page_alloc.c 142 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/kmemcheck.h>
  26. #include <linux/module.h>
  27. #include <linux/suspend.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/slab.h>
  31. #include <linux/oom.h>
  32. #include <linux/notifier.h>
  33. #include <linux/topology.h>
  34. #include <linux/sysctl.h>
  35. #include <linux/cpu.h>
  36. #include <linux/cpuset.h>
  37. #include <linux/memory_hotplug.h>
  38. #include <linux/nodemask.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/mempolicy.h>
  41. #include <linux/stop_machine.h>
  42. #include <linux/sort.h>
  43. #include <linux/pfn.h>
  44. #include <linux/backing-dev.h>
  45. #include <linux/fault-inject.h>
  46. #include <linux/page-isolation.h>
  47. #include <linux/page_cgroup.h>
  48. #include <linux/debugobjects.h>
  49. #include <linux/kmemleak.h>
  50. #include <linux/memory.h>
  51. #include <trace/events/kmem.h>
  52. #include <asm/tlbflush.h>
  53. #include <asm/div64.h>
  54. #include "internal.h"
  55. /*
  56. * Array of node states.
  57. */
  58. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  59. [N_POSSIBLE] = NODE_MASK_ALL,
  60. [N_ONLINE] = { { [0] = 1UL } },
  61. #ifndef CONFIG_NUMA
  62. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  63. #ifdef CONFIG_HIGHMEM
  64. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  65. #endif
  66. [N_CPU] = { { [0] = 1UL } },
  67. #endif /* NUMA */
  68. };
  69. EXPORT_SYMBOL(node_states);
  70. unsigned long totalram_pages __read_mostly;
  71. unsigned long totalreserve_pages __read_mostly;
  72. int percpu_pagelist_fraction;
  73. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  74. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  75. int pageblock_order __read_mostly;
  76. #endif
  77. static void __free_pages_ok(struct page *page, unsigned int order);
  78. /*
  79. * results with 256, 32 in the lowmem_reserve sysctl:
  80. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  81. * 1G machine -> (16M dma, 784M normal, 224M high)
  82. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  83. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  84. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  85. *
  86. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  87. * don't need any ZONE_NORMAL reservation
  88. */
  89. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  90. #ifdef CONFIG_ZONE_DMA
  91. 256,
  92. #endif
  93. #ifdef CONFIG_ZONE_DMA32
  94. 256,
  95. #endif
  96. #ifdef CONFIG_HIGHMEM
  97. 32,
  98. #endif
  99. 32,
  100. };
  101. EXPORT_SYMBOL(totalram_pages);
  102. static char * const zone_names[MAX_NR_ZONES] = {
  103. #ifdef CONFIG_ZONE_DMA
  104. "DMA",
  105. #endif
  106. #ifdef CONFIG_ZONE_DMA32
  107. "DMA32",
  108. #endif
  109. "Normal",
  110. #ifdef CONFIG_HIGHMEM
  111. "HighMem",
  112. #endif
  113. "Movable",
  114. };
  115. int min_free_kbytes = 1024;
  116. static unsigned long __meminitdata nr_kernel_pages;
  117. static unsigned long __meminitdata nr_all_pages;
  118. static unsigned long __meminitdata dma_reserve;
  119. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  120. /*
  121. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  122. * ranges of memory (RAM) that may be registered with add_active_range().
  123. * Ranges passed to add_active_range() will be merged if possible
  124. * so the number of times add_active_range() can be called is
  125. * related to the number of nodes and the number of holes
  126. */
  127. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  128. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  129. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  130. #else
  131. #if MAX_NUMNODES >= 32
  132. /* If there can be many nodes, allow up to 50 holes per node */
  133. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  134. #else
  135. /* By default, allow up to 256 distinct regions */
  136. #define MAX_ACTIVE_REGIONS 256
  137. #endif
  138. #endif
  139. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  140. static int __meminitdata nr_nodemap_entries;
  141. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  142. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  143. static unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. int nr_online_nodes __read_mostly = 1;
  153. EXPORT_SYMBOL(nr_node_ids);
  154. EXPORT_SYMBOL(nr_online_nodes);
  155. #endif
  156. int page_group_by_mobility_disabled __read_mostly;
  157. static void set_pageblock_migratetype(struct page *page, int migratetype)
  158. {
  159. if (unlikely(page_group_by_mobility_disabled))
  160. migratetype = MIGRATE_UNMOVABLE;
  161. set_pageblock_flags_group(page, (unsigned long)migratetype,
  162. PB_migrate, PB_migrate_end);
  163. }
  164. bool oom_killer_disabled __read_mostly;
  165. #ifdef CONFIG_DEBUG_VM
  166. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  167. {
  168. int ret = 0;
  169. unsigned seq;
  170. unsigned long pfn = page_to_pfn(page);
  171. do {
  172. seq = zone_span_seqbegin(zone);
  173. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  174. ret = 1;
  175. else if (pfn < zone->zone_start_pfn)
  176. ret = 1;
  177. } while (zone_span_seqretry(zone, seq));
  178. return ret;
  179. }
  180. static int page_is_consistent(struct zone *zone, struct page *page)
  181. {
  182. if (!pfn_valid_within(page_to_pfn(page)))
  183. return 0;
  184. if (zone != page_zone(page))
  185. return 0;
  186. return 1;
  187. }
  188. /*
  189. * Temporary debugging check for pages not lying within a given zone.
  190. */
  191. static int bad_range(struct zone *zone, struct page *page)
  192. {
  193. if (page_outside_zone_boundaries(zone, page))
  194. return 1;
  195. if (!page_is_consistent(zone, page))
  196. return 1;
  197. return 0;
  198. }
  199. #else
  200. static inline int bad_range(struct zone *zone, struct page *page)
  201. {
  202. return 0;
  203. }
  204. #endif
  205. static void bad_page(struct page *page)
  206. {
  207. static unsigned long resume;
  208. static unsigned long nr_shown;
  209. static unsigned long nr_unshown;
  210. /* Don't complain about poisoned pages */
  211. if (PageHWPoison(page)) {
  212. __ClearPageBuddy(page);
  213. return;
  214. }
  215. /*
  216. * Allow a burst of 60 reports, then keep quiet for that minute;
  217. * or allow a steady drip of one report per second.
  218. */
  219. if (nr_shown == 60) {
  220. if (time_before(jiffies, resume)) {
  221. nr_unshown++;
  222. goto out;
  223. }
  224. if (nr_unshown) {
  225. printk(KERN_ALERT
  226. "BUG: Bad page state: %lu messages suppressed\n",
  227. nr_unshown);
  228. nr_unshown = 0;
  229. }
  230. nr_shown = 0;
  231. }
  232. if (nr_shown++ == 0)
  233. resume = jiffies + 60 * HZ;
  234. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  235. current->comm, page_to_pfn(page));
  236. printk(KERN_ALERT
  237. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  238. page, (void *)page->flags, page_count(page),
  239. page_mapcount(page), page->mapping, page->index);
  240. dump_stack();
  241. out:
  242. /* Leave bad fields for debug, except PageBuddy could make trouble */
  243. __ClearPageBuddy(page);
  244. add_taint(TAINT_BAD_PAGE);
  245. }
  246. /*
  247. * Higher-order pages are called "compound pages". They are structured thusly:
  248. *
  249. * The first PAGE_SIZE page is called the "head page".
  250. *
  251. * The remaining PAGE_SIZE pages are called "tail pages".
  252. *
  253. * All pages have PG_compound set. All pages have their ->private pointing at
  254. * the head page (even the head page has this).
  255. *
  256. * The first tail page's ->lru.next holds the address of the compound page's
  257. * put_page() function. Its ->lru.prev holds the order of allocation.
  258. * This usage means that zero-order pages may not be compound.
  259. */
  260. static void free_compound_page(struct page *page)
  261. {
  262. __free_pages_ok(page, compound_order(page));
  263. }
  264. void prep_compound_page(struct page *page, unsigned long order)
  265. {
  266. int i;
  267. int nr_pages = 1 << order;
  268. set_compound_page_dtor(page, free_compound_page);
  269. set_compound_order(page, order);
  270. __SetPageHead(page);
  271. for (i = 1; i < nr_pages; i++) {
  272. struct page *p = page + i;
  273. __SetPageTail(p);
  274. p->first_page = page;
  275. }
  276. }
  277. static int destroy_compound_page(struct page *page, unsigned long order)
  278. {
  279. int i;
  280. int nr_pages = 1 << order;
  281. int bad = 0;
  282. if (unlikely(compound_order(page) != order) ||
  283. unlikely(!PageHead(page))) {
  284. bad_page(page);
  285. bad++;
  286. }
  287. __ClearPageHead(page);
  288. for (i = 1; i < nr_pages; i++) {
  289. struct page *p = page + i;
  290. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  291. bad_page(page);
  292. bad++;
  293. }
  294. __ClearPageTail(p);
  295. }
  296. return bad;
  297. }
  298. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  299. {
  300. int i;
  301. /*
  302. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  303. * and __GFP_HIGHMEM from hard or soft interrupt context.
  304. */
  305. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  306. for (i = 0; i < (1 << order); i++)
  307. clear_highpage(page + i);
  308. }
  309. static inline void set_page_order(struct page *page, int order)
  310. {
  311. set_page_private(page, order);
  312. __SetPageBuddy(page);
  313. }
  314. static inline void rmv_page_order(struct page *page)
  315. {
  316. __ClearPageBuddy(page);
  317. set_page_private(page, 0);
  318. }
  319. /*
  320. * Locate the struct page for both the matching buddy in our
  321. * pair (buddy1) and the combined O(n+1) page they form (page).
  322. *
  323. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  324. * the following equation:
  325. * B2 = B1 ^ (1 << O)
  326. * For example, if the starting buddy (buddy2) is #8 its order
  327. * 1 buddy is #10:
  328. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  329. *
  330. * 2) Any buddy B will have an order O+1 parent P which
  331. * satisfies the following equation:
  332. * P = B & ~(1 << O)
  333. *
  334. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  335. */
  336. static inline struct page *
  337. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  338. {
  339. unsigned long buddy_idx = page_idx ^ (1 << order);
  340. return page + (buddy_idx - page_idx);
  341. }
  342. static inline unsigned long
  343. __find_combined_index(unsigned long page_idx, unsigned int order)
  344. {
  345. return (page_idx & ~(1 << order));
  346. }
  347. /*
  348. * This function checks whether a page is free && is the buddy
  349. * we can do coalesce a page and its buddy if
  350. * (a) the buddy is not in a hole &&
  351. * (b) the buddy is in the buddy system &&
  352. * (c) a page and its buddy have the same order &&
  353. * (d) a page and its buddy are in the same zone.
  354. *
  355. * For recording whether a page is in the buddy system, we use PG_buddy.
  356. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  357. *
  358. * For recording page's order, we use page_private(page).
  359. */
  360. static inline int page_is_buddy(struct page *page, struct page *buddy,
  361. int order)
  362. {
  363. if (!pfn_valid_within(page_to_pfn(buddy)))
  364. return 0;
  365. if (page_zone_id(page) != page_zone_id(buddy))
  366. return 0;
  367. if (PageBuddy(buddy) && page_order(buddy) == order) {
  368. VM_BUG_ON(page_count(buddy) != 0);
  369. return 1;
  370. }
  371. return 0;
  372. }
  373. /*
  374. * Freeing function for a buddy system allocator.
  375. *
  376. * The concept of a buddy system is to maintain direct-mapped table
  377. * (containing bit values) for memory blocks of various "orders".
  378. * The bottom level table contains the map for the smallest allocatable
  379. * units of memory (here, pages), and each level above it describes
  380. * pairs of units from the levels below, hence, "buddies".
  381. * At a high level, all that happens here is marking the table entry
  382. * at the bottom level available, and propagating the changes upward
  383. * as necessary, plus some accounting needed to play nicely with other
  384. * parts of the VM system.
  385. * At each level, we keep a list of pages, which are heads of continuous
  386. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  387. * order is recorded in page_private(page) field.
  388. * So when we are allocating or freeing one, we can derive the state of the
  389. * other. That is, if we allocate a small block, and both were
  390. * free, the remainder of the region must be split into blocks.
  391. * If a block is freed, and its buddy is also free, then this
  392. * triggers coalescing into a block of larger size.
  393. *
  394. * -- wli
  395. */
  396. static inline void __free_one_page(struct page *page,
  397. struct zone *zone, unsigned int order,
  398. int migratetype)
  399. {
  400. unsigned long page_idx;
  401. if (unlikely(PageCompound(page)))
  402. if (unlikely(destroy_compound_page(page, order)))
  403. return;
  404. VM_BUG_ON(migratetype == -1);
  405. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  406. VM_BUG_ON(page_idx & ((1 << order) - 1));
  407. VM_BUG_ON(bad_range(zone, page));
  408. while (order < MAX_ORDER-1) {
  409. unsigned long combined_idx;
  410. struct page *buddy;
  411. buddy = __page_find_buddy(page, page_idx, order);
  412. if (!page_is_buddy(page, buddy, order))
  413. break;
  414. /* Our buddy is free, merge with it and move up one order. */
  415. list_del(&buddy->lru);
  416. zone->free_area[order].nr_free--;
  417. rmv_page_order(buddy);
  418. combined_idx = __find_combined_index(page_idx, order);
  419. page = page + (combined_idx - page_idx);
  420. page_idx = combined_idx;
  421. order++;
  422. }
  423. set_page_order(page, order);
  424. list_add(&page->lru,
  425. &zone->free_area[order].free_list[migratetype]);
  426. zone->free_area[order].nr_free++;
  427. }
  428. /*
  429. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  430. * Page should not be on lru, so no need to fix that up.
  431. * free_pages_check() will verify...
  432. */
  433. static inline void free_page_mlock(struct page *page)
  434. {
  435. __dec_zone_page_state(page, NR_MLOCK);
  436. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  437. }
  438. static inline int free_pages_check(struct page *page)
  439. {
  440. if (unlikely(page_mapcount(page) |
  441. (page->mapping != NULL) |
  442. (atomic_read(&page->_count) != 0) |
  443. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  444. bad_page(page);
  445. return 1;
  446. }
  447. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  448. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  449. return 0;
  450. }
  451. /*
  452. * Frees a number of pages from the PCP lists
  453. * Assumes all pages on list are in same zone, and of same order.
  454. * count is the number of pages to free.
  455. *
  456. * If the zone was previously in an "all pages pinned" state then look to
  457. * see if this freeing clears that state.
  458. *
  459. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  460. * pinned" detection logic.
  461. */
  462. static void free_pcppages_bulk(struct zone *zone, int count,
  463. struct per_cpu_pages *pcp)
  464. {
  465. int migratetype = 0;
  466. int batch_free = 0;
  467. spin_lock(&zone->lock);
  468. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  469. zone->pages_scanned = 0;
  470. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  471. while (count) {
  472. struct page *page;
  473. struct list_head *list;
  474. /*
  475. * Remove pages from lists in a round-robin fashion. A
  476. * batch_free count is maintained that is incremented when an
  477. * empty list is encountered. This is so more pages are freed
  478. * off fuller lists instead of spinning excessively around empty
  479. * lists
  480. */
  481. do {
  482. batch_free++;
  483. if (++migratetype == MIGRATE_PCPTYPES)
  484. migratetype = 0;
  485. list = &pcp->lists[migratetype];
  486. } while (list_empty(list));
  487. do {
  488. page = list_entry(list->prev, struct page, lru);
  489. /* must delete as __free_one_page list manipulates */
  490. list_del(&page->lru);
  491. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  492. __free_one_page(page, zone, 0, page_private(page));
  493. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  494. } while (--count && --batch_free && !list_empty(list));
  495. }
  496. spin_unlock(&zone->lock);
  497. }
  498. static void free_one_page(struct zone *zone, struct page *page, int order,
  499. int migratetype)
  500. {
  501. spin_lock(&zone->lock);
  502. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  503. zone->pages_scanned = 0;
  504. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  505. __free_one_page(page, zone, order, migratetype);
  506. spin_unlock(&zone->lock);
  507. }
  508. static void __free_pages_ok(struct page *page, unsigned int order)
  509. {
  510. unsigned long flags;
  511. int i;
  512. int bad = 0;
  513. int wasMlocked = __TestClearPageMlocked(page);
  514. kmemcheck_free_shadow(page, order);
  515. for (i = 0 ; i < (1 << order) ; ++i)
  516. bad += free_pages_check(page + i);
  517. if (bad)
  518. return;
  519. if (!PageHighMem(page)) {
  520. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  521. debug_check_no_obj_freed(page_address(page),
  522. PAGE_SIZE << order);
  523. }
  524. arch_free_page(page, order);
  525. kernel_map_pages(page, 1 << order, 0);
  526. local_irq_save(flags);
  527. if (unlikely(wasMlocked))
  528. free_page_mlock(page);
  529. __count_vm_events(PGFREE, 1 << order);
  530. free_one_page(page_zone(page), page, order,
  531. get_pageblock_migratetype(page));
  532. local_irq_restore(flags);
  533. }
  534. /*
  535. * permit the bootmem allocator to evade page validation on high-order frees
  536. */
  537. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  538. {
  539. if (order == 0) {
  540. __ClearPageReserved(page);
  541. set_page_count(page, 0);
  542. set_page_refcounted(page);
  543. __free_page(page);
  544. } else {
  545. int loop;
  546. prefetchw(page);
  547. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  548. struct page *p = &page[loop];
  549. if (loop + 1 < BITS_PER_LONG)
  550. prefetchw(p + 1);
  551. __ClearPageReserved(p);
  552. set_page_count(p, 0);
  553. }
  554. set_page_refcounted(page);
  555. __free_pages(page, order);
  556. }
  557. }
  558. /*
  559. * The order of subdivision here is critical for the IO subsystem.
  560. * Please do not alter this order without good reasons and regression
  561. * testing. Specifically, as large blocks of memory are subdivided,
  562. * the order in which smaller blocks are delivered depends on the order
  563. * they're subdivided in this function. This is the primary factor
  564. * influencing the order in which pages are delivered to the IO
  565. * subsystem according to empirical testing, and this is also justified
  566. * by considering the behavior of a buddy system containing a single
  567. * large block of memory acted on by a series of small allocations.
  568. * This behavior is a critical factor in sglist merging's success.
  569. *
  570. * -- wli
  571. */
  572. static inline void expand(struct zone *zone, struct page *page,
  573. int low, int high, struct free_area *area,
  574. int migratetype)
  575. {
  576. unsigned long size = 1 << high;
  577. while (high > low) {
  578. area--;
  579. high--;
  580. size >>= 1;
  581. VM_BUG_ON(bad_range(zone, &page[size]));
  582. list_add(&page[size].lru, &area->free_list[migratetype]);
  583. area->nr_free++;
  584. set_page_order(&page[size], high);
  585. }
  586. }
  587. /*
  588. * This page is about to be returned from the page allocator
  589. */
  590. static inline int check_new_page(struct page *page)
  591. {
  592. if (unlikely(page_mapcount(page) |
  593. (page->mapping != NULL) |
  594. (atomic_read(&page->_count) != 0) |
  595. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  596. bad_page(page);
  597. return 1;
  598. }
  599. return 0;
  600. }
  601. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  602. {
  603. int i;
  604. for (i = 0; i < (1 << order); i++) {
  605. struct page *p = page + i;
  606. if (unlikely(check_new_page(p)))
  607. return 1;
  608. }
  609. set_page_private(page, 0);
  610. set_page_refcounted(page);
  611. arch_alloc_page(page, order);
  612. kernel_map_pages(page, 1 << order, 1);
  613. if (gfp_flags & __GFP_ZERO)
  614. prep_zero_page(page, order, gfp_flags);
  615. if (order && (gfp_flags & __GFP_COMP))
  616. prep_compound_page(page, order);
  617. return 0;
  618. }
  619. /*
  620. * Go through the free lists for the given migratetype and remove
  621. * the smallest available page from the freelists
  622. */
  623. static inline
  624. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  625. int migratetype)
  626. {
  627. unsigned int current_order;
  628. struct free_area * area;
  629. struct page *page;
  630. /* Find a page of the appropriate size in the preferred list */
  631. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  632. area = &(zone->free_area[current_order]);
  633. if (list_empty(&area->free_list[migratetype]))
  634. continue;
  635. page = list_entry(area->free_list[migratetype].next,
  636. struct page, lru);
  637. list_del(&page->lru);
  638. rmv_page_order(page);
  639. area->nr_free--;
  640. expand(zone, page, order, current_order, area, migratetype);
  641. return page;
  642. }
  643. return NULL;
  644. }
  645. /*
  646. * This array describes the order lists are fallen back to when
  647. * the free lists for the desirable migrate type are depleted
  648. */
  649. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  650. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  651. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  652. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  653. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  654. };
  655. /*
  656. * Move the free pages in a range to the free lists of the requested type.
