(page)->_mapcount) >= 0;
  763. }
  764. /*
  765. * Different kinds of faults, as returned by handle_mm_fault().
  766. * Used to decide whether a process gets delivered SIGBUS or
  767. * just gets major/minor fault counters bumped up.
  768. */
  769. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  770. #define VM_FAULT_OOM 0x0001
  771. #define VM_FAULT_SIGBUS 0x0002
  772. #define VM_FAULT_MAJOR 0x0004
  773. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  774. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  775. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  776. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  777. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  778. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  779. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  780. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  781. VM_FAULT_HWPOISON_LARGE)
  782. /* Encode hstate index for a hwpoisoned large page */
  783. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  784. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  785. /*
  786. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  787. */
  788. extern void pagefault_out_of_memory(void);
  789. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  790. /*
  791. * Flags passed to show_mem() and show_free_areas() to suppress output in
  792. * various contexts.
  793. */
  794. #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
  795. extern void show_free_areas(unsigned int flags);
  796. extern bool skip_free_areas_node(unsigned int flags, int nid);
  797. int shmem_zero_setup(struct vm_area_struct *);
  798. extern int can_do_mlock(void);
  799. extern int user_shm_lock(size_t, struct user_struct *);
  800. extern void user_shm_unlock(size_t, struct user_struct *);
  801. /*
  802. * Parameter block passed down to zap_pte_range in exceptional cases.
  803. */
  804. struct zap_details {
  805. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  806. struct address_space *check_mapping; /* Check page->mapping if set */
  807. pgoff_t first_index; /* Lowest page->index to unmap */
  808. pgoff_t last_index; /* Highest page->index to unmap */
  809. };
  810. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  811. pte_t pte);
  812. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  813. unsigned long size);
  814. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  815. unsigned long size, struct zap_details *);
  816. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  817. unsigned long start, unsigned long end);
  818. /**
  819. * mm_walk - callbacks for walk_page_range
  820. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  821. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  822. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  823. * this handler is required to be able to handle
  824. * pmd_trans_huge() pmds. They may simply choose to
  825. * split_huge_page() instead of handling it explicitly.
  826. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  827. * @pte_hole: if set, called for each hole at all levels
  828. * @hugetlb_entry: if set, called for each hugetlb entry
  829. * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
  830. * is used.
  831. *
  832. * (see walk_page_range for more details)
  833. */
  834. struct mm_walk {
  835. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  836. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  837. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  838. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  839. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  840. int (*hugetlb_entry)(pte_t *, unsigned long,
  841. unsigned long, unsigned long, struct mm_walk *);
  842. struct mm_struct *mm;
  843. void *private;
  844. };
  845. int walk_page_range(unsigned long addr, unsigned long end,
  846. struct mm_walk *walk);
  847. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  848. unsigned long end, unsigned long floor, unsigned long ceiling);
  849. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  850. struct vm_area_struct *vma);
  851. void unmap_mapping_range(struct address_space *mapping,
  852. loff_t const holebegin, loff_t const holelen, int even_cows);
  853. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  854. unsigned long *pfn);
  855. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  856. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  857. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  858. void *buf, int len, int write);
  859. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  860. loff_t const holebegin, loff_t const holelen)
  861. {
  862. unmap_mapping_range(mapping, holebegin, holelen, 0);
  863. }
