disk-io.c 103 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. static struct extent_io_ops btree_extent_io_ops;
  48. static void end_workqueue_fn(struct btrfs_work *work);
  49. static void free_fs_root(struct btrfs_root *root);
  50. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  51. int read_only);
  52. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  53. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  54. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  55. struct btrfs_root *root);
  56. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  57. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  58. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  59. struct extent_io_tree *dirty_pages,
  60. int mark);
  61. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  62. struct extent_io_tree *pinned_extents);
  63. /*
  64. * end_io_wq structs are used to do processing in task context when an IO is
  65. * complete. This is used during reads to verify checksums, and it is used
  66. * by writes to insert metadata for new file extents after IO is complete.
  67. */
  68. struct end_io_wq {
  69. struct bio *bio;
  70. bio_end_io_t *end_io;
  71. void *private;
  72. struct btrfs_fs_info *info;
  73. int error;
  74. int metadata;
  75. struct list_head list;
  76. struct btrfs_work work;
  77. };
  78. /*
  79. * async submit bios are used to offload expensive checksumming
  80. * onto the worker threads. They checksum file and metadata bios
  81. * just before they are sent down the IO stack.
  82. */
  83. struct async_submit_bio {
  84. struct inode *inode;
  85. struct bio *bio;
  86. struct list_head list;
  87. extent_submit_bio_hook_t *submit_bio_start;
  88. extent_submit_bio_hook_t *submit_bio_done;
  89. int rw;
  90. int mirror_num;
  91. unsigned long bio_flags;
  92. /*
  93. * bio_offset is optional, can be used if the pages in the bio
  94. * can't tell us where in the file the bio should go
  95. */
  96. u64 bio_offset;
  97. struct btrfs_work work;
  98. int error;
  99. };
  100. /*
  101. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  102. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  103. * the level the eb occupies in the tree.
  104. *
  105. * Different roots are used for different purposes and may nest inside each
  106. * other and they require separate keysets. As lockdep keys should be
  107. * static, assign keysets according to the purpose of the root as indicated
  108. * by btrfs_root->objectid. This ensures that all special purpose roots
  109. * have separate keysets.
  110. *
  111. * Lock-nesting across peer nodes is always done with the immediate parent
  112. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  113. * subclass to avoid triggering lockdep warning in such cases.
  114. *
  115. * The key is set by the readpage_end_io_hook after the buffer has passed
  116. * csum validation but before the pages are unlocked. It is also set by
  117. * btrfs_init_new_buffer on freshly allocated blocks.
  118. *
  119. * We also add a check to make sure the highest level of the tree is the
  120. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  121. * needs update as well.
  122. */
  123. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  124. # if BTRFS_MAX_LEVEL != 8
  125. # error
  126. # endif
  127. static struct btrfs_lockdep_keyset {
  128. u64 id; /* root objectid */
  129. const char *name_stem; /* lock name stem */
  130. char names[BTRFS_MAX_LEVEL + 1][20];
  131. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  132. } btrfs_lockdep_keysets[] = {
  133. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  134. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  135. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  136. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  137. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  138. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  139. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  140. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  141. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  142. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  143. { .id = 0, .name_stem = "tree" },
  144. };
  145. void __init btrfs_init_lockdep(void)
  146. {
  147. int i, j;
  148. /* initialize lockdep class names */
  149. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  150. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  151. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  152. snprintf(ks->names[j], sizeof(ks->names[j]),
  153. "btrfs-%s-%02d", ks->name_stem, j);
  154. }
  155. }
  156. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  157. int level)
  158. {
  159. struct btrfs_lockdep_keyset *ks;
  160. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  161. /* find the matching keyset, id 0 is the default entry */
  162. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  163. if (ks->id == objectid)
  164. break;
  165. lockdep_set_class_and_name(&eb->lock,
  166. &ks->keys[level], ks->names[level]);
  167. }
  168. #endif
  169. /*
  170. * extents on the btree inode are pretty simple, there's one extent
  171. * that covers the entire device
  172. */
  173. static struct extent_map *btree_get_extent(struct inode *inode,
  174. struct page *page, size_t pg_offset, u64 start, u64 len,
  175. int create)
  176. {
  177. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  178. struct extent_map *em;
  179. int ret;
  180. read_lock(&em_tree->lock);
  181. em = lookup_extent_mapping(em_tree, start, len);
  182. if (em) {
  183. em->bdev =
  184. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  185. read_unlock(&em_tree->lock);
  186. goto out;
  187. }
  188. read_unlock(&em_tree->lock);
  189. em = alloc_extent_map();
  190. if (!em) {
  191. em = ERR_PTR(-ENOMEM);
  192. goto out;
  193. }
  194. em->start = 0;
  195. em->len = (u64)-1;
  196. em->block_len = (u64)-1;
  197. em->block_start = 0;
  198. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  199. write_lock(&em_tree->lock);
  200. ret = add_extent_mapping(em_tree, em);
  201. if (ret == -EEXIST) {
  202. u64 failed_start = em->start;
  203. u64 failed_len = em->len;
  204. free_extent_map(em);
  205. em = lookup_extent_mapping(em_tree, start, len);
  206. if (em) {
  207. ret = 0;
  208. } else {
  209. em = lookup_extent_mapping(em_tree, failed_start,
  210. failed_len);
  211. ret = -EIO;
  212. }
  213. } else if (ret) {
  214. free_extent_map(em);
  215. em = NULL;
  216. }
  217. write_unlock(&em_tree->lock);
  218. if (ret)
  219. em = ERR_PTR(ret);
  220. out:
  221. return em;
  222. }
  223. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  224. {
  225. return crc32c(seed, data, len);
  226. }
  227. void btrfs_csum_final(u32 crc, char *result)
  228. {
  229. put_unaligned_le32(~crc, result);
  230. }
  231. /*
  232. * compute the csum for a btree block, and either verify it or write it
  233. * into the csum field of the block.
