core.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. /*
  2. * arch/arm/mach-ixp2000/common.c
  3. *
  4. * Common routines used by all IXP2400/2800 based platforms.
  5. *
  6. * Author: Deepak Saxena <dsaxena@plexity.net>
  7. *
  8. * Copyright 2004 (C) MontaVista Software, Inc.
  9. *
  10. * Based on work Copyright (C) 2002-2003 Intel Corporation
  11. *
  12. * This file is licensed under the terms of the GNU General Public
  13. * License version 2. This program is licensed "as is" without any
  14. * warranty of any kind, whether express or implied.
  15. */
  16. #include <linux/config.h>
  17. #include <linux/kernel.h>
  18. #include <linux/init.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/sched.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/serial.h>
  23. #include <linux/tty.h>
  24. #include <linux/bitops.h>
  25. #include <linux/serial_8250.h>
  26. #include <linux/mm.h>
  27. #include <asm/types.h>
  28. #include <asm/setup.h>
  29. #include <asm/memory.h>
  30. #include <asm/hardware.h>
  31. #include <asm/irq.h>
  32. #include <asm/system.h>
  33. #include <asm/tlbflush.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/mach/map.h>
  36. #include <asm/mach/time.h>
  37. #include <asm/mach/irq.h>
  38. #include <asm/arch/gpio.h>
  39. static DEFINE_SPINLOCK(ixp2000_slowport_lock);
  40. static unsigned long ixp2000_slowport_irq_flags;
  41. /*************************************************************************
  42. * Slowport access routines
  43. *************************************************************************/
  44. void ixp2000_acquire_slowport(struct slowport_cfg *new_cfg, struct slowport_cfg *old_cfg)
  45. {
  46. spin_lock_irqsave(&ixp2000_slowport_lock, ixp2000_slowport_irq_flags);
  47. old_cfg->CCR = *IXP2000_SLOWPORT_CCR;
  48. old_cfg->WTC = *IXP2000_SLOWPORT_WTC2;
  49. old_cfg->RTC = *IXP2000_SLOWPORT_RTC2;
  50. old_cfg->PCR = *IXP2000_SLOWPORT_PCR;
  51. old_cfg->ADC = *IXP2000_SLOWPORT_ADC;
  52. ixp2000_reg_write(IXP2000_SLOWPORT_CCR, new_cfg->CCR);
  53. ixp2000_reg_write(IXP2000_SLOWPORT_WTC2, new_cfg->WTC);
  54. ixp2000_reg_write(IXP2000_SLOWPORT_RTC2, new_cfg->RTC);
  55. ixp2000_reg_write(IXP2000_SLOWPORT_PCR, new_cfg->PCR);
  56. ixp2000_reg_write(IXP2000_SLOWPORT_ADC, new_cfg->ADC);
  57. }
  58. void ixp2000_release_slowport(struct slowport_cfg *old_cfg)
  59. {
  60. ixp2000_reg_write(IXP2000_SLOWPORT_CCR, old_cfg->CCR);
  61. ixp2000_reg_write(IXP2000_SLOWPORT_WTC2, old_cfg->WTC);
  62. ixp2000_reg_write(IXP2000_SLOWPORT_RTC2, old_cfg->RTC);
  63. ixp2000_reg_write(IXP2000_SLOWPORT_PCR, old_cfg->PCR);
  64. ixp2000_reg_write(IXP2000_SLOWPORT_ADC, old_cfg->ADC);
  65. spin_unlock_irqrestore(&ixp2000_slowport_lock,
  66. ixp2000_slowport_irq_flags);
  67. }
  68. /*************************************************************************
  69. * Chip specific mappings shared by all IXP2000 systems
  70. *************************************************************************/
  71. static struct map_desc ixp2000_io_desc[] __initdata = {
  72. {
  73. .virtual = IXP2000_CAP_VIRT_BASE,
  74. .physical = IXP2000_CAP_PHYS_BASE,
  75. .length = IXP2000_CAP_SIZE,
  76. .type = MT_DEVICE
  77. }, {
  78. .virtual = IXP2000_INTCTL_VIRT_BASE,
  79. .physical = IXP2000_INTCTL_PHYS_BASE,
  80. .length = IXP2000_INTCTL_SIZE,
  81. .type = MT_DEVICE
  82. }, {
  83. .virtual = IXP2000_PCI_CREG_VIRT_BASE,
  84. .physical = IXP2000_PCI_CREG_PHYS_BASE,
  85. .length = IXP2000_PCI_CREG_SIZE,
  86. .type = MT_DEVICE
  87. }, {
  88. .virtual = IXP2000_PCI_CSR_VIRT_BASE,
  89. .physical = IXP2000_PCI_CSR_PHYS_BASE,
  90. .length = IXP2000_PCI_CSR_SIZE,
  91. .type = MT_DEVICE
  92. }, {
  93. .virtual = IXP2000_MSF_VIRT_BASE,
  94. .physical = IXP2000_MSF_PHYS_BASE,