  864. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  865. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  866. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  867. int truncate_inode_page(struct address_space *mapping, struct page *page);
  868. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  869. int invalidate_inode_page(struct page *page);
  870. #ifdef CONFIG_MMU
  871. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  872. unsigned long address, unsigned int flags);
  873. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  874. unsigned long address, unsigned int fault_flags);
  875. #else
  876. static inline int handle_mm_fault(struct mm_struct *mm,
  877. struct vm_area_struct *vma, unsigned long address,
  878. unsigned int flags)
  879. {
  880. /* should never happen if there's no MMU */
  881. BUG();
  882. return VM_FAULT_SIGBUS;
  883. }
  884. static inline int fixup_user_fault(struct task_struct *tsk,
  885. struct mm_struct *mm, unsigned long address,
  886. unsigned int fault_flags)
  887. {
  888. /* should never happen if there's no MMU */
  889. BUG();
  890. return -EFAULT;
  891. }
  892. #endif
  893. extern int make_pages_present(unsigned long addr, unsigned long end);
  894. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  895. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  896. void *buf, int len, int write);
  897. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  898. unsigned long start, int len, unsigned int foll_flags,
  899. struct page **pages, struct vm_area_struct **vmas,
  900. int *nonblocking);
  901. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  902. unsigned long start, int nr_pages, int write, int force,
  903. struct page **pages, struct vm_area_struct **vmas);
  904. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  905. struct page **pages);
  906. struct kvec;
  907. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  908. struct page **pages);
  909. int get_kernel_page(unsigned long start, int write, struct page **pages);
  910. struct page *get_dump_page(unsigned long addr);
  911. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  912. extern void do_invalidatepage(struct page *page, unsigned long offset);
  913. int __set_page_dirty_nobuffers(struct page *page);
  914. int __set_page_dirty_no_writeback(struct page *page);
  915. int redirty_page_for_writepage(struct writeback_control *wbc,
  916. struct page *page);
  917. void account_page_dirtied(struct page *page, struct address_space *mapping);
  918. void account_page_writeback(struct page *page);
  919. int set_page_dirty(struct page *page);
  920. int set_page_dirty_lock(struct page *page);
  921. int clear_page_dirty_for_io(struct page *page);
  922. /* Is the vma a continuation of the stack vma above it? */
  923. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  924. {
  925. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  926. }
  927. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  928. unsigned long addr)
  929. {
  930. return (vma->vm_flags & VM_GROWSDOWN) &&
  931. (vma->vm_start == addr) &&
  932. !vma_growsdown(vma->vm_prev, addr);
  933. }
  934. /* Is the vma a continuation of the stack vma below it? */
  935. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  936. {
  937. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  938. }
  939. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  940. unsigned long addr)
  941. {
  942. return (vma->vm_flags & VM_GROWSUP) &&
  943. (vma->vm_end == addr) &&
  944. !vma_growsup(vma->vm_next, addr);
  945. }
  946. extern pid_t
  947. vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
  948. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  949. unsigned long old_addr, struct vm_area_struct *new_vma,
  950. unsigned long new_addr, unsigned long len,
  951. bool need_rmap_locks);
  952. extern unsigned long do_mremap(unsigned long addr,
  953. unsigned long old_len, unsigned long new_len,
  954. unsigned long flags, unsigned long new_addr);
  955. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  956. unsigned long end, pgprot_t newprot,
  957. int dirty_accountable, int prot_numa);
  958. extern int mprotect_fixup(struct vm_area_struct *vma,
  959. struct vm_area_struct **pprev, unsigned long start,
  960. unsigned long end, unsigned long newflags);
  961. /*
  962. * doesn't attempt to fault and will return short.
  963. */
  964. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  965. struct page **pages);
  966. /*
  967. * per-process(per-mm_struct) statistics.
  968. */
  969. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  970. {
  971. long val = atomic_long_read(&mm->rss_stat.count[member]);
  972. #ifdef SPLIT_RSS_COUNTING
  973. /*
  974. * counter is updated in asynchronous manner and may go to minus.
  975. * But it's never be expected number for users.