  234. */
  235. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  236. int verify)
  237. {
  238. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  239. char *result = NULL;
  240. unsigned long len;
  241. unsigned long cur_len;
  242. unsigned long offset = BTRFS_CSUM_SIZE;
  243. char *kaddr;
  244. unsigned long map_start;
  245. unsigned long map_len;
  246. int err;
  247. u32 crc = ~(u32)0;
  248. unsigned long inline_result;
  249. len = buf->len - offset;
  250. while (len > 0) {
  251. err = map_private_extent_buffer(buf, offset, 32,
  252. &kaddr, &map_start, &map_len);
  253. if (err)
  254. return 1;
  255. cur_len = min(len, map_len - (offset - map_start));
  256. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  257. crc, cur_len);
  258. len -= cur_len;
  259. offset += cur_len;
  260. }
  261. if (csum_size > sizeof(inline_result)) {
  262. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  263. if (!result)
  264. return 1;
  265. } else {
  266. result = (char *)&inline_result;
  267. }
  268. btrfs_csum_final(crc, result);
  269. if (verify) {
  270. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  271. u32 val;
  272. u32 found = 0;
  273. memcpy(&found, result, csum_size);
  274. read_extent_buffer(buf, &val, 0, csum_size);
  275. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  276. "failed on %llu wanted %X found %X "
  277. "level %d\n",
  278. root->fs_info->sb->s_id,
  279. (unsigned long long)buf->start, val, found,
  280. btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. (unsigned long long)eb->start,
  318. (unsigned long long)parent_transid,
  319. (unsigned long long)btrfs_header_generation(eb));
  320. ret = 1;
  321. clear_extent_buffer_uptodate(eb);
  322. out:
  323. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  324. &cached_state, GFP_NOFS);
  325. return ret;
  326. }
  327. /*
  328. * helper to read a given tree block, doing retries as required when
  329. * the checksums don't match and we have alternate mirrors to try.
  330. */
  331. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  332. struct extent_buffer *eb,
  333. u64 start, u64 parent_transid)
  334. {
  335. struct extent_io_tree *io_tree;
  336. int failed = 0;
  337. int ret;
  338. int num_copies = 0;
  339. int mirror_num = 0;
  340. int failed_mirror = 0;
  341. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  342. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  343. while (1) {
  344. ret = read_extent_buffer_pages(io_tree, eb, start,
  345. WAIT_COMPLETE,
  346. btree_get_extent, mirror_num);
  347. if (!ret) {
  348. if (!verify_parent_transid(io_tree, eb,
  349. parent_transid, 0))
  350. break;
  351. else
  352. ret = -EIO;
  353. }
  354. /*
  355. * This buffer's crc is fine, but its contents are corrupted, so
  356. * there is no reason to read the other copies, they won't be
  357. * any less wrong.
  358. */
  359. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  360. break;
  361. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  362. eb->start, eb->len);
  363. if (num_copies == 1)
  364. break;
  365. if (!failed_mirror) {
  366. failed = 1;
  367. failed_mirror = eb->read_mirror;
  368. }
  369. mirror_num++;
  370. if (mirror_num == failed_mirror)
  371. mirror_num++;
  372. if (mirror_num > num_copies)
  373. break;
  374. }
  375. if (failed && !ret && failed_mirror)
  376. repair_eb_io_failure(root, eb, failed_mirror);
  377. return ret;
  378. }
  379. /*
  380. * checksum a dirty tree block before IO. This has extra checks to make sure
  381. * we only fill in the checksum field in the first page of a multi-page block
  382. */
  383. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  384. {
  385. struct extent_io_tree *tree;
  386. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  387. u64 found_start;
  388. struct extent_buffer *eb;
  389. tree = &BTRFS_I(page->mapping->host)->io_tree;
  390. eb = (struct extent_buffer *)page->private;
  391. if (page != eb->pages[0])
  392. return 0;
  393. found_start = btrfs_header_bytenr(eb);
  394. if (found_start != start) {
  395. WARN_ON(1);
  396. return 0;
  397. }
  398. if (eb->pages[0] != page) {
  399. WARN_ON(1);
  400. return 0;
  401. }
  402. if (!PageUptodate(page)) {
  403. WARN_ON(1);
  404. return 0;
  405. }
  406. csum_tree_block(root, eb, 0);
  407. return 0;
  408. }
  409. static int check_tree_block_fsid(struct btrfs_root *root,
  410. struct extent_buffer *eb)
  411. {
  412. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  413. u8 fsid[BTRFS_UUID_SIZE];
  414. int ret = 1;
  415. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  416. BTRFS_FSID_SIZE);
  417. while (fs_devices) {
  418. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  419. ret = 0;
  420. break;
  421. }
  422. fs_devices = fs_devices->seed;
  423. }
  424. return ret;
  425. }
  426. #define CORRUPT(reason, eb, root, slot) \
  427. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  428. "root=%llu, slot=%d\n", reason, \
  429. (unsigned long long)btrfs_header_bytenr(eb), \
  430. (unsigned long long)root->objectid, slot)
  431. static noinline int check_leaf(struct btrfs_root *root,
  432. struct extent_buffer *leaf)
  433. {
  434. struct btrfs_key key;
  435. struct btrfs_key leaf_key;
  436. u32 nritems = btrfs_header_nritems(leaf);
  437. int slot;
  438. if (nritems == 0)
  439. return 0;
  440. /* Check the 0 item */
  441. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  442. BTRFS_LEAF_DATA_SIZE(root)) {
  443. CORRUPT("invalid item offset size pair", leaf, root, 0);
  444. return -EIO;
  445. }
  446. /*
  447. * Check to make sure each items keys are in the correct order and their
  448. * offsets make sense. We only have to loop through nritems-1 because
  449. * we check the current slot against the next slot, which verifies the
  450. * next slot's offset+size makes sense and that the current's slot
  451. * offset is correct.