  657. * Note that start_page and end_pages are not aligned on a pageblock
  658. * boundary. If alignment is required, use move_freepages_block()
  659. */
  660. static int move_freepages(struct zone *zone,
  661. struct page *start_page, struct page *end_page,
  662. int migratetype)
  663. {
  664. struct page *page;
  665. unsigned long order;
  666. int pages_moved = 0;
  667. #ifndef CONFIG_HOLES_IN_ZONE
  668. /*
  669. * page_zone is not safe to call in this context when
  670. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  671. * anyway as we check zone boundaries in move_freepages_block().
  672. * Remove at a later date when no bug reports exist related to
  673. * grouping pages by mobility
  674. */
  675. BUG_ON(page_zone(start_page) != page_zone(end_page));
  676. #endif
  677. for (page = start_page; page <= end_page;) {
  678. /* Make sure we are not inadvertently changing nodes */
  679. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  680. if (!pfn_valid_within(page_to_pfn(page))) {
  681. page++;
  682. continue;
  683. }
  684. if (!PageBuddy(page)) {
  685. page++;
  686. continue;
  687. }
  688. order = page_order(page);
  689. list_del(&page->lru);
  690. list_add(&page->lru,
  691. &zone->free_area[order].free_list[migratetype]);
  692. page += 1 << order;
  693. pages_moved += 1 << order;
  694. }
  695. return pages_moved;
  696. }
  697. static int move_freepages_block(struct zone *zone, struct page *page,
  698. int migratetype)
  699. {
  700. unsigned long start_pfn, end_pfn;
  701. struct page *start_page, *end_page;
  702. start_pfn = page_to_pfn(page);
  703. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  704. start_page = pfn_to_page(start_pfn);
  705. end_page = start_page + pageblock_nr_pages - 1;
  706. end_pfn = start_pfn + pageblock_nr_pages - 1;
  707. /* Do not cross zone boundaries */
  708. if (start_pfn < zone->zone_start_pfn)
  709. start_page = page;
  710. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  711. return 0;
  712. return move_freepages(zone, start_page, end_page, migratetype);
  713. }
  714. static void change_pageblock_range(struct page *pageblock_page,
  715. int start_order, int migratetype)
  716. {
  717. int nr_pageblocks = 1 << (start_order - pageblock_order);
  718. while (nr_pageblocks--) {
  719. set_pageblock_migratetype(pageblock_page, migratetype);
  720. pageblock_page += pageblock_nr_pages;
  721. }
  722. }
  723. /* Remove an element from the buddy allocator from the fallback list */
  724. static inline struct page *
  725. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  726. {
  727. struct free_area * area;
  728. int current_order;
  729. struct page *page;
  730. int migratetype, i;
  731. /* Find the largest possible block of pages in the other list */
  732. for (current_order = MAX_ORDER-1; current_order >= order;
  733. --current_order) {
  734. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  735. migratetype = fallbacks[start_migratetype][i];
  736. /* MIGRATE_RESERVE handled later if necessary */
  737. if (migratetype == MIGRATE_RESERVE)
  738. continue;
  739. area = &(zone->free_area[current_order]);
  740. if (list_empty(&area->free_list[migratetype]))
  741. continue;
  742. page = list_entry(area->free_list[migratetype].next,
  743. struct page, lru);
  744. area->nr_free--;
  745. /*
  746. * If breaking a large block of pages, move all free
  747. * pages to the preferred allocation list. If falling
  748. * back for a reclaimable kernel allocation, be more
  749. * agressive about taking ownership of free pages
  750. */
  751. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  752. start_migratetype == MIGRATE_RECLAIMABLE ||
  753. page_group_by_mobility_disabled) {
  754. unsigned long pages;
  755. pages = move_freepages_block(zone, page,
  756. start_migratetype);
  757. /* Claim the whole block if over half of it is free */
  758. if (pages >= (1 << (pageblock_order-1)) ||
  759. page_group_by_mobility_disabled)
  760. set_pageblock_migratetype(page,
  761. start_migratetype);
  762. migratetype = start_migratetype;
  763. }
  764. /* Remove the page from the freelists */
  765. list_del(&page->lru);
  766. rmv_page_order(page);
  767. /* Take ownership for orders >= pageblock_order */
  768. if (current_order >= pageblock_order)
  769. change_pageblock_range(page, current_order,
  770. start_migratetype);
  771. expand(zone, page, order, current_order, area, migratetype);
  772. trace_mm_page_alloc_extfrag(page, order, current_order,
  773. start_migratetype, migratetype);
  774. return page;
  775. }
  776. }
  777. return NULL;
  778. }
  779. /*
  780. * Do the hard work of removing an element from the buddy allocator.
  781. * Call me with the zone->lock already held.
  782. */
  783. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  784. int migratetype)
  785. {
  786. struct page *page;
  787. retry_reserve:
  788. page = __rmqueue_smallest(zone, order, migratetype);
  789. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  790. page = __rmqueue_fallback(zone, order, migratetype);
  791. /*
  792. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  793. * is used because __rmqueue_smallest is an inline function
  794. * and we want just one call site
  795. */
  796. if (!page) {
  797. migratetype = MIGRATE_RESERVE;
  798. goto retry_reserve;
  799. }
  800. }
  801. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  802. return page;
  803. }
  804. /*
  805. * Obtain a specified number of elements from the buddy allocator, all under
  806. * a single hold of the lock, for efficiency. Add them to the supplied list.
  807. * Returns the number of new pages which were placed at *list.
  808. */
  809. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  810. unsigned long count, struct list_head *list,
  811. int migratetype, int cold)
  812. {
  813. int i;
  814. spin_lock(&zone->lock);
  815. for (i = 0; i < count; ++i) {
  816. struct page *page = __rmqueue(zone, order, migratetype);
  817. if (unlikely(page == NULL))
  818. break;
  819. /*
  820. * Split buddy pages returned by expand() are received here
  821. * in physical page order. The page is added to the callers and
  822. * list and the list head then moves forward. From the callers
  823. * perspective, the linked list is ordered by page number in
  824. * some conditions. This is useful for IO devices that can
  825. * merge IO requests if the physical pages are ordered
  826. * properly.
  827. */
  828. if (likely(cold == 0))
  829. list_add(&page->lru, list);
  830. else
  831. list_add_tail(&page->lru, list);
  832. set_page_private(page, migratetype);
  833. list = &page->lru;
  834. }
  835. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  836. spin_unlock(&zone->lock);
  837. return i;
  838. }
  839. #ifdef CONFIG_NUMA
  840. /*
  841. * Called from the vmstat counter updater to drain pagesets of this
  842. * currently executing processor on remote nodes after they have
  843. * expired.
  844. *
  845. * Note that this function must be called with the thread pinned to
  846. * a single processor.
  847. */
  848. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  849. {
  850. unsigned long flags;
  851. int to_drain;
  852. local_irq_save(flags);
  853. if (pcp->count >= pcp->batch)
  854. to_drain = pcp->batch;
  855. else
  856. to_drain = pcp->count;
  857. free_pcppages_bulk(zone, to_drain, pcp);
  858. pcp->count -= to_drain;
  859. local_irq_restore(flags);
  860. }
  861. #endif
  862. /*
  863. * Drain pages of the indicated processor.
  864. *
  865. * The processor must either be the current processor and the
  866. * thread pinned to the current processor or a processor that
  867. * is not online.
  868. */
  869. static void drain_pages(unsigned int cpu)
  870. {
  871. unsigned long flags;
  872. struct zone *zone;
  873. for_each_populated_zone(zone) {
  874. struct per_cpu_pageset *pset;
  875. struct per_cpu_pages *pcp;
  876. pset = zone_pcp(zone, cpu);
  877. pcp = &pset->pcp;
  878. local_irq_save(flags);
  879. free_pcppages_bulk(zone, pcp->count, pcp);
  880. pcp->count = 0;
  881. local_irq_restore(flags);
  882. }
  883. }
  884. /*
  885. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  886. */
  887. void drain_local_pages(void *arg)
  888. {
  889. drain_pages(smp_processor_id());
  890. }
  891. /*
  892. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  893. */
  894. void drain_all_pages(void)
  895. {
  896. on_each_cpu(drain_local_pages, NULL, 1);
  897. }
  898. #ifdef CONFIG_HIBERNATION
  899. void mark_free_pages(struct zone *zone)
  900. {
  901. unsigned long pfn, max_zone_pfn;
  902. unsigned long flags;
  903. int order, t;
  904. struct list_head *curr;
  905. if (!zone->spanned_pages)
  906. return;
  907. spin_lock_irqsave(&zone->lock, flags);
  908. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  909. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  910. if (pfn_valid(pfn)) {
  911. struct page *page = pfn_to_page(pfn);
  912. if (!swsusp_page_is_forbidden(page))
  913. swsusp_unset_page_free(page);
  914. }
  915. for_each_migratetype_order(order, t) {
  916. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  917. unsigned long i;
  918. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  919. for (i = 0; i < (1UL << order); i++)
  920. swsusp_set_page_free(pfn_to_page(pfn + i));
  921. }
  922. }
  923. spin_unlock_irqrestore(&zone->lock, flags);
  924. }
  925. #endif /* CONFIG_PM */
  926. /*
  927. * Free a 0-order page
  928. */
  929. static void free_hot_cold_page(struct page *page, int cold)
  930. {
  931. struct zone *zone = page_zone(page);
  932. struct per_cpu_pages *pcp;
  933. unsigned long flags;
  934. int migratetype;
  935. int wasMlocked = __TestClearPageMlocked(page);
  936. kmemcheck_free_shadow(page, 0);
  937. if (PageAnon(page))
  938. page->mapping = NULL;
  939. if (free_pages_check(page))
  940. return;
  941. if (!PageHighMem(page)) {
  942. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  943. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  944. }
  945. arch_free_page(page, 0);
  946. kernel_map_pages(page, 1, 0);
  947. pcp = &zone_pcp(zone, get_cpu())->pcp;
  948. migratetype = get_pageblock_migratetype(page);
  949. set_page_private(page, migratetype);
  950. local_irq_save(flags);
  951. if (unlikely(wasMlocked))
  952. free_page_mlock(page);
  953. __count_vm_event(PGFREE);
  954. /*
  955. * We only track unmovable, reclaimable and movable on pcp lists.
  956. * Free ISOLATE pages back to the allocator because they are being
  957. * offlined but treat RESERVE as movable pages so we can get those
  958. * areas back if necessary. Otherwise, we may have to free
  959. * excessively into the page allocator
  960. */
  961. if (migratetype >= MIGRATE_PCPTYPES) {
  962. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  963. free_one_page(zone, page, 0, migratetype);
  964. goto out;
  965. }
  966. migratetype = MIGRATE_MOVABLE;
  967. }
  968. if (cold)
  969. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  970. else
  971. list_add(&page->lru, &pcp->lists[migratetype]);
  972. pcp->count++;
  973. if (pcp->count >= pcp->high) {
  974. free_pcppages_bulk(zone, pcp->batch, pcp);
  975. pcp->count -= pcp->batch;
  976. }
  977. out:
  978. local_irq_restore(flags);
  979. put_cpu();
  980. }
  981. void free_hot_page(struct page *page)
  982. {
  983. trace_mm_page_free_direct(page, 0);
  984. free_hot_cold_page(page, 0);
  985. }
  986. /*
  987. * split_page takes a non-compound higher-order page, and splits it into
  988. * n (1<<order) sub-pages: page[0..n]
  989. * Each sub-page must be freed individually.
  990. *
  991. * Note: this is probably too low level an operation for use in drivers.
  992. * Please consult with lkml before using this in your driver.
  993. */
  994. void split_page(struct page *page, unsigned int order)
  995. {
  996. int i;
  997. VM_BUG_ON(PageCompound(page));
  998. VM_BUG_ON(!page_count(page));
  999. #ifdef CONFIG_KMEMCHECK
  1000. /*
  1001. * Split shadow pages too, because free(page[0]) would
  1002. * otherwise free the whole shadow.
  1003. */
  1004. if (kmemcheck_page_is_tracked(page))
  1005. split_page(virt_to_page(page[0].shadow), order);
  1006. #endif
  1007. for (i = 1; i < (1 << order); i++)
  1008. set_page_refcounted(page + i);
  1009. }
  1010. /*
  1011. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1012. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1013. * or two.
  1014. */
  1015. static inline
  1016. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1017. struct zone *zone, int order, gfp_t gfp_flags,
  1018. int migratetype)
  1019. {
  1020. unsigned long flags;
  1021. struct page *page;
  1022. int cold = !!(gfp_flags & __GFP_COLD);
  1023. int cpu;
  1024. again:
  1025. cpu = get_cpu();
  1026. if (likely(order == 0)) {
  1027. struct per_cpu_pages *pcp;
  1028. struct list_head *list;
  1029. pcp = &zone_pcp(zone, cpu)->pcp;
  1030. list = &pcp->lists[migratetype];
  1031. local_irq_save(flags);
  1032. if (list_empty(list)) {
  1033. pcp->count += rmqueue_bulk(zone, 0,
  1034. pcp->batch, list,
  1035. migratetype, cold);
  1036. if (unlikely(list_empty(list)))
  1037. goto failed;
  1038. }
  1039. if (cold)
  1040. page = list_entry(list->prev, struct page, lru);
  1041. else
  1042. page = list_entry(list->next, struct page, lru);
  1043. list_del(&page->lru);
  1044. pcp->count--;
  1045. } else {
  1046. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1047. /*
  1048. * __GFP_NOFAIL is not to be used in new code.
  1049. *
  1050. * All __GFP_NOFAIL callers should be fixed so that they
  1051. * properly detect and handle allocation failures.
  1052. *
  1053. * We most definitely don't want callers attempting to
  1054. * allocate greater than order-1 page units with
  1055. * __GFP_NOFAIL.
  1056. */
  1057. WARN_ON_ONCE(order > 1);
  1058. }
  1059. spin_lock_irqsave(&zone->lock, flags);
  1060. page = __rmqueue(zone, order, migratetype);
  1061. spin_unlock(&zone->lock);
  1062. if (!page)
  1063. goto failed;
  1064. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1065. }
  1066. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1067. zone_statistics(preferred_zone, zone);
  1068. local_irq_restore(flags);
  1069. put_cpu();
  1070. VM_BUG_ON(bad_range(zone, page));
  1071. if (prep_new_page(page, order, gfp_flags))
  1072. goto again;
  1073. return page;
  1074. failed:
  1075. local_irq_restore(flags);
  1076. put_cpu();
  1077. return NULL;
  1078. }
  1079. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1080. #define ALLOC_WMARK_MIN WMARK_MIN
  1081. #define ALLOC_WMARK_LOW WMARK_LOW
  1082. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1083. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1084. /* Mask to get the watermark bits */
  1085. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1086. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1087. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1088. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1089. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1090. static struct fail_page_alloc_attr {
  1091. struct fault_attr attr;
  1092. u32 ignore_gfp_highmem;
  1093. u32 ignore_gfp_wait;
  1094. u32 min_order;
  1095. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1096. struct dentry *ignore_gfp_highmem_file;
  1097. struct dentry *ignore_gfp_wait_file;
  1098. struct dentry *min_order_file;
  1099. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1100. } fail_page_alloc = {
  1101. .attr = FAULT_ATTR_INITIALIZER,
  1102. .ignore_gfp_wait = 1,
  1103. .ignore_gfp_highmem = 1,
  1104. .min_order = 1,
  1105. };
  1106. static int __init setup_fail_page_alloc(char *str)
  1107. {
  1108. return setup_fault_attr(&fail_page_alloc.attr, str);
  1109. }
  1110. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1111. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1112. {
  1113. if (order < fail_page_alloc.min_order)
  1114. return 0;
  1115. if (gfp_mask & __GFP_NOFAIL)
  1116. return 0;
  1117. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1118. return 0;
  1119. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1120. return 0;
  1121. return should_fail(&fail_page_alloc.attr, 1 << order);
  1122. }
  1123. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1124. static int __init fail_page_alloc_debugfs(void)
  1125. {
  1126. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1127. struct dentry *dir;
  1128. int err;
  1129. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1130. "fail_page_alloc");
  1131. if (err)
  1132. return err;
  1133. dir = fail_page_alloc.attr.dentries.dir;
  1134. fail_page_alloc.ignore_gfp_wait_file =
  1135. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1136. &fail_page_alloc.ignore_gfp_wait);
  1137. fail_page_alloc.ignore_gfp_highmem_file =
  1138. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1139. &fail_page_alloc.ignore_gfp_highmem);
  1140. fail_page_alloc.min_order_file =
  1141. debugfs_create_u32("min-order", mode, dir,
  1142. &fail_page_alloc.min_order);
  1143. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1144. !fail_page_alloc.ignore_gfp_highmem_file ||
  1145. !fail_page_alloc.min_order_file) {
  1146. err = -ENOMEM;
  1147. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1148. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1149. debugfs_remove(fail_page_alloc.min_order_file);
  1150. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1151. }
  1152. return err;
  1153. }
  1154. late_initcall(fail_page_alloc_debugfs);
  1155. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1156. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1157. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1158. {
  1159. return 0;
  1160. }
  1161. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1162. /*
  1163. * Return 1 if free pages are above 'mark'. This takes into account the order
  1164. * of the allocation.
  1165. */
  1166. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1167. int classzone_idx, int alloc_flags)
  1168. {
  1169. /* free_pages my go negative - that's OK */
  1170. long min = mark;
  1171. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1172. int o;
  1173. if (alloc_flags & ALLOC_HIGH)
  1174. min -= min / 2;
  1175. if (alloc_flags & ALLOC_HARDER)
  1176. min -= min / 4;
  1177. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1178. return 0;
  1179. for (o = 0; o < order; o++) {
  1180. /* At the next order, this order's pages become unavailable */
  1181. free_pages -= z->free_area[o].nr_free << o;
  1182. /* Require fewer higher order pages to be free */
  1183. min >>= 1;
  1184. if (free_pages <= min)
  1185. return 0;
  1186. }
  1187. return 1;
  1188. }
  1189. #ifdef CONFIG_NUMA
  1190. /*
  1191. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1192. * skip over zones that are not allowed by the cpuset, or that have
  1193. * been recently (in last second) found to be nearly full. See further
  1194. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1195. * that have to skip over a lot of full or unallowed zones.
  1196. *
  1197. * If the zonelist cache is present in the passed in zonelist, then
  1198. * returns a pointer to the allowed node mask (either the current
  1199. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1200. *
  1201. * If the zonelist cache is not available for this zonelist, does
  1202. * nothing and returns NULL.
  1203. *
  1204. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1205. * a second since last zap'd) then we zap it out (clear its bits.)