  976. */
  977. if (val < 0)
  978. val = 0;
  979. #endif
  980. return (unsigned long)val;
  981. }
  982. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  983. {
  984. atomic_long_add(value, &mm->rss_stat.count[member]);
  985. }
  986. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  987. {
  988. atomic_long_inc(&mm->rss_stat.count[member]);
  989. }
  990. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  991. {
  992. atomic_long_dec(&mm->rss_stat.count[member]);
  993. }
  994. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  995. {
  996. return get_mm_counter(mm, MM_FILEPAGES) +
  997. get_mm_counter(mm, MM_ANONPAGES);
  998. }
  999. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1000. {
  1001. return max(mm->hiwater_rss, get_mm_rss(mm));
  1002. }
  1003. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1004. {
  1005. return max(mm->hiwater_vm, mm->total_vm);
  1006. }
  1007. static inline void update_hiwater_rss(struct mm_struct *mm)
  1008. {
  1009. unsigned long _rss = get_mm_rss(mm);
  1010. if ((mm)->hiwater_rss < _rss)
  1011. (mm)->hiwater_rss = _rss;
  1012. }
  1013. static inline void update_hiwater_vm(struct mm_struct *mm)
  1014. {
  1015. if (mm->hiwater_vm < mm->total_vm)
  1016. mm->hiwater_vm = mm->total_vm;
  1017. }
  1018. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1019. struct mm_struct *mm)
  1020. {
  1021. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1022. if (*maxrss < hiwater_rss)
  1023. *maxrss = hiwater_rss;
  1024. }
  1025. #if defined(SPLIT_RSS_COUNTING)
  1026. void sync_mm_rss(struct mm_struct *mm);
  1027. #else
  1028. static inline void sync_mm_rss(struct mm_struct *mm)
  1029. {
  1030. }
  1031. #endif
  1032. int vma_wants_writenotify(struct vm_area_struct *vma);
  1033. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1034. spinlock_t **ptl);
  1035. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1036. spinlock_t **ptl)
  1037. {
  1038. pte_t *ptep;
  1039. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1040. return ptep;
  1041. }
  1042. #ifdef __PAGETABLE_PUD_FOLDED
  1043. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1044. unsigned long address)
  1045. {
  1046. return 0;
  1047. }
  1048. #else
  1049. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1050. #endif
  1051. #ifdef __PAGETABLE_PMD_FOLDED
  1052. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1053. unsigned long address)
  1054. {
  1055. return 0;
  1056. }
  1057. #else
  1058. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1059. #endif
  1060. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1061. pmd_t *pmd, unsigned long address);
  1062. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1063. /*
  1064. * The following ifdef needed to get the 4level-fixup.h header to work.
  1065. * Remove it when 4level-fixup.h has been removed.
  1066. */
  1067. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1068. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1069. {
  1070. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1071. NULL: pud_offset(pgd, address);
  1072. }
  1073. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1074. {
  1075. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1076. NULL: pmd_offset(pud, address);
  1077. }
  1078. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1079. #if USE_SPLIT_PTLOCKS
  1080. /*
  1081. * We tuck a spinlock to guard each pagetable page into its struct page,
  1082. * at page->private, with BUILD_BUG_ON to make sure that this will not
  1083. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  1084. * When freeing, reset page->mapping so free_pages_check won't complain.
  1085. */
  1086. #define __pte_lockptr(page) &((page)->ptl)
  1087. #define pte_lock_init(_page) do { \
  1088. spin_lock_init(__pte_lockptr(_page)); \
  1089. } while (0)
  1090. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  1091. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  1092. #else /* !USE_SPLIT_PTLOCKS */
  1093. /*
  1094. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1095. */
  1096. #define pte_lock_init(page) do {} while (0)
  1097. #define pte_lock_deinit(page) do {} while (0)
  1098. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  1099. #endif /* USE_SPLIT_PTLOCKS */
  1100. static inline void pgtable_page_ctor(struct page *page)
  1101. {
  1102. pte_lock_init(page);
  1103. inc_zone_page_state(page, NR_PAGETABLE);
  1104. }
  1105. static inline void pgtable_page_dtor(struct page *page)
  1106. {
  1107. pte_lock_deinit(page);
  1108. dec_zone_page_state(page, NR_PAGETABLE);
  1109. }
  1110. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1111. ({ \
  1112. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1113. pte_t *__pte = pte_offset_map(pmd, address); \
  1114. *(ptlp) = __ptl; \
  1115. spin_lock(__ptl); \
  1116. __pte; \
  1117. })
  1118. #define pte_unmap_unlock(pte, ptl) do { \
  1119. spin_unlock(ptl); \
  1120. pte_unmap(pte); \
  1121. } while (0)
  1122. #define pte_alloc_map(mm, vma, pmd, address) \
  1123. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1124. pmd, address))? \
  1125. NULL: pte_offset_map(pmd, address))
  1126. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1127. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1128. pmd, address))? \
  1129. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1130. #define pte_alloc_kernel(pmd, address) \
  1131. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1132. NULL: pte_offset_kernel(pmd, address))
  1133. extern void free_area_init(unsigned long * zones_size);
  1134. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1135. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1136. extern void free_initmem(void);
  1137. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1138. /*
  1139. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1140. * zones, allocate the backing mem_map and account for memory holes in a more
  1141. * architecture independent manner. This is a substitute for creating the
  1142. * zone_sizes[] and zholes_size[] arrays and passing them to
  1143. * free_area_init_node()
  1144. *
  1145. * An architecture is expected to register range of page frames backed by
  1146. * physical memory with memblock_add[_node]() before calling
  1147. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1148. * usage, an architecture is expected to do something like
  1149. *
  1150. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1151. * max_highmem_pfn};
  1152. * for_each_valid_physical_page_range()
  1153. * memblock_add_node(base, size, nid)
  1154. * free_area_init_nodes(max_zone_pfns);
  1155. *
  1156. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1157. * registered physical page range. Similarly
  1158. * sparse_memory_present_with_active_regions() calls memory_present() for
  1159. * each range when SPARSEMEM is enabled.