  452. */
  453. for (slot = 0; slot < nritems - 1; slot++) {
  454. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  455. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  456. /* Make sure the keys are in the right order */
  457. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  458. CORRUPT("bad key order", leaf, root, slot);
  459. return -EIO;
  460. }
  461. /*
  462. * Make sure the offset and ends are right, remember that the
  463. * item data starts at the end of the leaf and grows towards the
  464. * front.
  465. */
  466. if (btrfs_item_offset_nr(leaf, slot) !=
  467. btrfs_item_end_nr(leaf, slot + 1)) {
  468. CORRUPT("slot offset bad", leaf, root, slot);
  469. return -EIO;
  470. }
  471. /*
  472. * Check to make sure that we don't point outside of the leaf,
  473. * just incase all the items are consistent to eachother, but
  474. * all point outside of the leaf.
  475. */
  476. if (btrfs_item_end_nr(leaf, slot) >
  477. BTRFS_LEAF_DATA_SIZE(root)) {
  478. CORRUPT("slot end outside of leaf", leaf, root, slot);
  479. return -EIO;
  480. }
  481. }
  482. return 0;
  483. }
  484. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  485. struct page *page, int max_walk)
  486. {
  487. struct extent_buffer *eb;
  488. u64 start = page_offset(page);
  489. u64 target = start;
  490. u64 min_start;
  491. if (start < max_walk)
  492. min_start = 0;
  493. else
  494. min_start = start - max_walk;
  495. while (start >= min_start) {
  496. eb = find_extent_buffer(tree, start, 0);
  497. if (eb) {
  498. /*
  499. * we found an extent buffer and it contains our page
  500. * horray!
  501. */
  502. if (eb->start <= target &&
  503. eb->start + eb->len > target)
  504. return eb;
  505. /* we found an extent buffer that wasn't for us */
  506. free_extent_buffer(eb);
  507. return NULL;
  508. }
  509. if (start == 0)
  510. break;
  511. start -= PAGE_CACHE_SIZE;
  512. }
  513. return NULL;
  514. }
  515. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  516. struct extent_state *state, int mirror)
  517. {
  518. struct extent_io_tree *tree;
  519. u64 found_start;
  520. int found_level;
  521. struct extent_buffer *eb;
  522. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  523. int ret = 0;
  524. int reads_done;
  525. if (!page->private)
  526. goto out;
  527. tree = &BTRFS_I(page->mapping->host)->io_tree;
  528. eb = (struct extent_buffer *)page->private;
  529. /* the pending IO might have been the only thing that kept this buffer
  530. * in memory. Make sure we have a ref for all this other checks
  531. */
  532. extent_buffer_get(eb);
  533. reads_done = atomic_dec_and_test(&eb->io_pages);
  534. if (!reads_done)
  535. goto err;
  536. eb->read_mirror = mirror;
  537. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  538. ret = -EIO;
  539. goto err;
  540. }
  541. found_start = btrfs_header_bytenr(eb);
  542. if (found_start != eb->start) {
  543. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  544. "%llu %llu\n",
  545. (unsigned long long)found_start,
  546. (unsigned long long)eb->start);
  547. ret = -EIO;
  548. goto err;
  549. }
  550. if (check_tree_block_fsid(root, eb)) {
  551. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  552. (unsigned long long)eb->start);
  553. ret = -EIO;
  554. goto err;
  555. }
  556. found_level = btrfs_header_level(eb);
  557. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  558. eb, found_level);
  559. ret = csum_tree_block(root, eb, 1);
  560. if (ret) {
  561. ret = -EIO;
  562. goto err;
  563. }
  564. /*
  565. * If this is a leaf block and it is corrupt, set the corrupt bit so
  566. * that we don't try and read the other copies of this block, just
  567. * return -EIO.