  1206. *
  1207. * We hold off even calling zlc_setup, until after we've checked the
  1208. * first zone in the zonelist, on the theory that most allocations will
  1209. * be satisfied from that first zone, so best to examine that zone as
  1210. * quickly as we can.
  1211. */
  1212. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1213. {
  1214. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1215. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1216. zlc = zonelist->zlcache_ptr;
  1217. if (!zlc)
  1218. return NULL;
  1219. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1220. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1221. zlc->last_full_zap = jiffies;
  1222. }
  1223. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1224. &cpuset_current_mems_allowed :
  1225. &node_states[N_HIGH_MEMORY];
  1226. return allowednodes;
  1227. }
  1228. /*
  1229. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1230. * if it is worth looking at further for free memory:
  1231. * 1) Check that the zone isn't thought to be full (doesn't have its
  1232. * bit set in the zonelist_cache fullzones BITMAP).
  1233. * 2) Check that the zones node (obtained from the zonelist_cache
  1234. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1235. * Return true (non-zero) if zone is worth looking at further, or
  1236. * else return false (zero) if it is not.
  1237. *
  1238. * This check -ignores- the distinction between various watermarks,
  1239. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1240. * found to be full for any variation of these watermarks, it will
  1241. * be considered full for up to one second by all requests, unless
  1242. * we are so low on memory on all allowed nodes that we are forced
  1243. * into the second scan of the zonelist.
  1244. *
  1245. * In the second scan we ignore this zonelist cache and exactly
  1246. * apply the watermarks to all zones, even it is slower to do so.
  1247. * We are low on memory in the second scan, and should leave no stone
  1248. * unturned looking for a free page.
  1249. */
  1250. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1251. nodemask_t *allowednodes)
  1252. {
  1253. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1254. int i; /* index of *z in zonelist zones */
  1255. int n; /* node that zone *z is on */
  1256. zlc = zonelist->zlcache_ptr;
  1257. if (!zlc)
  1258. return 1;
  1259. i = z - zonelist->_zonerefs;
  1260. n = zlc->z_to_n[i];
  1261. /* This zone is worth trying if it is allowed but not full */
  1262. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1263. }
  1264. /*
  1265. * Given 'z' scanning a zonelist, set the corresponding bit in
  1266. * zlc->fullzones, so that subsequent attempts to allocate a page
  1267. * from that zone don't waste time re-examining it.
  1268. */
  1269. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1270. {
  1271. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1272. int i; /* index of *z in zonelist zones */
  1273. zlc = zonelist->zlcache_ptr;
  1274. if (!zlc)
  1275. return;
  1276. i = z - zonelist->_zonerefs;
  1277. set_bit(i, zlc->fullzones);
  1278. }
  1279. #else /* CONFIG_NUMA */
  1280. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1281. {
  1282. return NULL;
  1283. }
  1284. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1285. nodemask_t *allowednodes)
  1286. {
  1287. return 1;
  1288. }
  1289. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1290. {
  1291. }
  1292. #endif /* CONFIG_NUMA */
  1293. /*
  1294. * get_page_from_freelist goes through the zonelist trying to allocate
  1295. * a page.
  1296. */
  1297. static struct page *
  1298. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1299. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1300. struct zone *preferred_zone, int migratetype)
  1301. {
  1302. struct zoneref *z;
  1303. struct page *page = NULL;
  1304. int classzone_idx;
  1305. struct zone *zone;
  1306. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1307. int zlc_active = 0; /* set if using zonelist_cache */
  1308. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1309. classzone_idx = zone_idx(preferred_zone);
  1310. zonelist_scan:
  1311. /*
  1312. * Scan zonelist, looking for a zone with enough free.
  1313. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1314. */
  1315. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1316. high_zoneidx, nodemask) {
  1317. if (NUMA_BUILD && zlc_active &&
  1318. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1319. continue;
  1320. if ((alloc_flags & ALLOC_CPUSET) &&
  1321. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1322. goto try_next_zone;
  1323. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1324. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1325. unsigned long mark;
  1326. int ret;
  1327. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1328. if (zone_watermark_ok(zone, order, mark,
  1329. classzone_idx, alloc_flags))
  1330. goto try_this_zone;
  1331. if (zone_reclaim_mode == 0)
  1332. goto this_zone_full;
  1333. ret = zone_reclaim(zone, gfp_mask, order);
  1334. switch (ret) {
  1335. case ZONE_RECLAIM_NOSCAN:
  1336. /* did not scan */
  1337. goto try_next_zone;
  1338. case ZONE_RECLAIM_FULL:
  1339. /* scanned but unreclaimable */
  1340. goto this_zone_full;
  1341. default:
  1342. /* did we reclaim enough */
  1343. if (!zone_watermark_ok(zone, order, mark,
  1344. classzone_idx, alloc_flags))
  1345. goto this_zone_full;
  1346. }
  1347. }
  1348. try_this_zone:
  1349. page = buffered_rmqueue(preferred_zone, zone, order,
  1350. gfp_mask, migratetype);
  1351. if (page)
  1352. break;
  1353. this_zone_full:
  1354. if (NUMA_BUILD)
  1355. zlc_mark_zone_full(zonelist, z);
  1356. try_next_zone:
  1357. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1358. /*
  1359. * we do zlc_setup after the first zone is tried but only
  1360. * if there are multiple nodes make it worthwhile
  1361. */
  1362. allowednodes = zlc_setup(zonelist, alloc_flags);
  1363. zlc_active = 1;
  1364. did_zlc_setup = 1;
  1365. }
  1366. }
  1367. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1368. /* Disable zlc cache for second zonelist scan */
  1369. zlc_active = 0;
  1370. goto zonelist_scan;
  1371. }
  1372. return page;
  1373. }
  1374. static inline int
  1375. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1376. unsigned long pages_reclaimed)
  1377. {
  1378. /* Do not loop if specifically requested */
  1379. if (gfp_mask & __GFP_NORETRY)
  1380. return 0;
  1381. /*
  1382. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1383. * means __GFP_NOFAIL, but that may not be true in other
  1384. * implementations.
  1385. */
  1386. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1387. return 1;
  1388. /*
  1389. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1390. * specified, then we retry until we no longer reclaim any pages
  1391. * (above), or we've reclaimed an order of pages at least as
  1392. * large as the allocation's order. In both cases, if the
  1393. * allocation still fails, we stop retrying.
  1394. */
  1395. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1396. return 1;
  1397. /*
  1398. * Don't let big-order allocations loop unless the caller
  1399. * explicitly requests that.
  1400. */
  1401. if (gfp_mask & __GFP_NOFAIL)
  1402. return 1;
  1403. return 0;
  1404. }
  1405. static inline struct page *
  1406. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1407. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1408. nodemask_t *nodemask, struct zone *preferred_zone,
  1409. int migratetype)
  1410. {
  1411. struct page *page;
  1412. /* Acquire the OOM killer lock for the zones in zonelist */
  1413. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1414. schedule_timeout_uninterruptible(1);
  1415. return NULL;
  1416. }
  1417. /*
  1418. * Go through the zonelist yet one more time, keep very high watermark
  1419. * here, this is only to catch a parallel oom killing, we must fail if
  1420. * we're still under heavy pressure.
  1421. */
  1422. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1423. order, zonelist, high_zoneidx,
  1424. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1425. preferred_zone, migratetype);
  1426. if (page)
  1427. goto out;
  1428. if (!(gfp_mask & __GFP_NOFAIL)) {
  1429. /* The OOM killer will not help higher order allocs */
  1430. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1431. goto out;
  1432. /*
  1433. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1434. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1435. * The caller should handle page allocation failure by itself if
  1436. * it specifies __GFP_THISNODE.
  1437. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1438. */
  1439. if (gfp_mask & __GFP_THISNODE)
  1440. goto out;
  1441. }
  1442. /* Exhausted what can be done so it's blamo time */
  1443. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1444. out:
  1445. clear_zonelist_oom(zonelist, gfp_mask);
  1446. return page;
  1447. }
  1448. /* The really slow allocator path where we enter direct reclaim */
  1449. static inline struct page *
  1450. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1451. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1452. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1453. int migratetype, unsigned long *did_some_progress)
  1454. {
  1455. struct page *page = NULL;
  1456. struct reclaim_state reclaim_state;
  1457. struct task_struct *p = current;
  1458. cond_resched();
  1459. /* We now go into synchronous reclaim */
  1460. cpuset_memory_pressure_bump();
  1461. p->flags |= PF_MEMALLOC;
  1462. lockdep_set_current_reclaim_state(gfp_mask);
  1463. reclaim_state.reclaimed_slab = 0;
  1464. p->reclaim_state = &reclaim_state;
  1465. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1466. p->reclaim_state = NULL;
  1467. lockdep_clear_current_reclaim_state();
  1468. p->flags &= ~PF_MEMALLOC;
  1469. cond_resched();
  1470. if (order != 0)
  1471. drain_all_pages();
  1472. if (likely(*did_some_progress))
  1473. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1474. zonelist, high_zoneidx,
  1475. alloc_flags, preferred_zone,
  1476. migratetype);
  1477. return page;
  1478. }
  1479. /*
  1480. * This is called in the allocator slow-path if the allocation request is of
  1481. * sufficient urgency to ignore watermarks and take other desperate measures
  1482. */
  1483. static inline struct page *
  1484. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1485. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1486. nodemask_t *nodemask, struct zone *preferred_zone,
  1487. int migratetype)
  1488. {
  1489. struct page *page;
  1490. do {
  1491. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1492. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1493. preferred_zone, migratetype);
  1494. if (!page && gfp_mask & __GFP_NOFAIL)
  1495. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1496. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1497. return page;
  1498. }
  1499. static inline
  1500. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1501. enum zone_type high_zoneidx)
  1502. {
  1503. struct zoneref *z;
  1504. struct zone *zone;
  1505. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1506. wakeup_kswapd(zone, order);
  1507. }
  1508. static inline int
  1509. gfp_to_alloc_flags(gfp_t gfp_mask)
  1510. {
  1511. struct task_struct *p = current;
  1512. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1513. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1514. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1515. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1516. /*
  1517. * The caller may dip into page reserves a bit more if the caller
  1518. * cannot run direct reclaim, or if the caller has realtime scheduling
  1519. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1520. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1521. */
  1522. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1523. if (!wait) {
  1524. alloc_flags |= ALLOC_HARDER;
  1525. /*
  1526. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1527. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1528. */
  1529. alloc_flags &= ~ALLOC_CPUSET;
  1530. } else if (unlikely(rt_task(p)) && !in_interrupt())
  1531. alloc_flags |= ALLOC_HARDER;
  1532. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1533. if (!in_interrupt() &&
  1534. ((p->flags & PF_MEMALLOC) ||
  1535. unlikely(test_thread_flag(TIF_MEMDIE))))
  1536. alloc_flags |= ALLOC_NO_WATERMARKS;
  1537. }
  1538. return alloc_flags;
  1539. }
  1540. static inline struct page *
  1541. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1542. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1543. nodemask_t *nodemask, struct zone *preferred_zone,
  1544. int migratetype)
  1545. {
  1546. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1547. struct page *page = NULL;
  1548. int alloc_flags;
  1549. unsigned long pages_reclaimed = 0;
  1550. unsigned long did_some_progress;
  1551. struct task_struct *p = current;
  1552. /*
  1553. * In the slowpath, we sanity check order to avoid ever trying to
  1554. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1555. * be using allocators in order of preference for an area that is
  1556. * too large.
  1557. */
  1558. if (order >= MAX_ORDER) {
  1559. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1560. return NULL;
  1561. }
  1562. /*
  1563. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1564. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1565. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1566. * using a larger set of nodes after it has established that the
  1567. * allowed per node queues are empty and that nodes are
  1568. * over allocated.
  1569. */
  1570. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1571. goto nopage;
  1572. restart:
  1573. wake_all_kswapd(order, zonelist, high_zoneidx);
  1574. /*
  1575. * OK, we're below the kswapd watermark and have kicked background
  1576. * reclaim. Now things get more complex, so set up alloc_flags according
  1577. * to how we want to proceed.
  1578. */
  1579. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1580. /* This is the last chance, in general, before the goto nopage. */
  1581. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1582. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1583. preferred_zone, migratetype);
  1584. if (page)
  1585. goto got_pg;
  1586. rebalance:
  1587. /* Allocate without watermarks if the context allows */
  1588. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1589. page = __alloc_pages_high_priority(gfp_mask, order,
  1590. zonelist, high_zoneidx, nodemask,
  1591. preferred_zone, migratetype);
  1592. if (page)
  1593. goto got_pg;
  1594. }
  1595. /* Atomic allocations - we can't balance anything */
  1596. if (!wait)
  1597. goto nopage;
  1598. /* Avoid recursion of direct reclaim */
  1599. if (p->flags & PF_MEMALLOC)
  1600. goto nopage;
  1601. /* Avoid allocations with no watermarks from looping endlessly */
  1602. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1603. goto nopage;
  1604. /* Try direct reclaim and then allocating */
  1605. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1606. zonelist, high_zoneidx,
  1607. nodemask,
  1608. alloc_flags, preferred_zone,
  1609. migratetype, &did_some_progress);
  1610. if (page)
  1611. goto got_pg;
  1612. /*
  1613. * If we failed to make any progress reclaiming, then we are
  1614. * running out of options and have to consider going OOM
  1615. */
  1616. if (!did_some_progress) {
  1617. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1618. if (oom_killer_disabled)
  1619. goto nopage;
  1620. page = __alloc_pages_may_oom(gfp_mask, order,
  1621. zonelist, high_zoneidx,
  1622. nodemask, preferred_zone,
  1623. migratetype);
  1624. if (page)
  1625. goto got_pg;
  1626. /*
  1627. * The OOM killer does not trigger for high-order
  1628. * ~__GFP_NOFAIL allocations so if no progress is being
  1629. * made, there are no other options and retrying is
  1630. * unlikely to help.
  1631. */
  1632. if (order > PAGE_ALLOC_COSTLY_ORDER &&
  1633. !(gfp_mask & __GFP_NOFAIL))
  1634. goto nopage;
  1635. goto restart;
  1636. }
  1637. }
  1638. /* Check if we should retry the allocation */
  1639. pages_reclaimed += did_some_progress;
  1640. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1641. /* Wait for some write requests to complete then retry */
  1642. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1643. goto rebalance;
  1644. }
  1645. nopage:
  1646. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1647. printk(KERN_WARNING "%s: page allocation failure."
  1648. " order:%d, mode:0x%x\n",
  1649. p->comm, order, gfp_mask);
  1650. dump_stack();
  1651. show_mem();
  1652. }
  1653. return page;
  1654. got_pg:
  1655. if (kmemcheck_enabled)
  1656. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1657. return page;
  1658. }
  1659. /*
  1660. * This is the 'heart' of the zoned buddy allocator.
  1661. */
  1662. struct page *
  1663. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1664. struct zonelist *zonelist, nodemask_t *nodemask)
  1665. {
  1666. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1667. struct zone *preferred_zone;
  1668. struct page *page;
  1669. int migratetype = allocflags_to_migratetype(gfp_mask);
  1670. gfp_mask &= gfp_allowed_mask;
  1671. lockdep_trace_alloc(gfp_mask);
  1672. might_sleep_if(gfp_mask & __GFP_WAIT);
  1673. if (should_fail_alloc_page(gfp_mask, order))
  1674. return NULL;
  1675. /*
  1676. * Check the zones suitable for the gfp_mask contain at least one
  1677. * valid zone. It's possible to have an empty zonelist as a result
  1678. * of GFP_THISNODE and a memoryless node
  1679. */
  1680. if (unlikely(!zonelist->_zonerefs->zone))
  1681. return NULL;
  1682. /* The preferred zone is used for statistics later */
  1683. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1684. if (!preferred_zone)
  1685. return NULL;
  1686. /* First allocation attempt */
  1687. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1688. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1689. preferred_zone, migratetype);
  1690. if (unlikely(!page))
  1691. page = __alloc_pages_slowpath(gfp_mask, order,
  1692. zonelist, high_zoneidx, nodemask,
  1693. preferred_zone, migratetype);
  1694. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1695. return page;
  1696. }
  1697. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1698. /*
  1699. * Common helper functions.
  1700. */
  1701. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1702. {
  1703. struct page *page;
  1704. /*
  1705. * __get_free_pages() returns a 32-bit address, which cannot represent
  1706. * a highmem page
  1707. */
  1708. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1709. page = alloc_pages(gfp_mask, order);
  1710. if (!page)
  1711. return 0;
  1712. return (unsigned long) page_address(page);
  1713. }
  1714. EXPORT_SYMBOL(__get_free_pages);
  1715. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1716. {
  1717. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  1718. }
  1719. EXPORT_SYMBOL(get_zeroed_page);
  1720. void __pagevec_free(struct pagevec *pvec)
  1721. {
  1722. int i = pagevec_count(pvec);
  1723. while (--i >= 0) {
  1724. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  1725. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1726. }
  1727. }
  1728. void __free_pages(struct page *page, unsigned int order)
  1729. {
  1730. if (put_page_testzero(page)) {
  1731. trace_mm_page_free_direct(page, order);
  1732. if (order == 0)
  1733. free_hot_page(page);
  1734. else
  1735. __free_pages_ok(page, order);
  1736. }
  1737. }
  1738. EXPORT_SYMBOL(__free_pages);
  1739. void free_pages(unsigned long addr, unsigned int order)
  1740. {
  1741. if (addr != 0) {
  1742. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1743. __free_pages(virt_to_page((void *)addr), order);
  1744. }
  1745. }
  1746. EXPORT_SYMBOL(free_pages);
  1747. /**
  1748. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1749. * @size: the number of bytes to allocate
  1750. * @gfp_mask: GFP flags for the allocation
  1751. *
  1752. * This function is similar to alloc_pages(), except that it allocates the
  1753. * minimum number of pages to satisfy the request. alloc_pages() can only
  1754. * allocate memory in power-of-two pages.
  1755. *
  1756. * This function is also limited by MAX_ORDER.
  1757. *
  1758. * Memory allocated by this function must be released by free_pages_exact().
  1759. */
  1760. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1761. {
  1762. unsigned int order = get_order(size);
  1763. unsigned long addr;
  1764. addr = __get_free_pages(gfp_mask, order);
  1765. if (addr) {
  1766. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1767. unsigned long used = addr + PAGE_ALIGN(size);
  1768. split_page(virt_to_page((void *)addr), order);
  1769. while (used < alloc_end) {
  1770. free_page(used);
  1771. used += PAGE_SIZE;
  1772. }
  1773. }
  1774. return (void *)addr;
  1775. }
  1776. EXPORT_SYMBOL(alloc_pages_exact);
  1777. /**
  1778. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1779. * @virt: the value returned by alloc_pages_exact.
  1780. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1781. *
  1782. * Release the memory allocated by a previous call to alloc_pages_exact.