  95. .length = IXP2000_MSF_SIZE,
  96. .type = MT_DEVICE
  97. }, {
  98. .virtual = IXP2000_PCI_IO_VIRT_BASE,
  99. .physical = IXP2000_PCI_IO_PHYS_BASE,
  100. .length = IXP2000_PCI_IO_SIZE,
  101. .type = MT_DEVICE
  102. }, {
  103. .virtual = IXP2000_PCI_CFG0_VIRT_BASE,
  104. .physical = IXP2000_PCI_CFG0_PHYS_BASE,
  105. .length = IXP2000_PCI_CFG0_SIZE,
  106. .type = MT_DEVICE
  107. }, {
  108. .virtual = IXP2000_PCI_CFG1_VIRT_BASE,
  109. .physical = IXP2000_PCI_CFG1_PHYS_BASE,
  110. .length = IXP2000_PCI_CFG1_SIZE,
  111. .type = MT_DEVICE
  112. }
  113. };
  114. void __init ixp2000_map_io(void)
  115. {
  116. extern unsigned int processor_id;
  117. /*
  118. * On IXP2400 CPUs we need to use MT_IXP2000_DEVICE for
  119. * tweaking the PMDs so XCB=101. On IXP2800s we use the normal
  120. * PMD flags.
  121. */
  122. if ((processor_id & 0xfffffff0) == 0x69054190) {
  123. int i;
  124. printk(KERN_INFO "Enabling IXP2400 erratum #66 workaround\n");
  125. for(i=0;i<ARRAY_SIZE(ixp2000_io_desc);i++)
  126. ixp2000_io_desc[i].type = MT_IXP2000_DEVICE;
  127. }
  128. iotable_init(ixp2000_io_desc, ARRAY_SIZE(ixp2000_io_desc));
  129. /* Set slowport to 8-bit mode. */
  130. ixp2000_reg_write(IXP2000_SLOWPORT_FRM, 1);
  131. }
  132. /*************************************************************************
  133. * Serial port support for IXP2000
  134. *************************************************************************/
  135. static struct plat_serial8250_port ixp2000_serial_port[] = {
  136. {
  137. .mapbase = IXP2000_UART_PHYS_BASE,
  138. .membase = (char *)(IXP2000_UART_VIRT_BASE + 3),
  139. .irq = IRQ_IXP2000_UART,
  140. .flags = UPF_BOOT_AUTOCONF | UPF_SKIP_TEST,
  141. .iotype = UPIO_MEM,
  142. .regshift = 2,
  143. .uartclk = 50000000,
  144. },
  145. { },
  146. };
  147. static struct resource ixp2000_uart_resource = {
  148. .start = IXP2000_UART_PHYS_BASE,
  149. .end = IXP2000_UART_PHYS_BASE + 0x1f,
  150. .flags = IORESOURCE_MEM,
  151. };
  152. static struct platform_device ixp2000_serial_device = {
  153. .name = "serial8250",
  154. .id = PLAT8250_DEV_PLATFORM,
  155. .dev = {
  156. .platform_data = ixp2000_serial_port,
  157. },
  158. .num_resources = 1,
  159. .resource = &ixp2000_uart_resource,
  160. };
  161. void __init ixp2000_uart_init(void)
  162. {
  163. platform_device_register(&ixp2000_serial_device);
  164. }
  165. /*************************************************************************
  166. * Timer-tick functions for IXP2000
  167. *************************************************************************/
  168. static unsigned ticks_per_jiffy;
  169. static unsigned ticks_per_usec;
  170. static unsigned next_jiffy_time;
  171. static volatile unsigned long *missing_jiffy_timer_csr;
  172. unsigned long ixp2000_gettimeoffset (void)
  173. {
  174. unsigned long offset;
  175. offset = next_jiffy_time - *missing_jiffy_timer_csr;
  176. return offset / ticks_per_usec;
  177. }
  178. static int ixp2000_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  179. {
  180. write_seqlock(&xtime_lock);
  181. /* clear timer 1 */
  182. ixp2000_reg_write(IXP2000_T1_CLR, 1);
  183. while ((next_jiffy_time - *missing_jiffy_timer_csr) > ticks_per_jiffy) {
  184. timer_tick(regs);
  185. next_jiffy_time -= ticks_per_jiffy;
  186. }
  187. write_sequnlock(&xtime_lock);
  188. return IRQ_HANDLED;
  189. }
  190. static struct irqaction ixp2000_timer_irq = {
  191. .name = "IXP2000 Timer Tick",
  192. .flags = SA_INTERRUPT | SA_TIMER,
  193. .handler = ixp2000_timer_interrupt,
  194. };
  195. void __init ixp2000_init_time(unsigned long tick_rate)
  196. {
  197. ticks_per_jiffy = (tick_rate + HZ/2) / HZ;
  198. ticks_per_usec = tick_rate / 1000000;
  199. /*
  200. * We use timer 1 as our timer interrupt.