  568. */
  569. if (found_level == 0 && check_leaf(root, eb)) {
  570. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  571. ret = -EIO;
  572. }
  573. if (!ret)
  574. set_extent_buffer_uptodate(eb);
  575. err:
  576. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  577. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  578. btree_readahead_hook(root, eb, eb->start, ret);
  579. }
  580. if (ret)
  581. clear_extent_buffer_uptodate(eb);
  582. free_extent_buffer(eb);
  583. out:
  584. return ret;
  585. }
  586. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  587. {
  588. struct extent_buffer *eb;
  589. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  590. eb = (struct extent_buffer *)page->private;
  591. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  592. eb->read_mirror = failed_mirror;
  593. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  594. btree_readahead_hook(root, eb, eb->start, -EIO);
  595. return -EIO; /* we fixed nothing */
  596. }
  597. static void end_workqueue_bio(struct bio *bio, int err)
  598. {
  599. struct end_io_wq *end_io_wq = bio->bi_private;
  600. struct btrfs_fs_info *fs_info;
  601. fs_info = end_io_wq->info;
  602. end_io_wq->error = err;
  603. end_io_wq->work.func = end_workqueue_fn;
  604. end_io_wq->work.flags = 0;
  605. if (bio->bi_rw & REQ_WRITE) {
  606. if (end_io_wq->metadata == 1)
  607. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  608. &end_io_wq->work);
  609. else if (end_io_wq->metadata == 2)
  610. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  611. &end_io_wq->work);
  612. else
  613. btrfs_queue_worker(&fs_info->endio_write_workers,
  614. &end_io_wq->work);
  615. } else {
  616. if (end_io_wq->metadata)
  617. btrfs_queue_worker(&fs_info->endio_meta_workers,
  618. &end_io_wq->work);
  619. else
  620. btrfs_queue_worker(&fs_info->endio_workers,
  621. &end_io_wq->work);
  622. }
  623. }
  624. /*
  625. * For the metadata arg you want
  626. *
  627. * 0 - if data
  628. * 1 - if normal metadta
  629. * 2 - if writing to the free space cache area
  630. */
  631. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  632. int metadata)
  633. {
  634. struct end_io_wq *end_io_wq;
  635. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  636. if (!end_io_wq)
  637. return -ENOMEM;
  638. end_io_wq->private = bio->bi_private;
  639. end_io_wq->end_io = bio->bi_end_io;
  640. end_io_wq->info = info;
  641. end_io_wq->error = 0;
  642. end_io_wq->bio = bio;
  643. end_io_wq->metadata = metadata;
  644. bio->bi_private = end_io_wq;
  645. bio->bi_end_io = end_workqueue_bio;
  646. return 0;
  647. }
  648. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  649. {
  650. unsigned long limit = min_t(unsigned long,
  651. info->workers.max_workers,
  652. info->fs_devices->open_devices);
  653. return 256 * limit;
  654. }
  655. static void run_one_async_start(struct btrfs_work *work)
  656. {
  657. struct async_submit_bio *async;
  658. int ret;
  659. async = container_of(work, struct async_submit_bio, work);
  660. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  661. async->mirror_num, async->bio_flags,
  662. async->bio_offset);
  663. if (ret)
  664. async->error = ret;
  665. }
  666. static void run_one_async_done(struct btrfs_work *work)
  667. {
  668. struct btrfs_fs_info *fs_info;
  669. struct async_submit_bio *async;
  670. int limit;
  671. async = container_of(work, struct async_submit_bio, work);
  672. fs_info = BTRFS_I(async->inode)->root->fs_info;
  673. limit = btrfs_async_submit_limit(fs_info);
  674. limit = limit * 2 / 3;
  675. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  676. waitqueue_active(&fs_info->async_submit_wait))
  677. wake_up(&fs_info->async_submit_wait);
  678. /* If an error occured we just want to clean up the bio and move on */
  679. if (async->error) {
  680. bio_endio(async->bio, async->error);
  681. return;
  682. }
  683. async->submit_bio_done(async->inode, async->rw, async->bio,
  684. async->mirror_num, async->bio_flags,
  685. async->bio_offset);
  686. }
  687. static void run_one_async_free(struct btrfs_work *work)
  688. {
  689. struct async_submit_bio *async;
  690. async = container_of(work, struct async_submit_bio, work);
  691. kfree(async);
  692. }
  693. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  694. int rw, struct bio *bio, int mirror_num,
  695. unsigned long bio_flags,
  696. u64 bio_offset,
  697. extent_submit_bio_hook_t *submit_bio_start,
  698. extent_submit_bio_hook_t *submit_bio_done)
  699. {
  700. struct async_submit_bio *async;
  701. async = kmalloc(sizeof(*async), GFP_NOFS);
  702. if (!async)
  703. return -ENOMEM;
  704. async->inode = inode;
  705. async->rw = rw;
  706. async->bio = bio;