  1783. */
  1784. void free_pages_exact(void *virt, size_t size)
  1785. {
  1786. unsigned long addr = (unsigned long)virt;
  1787. unsigned long end = addr + PAGE_ALIGN(size);
  1788. while (addr < end) {
  1789. free_page(addr);
  1790. addr += PAGE_SIZE;
  1791. }
  1792. }
  1793. EXPORT_SYMBOL(free_pages_exact);
  1794. static unsigned int nr_free_zone_pages(int offset)
  1795. {
  1796. struct zoneref *z;
  1797. struct zone *zone;
  1798. /* Just pick one node, since fallback list is circular */
  1799. unsigned int sum = 0;
  1800. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1801. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1802. unsigned long size = zone->present_pages;
  1803. unsigned long high = high_wmark_pages(zone);
  1804. if (size > high)
  1805. sum += size - high;
  1806. }
  1807. return sum;
  1808. }
  1809. /*
  1810. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1811. */
  1812. unsigned int nr_free_buffer_pages(void)
  1813. {
  1814. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1815. }
  1816. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1817. /*
  1818. * Amount of free RAM allocatable within all zones
  1819. */
  1820. unsigned int nr_free_pagecache_pages(void)
  1821. {
  1822. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1823. }
  1824. static inline void show_node(struct zone *zone)
  1825. {
  1826. if (NUMA_BUILD)
  1827. printk("Node %d ", zone_to_nid(zone));
  1828. }
  1829. void si_meminfo(struct sysinfo *val)
  1830. {
  1831. val->totalram = totalram_pages;
  1832. val->sharedram = 0;
  1833. val->freeram = global_page_state(NR_FREE_PAGES);
  1834. val->bufferram = nr_blockdev_pages();
  1835. val->totalhigh = totalhigh_pages;
  1836. val->freehigh = nr_free_highpages();
  1837. val->mem_unit = PAGE_SIZE;
  1838. }
  1839. EXPORT_SYMBOL(si_meminfo);
  1840. #ifdef CONFIG_NUMA
  1841. void si_meminfo_node(struct sysinfo *val, int nid)
  1842. {
  1843. pg_data_t *pgdat = NODE_DATA(nid);
  1844. val->totalram = pgdat->node_present_pages;
  1845. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1846. #ifdef CONFIG_HIGHMEM
  1847. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1848. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1849. NR_FREE_PAGES);
  1850. #else
  1851. val->totalhigh = 0;
  1852. val->freehigh = 0;
  1853. #endif
  1854. val->mem_unit = PAGE_SIZE;
  1855. }
  1856. #endif
  1857. #define K(x) ((x) << (PAGE_SHIFT-10))
  1858. /*
  1859. * Show free area list (used inside shift_scroll-lock stuff)
  1860. * We also calculate the percentage fragmentation. We do this by counting the
  1861. * memory on each free list with the exception of the first item on the list.
  1862. */
  1863. void show_free_areas(void)
  1864. {
  1865. int cpu;
  1866. struct zone *zone;
  1867. for_each_populated_zone(zone) {
  1868. show_node(zone);
  1869. printk("%s per-cpu:\n", zone->name);
  1870. for_each_online_cpu(cpu) {
  1871. struct per_cpu_pageset *pageset;
  1872. pageset = zone_pcp(zone, cpu);
  1873. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1874. cpu, pageset->pcp.high,
  1875. pageset->pcp.batch, pageset->pcp.count);
  1876. }
  1877. }
  1878. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  1879. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  1880. " unevictable:%lu"
  1881. " dirty:%lu writeback:%lu unstable:%lu\n"
  1882. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  1883. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  1884. global_page_state(NR_ACTIVE_ANON),
  1885. global_page_state(NR_INACTIVE_ANON),
  1886. global_page_state(NR_ISOLATED_ANON),
  1887. global_page_state(NR_ACTIVE_FILE),
  1888. global_page_state(NR_INACTIVE_FILE),
  1889. global_page_state(NR_ISOLATED_FILE),
  1890. global_page_state(NR_UNEVICTABLE),
  1891. global_page_state(NR_FILE_DIRTY),
  1892. global_page_state(NR_WRITEBACK),
  1893. global_page_state(NR_UNSTABLE_NFS),
  1894. global_page_state(NR_FREE_PAGES),
  1895. global_page_state(NR_SLAB_RECLAIMABLE),
  1896. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1897. global_page_state(NR_FILE_MAPPED),
  1898. global_page_state(NR_SHMEM),
  1899. global_page_state(NR_PAGETABLE),
  1900. global_page_state(NR_BOUNCE));
  1901. for_each_populated_zone(zone) {
  1902. int i;
  1903. show_node(zone);
  1904. printk("%s"
  1905. " free:%lukB"
  1906. " min:%lukB"
  1907. " low:%lukB"
  1908. " high:%lukB"
  1909. " active_anon:%lukB"
  1910. " inactive_anon:%lukB"
  1911. " active_file:%lukB"
  1912. " inactive_file:%lukB"
  1913. " unevictable:%lukB"
  1914. " isolated(anon):%lukB"
  1915. " isolated(file):%lukB"
  1916. " present:%lukB"
  1917. " mlocked:%lukB"
  1918. " dirty:%lukB"
  1919. " writeback:%lukB"
  1920. " mapped:%lukB"
  1921. " shmem:%lukB"
  1922. " slab_reclaimable:%lukB"
  1923. " slab_unreclaimable:%lukB"
  1924. " kernel_stack:%lukB"
  1925. " pagetables:%lukB"
  1926. " unstable:%lukB"
  1927. " bounce:%lukB"
  1928. " writeback_tmp:%lukB"
  1929. " pages_scanned:%lu"
  1930. " all_unreclaimable? %s"
  1931. "\n",
  1932. zone->name,
  1933. K(zone_page_state(zone, NR_FREE_PAGES)),
  1934. K(min_wmark_pages(zone)),
  1935. K(low_wmark_pages(zone)),
  1936. K(high_wmark_pages(zone)),
  1937. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1938. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1939. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1940. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1941. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1942. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  1943. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  1944. K(zone->present_pages),
  1945. K(zone_page_state(zone, NR_MLOCK)),
  1946. K(zone_page_state(zone, NR_FILE_DIRTY)),
  1947. K(zone_page_state(zone, NR_WRITEBACK)),
  1948. K(zone_page_state(zone, NR_FILE_MAPPED)),
  1949. K(zone_page_state(zone, NR_SHMEM)),
  1950. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  1951. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  1952. zone_page_state(zone, NR_KERNEL_STACK) *
  1953. THREAD_SIZE / 1024,
  1954. K(zone_page_state(zone, NR_PAGETABLE)),
  1955. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  1956. K(zone_page_state(zone, NR_BOUNCE)),
  1957. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  1958. zone->pages_scanned,
  1959. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1960. );
  1961. printk("lowmem_reserve[]:");
  1962. for (i = 0; i < MAX_NR_ZONES; i++)
  1963. printk(" %lu", zone->lowmem_reserve[i]);
  1964. printk("\n");
  1965. }
  1966. for_each_populated_zone(zone) {
  1967. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1968. show_node(zone);
  1969. printk("%s: ", zone->name);
  1970. spin_lock_irqsave(&zone->lock, flags);
  1971. for (order = 0; order < MAX_ORDER; order++) {
  1972. nr[order] = zone->free_area[order].nr_free;
  1973. total += nr[order] << order;
  1974. }
  1975. spin_unlock_irqrestore(&zone->lock, flags);
  1976. for (order = 0; order < MAX_ORDER; order++)
  1977. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1978. printk("= %lukB\n", K(total));
  1979. }
  1980. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1981. show_swap_cache_info();
  1982. }
  1983. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1984. {
  1985. zoneref->zone = zone;
  1986. zoneref->zone_idx = zone_idx(zone);
  1987. }
  1988. /*
  1989. * Builds allocation fallback zone lists.
  1990. *
  1991. * Add all populated zones of a node to the zonelist.
  1992. */
  1993. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1994. int nr_zones, enum zone_type zone_type)
  1995. {
  1996. struct zone *zone;
  1997. BUG_ON(zone_type >= MAX_NR_ZONES);
  1998. zone_type++;
  1999. do {
  2000. zone_type--;
  2001. zone = pgdat->node_zones + zone_type;
  2002. if (populated_zone(zone)) {
  2003. zoneref_set_zone(zone,
  2004. &zonelist->_zonerefs[nr_zones++]);
  2005. check_highest_zone(zone_type);
  2006. }
  2007. } while (zone_type);
  2008. return nr_zones;
  2009. }
  2010. /*
  2011. * zonelist_order:
  2012. * 0 = automatic detection of better ordering.
  2013. * 1 = order by ([node] distance, -zonetype)
  2014. * 2 = order by (-zonetype, [node] distance)
  2015. *
  2016. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2017. * the same zonelist. So only NUMA can configure this param.
  2018. */
  2019. #define ZONELIST_ORDER_DEFAULT 0
  2020. #define ZONELIST_ORDER_NODE 1
  2021. #define ZONELIST_ORDER_ZONE 2
  2022. /* zonelist order in the kernel.
  2023. * set_zonelist_order() will set this to NODE or ZONE.
  2024. */
  2025. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2026. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2027. #ifdef CONFIG_NUMA
  2028. /* The value user specified ....changed by config */
  2029. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2030. /* string for sysctl */
  2031. #define NUMA_ZONELIST_ORDER_LEN 16
  2032. char numa_zonelist_order[16] = "default";
  2033. /*
  2034. * interface for configure zonelist ordering.
  2035. * command line option "numa_zonelist_order"
  2036. * = "[dD]efault - default, automatic configuration.
  2037. * = "[nN]ode - order by node locality, then by zone within node
  2038. * = "[zZ]one - order by zone, then by locality within zone
  2039. */
  2040. static int __parse_numa_zonelist_order(char *s)
  2041. {
  2042. if (*s == 'd' || *s == 'D') {
  2043. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2044. } else if (*s == 'n' || *s == 'N') {
  2045. user_zonelist_order = ZONELIST_ORDER_NODE;
  2046. } else if (*s == 'z' || *s == 'Z') {
  2047. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2048. } else {
  2049. printk(KERN_WARNING
  2050. "Ignoring invalid numa_zonelist_order value: "
  2051. "%s\n", s);
  2052. return -EINVAL;
  2053. }
  2054. return 0;
  2055. }
  2056. static __init int setup_numa_zonelist_order(char *s)
  2057. {
  2058. if (s)
  2059. return __parse_numa_zonelist_order(s);
  2060. return 0;
  2061. }
  2062. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2063. /*
  2064. * sysctl handler for numa_zonelist_order
  2065. */
  2066. int numa_zonelist_order_handler(ctl_table *table, int write,
  2067. void __user *buffer, size_t *length,
  2068. loff_t *ppos)
  2069. {
  2070. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2071. int ret;
  2072. static DEFINE_MUTEX(zl_order_mutex);
  2073. mutex_lock(&zl_order_mutex);
  2074. if (write)
  2075. strcpy(saved_string, (char*)table->data);
  2076. ret = proc_dostring(table, write, buffer, length, ppos);
  2077. if (ret)
  2078. goto out;
  2079. if (write) {
  2080. int oldval = user_zonelist_order;
  2081. if (__parse_numa_zonelist_order((char*)table->data)) {
  2082. /*
  2083. * bogus value. restore saved string
  2084. */
  2085. strncpy((char*)table->data, saved_string,
  2086. NUMA_ZONELIST_ORDER_LEN);
  2087. user_zonelist_order = oldval;
  2088. } else if (oldval != user_zonelist_order)
  2089. build_all_zonelists();
  2090. }
  2091. out:
  2092. mutex_unlock(&zl_order_mutex);
  2093. return ret;
  2094. }
  2095. #define MAX_NODE_LOAD (nr_online_nodes)
  2096. static int node_load[MAX_NUMNODES];
  2097. /**
  2098. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2099. * @node: node whose fallback list we're appending
  2100. * @used_node_mask: nodemask_t of already used nodes
  2101. *
  2102. * We use a number of factors to determine which is the next node that should
  2103. * appear on a given node's fallback list. The node should not have appeared
  2104. * already in @node's fallback list, and it should be the next closest node
  2105. * according to the distance array (which contains arbitrary distance values
  2106. * from each node to each node in the system), and should also prefer nodes
  2107. * with no CPUs, since presumably they'll have very little allocation pressure
  2108. * on them otherwise.
  2109. * It returns -1 if no node is found.
  2110. */
  2111. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2112. {
  2113. int n, val;
  2114. int min_val = INT_MAX;
  2115. int best_node = -1;
  2116. const struct cpumask *tmp = cpumask_of_node(0);
  2117. /* Use the local node if we haven't already */
  2118. if (!node_isset(node, *used_node_mask)) {
  2119. node_set(node, *used_node_mask);
  2120. return node;
  2121. }
  2122. for_each_node_state(n, N_HIGH_MEMORY) {
  2123. /* Don't want a node to appear more than once */
  2124. if (node_isset(n, *used_node_mask))
  2125. continue;
  2126. /* Use the distance array to find the distance */
  2127. val = node_distance(node, n);
  2128. /* Penalize nodes under us ("prefer the next node") */
  2129. val += (n < node);
  2130. /* Give preference to headless and unused nodes */
  2131. tmp = cpumask_of_node(n);
  2132. if (!cpumask_empty(tmp))
  2133. val += PENALTY_FOR_NODE_WITH_CPUS;
  2134. /* Slight preference for less loaded node */
  2135. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2136. val += node_load[n];
  2137. if (val < min_val) {
  2138. min_val = val;
  2139. best_node = n;
  2140. }
  2141. }
  2142. if (best_node >= 0)
  2143. node_set(best_node, *used_node_mask);
  2144. return best_node;
  2145. }
  2146. /*
  2147. * Build zonelists ordered by node and zones within node.
  2148. * This results in maximum locality--normal zone overflows into local
  2149. * DMA zone, if any--but risks exhausting DMA zone.
  2150. */
  2151. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2152. {
  2153. int j;
  2154. struct zonelist *zonelist;
  2155. zonelist = &pgdat->node_zonelists[0];
  2156. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2157. ;
  2158. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2159. MAX_NR_ZONES - 1);
  2160. zonelist->_zonerefs[j].zone = NULL;
  2161. zonelist->_zonerefs[j].zone_idx = 0;
  2162. }
  2163. /*
  2164. * Build gfp_thisnode zonelists
  2165. */
  2166. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2167. {
  2168. int j;
  2169. struct zonelist *zonelist;
  2170. zonelist = &pgdat->node_zonelists[1];
  2171. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2172. zonelist->_zonerefs[j].zone = NULL;
  2173. zonelist->_zonerefs[j].zone_idx = 0;
  2174. }
  2175. /*
  2176. * Build zonelists ordered by zone and nodes within zones.
  2177. * This results in conserving DMA zone[s] until all Normal memory is
  2178. * exhausted, but results in overflowing to remote node while memory
  2179. * may still exist in local DMA zone.
  2180. */
  2181. static int node_order[MAX_NUMNODES];
  2182. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2183. {
  2184. int pos, j, node;
  2185. int zone_type; /* needs to be signed */
  2186. struct zone *z;
  2187. struct zonelist *zonelist;
  2188. zonelist = &pgdat->node_zonelists[0];
  2189. pos = 0;
  2190. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2191. for (j = 0; j < nr_nodes; j++) {
  2192. node = node_order[j];
  2193. z = &NODE_DATA(node)->node_zones[zone_type];
  2194. if (populated_zone(z)) {
  2195. zoneref_set_zone(z,
  2196. &zonelist->_zonerefs[pos++]);
  2197. check_highest_zone(zone_type);
  2198. }
  2199. }
  2200. }
  2201. zonelist->_zonerefs[pos].zone = NULL;
  2202. zonelist->_zonerefs[pos].zone_idx = 0;
  2203. }
  2204. static int default_zonelist_order(void)
  2205. {
  2206. int nid, zone_type;
  2207. unsigned long low_kmem_size,total_size;
  2208. struct zone *z;
  2209. int average_size;
  2210. /*
  2211. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  2212. * If they are really small and used heavily, the system can fall
  2213. * into OOM very easily.
  2214. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2215. */
  2216. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2217. low_kmem_size = 0;
  2218. total_size = 0;
  2219. for_each_online_node(nid) {
  2220. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2221. z = &NODE_DATA(nid)->node_zones[zone_type];
  2222. if (populated_zone(z)) {
  2223. if (zone_type < ZONE_NORMAL)
  2224. low_kmem_size += z->present_pages;
  2225. total_size += z->present_pages;
  2226. }
  2227. }
  2228. }
  2229. if (!low_kmem_size || /* there are no DMA area. */
  2230. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2231. return ZONELIST_ORDER_NODE;
  2232. /*
  2233. * look into each node's config.
  2234. * If there is a node whose DMA/DMA32 memory is very big area on
  2235. * local memory, NODE_ORDER may be suitable.
  2236. */
  2237. average_size = total_size /
  2238. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2239. for_each_online_node(nid) {
  2240. low_kmem_size = 0;
  2241. total_size = 0;
  2242. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2243. z = &NODE_DATA(nid)->node_zones[zone_type];
  2244. if (populated_zone(z)) {
  2245. if (zone_type < ZONE_NORMAL)
  2246. low_kmem_size += z->present_pages;
  2247. total_size += z->present_pages;
  2248. }
  2249. }
  2250. if (low_kmem_size &&
  2251. total_size > average_size && /* ignore small node */
  2252. low_kmem_size > total_size * 70/100)
  2253. return ZONELIST_ORDER_NODE;
  2254. }
  2255. return ZONELIST_ORDER_ZONE;
  2256. }
  2257. static void set_zonelist_order(void)
  2258. {
  2259. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2260. current_zonelist_order = default_zonelist_order();
  2261. else
  2262. current_zonelist_order = user_zonelist_order;
  2263. }
  2264. static void build_zonelists(pg_data_t *pgdat)
  2265. {
  2266. int j, node, load;
  2267. enum zone_type i;
  2268. nodemask_t used_mask;
  2269. int local_node, prev_node;
  2270. struct zonelist *zonelist;
  2271. int order = current_zonelist_order;
  2272. /* initialize zonelists */
  2273. for (i = 0; i < MAX_ZONELISTS; i++) {
  2274. zonelist = pgdat->node_zonelists + i;
  2275. zonelist->_zonerefs[0].zone = NULL;
  2276. zonelist->_zonerefs[0].zone_idx = 0;
  2277. }
  2278. /* NUMA-aware ordering of nodes */
  2279. local_node = pgdat->node_id;
  2280. load = nr_online_nodes;
  2281. prev_node = local_node;
  2282. nodes_clear(used_mask);
  2283. memset(node_order, 0, sizeof(node_order));
  2284. j = 0;
  2285. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2286. int distance = node_distance(local_node, node);
  2287. /*
  2288. * If another node is sufficiently far away then it is better
  2289. * to reclaim pages in a zone before going off node.
  2290. */
  2291. if (distance > RECLAIM_DISTANCE)
  2292. zone_reclaim_mode = 1;
  2293. /*
  2294. * We don't want to pressure a particular node.
  2295. * So adding penalty to the first node in same
  2296. * distance group to make it round-robin.
  2297. */
  2298. if (distance != node_distance(local_node, prev_node))
  2299. node_load[node] = load;
  2300. prev_node = node;
  2301. load--;
  2302. if (order == ZONELIST_ORDER_NODE)
  2303. build_zonelists_in_node_order(pgdat, node);
  2304. else
  2305. node_order[j++] = node; /* remember order */
  2306. }
  2307. if (order == ZONELIST_ORDER_ZONE) {
  2308. /* calculate node order -- i.e., DMA last! */
  2309. build_zonelists_in_zone_order(pgdat, j);
  2310. }
  2311. build_thisnode_zonelists(pgdat);
  2312. }
  2313. /* Construct the zonelist performance cache - see further mmzone.h */
  2314. static void build_zonelist_cache(pg_data_t *pgdat)
  2315. {
  2316. struct zonelist *zonelist;
  2317. struct zonelist_cache *zlc;
  2318. struct zoneref *z;
  2319. zonelist = &pgdat->node_zonelists[0];
  2320. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2321. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2322. for (z = zonelist->_zonerefs; z->zone; z++)
  2323. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2324. }
  2325. #else /* CONFIG_NUMA */
  2326. static void set_zonelist_order(void)
  2327. {
  2328. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2329. }
  2330. static void build_zonelists(pg_data_t *pgdat)
  2331. {
  2332. int node, local_node;
  2333. enum zone_type j;
  2334. struct zonelist *zonelist;
  2335. local_node = pgdat->node_id;
  2336. zonelist = &pgdat->node_zonelists[0];
  2337. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2338. /*
  2339. * Now we build the zonelist so that it contains the zones
  2340. * of all the other nodes.