  1160. *
  1161. * See mm/page_alloc.c for more information on each function exposed by
  1162. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1163. */
  1164. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1165. unsigned long node_map_pfn_alignment(void);
  1166. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1167. unsigned long end_pfn);
  1168. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1169. unsigned long end_pfn);
  1170. extern void get_pfn_range_for_nid(unsigned int nid,
  1171. unsigned long *start_pfn, unsigned long *end_pfn);
  1172. extern unsigned long find_min_pfn_with_active_regions(void);
  1173. extern void free_bootmem_with_active_regions(int nid,
  1174. unsigned long max_low_pfn);
  1175. extern void sparse_memory_present_with_active_regions(int nid);
  1176. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1177. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1178. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1179. static inline int __early_pfn_to_nid(unsigned long pfn)
  1180. {
  1181. return 0;
  1182. }
  1183. #else
  1184. /* please see mm/page_alloc.c */
  1185. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1186. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1187. /* there is a per-arch backend function. */
  1188. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1189. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1190. #endif
  1191. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1192. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1193. unsigned long, enum memmap_context);
  1194. extern void setup_per_zone_wmarks(void);
  1195. extern int __meminit init_per_zone_wmark_min(void);
  1196. extern void mem_init(void);
  1197. extern void __init mmap_init(void);
  1198. extern void show_mem(unsigned int flags);
  1199. extern void si_meminfo(struct sysinfo * val);
  1200. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1201. extern __printf(3, 4)
  1202. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1203. extern void setup_per_cpu_pageset(void);
  1204. extern void zone_pcp_update(struct zone *zone);
  1205. extern void zone_pcp_reset(struct zone *zone);
  1206. /* nommu.c */
  1207. extern atomic_long_t mmap_pages_allocated;
  1208. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1209. /* interval_tree.c */
  1210. void vma_interval_tree_insert(struct vm_area_struct *node,
  1211. struct rb_root *root);
  1212. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1213. struct vm_area_struct *prev,
  1214. struct rb_root *root);
  1215. void vma_interval_tree_remove(struct vm_area_struct *node,
  1216. struct rb_root *root);
  1217. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1218. unsigned long start, unsigned long last);
  1219. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1220. unsigned long start, unsigned long last);
  1221. #define vma_interval_tree_foreach(vma, root, start, last) \
  1222. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1223. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1224. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1225. struct list_head *list)
  1226. {
  1227. list_add_tail(&vma->shared.nonlinear, list);
  1228. }
  1229. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1230. struct rb_root *root);
  1231. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1232. struct rb_root *root);
  1233. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1234. struct rb_root *root, unsigned long start, unsigned long last);
  1235. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1236. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1237. #ifdef CONFIG_DEBUG_VM_RB
  1238. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1239. #endif
  1240. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1241. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1242. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1243. /* mmap.c */
  1244. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1245. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1246. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1247. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1248. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1249. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1250. struct mempolicy *);
  1251. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1252. extern int split_vma(struct mm_struct *,
  1253. struct vm_area_struct *, unsigned long addr, int new_below);
  1254. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1255. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1256. struct rb_node **, struct rb_node *);
  1257. extern void unlink_file_vma(struct vm_area_struct *);
  1258. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1259. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1260. bool *need_rmap_locks);
  1261. extern void exit_mmap(struct mm_struct *);
  1262. extern int mm_take_all_locks(struct mm_struct *mm);
  1263. extern void mm_drop_all_locks(struct mm_struct *mm);
  1264. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1265. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1266. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1267. extern int install_special_mapping(struct mm_struct *mm,
  1268. unsigned long addr, unsigned long len,
  1269. unsigned long flags, struct page **pages);
  1270. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1271. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1272. unsigned long len, unsigned long flags,
  1273. vm_flags_t vm_flags, unsigned long pgoff);
  1274. extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
  1275. unsigned long, unsigned long,
  1276. unsigned long, unsigned long);
  1277. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1278. /* These take the mm semaphore themselves */
  1279. extern unsigned long vm_brk(unsigned long, unsigned long);
  1280. extern int vm_munmap(unsigned long, size_t);
  1281. extern unsigned long vm_mmap(struct file *, unsigned long,
  1282. unsigned long, unsigned long,
  1283. unsigned long, unsigned long);
  1284. struct vm_unmapped_area_info {
  1285. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1286. unsigned long flags;
  1287. unsigned long length;
  1288. unsigned long low_limit;
  1289. unsigned long high_limit;
  1290. unsigned long align_mask;
  1291. unsigned long align_offset;
  1292. };
  1293. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1294. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1295. /*
  1296. * Search for an unmapped address range.