  707. async->mirror_num = mirror_num;
  708. async->submit_bio_start = submit_bio_start;
  709. async->submit_bio_done = submit_bio_done;
  710. async->work.func = run_one_async_start;
  711. async->work.ordered_func = run_one_async_done;
  712. async->work.ordered_free = run_one_async_free;
  713. async->work.flags = 0;
  714. async->bio_flags = bio_flags;
  715. async->bio_offset = bio_offset;
  716. async->error = 0;
  717. atomic_inc(&fs_info->nr_async_submits);
  718. if (rw & REQ_SYNC)
  719. btrfs_set_work_high_prio(&async->work);
  720. btrfs_queue_worker(&fs_info->workers, &async->work);
  721. while (atomic_read(&fs_info->async_submit_draining) &&
  722. atomic_read(&fs_info->nr_async_submits)) {
  723. wait_event(fs_info->async_submit_wait,
  724. (atomic_read(&fs_info->nr_async_submits) == 0));
  725. }
  726. return 0;
  727. }
  728. static int btree_csum_one_bio(struct bio *bio)
  729. {
  730. struct bio_vec *bvec = bio->bi_io_vec;
  731. int bio_index = 0;
  732. struct btrfs_root *root;
  733. int ret = 0;
  734. WARN_ON(bio->bi_vcnt <= 0);
  735. while (bio_index < bio->bi_vcnt) {
  736. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  737. ret = csum_dirty_buffer(root, bvec->bv_page);
  738. if (ret)
  739. break;
  740. bio_index++;
  741. bvec++;
  742. }
  743. return ret;
  744. }
  745. static int __btree_submit_bio_start(struct inode *inode, int rw,
  746. struct bio *bio, int mirror_num,
  747. unsigned long bio_flags,
  748. u64 bio_offset)
  749. {
  750. /*
  751. * when we're called for a write, we're already in the async
  752. * submission context. Just jump into btrfs_map_bio
  753. */
  754. return btree_csum_one_bio(bio);
  755. }
  756. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  757. int mirror_num, unsigned long bio_flags,
  758. u64 bio_offset)
  759. {
  760. /*
  761. * when we're called for a write, we're already in the async
  762. * submission context. Just jump into btrfs_map_bio
  763. */
  764. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  765. }
  766. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  767. int mirror_num, unsigned long bio_flags,
  768. u64 bio_offset)
  769. {
  770. int ret;
  771. if (!(rw & REQ_WRITE)) {
  772. /*
  773. * called for a read, do the setup so that checksum validation
  774. * can happen in the async kernel threads
  775. */
  776. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  777. bio, 1);
  778. if (ret)
  779. return ret;
  780. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  781. mirror_num, 0);
  782. }
  783. /*
  784. * kthread helpers are used to submit writes so that checksumming
  785. * can happen in parallel across all CPUs
  786. */
  787. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  788. inode, rw, bio, mirror_num, 0,
  789. bio_offset,
  790. __btree_submit_bio_start,
  791. __btree_submit_bio_done);
  792. }
  793. #ifdef CONFIG_MIGRATION
  794. static int btree_migratepage(struct address_space *mapping,
  795. struct page *newpage, struct page *page,
  796. enum migrate_mode mode)
  797. {
  798. /*
  799. * we can't safely write a btree page from here,
  800. * we haven't done the locking hook
  801. */
  802. if (PageDirty(page))
  803. return -EAGAIN;
  804. /*
  805. * Buffers may be managed in a filesystem specific way.
  806. * We must have no buffers or drop them.
  807. */
  808. if (page_has_private(page) &&
  809. !try_to_release_page(page, GFP_KERNEL))
  810. return -EAGAIN;
  811. return migrate_page(mapping, newpage, page, mode);
  812. }
  813. #endif
  814. static int btree_writepages(struct address_space *mapping,
  815. struct writeback_control *wbc)
  816. {
  817. struct extent_io_tree *tree;
  818. tree = &BTRFS_I(mapping->host)->io_tree;
  819. if (wbc->sync_mode == WB_SYNC_NONE) {
  820. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  821. u64 num_dirty;
  822. unsigned long thresh = 32 * 1024 * 1024;
  823. if (wbc->for_kupdate)
  824. return 0;
  825. /* this is a bit racy, but that's ok */
  826. num_dirty = root->fs_info->dirty_metadata_bytes;
  827. if (num_dirty < thresh)
  828. return 0;
  829. }
  830. return btree_write_cache_pages(mapping, wbc);
  831. }
  832. static int btree_readpage(struct file *file, struct page *page)
  833. {
  834. struct extent_io_tree *tree;
  835. tree = &BTRFS_I(page->mapping->host)->io_tree;
  836. return extent_read_full_page(tree, page, btree_get_extent, 0);
  837. }
  838. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  839. {
  840. if (PageWriteback(page) || PageDirty(page))
  841. return 0;
  842. /*
  843. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  844. * slab allocation from alloc_extent_state down the callchain where
  845. * it'd hit a BUG_ON as those flags are not allowed.