  2341. * We don't want to pressure a particular node, so when
  2342. * building the zones for node N, we make sure that the
  2343. * zones coming right after the local ones are those from
  2344. * node N+1 (modulo N)
  2345. */
  2346. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2347. if (!node_online(node))
  2348. continue;
  2349. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2350. MAX_NR_ZONES - 1);
  2351. }
  2352. for (node = 0; node < local_node; node++) {
  2353. if (!node_online(node))
  2354. continue;
  2355. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2356. MAX_NR_ZONES - 1);
  2357. }
  2358. zonelist->_zonerefs[j].zone = NULL;
  2359. zonelist->_zonerefs[j].zone_idx = 0;
  2360. }
  2361. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2362. static void build_zonelist_cache(pg_data_t *pgdat)
  2363. {
  2364. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2365. }
  2366. #endif /* CONFIG_NUMA */
  2367. /* return values int ....just for stop_machine() */
  2368. static int __build_all_zonelists(void *dummy)
  2369. {
  2370. int nid;
  2371. #ifdef CONFIG_NUMA
  2372. memset(node_load, 0, sizeof(node_load));
  2373. #endif
  2374. for_each_online_node(nid) {
  2375. pg_data_t *pgdat = NODE_DATA(nid);
  2376. build_zonelists(pgdat);
  2377. build_zonelist_cache(pgdat);
  2378. }
  2379. return 0;
  2380. }
  2381. void build_all_zonelists(void)
  2382. {
  2383. set_zonelist_order();
  2384. if (system_state == SYSTEM_BOOTING) {
  2385. __build_all_zonelists(NULL);
  2386. mminit_verify_zonelist();
  2387. cpuset_init_current_mems_allowed();
  2388. } else {
  2389. /* we have to stop all cpus to guarantee there is no user
  2390. of zonelist */
  2391. stop_machine(__build_all_zonelists, NULL, NULL);
  2392. /* cpuset refresh routine should be here */
  2393. }
  2394. vm_total_pages = nr_free_pagecache_pages();
  2395. /*
  2396. * Disable grouping by mobility if the number of pages in the
  2397. * system is too low to allow the mechanism to work. It would be
  2398. * more accurate, but expensive to check per-zone. This check is
  2399. * made on memory-hotadd so a system can start with mobility
  2400. * disabled and enable it later
  2401. */
  2402. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2403. page_group_by_mobility_disabled = 1;
  2404. else
  2405. page_group_by_mobility_disabled = 0;
  2406. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2407. "Total pages: %ld\n",
  2408. nr_online_nodes,
  2409. zonelist_order_name[current_zonelist_order],
  2410. page_group_by_mobility_disabled ? "off" : "on",
  2411. vm_total_pages);
  2412. #ifdef CONFIG_NUMA
  2413. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2414. #endif
  2415. }
  2416. /*
  2417. * Helper functions to size the waitqueue hash table.
  2418. * Essentially these want to choose hash table sizes sufficiently
  2419. * large so that collisions trying to wait on pages are rare.
  2420. * But in fact, the number of active page waitqueues on typical
  2421. * systems is ridiculously low, less than 200. So this is even
  2422. * conservative, even though it seems large.
  2423. *
  2424. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2425. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2426. */
  2427. #define PAGES_PER_WAITQUEUE 256
  2428. #ifndef CONFIG_MEMORY_HOTPLUG
  2429. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2430. {
  2431. unsigned long size = 1;
  2432. pages /= PAGES_PER_WAITQUEUE;
  2433. while (size < pages)
  2434. size <<= 1;
  2435. /*
  2436. * Once we have dozens or even hundreds of threads sleeping
  2437. * on IO we've got bigger problems than wait queue collision.
  2438. * Limit the size of the wait table to a reasonable size.
  2439. */
  2440. size = min(size, 4096UL);
  2441. return max(size, 4UL);
  2442. }
  2443. #else
  2444. /*
  2445. * A zone's size might be changed by hot-add, so it is not possible to determine
  2446. * a suitable size for its wait_table. So we use the maximum size now.
  2447. *
  2448. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2449. *
  2450. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2451. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2452. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2453. *
  2454. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2455. * or more by the traditional way. (See above). It equals:
  2456. *
  2457. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2458. * ia64(16K page size) : = ( 8G + 4M)byte.
  2459. * powerpc (64K page size) : = (32G +16M)byte.
  2460. */
  2461. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2462. {
  2463. return 4096UL;
  2464. }
  2465. #endif
  2466. /*
  2467. * This is an integer logarithm so that shifts can be used later
  2468. * to extract the more random high bits from the multiplicative
  2469. * hash function before the remainder is taken.
  2470. */
  2471. static inline unsigned long wait_table_bits(unsigned long size)
  2472. {
  2473. return ffz(~size);
  2474. }
  2475. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2476. /*
  2477. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2478. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2479. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2480. * higher will lead to a bigger reserve which will get freed as contiguous
  2481. * blocks as reclaim kicks in
  2482. */
  2483. static void setup_zone_migrate_reserve(struct zone *zone)
  2484. {
  2485. unsigned long start_pfn, pfn, end_pfn;
  2486. struct page *page;
  2487. unsigned long block_migratetype;
  2488. int reserve;
  2489. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2490. start_pfn = zone->zone_start_pfn;
  2491. end_pfn = start_pfn + zone->spanned_pages;
  2492. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2493. pageblock_order;
  2494. /*
  2495. * Reserve blocks are generally in place to help high-order atomic
  2496. * allocations that are short-lived. A min_free_kbytes value that
  2497. * would result in more than 2 reserve blocks for atomic allocations
  2498. * is assumed to be in place to help anti-fragmentation for the
  2499. * future allocation of hugepages at runtime.
  2500. */
  2501. reserve = min(2, reserve);
  2502. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2503. if (!pfn_valid(pfn))
  2504. continue;
  2505. page = pfn_to_page(pfn);
  2506. /* Watch out for overlapping nodes */
  2507. if (page_to_nid(page) != zone_to_nid(zone))
  2508. continue;
  2509. /* Blocks with reserved pages will never free, skip them. */
  2510. if (PageReserved(page))
  2511. continue;
  2512. block_migratetype = get_pageblock_migratetype(page);
  2513. /* If this block is reserved, account for it */
  2514. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2515. reserve--;
  2516. continue;
  2517. }
  2518. /* Suitable for reserving if this block is movable */
  2519. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2520. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2521. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2522. reserve--;
  2523. continue;
  2524. }
  2525. /*
  2526. * If the reserve is met and this is a previous reserved block,
  2527. * take it back
  2528. */
  2529. if (block_migratetype == MIGRATE_RESERVE) {
  2530. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2531. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2532. }
  2533. }
  2534. }
  2535. /*
  2536. * Initially all pages are reserved - free ones are freed
  2537. * up by free_all_bootmem() once the early boot process is
  2538. * done. Non-atomic initialization, single-pass.
  2539. */
  2540. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2541. unsigned long start_pfn, enum memmap_context context)
  2542. {
  2543. struct page *page;
  2544. unsigned long end_pfn = start_pfn + size;
  2545. unsigned long pfn;
  2546. struct zone *z;
  2547. if (highest_memmap_pfn < end_pfn - 1)
  2548. highest_memmap_pfn = end_pfn - 1;
  2549. z = &NODE_DATA(nid)->node_zones[zone];
  2550. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2551. /*
  2552. * There can be holes in boot-time mem_map[]s
  2553. * handed to this function. They do not
  2554. * exist on hotplugged memory.
  2555. */
  2556. if (context == MEMMAP_EARLY) {
  2557. if (!early_pfn_valid(pfn))
  2558. continue;
  2559. if (!early_pfn_in_nid(pfn, nid))
  2560. continue;
  2561. }
  2562. page = pfn_to_page(pfn);
  2563. set_page_links(page, zone, nid, pfn);
  2564. mminit_verify_page_links(page, zone, nid, pfn);
  2565. init_page_count(page);
  2566. reset_page_mapcount(page);
  2567. SetPageReserved(page);
  2568. /*
  2569. * Mark the block movable so that blocks are reserved for
  2570. * movable at startup. This will force kernel allocations
  2571. * to reserve their blocks rather than leaking throughout
  2572. * the address space during boot when many long-lived
  2573. * kernel allocations are made. Later some blocks near
  2574. * the start are marked MIGRATE_RESERVE by
  2575. * setup_zone_migrate_reserve()
  2576. *
  2577. * bitmap is created for zone's valid pfn range. but memmap
  2578. * can be created for invalid pages (for alignment)
  2579. * check here not to call set_pageblock_migratetype() against
  2580. * pfn out of zone.
  2581. */
  2582. if ((z->zone_start_pfn <= pfn)
  2583. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2584. && !(pfn & (pageblock_nr_pages - 1)))
  2585. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2586. INIT_LIST_HEAD(&page->lru);
  2587. #ifdef WANT_PAGE_VIRTUAL
  2588. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2589. if (!is_highmem_idx(zone))
  2590. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2591. #endif
  2592. }
  2593. }
  2594. static void __meminit zone_init_free_lists(struct zone *zone)
  2595. {
  2596. int order, t;
  2597. for_each_migratetype_order(order, t) {
  2598. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2599. zone->free_area[order].nr_free = 0;
  2600. }
  2601. }
  2602. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2603. #define memmap_init(size, nid, zone, start_pfn) \
  2604. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2605. #endif
  2606. static int zone_batchsize(struct zone *zone)
  2607. {
  2608. #ifdef CONFIG_MMU
  2609. int batch;
  2610. /*
  2611. * The per-cpu-pages pools are set to around 1000th of the
  2612. * size of the zone. But no more than 1/2 of a meg.
  2613. *
  2614. * OK, so we don't know how big the cache is. So guess.
  2615. */
  2616. batch = zone->present_pages / 1024;
  2617. if (batch * PAGE_SIZE > 512 * 1024)
  2618. batch = (512 * 1024) / PAGE_SIZE;
  2619. batch /= 4; /* We effectively *= 4 below */
  2620. if (batch < 1)
  2621. batch = 1;
  2622. /*
  2623. * Clamp the batch to a 2^n - 1 value. Having a power
  2624. * of 2 value was found to be more likely to have
  2625. * suboptimal cache aliasing properties in some cases.
  2626. *
  2627. * For example if 2 tasks are alternately allocating
  2628. * batches of pages, one task can end up with a lot
  2629. * of pages of one half of the possible page colors
  2630. * and the other with pages of the other colors.
  2631. */
  2632. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2633. return batch;
  2634. #else
  2635. /* The deferral and batching of frees should be suppressed under NOMMU
  2636. * conditions.
  2637. *
  2638. * The problem is that NOMMU needs to be able to allocate large chunks
  2639. * of contiguous memory as there's no hardware page translation to
  2640. * assemble apparent contiguous memory from discontiguous pages.
  2641. *
  2642. * Queueing large contiguous runs of pages for batching, however,
  2643. * causes the pages to actually be freed in smaller chunks. As there
  2644. * can be a significant delay between the individual batches being
  2645. * recycled, this leads to the once large chunks of space being
  2646. * fragmented and becoming unavailable for high-order allocations.
  2647. */
  2648. return 0;
  2649. #endif
  2650. }
  2651. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2652. {
  2653. struct per_cpu_pages *pcp;
  2654. int migratetype;
  2655. memset(p, 0, sizeof(*p));
  2656. pcp = &p->pcp;
  2657. pcp->count = 0;
  2658. pcp->high = 6 * batch;
  2659. pcp->batch = max(1UL, 1 * batch);
  2660. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  2661. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  2662. }
  2663. /*
  2664. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2665. * to the value high for the pageset p.
  2666. */
  2667. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2668. unsigned long high)
  2669. {
  2670. struct per_cpu_pages *pcp;
  2671. pcp = &p->pcp;
  2672. pcp->high = high;
  2673. pcp->batch = max(1UL, high/4);
  2674. if ((high/4) > (PAGE_SHIFT * 8))
  2675. pcp->batch = PAGE_SHIFT * 8;
  2676. }
  2677. #ifdef CONFIG_NUMA
  2678. /*
  2679. * Boot pageset table. One per cpu which is going to be used for all
  2680. * zones and all nodes. The parameters will be set in such a way
  2681. * that an item put on a list will immediately be handed over to
  2682. * the buddy list. This is safe since pageset manipulation is done
  2683. * with interrupts disabled.
  2684. *
  2685. * Some NUMA counter updates may also be caught by the boot pagesets.
  2686. *
  2687. * The boot_pagesets must be kept even after bootup is complete for
  2688. * unused processors and/or zones. They do play a role for bootstrapping
  2689. * hotplugged processors.
  2690. *
  2691. * zoneinfo_show() and maybe other functions do
  2692. * not check if the processor is online before following the pageset pointer.
  2693. * Other parts of the kernel may not check if the zone is available.
  2694. */
  2695. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2696. /*
  2697. * Dynamically allocate memory for the
  2698. * per cpu pageset array in struct zone.
  2699. */
  2700. static int __cpuinit process_zones(int cpu)
  2701. {
  2702. struct zone *zone, *dzone;
  2703. int node = cpu_to_node(cpu);
  2704. node_set_state(node, N_CPU); /* this node has a cpu */
  2705. for_each_populated_zone(zone) {
  2706. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2707. GFP_KERNEL, node);
  2708. if (!zone_pcp(zone, cpu))
  2709. goto bad;
  2710. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2711. if (percpu_pagelist_fraction)
  2712. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2713. (zone->present_pages / percpu_pagelist_fraction));
  2714. }
  2715. return 0;
  2716. bad:
  2717. for_each_zone(dzone) {
  2718. if (!populated_zone(dzone))
  2719. continue;
  2720. if (dzone == zone)
  2721. break;
  2722. kfree(zone_pcp(dzone, cpu));
  2723. zone_pcp(dzone, cpu) = &boot_pageset[cpu];
  2724. }
  2725. return -ENOMEM;
  2726. }
  2727. static inline void free_zone_pagesets(int cpu)
  2728. {
  2729. struct zone *zone;
  2730. for_each_zone(zone) {
  2731. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2732. /* Free per_cpu_pageset if it is slab allocated */
  2733. if (pset != &boot_pageset[cpu])
  2734. kfree(pset);
  2735. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2736. }
  2737. }
  2738. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2739. unsigned long action,
  2740. void *hcpu)
  2741. {
  2742. int cpu = (long)hcpu;
  2743. int ret = NOTIFY_OK;
  2744. switch (action) {
  2745. case CPU_UP_PREPARE:
  2746. case CPU_UP_PREPARE_FROZEN:
  2747. if (process_zones(cpu))
  2748. ret = NOTIFY_BAD;
  2749. break;
  2750. case CPU_UP_CANCELED:
  2751. case CPU_UP_CANCELED_FROZEN:
  2752. case CPU_DEAD:
  2753. case CPU_DEAD_FROZEN:
  2754. free_zone_pagesets(cpu);
  2755. break;
  2756. default:
  2757. break;
  2758. }
  2759. return ret;
  2760. }
  2761. static struct notifier_block __cpuinitdata pageset_notifier =
  2762. { &pageset_cpuup_callback, NULL, 0 };
  2763. void __init setup_per_cpu_pageset(void)
  2764. {
  2765. int err;
  2766. /* Initialize per_cpu_pageset for cpu 0.
  2767. * A cpuup callback will do this for every cpu
  2768. * as it comes online
  2769. */
  2770. err = process_zones(smp_processor_id());
  2771. BUG_ON(err);
  2772. register_cpu_notifier(&pageset_notifier);
  2773. }
  2774. #endif
  2775. static noinline __init_refok
  2776. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2777. {
  2778. int i;
  2779. struct pglist_data *pgdat = zone->zone_pgdat;
  2780. size_t alloc_size;
  2781. /*
  2782. * The per-page waitqueue mechanism uses hashed waitqueues
  2783. * per zone.
  2784. */
  2785. zone->wait_table_hash_nr_entries =
  2786. wait_table_hash_nr_entries(zone_size_pages);
  2787. zone->wait_table_bits =
  2788. wait_table_bits(zone->wait_table_hash_nr_entries);
  2789. alloc_size = zone->wait_table_hash_nr_entries
  2790. * sizeof(wait_queue_head_t);
  2791. if (!slab_is_available()) {
  2792. zone->wait_table = (wait_queue_head_t *)
  2793. alloc_bootmem_node(pgdat, alloc_size);
  2794. } else {
  2795. /*
  2796. * This case means that a zone whose size was 0 gets new memory
  2797. * via memory hot-add.
  2798. * But it may be the case that a new node was hot-added. In
  2799. * this case vmalloc() will not be able to use this new node's
  2800. * memory - this wait_table must be initialized to use this new
  2801. * node itself as well.
  2802. * To use this new node's memory, further consideration will be
  2803. * necessary.
  2804. */
  2805. zone->wait_table = vmalloc(alloc_size);
  2806. }
  2807. if (!zone->wait_table)
  2808. return -ENOMEM;
  2809. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2810. init_waitqueue_head(zone->wait_table + i);
  2811. return 0;
  2812. }
  2813. static int __zone_pcp_update(void *data)
  2814. {
  2815. struct zone *zone = data;
  2816. int cpu;
  2817. unsigned long batch = zone_batchsize(zone), flags;
  2818. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2819. struct per_cpu_pageset *pset;
  2820. struct per_cpu_pages *pcp;
  2821. pset = zone_pcp(zone, cpu);
  2822. pcp = &pset->pcp;
  2823. local_irq_save(flags);
  2824. free_pcppages_bulk(zone, pcp->count, pcp);
  2825. setup_pageset(pset, batch);
  2826. local_irq_restore(flags);
  2827. }
  2828. return 0;
  2829. }
  2830. void zone_pcp_update(struct zone *zone)
  2831. {
  2832. stop_machine(__zone_pcp_update, zone, NULL);
  2833. }
  2834. static __meminit void zone_pcp_init(struct zone *zone)
  2835. {
  2836. int cpu;
  2837. unsigned long batch = zone_batchsize(zone);
  2838. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2839. #ifdef CONFIG_NUMA
  2840. /* Early boot. Slab allocator not functional yet */
  2841. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2842. setup_pageset(&boot_pageset[cpu],0);
  2843. #else
  2844. setup_pageset(zone_pcp(zone,cpu), batch);
  2845. #endif
  2846. }
  2847. if (zone->present_pages)
  2848. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2849. zone->name, zone->present_pages, batch);
  2850. }
  2851. __meminit int init_currently_empty_zone(struct zone *zone,
  2852. unsigned long zone_start_pfn,
  2853. unsigned long size,
  2854. enum memmap_context context)
  2855. {
  2856. struct pglist_data *pgdat = zone->zone_pgdat;
  2857. int ret;
  2858. ret = zone_wait_table_init(zone, size);
  2859. if (ret)
  2860. return ret;
  2861. pgdat->nr_zones = zone_idx(zone) + 1;
  2862. zone->zone_start_pfn = zone_start_pfn;
  2863. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2864. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2865. pgdat->node_id,
  2866. (unsigned long)zone_idx(zone),
  2867. zone_start_pfn, (zone_start_pfn + size));
  2868. zone_init_free_lists(zone);
  2869. return 0;
  2870. }
  2871. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2872. /*
  2873. * Basic iterator support. Return the first range of PFNs for a node
  2874. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2875. */
  2876. static int __meminit first_active_region_index_in_nid(int nid)
  2877. {
  2878. int i;
  2879. for (i = 0; i < nr_nodemap_entries; i++)
  2880. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2881. return i;
  2882. return -1;
  2883. }
  2884. /*
  2885. * Basic iterator support. Return the next active range of PFNs for a node
  2886. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2887. */
  2888. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2889. {
  2890. for (index = index + 1; index < nr_nodemap_entries; index++)
  2891. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2892. return index;
  2893. return -1;
  2894. }
  2895. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2896. /*
  2897. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2898. * Architectures may implement their own version but if add_active_range()
  2899. * was used and there are no special requirements, this is a convenient
  2900. * alternative
  2901. */
  2902. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2903. {
  2904. int i;
  2905. for (i = 0; i < nr_nodemap_entries; i++) {
  2906. unsigned long start_pfn = early_node_map[i].start_pfn;
  2907. unsigned long end_pfn = early_node_map[i].end_pfn;
  2908. if (start_pfn <= pfn && pfn < end_pfn)
  2909. return early_node_map[i].nid;
  2910. }
  2911. /* This is a memory hole */
  2912. return -1;
  2913. }
  2914. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2915. int __meminit early_pfn_to_nid(unsigned long pfn)
  2916. {
  2917. int nid;
  2918. nid = __early_pfn_to_nid(pfn);
  2919. if (nid >= 0)
  2920. return nid;
  2921. /* just returns 0 */
  2922. return 0;
  2923. }
  2924. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2925. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2926. {
  2927. int nid;
  2928. nid = __early_pfn_to_nid(pfn);
  2929. if (nid >= 0 && nid != node)
  2930. return false;
  2931. return true;
  2932. }
  2933. #endif
  2934. /* Basic iterator support to walk early_node_map[] */
  2935. #define for_each_active_range_index_in_nid(i, nid) \
  2936. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2937. i = next_active_region_index_in_nid(i, nid))
  2938. /**
  2939. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2940. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2941. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2942. *
  2943. * If an architecture guarantees that all ranges registered with
  2944. * add_active_ranges() contain no holes and may be freed, this
  2945. * this function may be used instead of calling free_bootmem() manually.