  1297. *
  1298. * We are looking for a range that:
  1299. * - does not intersect with any VMA;
  1300. * - is contained within the [low_limit, high_limit) interval;
  1301. * - is at least the desired size.
  1302. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1303. */
  1304. static inline unsigned long
  1305. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1306. {
  1307. if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
  1308. return unmapped_area(info);
  1309. else
  1310. return unmapped_area_topdown(info);
  1311. }
  1312. /* truncate.c */
  1313. extern void truncate_inode_pages(struct address_space *, loff_t);
  1314. extern void truncate_inode_pages_range(struct address_space *,
  1315. loff_t lstart, loff_t lend);
  1316. /* generic vm_area_ops exported for stackable file systems */
  1317. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1318. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1319. /* mm/page-writeback.c */
  1320. int write_one_page(struct page *page, int wait);
  1321. void task_dirty_inc(struct task_struct *tsk);
  1322. /* readahead.c */
  1323. #define VM_MAX_READAHEAD 128 /* kbytes */
  1324. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1325. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1326. pgoff_t offset, unsigned long nr_to_read);
  1327. void page_cache_sync_readahead(struct address_space *mapping,
  1328. struct file_ra_state *ra,
  1329. struct file *filp,
  1330. pgoff_t offset,
  1331. unsigned long size);
  1332. void page_cache_async_readahead(struct address_space *mapping,
  1333. struct file_ra_state *ra,
  1334. struct file *filp,
  1335. struct page *pg,
  1336. pgoff_t offset,
  1337. unsigned long size);
  1338. unsigned long max_sane_readahead(unsigned long nr);
  1339. unsigned long ra_submit(struct file_ra_state *ra,
  1340. struct address_space *mapping,
  1341. struct file *filp);
  1342. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1343. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1344. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1345. extern int expand_downwards(struct vm_area_struct *vma,
  1346. unsigned long address);
  1347. #if VM_GROWSUP
  1348. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1349. #else
  1350. #define expand_upwards(vma, address) do { } while (0)
  1351. #endif
  1352. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1353. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1354. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1355. struct vm_area_struct **pprev);
  1356. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1357. NULL if none. Assume start_addr < end_addr. */
  1358. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1359. {
  1360. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1361. if (vma && end_addr <= vma->vm_start)
  1362. vma = NULL;
  1363. return vma;
  1364. }
  1365. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1366. {
  1367. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1368. }
  1369. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1370. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1371. unsigned long vm_start, unsigned long vm_end)
  1372. {
  1373. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1374. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1375. vma = NULL;
  1376. return vma;
  1377. }
  1378. #ifdef CONFIG_MMU
  1379. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1380. #else
  1381. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1382. {
  1383. return __pgprot(0);
  1384. }
  1385. #endif
  1386. #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
  1387. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1388. unsigned long start, unsigned long end);
  1389. #endif
  1390. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1391. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1392. unsigned long pfn, unsigned long size, pgprot_t);
  1393. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1394. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1395. unsigned long pfn);
  1396. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1397. unsigned long pfn);
  1398. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1399. unsigned int foll_flags);
  1400. #define FOLL_WRITE 0x01 /* check pte is writable */
  1401. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1402. #define FOLL_GET 0x04 /* do get_page on page */
  1403. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1404. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1405. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1406. * and return without waiting upon it */