  846. */
  847. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  848. return try_release_extent_buffer(page, gfp_flags);
  849. }
  850. static void btree_invalidatepage(struct page *page, unsigned long offset)
  851. {
  852. struct extent_io_tree *tree;
  853. tree = &BTRFS_I(page->mapping->host)->io_tree;
  854. extent_invalidatepage(tree, page, offset);
  855. btree_releasepage(page, GFP_NOFS);
  856. if (PagePrivate(page)) {
  857. printk(KERN_WARNING "btrfs warning page private not zero "
  858. "on page %llu\n", (unsigned long long)page_offset(page));
  859. ClearPagePrivate(page);
  860. set_page_private(page, 0);
  861. page_cache_release(page);
  862. }
  863. }
  864. static int btree_set_page_dirty(struct page *page)
  865. {
  866. struct extent_buffer *eb;
  867. BUG_ON(!PagePrivate(page));
  868. eb = (struct extent_buffer *)page->private;
  869. BUG_ON(!eb);
  870. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  871. BUG_ON(!atomic_read(&eb->refs));
  872. btrfs_assert_tree_locked(eb);
  873. return __set_page_dirty_nobuffers(page);
  874. }
  875. static const struct address_space_operations btree_aops = {
  876. .readpage = btree_readpage,
  877. .writepages = btree_writepages,
  878. .releasepage = btree_releasepage,
  879. .invalidatepage = btree_invalidatepage,
  880. #ifdef CONFIG_MIGRATION
  881. .migratepage = btree_migratepage,
  882. #endif
  883. .set_page_dirty = btree_set_page_dirty,
  884. };
  885. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  886. u64 parent_transid)
  887. {
  888. struct extent_buffer *buf = NULL;
  889. struct inode *btree_inode = root->fs_info->btree_inode;
  890. int ret = 0;
  891. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  892. if (!buf)
  893. return 0;
  894. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  895. buf, 0, WAIT_NONE, btree_get_extent, 0);
  896. free_extent_buffer(buf);
  897. return ret;
  898. }
  899. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  900. int mirror_num, struct extent_buffer **eb)
  901. {
  902. struct extent_buffer *buf = NULL;
  903. struct inode *btree_inode = root->fs_info->btree_inode;
  904. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  905. int ret;
  906. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  907. if (!buf)
  908. return 0;
  909. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  910. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  911. btree_get_extent, mirror_num);
  912. if (ret) {
  913. free_extent_buffer(buf);
  914. return ret;
  915. }
  916. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  917. free_extent_buffer(buf);
  918. return -EIO;
  919. } else if (extent_buffer_uptodate(buf)) {
  920. *eb = buf;
  921. } else {
  922. free_extent_buffer(buf);
  923. }
  924. return 0;
  925. }
  926. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  927. u64 bytenr, u32 blocksize)
  928. {
  929. struct inode *btree_inode = root->fs_info->btree_inode;
  930. struct extent_buffer *eb;
  931. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  932. bytenr, blocksize);
  933. return eb;
  934. }
  935. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  936. u64 bytenr, u32 blocksize)
  937. {
  938. struct inode *btree_inode = root->fs_info->btree_inode;
  939. struct extent_buffer *eb;
  940. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  941. bytenr, blocksize);
  942. return eb;
  943. }
  944. int btrfs_write_tree_block(struct extent_buffer *buf)
  945. {
  946. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  947. buf->start + buf->len - 1);
  948. }
  949. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  950. {
  951. return filemap_fdatawait_range(buf->pages[0]->mapping,
  952. buf->start, buf->start + buf->len - 1);
  953. }
  954. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  955. u32 blocksize, u64 parent_transid)
  956. {
  957. struct extent_buffer *buf = NULL;
  958. int ret;
  959. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  960. if (!buf)
  961. return NULL;
  962. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  963. return buf;
  964. }
  965. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  966. struct extent_buffer *buf)
  967. {
  968. if (btrfs_header_generation(buf) ==
  969. root->fs_info->running_transaction->transid) {
  970. btrfs_assert_tree_locked(buf);
  971. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  972. spin_lock(&root->fs_info->delalloc_lock);
  973. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  974. root->fs_info->dirty_metadata_bytes -= buf->len;
  975. else {
  976. spin_unlock(&root->fs_info->delalloc_lock);
  977. btrfs_panic(root->fs_info, -EOVERFLOW,
  978. "Can't clear %lu bytes from "
  979. " dirty_mdatadata_bytes (%llu)",
  980. buf->len,
  981. root->fs_info->dirty_metadata_bytes);
  982. }
  983. spin_unlock(&root->fs_info->delalloc_lock);
  984. }
  985. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  986. btrfs_set_lock_blocking(buf);
  987. clear_extent_buffer_dirty(buf);
  988. }
  989. }
  990. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  991. u32 stripesize, struct btrfs_root *root,
  992. struct btrfs_fs_info *fs_info,
  993. u64 objectid)
  994. {
  995. root->node = NULL;
  996. root->commit_root = NULL;
  997. root->sectorsize = sectorsize;
  998. root->nodesize = nodesize;
  999. root->leafsize = leafsize;
  1000. root->stripesize = stripesize;
  1001. root->ref_cows = 0;
  1002. root->track_dirty = 0;
  1003. root->in_radix = 0;
  1004. root->orphan_item_inserted = 0;
  1005. root->orphan_cleanup_state = 0;
  1006. root->objectid = objectid;
  1007. root->last_trans = 0;
  1008. root->highest_objectid = 0;
  1009. root->name = NULL;
  1010. root->inode_tree = RB_ROOT;
  1011. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1012. root->block_rsv = NULL;
  1013. root->orphan_block_rsv = NULL;
  1014. INIT_LIST_HEAD(&root->dirty_list);