  2946. */
  2947. void __init free_bootmem_with_active_regions(int nid,
  2948. unsigned long max_low_pfn)
  2949. {
  2950. int i;
  2951. for_each_active_range_index_in_nid(i, nid) {
  2952. unsigned long size_pages = 0;
  2953. unsigned long end_pfn = early_node_map[i].end_pfn;
  2954. if (early_node_map[i].start_pfn >= max_low_pfn)
  2955. continue;
  2956. if (end_pfn > max_low_pfn)
  2957. end_pfn = max_low_pfn;
  2958. size_pages = end_pfn - early_node_map[i].start_pfn;
  2959. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2960. PFN_PHYS(early_node_map[i].start_pfn),
  2961. size_pages << PAGE_SHIFT);
  2962. }
  2963. }
  2964. int __init add_from_early_node_map(struct range *range, int az,
  2965. int nr_range, int nid)
  2966. {
  2967. int i;
  2968. u64 start, end;
  2969. /* need to go over early_node_map to find out good range for node */
  2970. for_each_active_range_index_in_nid(i, nid) {
  2971. start = early_node_map[i].start_pfn;
  2972. end = early_node_map[i].end_pfn;
  2973. nr_range = add_range(range, az, nr_range, start, end);
  2974. }
  2975. return nr_range;
  2976. }
  2977. #ifdef CONFIG_NO_BOOTMEM
  2978. void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
  2979. u64 goal, u64 limit)
  2980. {
  2981. int i;
  2982. void *ptr;
  2983. /* need to go over early_node_map to find out good range for node */
  2984. for_each_active_range_index_in_nid(i, nid) {
  2985. u64 addr;
  2986. u64 ei_start, ei_last;
  2987. ei_last = early_node_map[i].end_pfn;
  2988. ei_last <<= PAGE_SHIFT;
  2989. ei_start = early_node_map[i].start_pfn;
  2990. ei_start <<= PAGE_SHIFT;
  2991. addr = find_early_area(ei_start, ei_last,
  2992. goal, limit, size, align);
  2993. if (addr == -1ULL)
  2994. continue;
  2995. #if 0
  2996. printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
  2997. nid,
  2998. ei_start, ei_last, goal, limit, size,
  2999. align, addr);
  3000. #endif
  3001. ptr = phys_to_virt(addr);
  3002. memset(ptr, 0, size);
  3003. reserve_early_without_check(addr, addr + size, "BOOTMEM");
  3004. return ptr;
  3005. }
  3006. return NULL;
  3007. }
  3008. #endif
  3009. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  3010. {
  3011. int i;
  3012. int ret;
  3013. for_each_active_range_index_in_nid(i, nid) {
  3014. ret = work_fn(early_node_map[i].start_pfn,
  3015. early_node_map[i].end_pfn, data);
  3016. if (ret)
  3017. break;
  3018. }
  3019. }
  3020. /**
  3021. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3022. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3023. *
  3024. * If an architecture guarantees that all ranges registered with
  3025. * add_active_ranges() contain no holes and may be freed, this
  3026. * function may be used instead of calling memory_present() manually.
  3027. */
  3028. void __init sparse_memory_present_with_active_regions(int nid)
  3029. {
  3030. int i;
  3031. for_each_active_range_index_in_nid(i, nid)
  3032. memory_present(early_node_map[i].nid,
  3033. early_node_map[i].start_pfn,
  3034. early_node_map[i].end_pfn);
  3035. }
  3036. /**
  3037. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3038. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3039. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3040. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3041. *
  3042. * It returns the start and end page frame of a node based on information
  3043. * provided by an arch calling add_active_range(). If called for a node
  3044. * with no available memory, a warning is printed and the start and end
  3045. * PFNs will be 0.
  3046. */
  3047. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3048. unsigned long *start_pfn, unsigned long *end_pfn)
  3049. {
  3050. int i;
  3051. *start_pfn = -1UL;
  3052. *end_pfn = 0;
  3053. for_each_active_range_index_in_nid(i, nid) {
  3054. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  3055. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  3056. }
  3057. if (*start_pfn == -1UL)
  3058. *start_pfn = 0;
  3059. }
  3060. /*
  3061. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3062. * assumption is made that zones within a node are ordered in monotonic
  3063. * increasing memory addresses so that the "highest" populated zone is used
  3064. */
  3065. static void __init find_usable_zone_for_movable(void)
  3066. {
  3067. int zone_index;
  3068. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3069. if (zone_index == ZONE_MOVABLE)
  3070. continue;
  3071. if (arch_zone_highest_possible_pfn[zone_index] >
  3072. arch_zone_lowest_possible_pfn[zone_index])
  3073. break;
  3074. }
  3075. VM_BUG_ON(zone_index == -1);
  3076. movable_zone = zone_index;
  3077. }
  3078. /*
  3079. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3080. * because it is sized independant of architecture. Unlike the other zones,
  3081. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3082. * in each node depending on the size of each node and how evenly kernelcore
  3083. * is distributed. This helper function adjusts the zone ranges
  3084. * provided by the architecture for a given node by using the end of the
  3085. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3086. * zones within a node are in order of monotonic increases memory addresses
  3087. */
  3088. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3089. unsigned long zone_type,
  3090. unsigned long node_start_pfn,
  3091. unsigned long node_end_pfn,
  3092. unsigned long *zone_start_pfn,
  3093. unsigned long *zone_end_pfn)
  3094. {
  3095. /* Only adjust if ZONE_MOVABLE is on this node */
  3096. if (zone_movable_pfn[nid]) {
  3097. /* Size ZONE_MOVABLE */
  3098. if (zone_type == ZONE_MOVABLE) {
  3099. *zone_start_pfn = zone_movable_pfn[nid];
  3100. *zone_end_pfn = min(node_end_pfn,
  3101. arch_zone_highest_possible_pfn[movable_zone]);
  3102. /* Adjust for ZONE_MOVABLE starting within this range */
  3103. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3104. *zone_end_pfn > zone_movable_pfn[nid]) {
  3105. *zone_end_pfn = zone_movable_pfn[nid];
  3106. /* Check if this whole range is within ZONE_MOVABLE */
  3107. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3108. *zone_start_pfn = *zone_end_pfn;
  3109. }
  3110. }
  3111. /*
  3112. * Return the number of pages a zone spans in a node, including holes
  3113. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3114. */
  3115. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3116. unsigned long zone_type,
  3117. unsigned long *ignored)
  3118. {
  3119. unsigned long node_start_pfn, node_end_pfn;
  3120. unsigned long zone_start_pfn, zone_end_pfn;
  3121. /* Get the start and end of the node and zone */
  3122. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3123. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3124. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3125. adjust_zone_range_for_zone_movable(nid, zone_type,
  3126. node_start_pfn, node_end_pfn,
  3127. &zone_start_pfn, &zone_end_pfn);
  3128. /* Check that this node has pages within the zone's required range */
  3129. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3130. return 0;
  3131. /* Move the zone boundaries inside the node if necessary */
  3132. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3133. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3134. /* Return the spanned pages */
  3135. return zone_end_pfn - zone_start_pfn;
  3136. }
  3137. /*
  3138. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3139. * then all holes in the requested range will be accounted for.
  3140. */
  3141. unsigned long __meminit __absent_pages_in_range(int nid,
  3142. unsigned long range_start_pfn,
  3143. unsigned long range_end_pfn)
  3144. {
  3145. int i = 0;
  3146. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3147. unsigned long start_pfn;
  3148. /* Find the end_pfn of the first active range of pfns in the node */
  3149. i = first_active_region_index_in_nid(nid);
  3150. if (i == -1)
  3151. return 0;
  3152. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3153. /* Account for ranges before physical memory on this node */
  3154. if (early_node_map[i].start_pfn > range_start_pfn)
  3155. hole_pages = prev_end_pfn - range_start_pfn;
  3156. /* Find all holes for the zone within the node */
  3157. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3158. /* No need to continue if prev_end_pfn is outside the zone */
  3159. if (prev_end_pfn >= range_end_pfn)
  3160. break;
  3161. /* Make sure the end of the zone is not within the hole */
  3162. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3163. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3164. /* Update the hole size cound and move on */
  3165. if (start_pfn > range_start_pfn) {
  3166. BUG_ON(prev_end_pfn > start_pfn);
  3167. hole_pages += start_pfn - prev_end_pfn;
  3168. }
  3169. prev_end_pfn = early_node_map[i].end_pfn;
  3170. }
  3171. /* Account for ranges past physical memory on this node */
  3172. if (range_end_pfn > prev_end_pfn)
  3173. hole_pages += range_end_pfn -
  3174. max(range_start_pfn, prev_end_pfn);
  3175. return hole_pages;
  3176. }
  3177. /**
  3178. * absent_pages_in_range - Return number of page frames in holes within a range
  3179. * @start_pfn: The start PFN to start searching for holes
  3180. * @end_pfn: The end PFN to stop searching for holes
  3181. *
  3182. * It returns the number of pages frames in memory holes within a range.
  3183. */
  3184. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3185. unsigned long end_pfn)
  3186. {
  3187. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3188. }
  3189. /* Return the number of page frames in holes in a zone on a node */
  3190. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3191. unsigned long zone_type,
  3192. unsigned long *ignored)
  3193. {
  3194. unsigned long node_start_pfn, node_end_pfn;
  3195. unsigned long zone_start_pfn, zone_end_pfn;
  3196. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3197. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3198. node_start_pfn);
  3199. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3200. node_end_pfn);
  3201. adjust_zone_range_for_zone_movable(nid, zone_type,
  3202. node_start_pfn, node_end_pfn,
  3203. &zone_start_pfn, &zone_end_pfn);
  3204. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3205. }
  3206. #else
  3207. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3208. unsigned long zone_type,
  3209. unsigned long *zones_size)
  3210. {
  3211. return zones_size[zone_type];
  3212. }
  3213. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3214. unsigned long zone_type,
  3215. unsigned long *zholes_size)
  3216. {
  3217. if (!zholes_size)
  3218. return 0;
  3219. return zholes_size[zone_type];
  3220. }
  3221. #endif
  3222. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3223. unsigned long *zones_size, unsigned long *zholes_size)
  3224. {
  3225. unsigned long realtotalpages, totalpages = 0;
  3226. enum zone_type i;
  3227. for (i = 0; i < MAX_NR_ZONES; i++)
  3228. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3229. zones_size);
  3230. pgdat->node_spanned_pages = totalpages;
  3231. realtotalpages = totalpages;
  3232. for (i = 0; i < MAX_NR_ZONES; i++)
  3233. realtotalpages -=
  3234. zone_absent_pages_in_node(pgdat->node_id, i,
  3235. zholes_size);
  3236. pgdat->node_present_pages = realtotalpages;
  3237. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3238. realtotalpages);
  3239. }
  3240. #ifndef CONFIG_SPARSEMEM
  3241. /*
  3242. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3243. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3244. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3245. * round what is now in bits to nearest long in bits, then return it in
  3246. * bytes.
  3247. */
  3248. static unsigned long __init usemap_size(unsigned long zonesize)
  3249. {
  3250. unsigned long usemapsize;
  3251. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3252. usemapsize = usemapsize >> pageblock_order;
  3253. usemapsize *= NR_PAGEBLOCK_BITS;
  3254. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3255. return usemapsize / 8;
  3256. }
  3257. static void __init setup_usemap(struct pglist_data *pgdat,
  3258. struct zone *zone, unsigned long zonesize)
  3259. {
  3260. unsigned long usemapsize = usemap_size(zonesize);
  3261. zone->pageblock_flags = NULL;
  3262. if (usemapsize)
  3263. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3264. }
  3265. #else
  3266. static void inline setup_usemap(struct pglist_data *pgdat,
  3267. struct zone *zone, unsigned long zonesize) {}
  3268. #endif /* CONFIG_SPARSEMEM */
  3269. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3270. /* Return a sensible default order for the pageblock size. */
  3271. static inline int pageblock_default_order(void)
  3272. {
  3273. if (HPAGE_SHIFT > PAGE_SHIFT)
  3274. return HUGETLB_PAGE_ORDER;
  3275. return MAX_ORDER-1;
  3276. }
  3277. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3278. static inline void __init set_pageblock_order(unsigned int order)
  3279. {
  3280. /* Check that pageblock_nr_pages has not already been setup */
  3281. if (pageblock_order)
  3282. return;
  3283. /*
  3284. * Assume the largest contiguous order of interest is a huge page.
  3285. * This value may be variable depending on boot parameters on IA64
  3286. */
  3287. pageblock_order = order;
  3288. }
  3289. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3290. /*
  3291. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3292. * and pageblock_default_order() are unused as pageblock_order is set
  3293. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3294. * pageblock_order based on the kernel config
  3295. */
  3296. static inline int pageblock_default_order(unsigned int order)
  3297. {
  3298. return MAX_ORDER-1;
  3299. }
  3300. #define set_pageblock_order(x) do {} while (0)
  3301. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3302. /*
  3303. * Set up the zone data structures:
  3304. * - mark all pages reserved
  3305. * - mark all memory queues empty
  3306. * - clear the memory bitmaps
  3307. */
  3308. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3309. unsigned long *zones_size, unsigned long *zholes_size)
  3310. {
  3311. enum zone_type j;
  3312. int nid = pgdat->node_id;
  3313. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3314. int ret;
  3315. pgdat_resize_init(pgdat);
  3316. pgdat->nr_zones = 0;
  3317. init_waitqueue_head(&pgdat->kswapd_wait);
  3318. pgdat->kswapd_max_order = 0;
  3319. pgdat_page_cgroup_init(pgdat);
  3320. for (j = 0; j < MAX_NR_ZONES; j++) {
  3321. struct zone *zone = pgdat->node_zones + j;
  3322. unsigned long size, realsize, memmap_pages;
  3323. enum lru_list l;
  3324. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3325. realsize = size - zone_absent_pages_in_node(nid, j,
  3326. zholes_size);
  3327. /*
  3328. * Adjust realsize so that it accounts for how much memory
  3329. * is used by this zone for memmap. This affects the watermark
  3330. * and per-cpu initialisations
  3331. */
  3332. memmap_pages =
  3333. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3334. if (realsize >= memmap_pages) {
  3335. realsize -= memmap_pages;
  3336. if (memmap_pages)
  3337. printk(KERN_DEBUG
  3338. " %s zone: %lu pages used for memmap\n",
  3339. zone_names[j], memmap_pages);
  3340. } else
  3341. printk(KERN_WARNING
  3342. " %s zone: %lu pages exceeds realsize %lu\n",
  3343. zone_names[j], memmap_pages, realsize);
  3344. /* Account for reserved pages */
  3345. if (j == 0 && realsize > dma_reserve) {
  3346. realsize -= dma_reserve;
  3347. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3348. zone_names[0], dma_reserve);
  3349. }
  3350. if (!is_highmem_idx(j))
  3351. nr_kernel_pages += realsize;
  3352. nr_all_pages += realsize;
  3353. zone->spanned_pages = size;
  3354. zone->present_pages = realsize;
  3355. #ifdef CONFIG_NUMA
  3356. zone->node = nid;
  3357. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3358. / 100;
  3359. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3360. #endif
  3361. zone->name = zone_names[j];
  3362. spin_lock_init(&zone->lock);
  3363. spin_lock_init(&zone->lru_lock);
  3364. zone_seqlock_init(zone);
  3365. zone->zone_pgdat = pgdat;
  3366. zone->prev_priority = DEF_PRIORITY;
  3367. zone_pcp_init(zone);
  3368. for_each_lru(l) {
  3369. INIT_LIST_HEAD(&zone->lru[l].list);
  3370. zone->reclaim_stat.nr_saved_scan[l] = 0;
  3371. }
  3372. zone->reclaim_stat.recent_rotated[0] = 0;
  3373. zone->reclaim_stat.recent_rotated[1] = 0;
  3374. zone->reclaim_stat.recent_scanned[0] = 0;
  3375. zone->reclaim_stat.recent_scanned[1] = 0;
  3376. zap_zone_vm_stats(zone);
  3377. zone->flags = 0;
  3378. if (!size)
  3379. continue;
  3380. set_pageblock_order(pageblock_default_order());
  3381. setup_usemap(pgdat, zone, size);
  3382. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3383. size, MEMMAP_EARLY);
  3384. BUG_ON(ret);
  3385. memmap_init(size, nid, j, zone_start_pfn);
  3386. zone_start_pfn += size;
  3387. }
  3388. }
  3389. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3390. {
  3391. /* Skip empty nodes */
  3392. if (!pgdat->node_spanned_pages)
  3393. return;
  3394. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3395. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3396. if (!pgdat->node_mem_map) {
  3397. unsigned long size, start, end;
  3398. struct page *map;
  3399. /*
  3400. * The zone's endpoints aren't required to be MAX_ORDER
  3401. * aligned but the node_mem_map endpoints must be in order
  3402. * for the buddy allocator to function correctly.
  3403. */
  3404. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3405. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3406. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3407. size = (end - start) * sizeof(struct page);
  3408. map = alloc_remap(pgdat->node_id, size);
  3409. if (!map)
  3410. map = alloc_bootmem_node(pgdat, size);
  3411. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3412. }
  3413. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3414. /*
  3415. * With no DISCONTIG, the global mem_map is just set as node 0's
  3416. */
  3417. if (pgdat == NODE_DATA(0)) {
  3418. mem_map = NODE_DATA(0)->node_mem_map;
  3419. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3420. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3421. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3422. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3423. }
  3424. #endif
  3425. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3426. }
  3427. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3428. unsigned long node_start_pfn, unsigned long *zholes_size)
  3429. {
  3430. pg_data_t *pgdat = NODE_DATA(nid);
  3431. pgdat->node_id = nid;
  3432. pgdat->node_start_pfn = node_start_pfn;
  3433. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3434. alloc_node_mem_map(pgdat);
  3435. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3436. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3437. nid, (unsigned long)pgdat,
  3438. (unsigned long)pgdat->node_mem_map);
  3439. #endif
  3440. free_area_init_core(pgdat, zones_size, zholes_size);
  3441. }
  3442. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3443. #if MAX_NUMNODES > 1
  3444. /*
  3445. * Figure out the number of possible node ids.