  201. */
  202. ixp2000_reg_write(IXP2000_T1_CLR, 0);
  203. ixp2000_reg_write(IXP2000_T1_CLD, ticks_per_jiffy - 1);
  204. ixp2000_reg_write(IXP2000_T1_CTL, (1 << 7));
  205. /*
  206. * We use a second timer as a monotonic counter for tracking
  207. * missed jiffies. The IXP2000 has four timers, but if we're
  208. * on an A-step IXP2800, timer 2 and 3 don't work, so on those
  209. * chips we use timer 4. Timer 4 is the only timer that can
  210. * be used for the watchdog, so we use timer 2 if we're on a
  211. * non-buggy chip.
  212. */
  213. if ((*IXP2000_PRODUCT_ID & 0x001ffef0) == 0x00000000) {
  214. printk(KERN_INFO "Enabling IXP2800 erratum #25 workaround\n");
  215. ixp2000_reg_write(IXP2000_T4_CLR, 0);
  216. ixp2000_reg_write(IXP2000_T4_CLD, -1);
  217. ixp2000_reg_write(IXP2000_T4_CTL, (1 << 7));
  218. missing_jiffy_timer_csr = IXP2000_T4_CSR;
  219. } else {
  220. ixp2000_reg_write(IXP2000_T2_CLR, 0);
  221. ixp2000_reg_write(IXP2000_T2_CLD, -1);
  222. ixp2000_reg_write(IXP2000_T2_CTL, (1 << 7));
  223. missing_jiffy_timer_csr = IXP2000_T2_CSR;
  224. }
  225. next_jiffy_time = 0xffffffff;
  226. /* register for interrupt */
  227. setup_irq(IRQ_IXP2000_TIMER1, &ixp2000_timer_irq);
  228. }
  229. /*************************************************************************
  230. * GPIO helpers
  231. *************************************************************************/
  232. static unsigned long GPIO_IRQ_falling_edge;
  233. static unsigned long GPIO_IRQ_rising_edge;
  234. static unsigned long GPIO_IRQ_level_low;
  235. static unsigned long GPIO_IRQ_level_high;
  236. static void update_gpio_int_csrs(void)
  237. {
  238. ixp2000_reg_write(IXP2000_GPIO_FEDR, GPIO_IRQ_falling_edge);
  239. ixp2000_reg_write(IXP2000_GPIO_REDR, GPIO_IRQ_rising_edge);
  240. ixp2000_reg_write(IXP2000_GPIO_LSLR, GPIO_IRQ_level_low);
  241. ixp2000_reg_write(IXP2000_GPIO_LSHR, GPIO_IRQ_level_high);
  242. }
  243. void gpio_line_config(int line, int direction)
  244. {
  245. unsigned long flags;
  246. local_irq_save(flags);
  247. if (direction == GPIO_OUT) {
  248. irq_desc[line + IRQ_IXP2000_GPIO0].valid = 0;
  249. /* if it's an output, it ain't an interrupt anymore */
  250. GPIO_IRQ_falling_edge &= ~(1 << line);
  251. GPIO_IRQ_rising_edge &= ~(1 << line);
  252. GPIO_IRQ_level_low &= ~(1 << line);
  253. GPIO_IRQ_level_high &= ~(1 << line);
  254. update_gpio_int_csrs();
  255. ixp2000_reg_write(IXP2000_GPIO_PDSR, 1 << line);
  256. } else if (direction == GPIO_IN) {
  257. ixp2000_reg_write(IXP2000_GPIO_PDCR, 1 << line);
  258. }
  259. local_irq_restore(flags);
  260. }
  261. /*************************************************************************
  262. * IRQ handling IXP2000
  263. *************************************************************************/
  264. static void ixp2000_GPIO_irq_handler(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
  265. {
  266. int i;
  267. unsigned long status = *IXP2000_GPIO_INST;
  268. for (i = 0; i <= 7; i++) {
  269. if (status & (1<<i)) {
  270. desc = irq_desc + i + IRQ_IXP2000_GPIO0;
  271. desc_handle_irq(i + IRQ_IXP2000_GPIO0, desc, regs);
  272. }
  273. }
  274. }
  275. static int ixp2000_GPIO_irq_type(unsigned int irq, unsigned int type)
  276. {
  277. int line = irq - IRQ_IXP2000_GPIO0;
  278. /*
  279. * First, configure this GPIO line as an input.