  1015. INIT_LIST_HEAD(&root->root_list);
  1016. spin_lock_init(&root->orphan_lock);
  1017. spin_lock_init(&root->inode_lock);
  1018. spin_lock_init(&root->accounting_lock);
  1019. mutex_init(&root->objectid_mutex);
  1020. mutex_init(&root->log_mutex);
  1021. init_waitqueue_head(&root->log_writer_wait);
  1022. init_waitqueue_head(&root->log_commit_wait[0]);
  1023. init_waitqueue_head(&root->log_commit_wait[1]);
  1024. atomic_set(&root->log_commit[0], 0);
  1025. atomic_set(&root->log_commit[1], 0);
  1026. atomic_set(&root->log_writers, 0);
  1027. atomic_set(&root->log_batch, 0);
  1028. atomic_set(&root->orphan_inodes, 0);
  1029. root->log_transid = 0;
  1030. root->last_log_commit = 0;
  1031. extent_io_tree_init(&root->dirty_log_pages,
  1032. fs_info->btree_inode->i_mapping);
  1033. memset(&root->root_key, 0, sizeof(root->root_key));
  1034. memset(&root->root_item, 0, sizeof(root->root_item));
  1035. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1036. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1037. root->defrag_trans_start = fs_info->generation;
  1038. init_completion(&root->kobj_unregister);
  1039. root->defrag_running = 0;
  1040. root->root_key.objectid = objectid;
  1041. root->anon_dev = 0;
  1042. spin_lock_init(&root->root_times_lock);
  1043. }
  1044. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1045. struct btrfs_fs_info *fs_info,
  1046. u64 objectid,
  1047. struct btrfs_root *root)
  1048. {
  1049. int ret;
  1050. u32 blocksize;
  1051. u64 generation;
  1052. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1053. tree_root->sectorsize, tree_root->stripesize,
  1054. root, fs_info, objectid);
  1055. ret = btrfs_find_last_root(tree_root, objectid,
  1056. &root->root_item, &root->root_key);
  1057. if (ret > 0)
  1058. return -ENOENT;
  1059. else if (ret < 0)
  1060. return ret;
  1061. generation = btrfs_root_generation(&root->root_item);
  1062. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1063. root->commit_root = NULL;
  1064. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1065. blocksize, generation);
  1066. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1067. free_extent_buffer(root->node);
  1068. root->node = NULL;
  1069. return -EIO;
  1070. }
  1071. root->commit_root = btrfs_root_node(root);
  1072. return 0;
  1073. }
  1074. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1075. {
  1076. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1077. if (root)
  1078. root->fs_info = fs_info;
  1079. return root;
  1080. }
  1081. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1082. struct btrfs_fs_info *fs_info,
  1083. u64 objectid)
  1084. {
  1085. struct extent_buffer *leaf;
  1086. struct btrfs_root *tree_root = fs_info->tree_root;
  1087. struct btrfs_root *root;
  1088. struct btrfs_key key;
  1089. int ret = 0;
  1090. u64 bytenr;
  1091. root = btrfs_alloc_root(fs_info);
  1092. if (!root)
  1093. return ERR_PTR(-ENOMEM);
  1094. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1095. tree_root->sectorsize, tree_root->stripesize,
  1096. root, fs_info, objectid);
  1097. root->root_key.objectid = objectid;
  1098. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1099. root->root_key.offset = 0;
  1100. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1101. 0, objectid, NULL, 0, 0, 0);
  1102. if (IS_ERR(leaf)) {
  1103. ret = PTR_ERR(leaf);
  1104. goto fail;
  1105. }
  1106. bytenr = leaf->start;
  1107. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1108. btrfs_set_header_bytenr(leaf, leaf->start);
  1109. btrfs_set_header_generation(leaf, trans->transid);
  1110. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1111. btrfs_set_header_owner(leaf, objectid);
  1112. root->node = leaf;
  1113. write_extent_buffer(leaf, fs_info->fsid,
  1114. (unsigned long)btrfs_header_fsid(leaf),
  1115. BTRFS_FSID_SIZE);
  1116. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1117. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1118. BTRFS_UUID_SIZE);
  1119. btrfs_mark_buffer_dirty(leaf);
  1120. root->commit_root = btrfs_root_node(root);
  1121. root->track_dirty = 1;
  1122. root->root_item.flags = 0;
  1123. root->root_item.byte_limit = 0;
  1124. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1125. btrfs_set_root_generation(&root->root_item, trans->transid);
  1126. btrfs_set_root_level(&root->root_item, 0);
  1127. btrfs_set_root_refs(&root->root_item, 1);
  1128. btrfs_set_root_used(&root->root_item, leaf->len);
  1129. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1130. btrfs_set_root_dirid(&root->root_item, 0);
  1131. root->root_item.drop_level = 0;
  1132. key.objectid = objectid;
  1133. key.type = BTRFS_ROOT_ITEM_KEY;
  1134. key.offset = 0;
  1135. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1136. if (ret)
  1137. goto fail;
  1138. btrfs_tree_unlock(leaf);
  1139. fail:
  1140. if (ret)
  1141. return ERR_PTR(ret);
  1142. return root;
  1143. }
  1144. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1145. struct btrfs_fs_info *fs_info)
  1146. {
  1147. struct btrfs_root *root;
  1148. struct btrfs_root *tree_root = fs_info->tree_root;
  1149. struct extent_buffer *leaf;
  1150. root = btrfs_alloc_root(fs_info);
  1151. if (!root)
  1152. return ERR_PTR(-ENOMEM);
  1153. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1154. tree_root->sectorsize, tree_root->stripesize,
  1155. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1156. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1157. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1158. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1159. /*
  1160. * log trees do not get reference counted because they go away
  1161. * before a real commit is actually done. They do store pointers
  1162. * to file data extents, and those reference counts still get
  1163. * updated (along with back refs to the log tree).