  3446. */
  3447. static void __init setup_nr_node_ids(void)
  3448. {
  3449. unsigned int node;
  3450. unsigned int highest = 0;
  3451. for_each_node_mask(node, node_possible_map)
  3452. highest = node;
  3453. nr_node_ids = highest + 1;
  3454. }
  3455. #else
  3456. static inline void setup_nr_node_ids(void)
  3457. {
  3458. }
  3459. #endif
  3460. /**
  3461. * add_active_range - Register a range of PFNs backed by physical memory
  3462. * @nid: The node ID the range resides on
  3463. * @start_pfn: The start PFN of the available physical memory
  3464. * @end_pfn: The end PFN of the available physical memory
  3465. *
  3466. * These ranges are stored in an early_node_map[] and later used by
  3467. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3468. * range spans a memory hole, it is up to the architecture to ensure
  3469. * the memory is not freed by the bootmem allocator. If possible
  3470. * the range being registered will be merged with existing ranges.
  3471. */
  3472. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3473. unsigned long end_pfn)
  3474. {
  3475. int i;
  3476. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3477. "Entering add_active_range(%d, %#lx, %#lx) "
  3478. "%d entries of %d used\n",
  3479. nid, start_pfn, end_pfn,
  3480. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3481. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3482. /* Merge with existing active regions if possible */
  3483. for (i = 0; i < nr_nodemap_entries; i++) {
  3484. if (early_node_map[i].nid != nid)
  3485. continue;
  3486. /* Skip if an existing region covers this new one */
  3487. if (start_pfn >= early_node_map[i].start_pfn &&
  3488. end_pfn <= early_node_map[i].end_pfn)
  3489. return;
  3490. /* Merge forward if suitable */
  3491. if (start_pfn <= early_node_map[i].end_pfn &&
  3492. end_pfn > early_node_map[i].end_pfn) {
  3493. early_node_map[i].end_pfn = end_pfn;
  3494. return;
  3495. }
  3496. /* Merge backward if suitable */
  3497. if (start_pfn < early_node_map[i].start_pfn &&
  3498. end_pfn >= early_node_map[i].start_pfn) {
  3499. early_node_map[i].start_pfn = start_pfn;
  3500. return;
  3501. }
  3502. }
  3503. /* Check that early_node_map is large enough */
  3504. if (i >= MAX_ACTIVE_REGIONS) {
  3505. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3506. MAX_ACTIVE_REGIONS);
  3507. return;
  3508. }
  3509. early_node_map[i].nid = nid;
  3510. early_node_map[i].start_pfn = start_pfn;
  3511. early_node_map[i].end_pfn = end_pfn;
  3512. nr_nodemap_entries = i + 1;
  3513. }
  3514. /**
  3515. * remove_active_range - Shrink an existing registered range of PFNs
  3516. * @nid: The node id the range is on that should be shrunk
  3517. * @start_pfn: The new PFN of the range
  3518. * @end_pfn: The new PFN of the range
  3519. *
  3520. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3521. * The map is kept near the end physical page range that has already been
  3522. * registered. This function allows an arch to shrink an existing registered
  3523. * range.
  3524. */
  3525. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3526. unsigned long end_pfn)
  3527. {
  3528. int i, j;
  3529. int removed = 0;
  3530. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3531. nid, start_pfn, end_pfn);
  3532. /* Find the old active region end and shrink */
  3533. for_each_active_range_index_in_nid(i, nid) {
  3534. if (early_node_map[i].start_pfn >= start_pfn &&
  3535. early_node_map[i].end_pfn <= end_pfn) {
  3536. /* clear it */
  3537. early_node_map[i].start_pfn = 0;
  3538. early_node_map[i].end_pfn = 0;
  3539. removed = 1;
  3540. continue;
  3541. }
  3542. if (early_node_map[i].start_pfn < start_pfn &&
  3543. early_node_map[i].end_pfn > start_pfn) {
  3544. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3545. early_node_map[i].end_pfn = start_pfn;
  3546. if (temp_end_pfn > end_pfn)
  3547. add_active_range(nid, end_pfn, temp_end_pfn);
  3548. continue;
  3549. }
  3550. if (early_node_map[i].start_pfn >= start_pfn &&
  3551. early_node_map[i].end_pfn > end_pfn &&
  3552. early_node_map[i].start_pfn < end_pfn) {
  3553. early_node_map[i].start_pfn = end_pfn;
  3554. continue;
  3555. }
  3556. }
  3557. if (!removed)
  3558. return;
  3559. /* remove the blank ones */
  3560. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3561. if (early_node_map[i].nid != nid)
  3562. continue;
  3563. if (early_node_map[i].end_pfn)
  3564. continue;
  3565. /* we found it, get rid of it */
  3566. for (j = i; j < nr_nodemap_entries - 1; j++)
  3567. memcpy(&early_node_map[j], &early_node_map[j+1],
  3568. sizeof(early_node_map[j]));
  3569. j = nr_nodemap_entries - 1;
  3570. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3571. nr_nodemap_entries--;
  3572. }
  3573. }
  3574. /**
  3575. * remove_all_active_ranges - Remove all currently registered regions
  3576. *
  3577. * During discovery, it may be found that a table like SRAT is invalid
  3578. * and an alternative discovery method must be used. This function removes
  3579. * all currently registered regions.
  3580. */
  3581. void __init remove_all_active_ranges(void)
  3582. {
  3583. memset(early_node_map, 0, sizeof(early_node_map));
  3584. nr_nodemap_entries = 0;
  3585. }
  3586. /* Compare two active node_active_regions */
  3587. static int __init cmp_node_active_region(const void *a, const void *b)
  3588. {
  3589. struct node_active_region *arange = (struct node_active_region *)a;
  3590. struct node_active_region *brange = (struct node_active_region *)b;
  3591. /* Done this way to avoid overflows */
  3592. if (arange->start_pfn > brange->start_pfn)
  3593. return 1;
  3594. if (arange->start_pfn < brange->start_pfn)
  3595. return -1;
  3596. return 0;
  3597. }
  3598. /* sort the node_map by start_pfn */
  3599. void __init sort_node_map(void)
  3600. {
  3601. sort(early_node_map, (size_t)nr_nodemap_entries,
  3602. sizeof(struct node_active_region),
  3603. cmp_node_active_region, NULL);
  3604. }
  3605. /* Find the lowest pfn for a node */
  3606. static unsigned long __init find_min_pfn_for_node(int nid)
  3607. {
  3608. int i;
  3609. unsigned long min_pfn = ULONG_MAX;
  3610. /* Assuming a sorted map, the first range found has the starting pfn */
  3611. for_each_active_range_index_in_nid(i, nid)
  3612. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3613. if (min_pfn == ULONG_MAX) {
  3614. printk(KERN_WARNING
  3615. "Could not find start_pfn for node %d\n", nid);
  3616. return 0;
  3617. }
  3618. return min_pfn;
  3619. }
  3620. /**
  3621. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3622. *
  3623. * It returns the minimum PFN based on information provided via
  3624. * add_active_range().
  3625. */
  3626. unsigned long __init find_min_pfn_with_active_regions(void)
  3627. {
  3628. return find_min_pfn_for_node(MAX_NUMNODES);
  3629. }
  3630. /*
  3631. * early_calculate_totalpages()
  3632. * Sum pages in active regions for movable zone.
  3633. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3634. */
  3635. static unsigned long __init early_calculate_totalpages(void)
  3636. {
  3637. int i;
  3638. unsigned long totalpages = 0;
  3639. for (i = 0; i < nr_nodemap_entries; i++) {
  3640. unsigned long pages = early_node_map[i].end_pfn -
  3641. early_node_map[i].start_pfn;
  3642. totalpages += pages;
  3643. if (pages)
  3644. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3645. }
  3646. return totalpages;
  3647. }
  3648. /*
  3649. * Find the PFN the Movable zone begins in each node. Kernel memory
  3650. * is spread evenly between nodes as long as the nodes have enough
  3651. * memory. When they don't, some nodes will have more kernelcore than
  3652. * others
  3653. */
  3654. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3655. {
  3656. int i, nid;
  3657. unsigned long usable_startpfn;
  3658. unsigned long kernelcore_node, kernelcore_remaining;
  3659. /* save the state before borrow the nodemask */
  3660. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3661. unsigned long totalpages = early_calculate_totalpages();
  3662. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3663. /*
  3664. * If movablecore was specified, calculate what size of
  3665. * kernelcore that corresponds so that memory usable for
  3666. * any allocation type is evenly spread. If both kernelcore
  3667. * and movablecore are specified, then the value of kernelcore
  3668. * will be used for required_kernelcore if it's greater than
  3669. * what movablecore would have allowed.
  3670. */
  3671. if (required_movablecore) {
  3672. unsigned long corepages;
  3673. /*
  3674. * Round-up so that ZONE_MOVABLE is at least as large as what
  3675. * was requested by the user
  3676. */
  3677. required_movablecore =
  3678. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3679. corepages = totalpages - required_movablecore;
  3680. required_kernelcore = max(required_kernelcore, corepages);
  3681. }
  3682. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3683. if (!required_kernelcore)
  3684. goto out;
  3685. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3686. find_usable_zone_for_movable();
  3687. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3688. restart:
  3689. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3690. kernelcore_node = required_kernelcore / usable_nodes;
  3691. for_each_node_state(nid, N_HIGH_MEMORY) {
  3692. /*
  3693. * Recalculate kernelcore_node if the division per node
  3694. * now exceeds what is necessary to satisfy the requested
  3695. * amount of memory for the kernel
  3696. */
  3697. if (required_kernelcore < kernelcore_node)
  3698. kernelcore_node = required_kernelcore / usable_nodes;
  3699. /*
  3700. * As the map is walked, we track how much memory is usable
  3701. * by the kernel using kernelcore_remaining. When it is
  3702. * 0, the rest of the node is usable by ZONE_MOVABLE
  3703. */
  3704. kernelcore_remaining = kernelcore_node;
  3705. /* Go through each range of PFNs within this node */
  3706. for_each_active_range_index_in_nid(i, nid) {
  3707. unsigned long start_pfn, end_pfn;
  3708. unsigned long size_pages;
  3709. start_pfn = max(early_node_map[i].start_pfn,
  3710. zone_movable_pfn[nid]);
  3711. end_pfn = early_node_map[i].end_pfn;
  3712. if (start_pfn >= end_pfn)
  3713. continue;
  3714. /* Account for what is only usable for kernelcore */
  3715. if (start_pfn < usable_startpfn) {
  3716. unsigned long kernel_pages;
  3717. kernel_pages = min(end_pfn, usable_startpfn)
  3718. - start_pfn;
  3719. kernelcore_remaining -= min(kernel_pages,
  3720. kernelcore_remaining);
  3721. required_kernelcore -= min(kernel_pages,
  3722. required_kernelcore);
  3723. /* Continue if range is now fully accounted */
  3724. if (end_pfn <= usable_startpfn) {
  3725. /*
  3726. * Push zone_movable_pfn to the end so
  3727. * that if we have to rebalance
  3728. * kernelcore across nodes, we will
  3729. * not double account here
  3730. */
  3731. zone_movable_pfn[nid] = end_pfn;
  3732. continue;
  3733. }
  3734. start_pfn = usable_startpfn;
  3735. }
  3736. /*
  3737. * The usable PFN range for ZONE_MOVABLE is from
  3738. * start_pfn->end_pfn. Calculate size_pages as the
  3739. * number of pages used as kernelcore
  3740. */
  3741. size_pages = end_pfn - start_pfn;
  3742. if (size_pages > kernelcore_remaining)
  3743. size_pages = kernelcore_remaining;
  3744. zone_movable_pfn[nid] = start_pfn + size_pages;
  3745. /*
  3746. * Some kernelcore has been met, update counts and
  3747. * break if the kernelcore for this node has been
  3748. * satisified
  3749. */
  3750. required_kernelcore -= min(required_kernelcore,
  3751. size_pages);
  3752. kernelcore_remaining -= size_pages;
  3753. if (!kernelcore_remaining)
  3754. break;
  3755. }
  3756. }
  3757. /*
  3758. * If there is still required_kernelcore, we do another pass with one
  3759. * less node in the count. This will push zone_movable_pfn[nid] further
  3760. * along on the nodes that still have memory until kernelcore is
  3761. * satisified
  3762. */
  3763. usable_nodes--;
  3764. if (usable_nodes && required_kernelcore > usable_nodes)
  3765. goto restart;
  3766. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3767. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3768. zone_movable_pfn[nid] =
  3769. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3770. out:
  3771. /* restore the node_state */
  3772. node_states[N_HIGH_MEMORY] = saved_node_state;
  3773. }
  3774. /* Any regular memory on that node ? */
  3775. static void check_for_regular_memory(pg_data_t *pgdat)
  3776. {
  3777. #ifdef CONFIG_HIGHMEM
  3778. enum zone_type zone_type;
  3779. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3780. struct zone *zone = &pgdat->node_zones[zone_type];
  3781. if (zone->present_pages)
  3782. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3783. }
  3784. #endif
  3785. }
  3786. /**
  3787. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3788. * @max_zone_pfn: an array of max PFNs for each zone
  3789. *
  3790. * This will call free_area_init_node() for each active node in the system.
  3791. * Using the page ranges provided by add_active_range(), the size of each
  3792. * zone in each node and their holes is calculated. If the maximum PFN
  3793. * between two adjacent zones match, it is assumed that the zone is empty.
  3794. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3795. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3796. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3797. * at arch_max_dma_pfn.
  3798. */
  3799. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3800. {
  3801. unsigned long nid;
  3802. int i;
  3803. /* Sort early_node_map as initialisation assumes it is sorted */
  3804. sort_node_map();
  3805. /* Record where the zone boundaries are */
  3806. memset(arch_zone_lowest_possible_pfn, 0,
  3807. sizeof(arch_zone_lowest_possible_pfn));
  3808. memset(arch_zone_highest_possible_pfn, 0,
  3809. sizeof(arch_zone_highest_possible_pfn));
  3810. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3811. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3812. for (i = 1; i < MAX_NR_ZONES; i++) {
  3813. if (i == ZONE_MOVABLE)
  3814. continue;
  3815. arch_zone_lowest_possible_pfn[i] =
  3816. arch_zone_highest_possible_pfn[i-1];
  3817. arch_zone_highest_possible_pfn[i] =
  3818. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3819. }
  3820. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3821. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3822. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3823. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3824. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3825. /* Print out the zone ranges */
  3826. printk("Zone PFN ranges:\n");
  3827. for (i = 0; i < MAX_NR_ZONES; i++) {
  3828. if (i == ZONE_MOVABLE)
  3829. continue;
  3830. printk(" %-8s %0#10lx -> %0#10lx\n",
  3831. zone_names[i],
  3832. arch_zone_lowest_possible_pfn[i],
  3833. arch_zone_highest_possible_pfn[i]);
  3834. }
  3835. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3836. printk("Movable zone start PFN for each node\n");
  3837. for (i = 0; i < MAX_NUMNODES; i++) {
  3838. if (zone_movable_pfn[i])
  3839. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3840. }
  3841. /* Print out the early_node_map[] */
  3842. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3843. for (i = 0; i < nr_nodemap_entries; i++)
  3844. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3845. early_node_map[i].start_pfn,
  3846. early_node_map[i].end_pfn);
  3847. /* Initialise every node */
  3848. mminit_verify_pageflags_layout();
  3849. setup_nr_node_ids();
  3850. for_each_online_node(nid) {
  3851. pg_data_t *pgdat = NODE_DATA(nid);
  3852. free_area_init_node(nid, NULL,
  3853. find_min_pfn_for_node(nid), NULL);
  3854. /* Any memory on that node */
  3855. if (pgdat->node_present_pages)
  3856. node_set_state(nid, N_HIGH_MEMORY);
  3857. check_for_regular_memory(pgdat);
  3858. }
  3859. }
  3860. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3861. {
  3862. unsigned long long coremem;
  3863. if (!p)
  3864. return -EINVAL;
  3865. coremem = memparse(p, &p);
  3866. *core = coremem >> PAGE_SHIFT;
  3867. /* Paranoid check that UL is enough for the coremem value */
  3868. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3869. return 0;
  3870. }
  3871. /*
  3872. * kernelcore=size sets the amount of memory for use for allocations that
  3873. * cannot be reclaimed or migrated.
  3874. */
  3875. static int __init cmdline_parse_kernelcore(char *p)
  3876. {
  3877. return cmdline_parse_core(p, &required_kernelcore);
  3878. }
  3879. /*
  3880. * movablecore=size sets the amount of memory for use for allocations that
  3881. * can be reclaimed or migrated.
  3882. */
  3883. static int __init cmdline_parse_movablecore(char *p)
  3884. {
  3885. return cmdline_parse_core(p, &required_movablecore);
  3886. }
  3887. early_param("kernelcore", cmdline_parse_kernelcore);
  3888. early_param("movablecore", cmdline_parse_movablecore);
  3889. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3890. /**
  3891. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3892. * @new_dma_reserve: The number of pages to mark reserved
  3893. *
  3894. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3895. * In the DMA zone, a significant percentage may be consumed by kernel image
  3896. * and other unfreeable allocations which can skew the watermarks badly. This
  3897. * function may optionally be used to account for unfreeable pages in the
  3898. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3899. * smaller per-cpu batchsize.
  3900. */
  3901. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3902. {
  3903. dma_reserve = new_dma_reserve;
  3904. }
  3905. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3906. struct pglist_data __refdata contig_page_data = {
  3907. #ifndef CONFIG_NO_BOOTMEM
  3908. .bdata = &bootmem_node_data[0]
  3909. #endif
  3910. };
  3911. EXPORT_SYMBOL(contig_page_data);
  3912. #endif
  3913. void __init free_area_init(unsigned long *zones_size)
  3914. {
  3915. free_area_init_node(0, zones_size,
  3916. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3917. }
  3918. static int page_alloc_cpu_notify(struct notifier_block *self,
  3919. unsigned long action, void *hcpu)
  3920. {
  3921. int cpu = (unsigned long)hcpu;
  3922. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3923. drain_pages(cpu);
  3924. /*
  3925. * Spill the event counters of the dead processor
  3926. * into the current processors event counters.
  3927. * This artificially elevates the count of the current
  3928. * processor.
  3929. */
  3930. vm_events_fold_cpu(cpu);
  3931. /*
  3932. * Zero the differential counters of the dead processor
  3933. * so that the vm statistics are consistent.
  3934. *
  3935. * This is only okay since the processor is dead and cannot
  3936. * race with what we are doing.
  3937. */
  3938. refresh_cpu_vm_stats(cpu);
  3939. }
  3940. return NOTIFY_OK;
  3941. }
  3942. void __init page_alloc_init(void)
  3943. {
  3944. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3945. }
  3946. /*
  3947. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3948. * or min_free_kbytes changes.