  280. */
  281. ixp2000_reg_write(IXP2000_GPIO_PDCR, 1 << line);
  282. /*
  283. * Then, set the proper trigger type.
  284. */
  285. if (type & IRQT_FALLING)
  286. GPIO_IRQ_falling_edge |= 1 << line;
  287. else
  288. GPIO_IRQ_falling_edge &= ~(1 << line);
  289. if (type & IRQT_RISING)
  290. GPIO_IRQ_rising_edge |= 1 << line;
  291. else
  292. GPIO_IRQ_rising_edge &= ~(1 << line);
  293. if (type & IRQT_LOW)
  294. GPIO_IRQ_level_low |= 1 << line;
  295. else
  296. GPIO_IRQ_level_low &= ~(1 << line);
  297. if (type & IRQT_HIGH)
  298. GPIO_IRQ_level_high |= 1 << line;
  299. else
  300. GPIO_IRQ_level_high &= ~(1 << line);
  301. update_gpio_int_csrs();
  302. /*
  303. * Finally, mark the corresponding IRQ as valid.
  304. */
  305. irq_desc[irq].valid = 1;
  306. return 0;
  307. }
  308. static void ixp2000_GPIO_irq_mask_ack(unsigned int irq)
  309. {
  310. ixp2000_reg_write(IXP2000_GPIO_INCR, (1 << (irq - IRQ_IXP2000_GPIO0)));
  311. ixp2000_reg_write(IXP2000_GPIO_EDSR, (1 << (irq - IRQ_IXP2000_GPIO0)));
  312. ixp2000_reg_write(IXP2000_GPIO_LDSR, (1 << (irq - IRQ_IXP2000_GPIO0)));
  313. ixp2000_reg_write(IXP2000_GPIO_INST, (1 << (irq - IRQ_IXP2000_GPIO0)));
  314. }
  315. static void ixp2000_GPIO_irq_mask(unsigned int irq)
  316. {
  317. ixp2000_reg_write(IXP2000_GPIO_INCR, (1 << (irq - IRQ_IXP2000_GPIO0)));
  318. }
  319. static void ixp2000_GPIO_irq_unmask(unsigned int irq)
  320. {
  321. ixp2000_reg_write(IXP2000_GPIO_INSR, (1 << (irq - IRQ_IXP2000_GPIO0)));
  322. }
  323. static struct irqchip ixp2000_GPIO_irq_chip = {
  324. .ack = ixp2000_GPIO_irq_mask_ack,
  325. .mask = ixp2000_GPIO_irq_mask,
  326. .unmask = ixp2000_GPIO_irq_unmask,
  327. .set_type = ixp2000_GPIO_irq_type,
  328. };
  329. static void ixp2000_pci_irq_mask(unsigned int irq)
  330. {
  331. unsigned long temp = *IXP2000_PCI_XSCALE_INT_ENABLE;
  332. if (irq == IRQ_IXP2000_PCIA)
  333. ixp2000_reg_write(IXP2000_PCI_XSCALE_INT_ENABLE, (temp & ~(1 << 26)));
  334. else if (irq == IRQ_IXP2000_PCIB)
  335. ixp2000_reg_write(IXP2000_PCI_XSCALE_INT_ENABLE, (temp & ~(1 << 27)));
  336. }
  337. static void ixp2000_pci_irq_unmask(unsigned int irq)
  338. {
  339. unsigned long temp = *IXP2000_PCI_XSCALE_INT_ENABLE;
  340. if (irq == IRQ_IXP2000_PCIA)
  341. ixp2000_reg_write(IXP2000_PCI_XSCALE_INT_ENABLE, (temp | (1 << 26)));
  342. else if (irq == IRQ_IXP2000_PCIB)
  343. ixp2000_reg_write(IXP2000_PCI_XSCALE_INT_ENABLE, (temp | (1 << 27)));
  344. }
  345. static struct irqchip ixp2000_pci_irq_chip = {
  346. .ack = ixp2000_pci_irq_mask,
  347. .mask = ixp2000_pci_irq_mask,