  1407. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1408. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1409. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1410. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1411. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1412. void *data);
  1413. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1414. unsigned long size, pte_fn_t fn, void *data);
  1415. #ifdef CONFIG_PROC_FS
  1416. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1417. #else
  1418. static inline void vm_stat_account(struct mm_struct *mm,
  1419. unsigned long flags, struct file *file, long pages)
  1420. {
  1421. mm->total_vm += pages;
  1422. }
  1423. #endif /* CONFIG_PROC_FS */
  1424. #ifdef CONFIG_DEBUG_PAGEALLOC
  1425. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1426. #ifdef CONFIG_HIBERNATION
  1427. extern bool kernel_page_present(struct page *page);
  1428. #endif /* CONFIG_HIBERNATION */
  1429. #else
  1430. static inline void
  1431. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1432. #ifdef CONFIG_HIBERNATION
  1433. static inline bool kernel_page_present(struct page *page) { return true; }
  1434. #endif /* CONFIG_HIBERNATION */
  1435. #endif
  1436. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1437. #ifdef __HAVE_ARCH_GATE_AREA
  1438. int in_gate_area_no_mm(unsigned long addr);
  1439. int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1440. #else
  1441. int in_gate_area_no_mm(unsigned long addr);
  1442. #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
  1443. #endif /* __HAVE_ARCH_GATE_AREA */
  1444. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1445. void __user *, size_t *, loff_t *);
  1446. unsigned long shrink_slab(struct shrink_control *shrink,
  1447. unsigned long nr_pages_scanned,
  1448. unsigned long lru_pages);
  1449. #ifndef CONFIG_MMU
  1450. #define randomize_va_space 0
  1451. #else
  1452. extern int randomize_va_space;
  1453. #endif
  1454. const char * arch_vma_name(struct vm_area_struct *vma);
  1455. void print_vma_addr(char *prefix, unsigned long rip);
  1456. void sparse_mem_maps_populate_node(struct page **map_map,
  1457. unsigned long pnum_begin,
  1458. unsigned long pnum_end,
  1459. unsigned long map_count,
  1460. int nodeid);
  1461. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1462. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1463. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1464. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1465. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1466. void *vmemmap_alloc_block(unsigned long size, int node);
  1467. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1468. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1469. int vmemmap_populate_basepages(struct page *start_page,
  1470. unsigned long pages, int node);
  1471. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1472. void vmemmap_populate_print_last(void);
  1473. enum mf_flags {
  1474. MF_COUNT_INCREASED = 1 << 0,
  1475. MF_ACTION_REQUIRED = 1 << 1,
  1476. MF_MUST_KILL = 1 << 2,
  1477. };
  1478. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1479. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1480. extern int unpoison_memory(unsigned long pfn);
  1481. extern int sysctl_memory_failure_early_kill;
  1482. extern int sysctl_memory_failure_recovery;
  1483. extern void shake_page(struct page *p, int access);
  1484. extern atomic_long_t mce_bad_pages;
  1485. extern int soft_offline_page(struct page *page, int flags);
  1486. extern void dump_page(struct page *page);
  1487. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1488. extern void clear_huge_page(struct page *page,
  1489. unsigned long addr,
  1490. unsigned int pages_per_huge_page);
  1491. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1492. unsigned long addr, struct vm_area_struct *vma,
  1493. unsigned int pages_per_huge_page);
  1494. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1495. #ifdef CONFIG_DEBUG_PAGEALLOC
  1496. extern unsigned int _debug_guardpage_minorder;
  1497. static inline unsigned int debug_guardpage_minorder(void)
  1498. {
  1499. return _debug_guardpage_minorder;
  1500. }
  1501. static inline bool page_is_guard(struct page *page)
  1502. {
  1503. return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  1504. }
  1505. #else
  1506. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1507. static inline bool page_is_guard(struct page *page) { return false; }
  1508. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1509. #endif /* __KERNEL__ */
  1510. #endif /* _LINUX_MM_H */