  3949. */
  3950. static void calculate_totalreserve_pages(void)
  3951. {
  3952. struct pglist_data *pgdat;
  3953. unsigned long reserve_pages = 0;
  3954. enum zone_type i, j;
  3955. for_each_online_pgdat(pgdat) {
  3956. for (i = 0; i < MAX_NR_ZONES; i++) {
  3957. struct zone *zone = pgdat->node_zones + i;
  3958. unsigned long max = 0;
  3959. /* Find valid and maximum lowmem_reserve in the zone */
  3960. for (j = i; j < MAX_NR_ZONES; j++) {
  3961. if (zone->lowmem_reserve[j] > max)
  3962. max = zone->lowmem_reserve[j];
  3963. }
  3964. /* we treat the high watermark as reserved pages. */
  3965. max += high_wmark_pages(zone);
  3966. if (max > zone->present_pages)
  3967. max = zone->present_pages;
  3968. reserve_pages += max;
  3969. }
  3970. }
  3971. totalreserve_pages = reserve_pages;
  3972. }
  3973. /*
  3974. * setup_per_zone_lowmem_reserve - called whenever
  3975. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3976. * has a correct pages reserved value, so an adequate number of
  3977. * pages are left in the zone after a successful __alloc_pages().
  3978. */
  3979. static void setup_per_zone_lowmem_reserve(void)
  3980. {
  3981. struct pglist_data *pgdat;
  3982. enum zone_type j, idx;
  3983. for_each_online_pgdat(pgdat) {
  3984. for (j = 0; j < MAX_NR_ZONES; j++) {
  3985. struct zone *zone = pgdat->node_zones + j;
  3986. unsigned long present_pages = zone->present_pages;
  3987. zone->lowmem_reserve[j] = 0;
  3988. idx = j;
  3989. while (idx) {
  3990. struct zone *lower_zone;
  3991. idx--;
  3992. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3993. sysctl_lowmem_reserve_ratio[idx] = 1;
  3994. lower_zone = pgdat->node_zones + idx;
  3995. lower_zone->lowmem_reserve[j] = present_pages /
  3996. sysctl_lowmem_reserve_ratio[idx];
  3997. present_pages += lower_zone->present_pages;
  3998. }
  3999. }
  4000. }
  4001. /* update totalreserve_pages */
  4002. calculate_totalreserve_pages();
  4003. }
  4004. /**
  4005. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4006. * or when memory is hot-{added|removed}
  4007. *
  4008. * Ensures that the watermark[min,low,high] values for each zone are set
  4009. * correctly with respect to min_free_kbytes.
  4010. */
  4011. void setup_per_zone_wmarks(void)
  4012. {
  4013. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4014. unsigned long lowmem_pages = 0;
  4015. struct zone *zone;
  4016. unsigned long flags;
  4017. /* Calculate total number of !ZONE_HIGHMEM pages */
  4018. for_each_zone(zone) {
  4019. if (!is_highmem(zone))
  4020. lowmem_pages += zone->present_pages;
  4021. }
  4022. for_each_zone(zone) {
  4023. u64 tmp;
  4024. spin_lock_irqsave(&zone->lock, flags);
  4025. tmp = (u64)pages_min * zone->present_pages;
  4026. do_div(tmp, lowmem_pages);
  4027. if (is_highmem(zone)) {
  4028. /*
  4029. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4030. * need highmem pages, so cap pages_min to a small
  4031. * value here.
  4032. *
  4033. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4034. * deltas controls asynch page reclaim, and so should
  4035. * not be capped for highmem.
  4036. */
  4037. int min_pages;
  4038. min_pages = zone->present_pages / 1024;
  4039. if (min_pages < SWAP_CLUSTER_MAX)
  4040. min_pages = SWAP_CLUSTER_MAX;
  4041. if (min_pages > 128)
  4042. min_pages = 128;
  4043. zone->watermark[WMARK_MIN] = min_pages;
  4044. } else {
  4045. /*
  4046. * If it's a lowmem zone, reserve a number of pages
  4047. * proportionate to the zone's size.
  4048. */
  4049. zone->watermark[WMARK_MIN] = tmp;
  4050. }
  4051. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4052. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4053. setup_zone_migrate_reserve(zone);
  4054. spin_unlock_irqrestore(&zone->lock, flags);
  4055. }
  4056. /* update totalreserve_pages */
  4057. calculate_totalreserve_pages();
  4058. }
  4059. /*
  4060. * The inactive anon list should be small enough that the VM never has to
  4061. * do too much work, but large enough that each inactive page has a chance
  4062. * to be referenced again before it is swapped out.
  4063. *
  4064. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4065. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4066. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4067. * the anonymous pages are kept on the inactive list.
  4068. *
  4069. * total target max
  4070. * memory ratio inactive anon
  4071. * -------------------------------------
  4072. * 10MB 1 5MB
  4073. * 100MB 1 50MB
  4074. * 1GB 3 250MB
  4075. * 10GB 10 0.9GB
  4076. * 100GB 31 3GB
  4077. * 1TB 101 10GB
  4078. * 10TB 320 32GB
  4079. */
  4080. void calculate_zone_inactive_ratio(struct zone *zone)
  4081. {
  4082. unsigned int gb, ratio;
  4083. /* Zone size in gigabytes */
  4084. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4085. if (gb)
  4086. ratio = int_sqrt(10 * gb);
  4087. else
  4088. ratio = 1;
  4089. zone->inactive_ratio = ratio;
  4090. }
  4091. static void __init setup_per_zone_inactive_ratio(void)
  4092. {
  4093. struct zone *zone;
  4094. for_each_zone(zone)
  4095. calculate_zone_inactive_ratio(zone);
  4096. }
  4097. /*
  4098. * Initialise min_free_kbytes.
  4099. *
  4100. * For small machines we want it small (128k min). For large machines
  4101. * we want it large (64MB max). But it is not linear, because network
  4102. * bandwidth does not increase linearly with machine size. We use
  4103. *
  4104. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4105. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4106. *
  4107. * which yields
  4108. *
  4109. * 16MB: 512k
  4110. * 32MB: 724k
  4111. * 64MB: 1024k
  4112. * 128MB: 1448k
  4113. * 256MB: 2048k
  4114. * 512MB: 2896k
  4115. * 1024MB: 4096k
  4116. * 2048MB: 5792k
  4117. * 4096MB: 8192k
  4118. * 8192MB: 11584k
  4119. * 16384MB: 16384k
  4120. */
  4121. static int __init init_per_zone_wmark_min(void)
  4122. {
  4123. unsigned long lowmem_kbytes;
  4124. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4125. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4126. if (min_free_kbytes < 128)
  4127. min_free_kbytes = 128;
  4128. if (min_free_kbytes > 65536)
  4129. min_free_kbytes = 65536;
  4130. setup_per_zone_wmarks();
  4131. setup_per_zone_lowmem_reserve();
  4132. setup_per_zone_inactive_ratio();
  4133. return 0;
  4134. }
  4135. module_init(init_per_zone_wmark_min)
  4136. /*
  4137. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4138. * that we can call two helper functions whenever min_free_kbytes
  4139. * changes.
  4140. */
  4141. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4142. void __user *buffer, size_t *length, loff_t *ppos)
  4143. {
  4144. proc_dointvec(table, write, buffer, length, ppos);
  4145. if (write)
  4146. setup_per_zone_wmarks();
  4147. return 0;
  4148. }
  4149. #ifdef CONFIG_NUMA
  4150. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4151. void __user *buffer, size_t *length, loff_t *ppos)
  4152. {
  4153. struct zone *zone;
  4154. int rc;
  4155. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4156. if (rc)
  4157. return rc;
  4158. for_each_zone(zone)
  4159. zone->min_unmapped_pages = (zone->present_pages *
  4160. sysctl_min_unmapped_ratio) / 100;
  4161. return 0;
  4162. }
  4163. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4164. void __user *buffer, size_t *length, loff_t *ppos)
  4165. {
  4166. struct zone *zone;
  4167. int rc;
  4168. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4169. if (rc)
  4170. return rc;
  4171. for_each_zone(zone)
  4172. zone->min_slab_pages = (zone->present_pages *
  4173. sysctl_min_slab_ratio) / 100;
  4174. return 0;
  4175. }
  4176. #endif
  4177. /*
  4178. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4179. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4180. * whenever sysctl_lowmem_reserve_ratio changes.
  4181. *
  4182. * The reserve ratio obviously has absolutely no relation with the
  4183. * minimum watermarks. The lowmem reserve ratio can only make sense
  4184. * if in function of the boot time zone sizes.
  4185. */
  4186. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4187. void __user *buffer, size_t *length, loff_t *ppos)
  4188. {
  4189. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4190. setup_per_zone_lowmem_reserve();
  4191. return 0;
  4192. }
  4193. /*
  4194. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4195. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4196. * can have before it gets flushed back to buddy allocator.
  4197. */
  4198. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4199. void __user *buffer, size_t *length, loff_t *ppos)
  4200. {
  4201. struct zone *zone;
  4202. unsigned int cpu;
  4203. int ret;
  4204. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4205. if (!write || (ret == -EINVAL))
  4206. return ret;
  4207. for_each_populated_zone(zone) {
  4208. for_each_online_cpu(cpu) {
  4209. unsigned long high;
  4210. high = zone->present_pages / percpu_pagelist_fraction;
  4211. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  4212. }
  4213. }
  4214. return 0;
  4215. }
  4216. int hashdist = HASHDIST_DEFAULT;
  4217. #ifdef CONFIG_NUMA
  4218. static int __init set_hashdist(char *str)
  4219. {
  4220. if (!str)
  4221. return 0;
  4222. hashdist = simple_strtoul(str, &str, 0);
  4223. return 1;
  4224. }
  4225. __setup("hashdist=", set_hashdist);
  4226. #endif
  4227. /*
  4228. * allocate a large system hash table from bootmem
  4229. * - it is assumed that the hash table must contain an exact power-of-2
  4230. * quantity of entries
  4231. * - limit is the number of hash buckets, not the total allocation size
  4232. */
  4233. void *__init alloc_large_system_hash(const char *tablename,
  4234. unsigned long bucketsize,
  4235. unsigned long numentries,
  4236. int scale,
  4237. int flags,
  4238. unsigned int *_hash_shift,
  4239. unsigned int *_hash_mask,
  4240. unsigned long limit)
  4241. {
  4242. unsigned long long max = limit;
  4243. unsigned long log2qty, size;
  4244. void *table = NULL;
  4245. /* allow the kernel cmdline to have a say */
  4246. if (!numentries) {
  4247. /* round applicable memory size up to nearest megabyte */
  4248. numentries = nr_kernel_pages;
  4249. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4250. numentries >>= 20 - PAGE_SHIFT;
  4251. numentries <<= 20 - PAGE_SHIFT;
  4252. /* limit to 1 bucket per 2^scale bytes of low memory */
  4253. if (scale > PAGE_SHIFT)
  4254. numentries >>= (scale - PAGE_SHIFT);
  4255. else
  4256. numentries <<= (PAGE_SHIFT - scale);
  4257. /* Make sure we've got at least a 0-order allocation.. */
  4258. if (unlikely(flags & HASH_SMALL)) {
  4259. /* Makes no sense without HASH_EARLY */
  4260. WARN_ON(!(flags & HASH_EARLY));
  4261. if (!(numentries >> *_hash_shift)) {
  4262. numentries = 1UL << *_hash_shift;
  4263. BUG_ON(!numentries);
  4264. }
  4265. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4266. numentries = PAGE_SIZE / bucketsize;
  4267. }
  4268. numentries = roundup_pow_of_two(numentries);
  4269. /* limit allocation size to 1/16 total memory by default */
  4270. if (max == 0) {
  4271. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4272. do_div(max, bucketsize);
  4273. }
  4274. if (numentries > max)
  4275. numentries = max;
  4276. log2qty = ilog2(numentries);
  4277. do {
  4278. size = bucketsize << log2qty;
  4279. if (flags & HASH_EARLY)
  4280. table = alloc_bootmem_nopanic(size);
  4281. else if (hashdist)
  4282. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4283. else {
  4284. /*
  4285. * If bucketsize is not a power-of-two, we may free
  4286. * some pages at the end of hash table which
  4287. * alloc_pages_exact() automatically does
  4288. */
  4289. if (get_order(size) < MAX_ORDER) {
  4290. table = alloc_pages_exact(size, GFP_ATOMIC);
  4291. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4292. }
  4293. }
  4294. } while (!table && size > PAGE_SIZE && --log2qty);
  4295. if (!table)
  4296. panic("Failed to allocate %s hash table\n", tablename);
  4297. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4298. tablename,
  4299. (1U << log2qty),
  4300. ilog2(size) - PAGE_SHIFT,
  4301. size);
  4302. if (_hash_shift)
  4303. *_hash_shift = log2qty;
  4304. if (_hash_mask)
  4305. *_hash_mask = (1 << log2qty) - 1;
  4306. return table;
  4307. }
  4308. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4309. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4310. unsigned long pfn)
  4311. {
  4312. #ifdef CONFIG_SPARSEMEM
  4313. return __pfn_to_section(pfn)->pageblock_flags;
  4314. #else
  4315. return zone->pageblock_flags;
  4316. #endif /* CONFIG_SPARSEMEM */
  4317. }
  4318. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4319. {
  4320. #ifdef CONFIG_SPARSEMEM
  4321. pfn &= (PAGES_PER_SECTION-1);
  4322. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4323. #else
  4324. pfn = pfn - zone->zone_start_pfn;
  4325. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4326. #endif /* CONFIG_SPARSEMEM */
  4327. }
  4328. /**
  4329. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4330. * @page: The page within the block of interest
  4331. * @start_bitidx: The first bit of interest to retrieve
  4332. * @end_bitidx: The last bit of interest
  4333. * returns pageblock_bits flags
  4334. */
  4335. unsigned long get_pageblock_flags_group(struct page *page,
  4336. int start_bitidx, int end_bitidx)
  4337. {
  4338. struct zone *zone;
  4339. unsigned long *bitmap;
  4340. unsigned long pfn, bitidx;
  4341. unsigned long flags = 0;
  4342. unsigned long value = 1;
  4343. zone = page_zone(page);
  4344. pfn = page_to_pfn(page);
  4345. bitmap = get_pageblock_bitmap(zone, pfn);
  4346. bitidx = pfn_to_bitidx(zone, pfn);
  4347. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4348. if (test_bit(bitidx + start_bitidx, bitmap))
  4349. flags |= value;
  4350. return flags;
  4351. }
  4352. /**
  4353. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4354. * @page: The page within the block of interest
  4355. * @start_bitidx: The first bit of interest
  4356. * @end_bitidx: The last bit of interest
  4357. * @flags: The flags to set
  4358. */
  4359. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4360. int start_bitidx, int end_bitidx)
  4361. {
  4362. struct zone *zone;
  4363. unsigned long *bitmap;
  4364. unsigned long pfn, bitidx;
  4365. unsigned long value = 1;
  4366. zone = page_zone(page);
  4367. pfn = page_to_pfn(page);
  4368. bitmap = get_pageblock_bitmap(zone, pfn);
  4369. bitidx = pfn_to_bitidx(zone, pfn);
  4370. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4371. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4372. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4373. if (flags & value)
  4374. __set_bit(bitidx + start_bitidx, bitmap);
  4375. else
  4376. __clear_bit(bitidx + start_bitidx, bitmap);
  4377. }
  4378. /*
  4379. * This is designed as sub function...plz see page_isolation.c also.
  4380. * set/clear page block's type to be ISOLATE.
  4381. * page allocater never alloc memory from ISOLATE block.
  4382. */
  4383. int set_migratetype_isolate(struct page *page)
  4384. {
  4385. struct zone *zone;
  4386. struct page *curr_page;
  4387. unsigned long flags, pfn, iter;
  4388. unsigned long immobile = 0;
  4389. struct memory_isolate_notify arg;
  4390. int notifier_ret;
  4391. int ret = -EBUSY;
  4392. int zone_idx;
  4393. zone = page_zone(page);
  4394. zone_idx = zone_idx(zone);
  4395. spin_lock_irqsave(&zone->lock, flags);
  4396. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
  4397. zone_idx == ZONE_MOVABLE) {
  4398. ret = 0;
  4399. goto out;
  4400. }
  4401. pfn = page_to_pfn(page);
  4402. arg.start_pfn = pfn;
  4403. arg.nr_pages = pageblock_nr_pages;
  4404. arg.pages_found = 0;
  4405. /*
  4406. * It may be possible to isolate a pageblock even if the
  4407. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4408. * notifier chain is used by balloon drivers to return the
  4409. * number of pages in a range that are held by the balloon
  4410. * driver to shrink memory. If all the pages are accounted for
  4411. * by balloons, are free, or on the LRU, isolation can continue.
  4412. * Later, for example, when memory hotplug notifier runs, these
  4413. * pages reported as "can be isolated" should be isolated(freed)
  4414. * by the balloon driver through the memory notifier chain.
  4415. */
  4416. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4417. notifier_ret = notifier_to_errno(notifier_ret);
  4418. if (notifier_ret || !arg.pages_found)
  4419. goto out;
  4420. for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
  4421. if (!pfn_valid_within(pfn))
  4422. continue;
  4423. curr_page = pfn_to_page(iter);
  4424. if (!page_count(curr_page) || PageLRU(curr_page))
  4425. continue;
  4426. immobile++;
  4427. }
  4428. if (arg.pages_found == immobile)
  4429. ret = 0;
  4430. out:
  4431. if (!ret) {
  4432. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4433. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4434. }
  4435. spin_unlock_irqrestore(&zone->lock, flags);
  4436. if (!ret)
  4437. drain_all_pages();
  4438. return ret;
  4439. }
  4440. void unset_migratetype_isolate(struct page *page)
  4441. {
  4442. struct zone *zone;
  4443. unsigned long flags;
  4444. zone = page_zone(page);
  4445. spin_lock_irqsave(&zone->lock, flags);
  4446. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4447. goto out;
  4448. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4449. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4450. out:
  4451. spin_unlock_irqrestore(&zone->lock, flags);
  4452. }
  4453. #ifdef CONFIG_MEMORY_HOTREMOVE
  4454. /*
  4455. * All pages in the range must be isolated before calling this.
  4456. */
  4457. void
  4458. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4459. {
  4460. struct page *page;
  4461. struct zone *zone;
  4462. int order, i;
  4463. unsigned long pfn;
  4464. unsigned long flags;
  4465. /* find the first valid pfn */
  4466. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4467. if (pfn_valid(pfn))
  4468. break;
  4469. if (pfn == end_pfn)
  4470. return;
  4471. zone = page_zone(pfn_to_page(pfn));
  4472. spin_lock_irqsave(&zone->lock, flags);
  4473. pfn = start_pfn;
  4474. while (pfn < end_pfn) {
  4475. if (!pfn_valid(pfn)) {
  4476. pfn++;
  4477. continue;
  4478. }
  4479. page = pfn_to_page(pfn);
  4480. BUG_ON(page_count(page));
  4481. BUG_ON(!PageBuddy(page));
  4482. order = page_order(page);
  4483. #ifdef CONFIG_DEBUG_VM
  4484. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4485. pfn, 1 << order, end_pfn);
  4486. #endif
  4487. list_del(&page->lru);
  4488. rmv_page_order(page);
  4489. zone->free_area[order].nr_free--;
  4490. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4491. - (1UL << order));
  4492. for (i = 0; i < (1 << order); i++)
  4493. SetPageReserved((page+i));
  4494. pfn += (1 << order);
  4495. }
  4496. spin_unlock_irqrestore(&zone->lock, flags);
  4497. }
  4498. #endif
  4499. #ifdef CONFIG_MEMORY_FAILURE
  4500. bool is_free_buddy_page(struct page *page)
  4501. {
  4502. struct zone *zone = page_zone(page);
  4503. unsigned long pfn = page_to_pfn(page);
  4504. unsigned long flags;
  4505. int order;
  4506. spin_lock_irqsave(&zone->lock, flags);
  4507. for (order = 0; order < MAX_ORDER; order++) {
  4508. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4509. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4510. break;
  4511. }
  4512. spin_unlock_irqrestore(&zone->lock, flags);
  4513. return order < MAX_ORDER;
  4514. }
  4515. #endif