  348. .unmask = ixp2000_pci_irq_unmask
  349. };
  350. static void ixp2000_irq_mask(unsigned int irq)
  351. {
  352. ixp2000_reg_write(IXP2000_IRQ_ENABLE_CLR, (1 << irq));
  353. }
  354. static void ixp2000_irq_unmask(unsigned int irq)
  355. {
  356. ixp2000_reg_write(IXP2000_IRQ_ENABLE_SET, (1 << irq));
  357. }
  358. static struct irqchip ixp2000_irq_chip = {
  359. .ack = ixp2000_irq_mask,
  360. .mask = ixp2000_irq_mask,
  361. .unmask = ixp2000_irq_unmask
  362. };
  363. void __init ixp2000_init_irq(void)
  364. {
  365. int irq;
  366. /*
  367. * Mask all sources
  368. */
  369. ixp2000_reg_write(IXP2000_IRQ_ENABLE_CLR, 0xffffffff);
  370. ixp2000_reg_write(IXP2000_FIQ_ENABLE_CLR, 0xffffffff);
  371. /* clear all GPIO edge/level detects */
  372. ixp2000_reg_write(IXP2000_GPIO_REDR, 0);
  373. ixp2000_reg_write(IXP2000_GPIO_FEDR, 0);
  374. ixp2000_reg_write(IXP2000_GPIO_LSHR, 0);
  375. ixp2000_reg_write(IXP2000_GPIO_LSLR, 0);
  376. ixp2000_reg_write(IXP2000_GPIO_INCR, -1);
  377. /* clear PCI interrupt sources */
  378. ixp2000_reg_write(IXP2000_PCI_XSCALE_INT_ENABLE, 0);
  379. /*
  380. * Certain bits in the IRQ status register of the
  381. * IXP2000 are reserved. Instead of trying to map
  382. * things non 1:1 from bit position to IRQ number,
  383. * we mark the reserved IRQs as invalid. This makes
  384. * our mask/unmask code much simpler.
  385. */
  386. for (irq = IRQ_IXP2000_SOFT_INT; irq <= IRQ_IXP2000_THDB3; irq++) {
  387. if ((1 << irq) & IXP2000_VALID_IRQ_MASK) {
  388. set_irq_chip(irq, &ixp2000_irq_chip);
  389. set_irq_handler(irq, do_level_IRQ);
  390. set_irq_flags(irq, IRQF_VALID);
  391. } else set_irq_flags(irq, 0);
  392. }
  393. /*
  394. * GPIO IRQs are invalid until someone sets the interrupt mode
  395. * by calling set_irq_type().
  396. */
  397. for (irq = IRQ_IXP2000_GPIO0; irq <= IRQ_IXP2000_GPIO7; irq++) {
  398. set_irq_chip(irq, &ixp2000_GPIO_irq_chip);
  399. set_irq_handler(irq, do_level_IRQ);
  400. set_irq_flags(irq, 0);
  401. }
  402. set_irq_chained_handler(IRQ_IXP2000_GPIO, ixp2000_GPIO_irq_handler);
  403. /*
  404. * Enable PCI irqs. The actual PCI[AB] decoding is done in
  405. * entry-macro.S, so we don't need a chained handler for the
  406. * PCI interrupt source.
  407. */
  408. ixp2000_reg_write(IXP2000_IRQ_ENABLE_SET, (1 << IRQ_IXP2000_PCI));
  409. for (irq = IRQ_IXP2000_PCIA; irq <= IRQ_IXP2000_PCIB; irq++) {
  410. set_irq_chip(irq, &ixp2000_pci_irq_chip);
  411. set_irq_handler(irq, do_level_IRQ);
  412. set_irq_flags(irq, IRQF_VALID);
  413. }
  414. }