  1164. */
  1165. root->ref_cows = 0;
  1166. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1167. BTRFS_TREE_LOG_OBJECTID, NULL,
  1168. 0, 0, 0);
  1169. if (IS_ERR(leaf)) {
  1170. kfree(root);
  1171. return ERR_CAST(leaf);
  1172. }
  1173. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1174. btrfs_set_header_bytenr(leaf, leaf->start);
  1175. btrfs_set_header_generation(leaf, trans->transid);
  1176. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1177. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1178. root->node = leaf;
  1179. write_extent_buffer(root->node, root->fs_info->fsid,
  1180. (unsigned long)btrfs_header_fsid(root->node),
  1181. BTRFS_FSID_SIZE);
  1182. btrfs_mark_buffer_dirty(root->node);
  1183. btrfs_tree_unlock(root->node);
  1184. return root;
  1185. }
  1186. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1187. struct btrfs_fs_info *fs_info)
  1188. {
  1189. struct btrfs_root *log_root;
  1190. log_root = alloc_log_tree(trans, fs_info);
  1191. if (IS_ERR(log_root))
  1192. return PTR_ERR(log_root);
  1193. WARN_ON(fs_info->log_root_tree);
  1194. fs_info->log_root_tree = log_root;
  1195. return 0;
  1196. }
  1197. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1198. struct btrfs_root *root)
  1199. {
  1200. struct btrfs_root *log_root;
  1201. struct btrfs_inode_item *inode_item;
  1202. log_root = alloc_log_tree(trans, root->fs_info);
  1203. if (IS_ERR(log_root))
  1204. return PTR_ERR(log_root);
  1205. log_root->last_trans = trans->transid;
  1206. log_root->root_key.offset = root->root_key.objectid;
  1207. inode_item = &log_root->root_item.inode;
  1208. inode_item->generation = cpu_to_le64(1);
  1209. inode_item->size = cpu_to_le64(3);
  1210. inode_item->nlink = cpu_to_le32(1);
  1211. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1212. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1213. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1214. WARN_ON(root->log_root);
  1215. root->log_root = log_root;
  1216. root->log_transid = 0;
  1217. root->last_log_commit = 0;
  1218. return 0;
  1219. }
  1220. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1221. struct btrfs_key *location)
  1222. {
  1223. struct btrfs_root *root;
  1224. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1225. struct btrfs_path *path;
  1226. struct extent_buffer *l;
  1227. u64 generation;
  1228. u32 blocksize;
  1229. int ret = 0;
  1230. int slot;
  1231. root = btrfs_alloc_root(fs_info);
  1232. if (!root)
  1233. return ERR_PTR(-ENOMEM);
  1234. if (location->offset == (u64)-1) {
  1235. ret = find_and_setup_root(tree_root, fs_info,
  1236. location->objectid, root);
  1237. if (ret) {
  1238. kfree(root);
  1239. return ERR_PTR(ret);
  1240. }
  1241. goto out;
  1242. }
  1243. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1244. tree_root->sectorsize, tree_root->stripesize,
  1245. root, fs_info, location->objectid);
  1246. path = btrfs_alloc_path();
  1247. if (!path) {
  1248. kfree(root);
  1249. return ERR_PTR(-ENOMEM);
  1250. }
  1251. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1252. if (ret == 0) {
  1253. l = path->nodes[0];
  1254. slot = path->slots[0];
  1255. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1256. memcpy(&root->root_key, location, sizeof(*location));
  1257. }
  1258. btrfs_free_path(path);
  1259. if (ret) {
  1260. kfree(root);
  1261. if (ret > 0)
  1262. ret = -ENOENT;
  1263. return ERR_PTR(ret);
  1264. }
  1265. generation = btrfs_root_generation(&root->root_item);
  1266. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1267. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1268. blocksize, generation);
  1269. root->commit_root = btrfs_root_node(root);
  1270. BUG_ON(!root->node); /* -ENOMEM */
  1271. out:
  1272. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1273. root->ref_cows = 1;
  1274. btrfs_check_and_init_root_item(&root->root_item);
  1275. }
  1276. return root;
  1277. }
  1278. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1279. struct btrfs_key *location)
  1280. {
  1281. struct btrfs_root *root;
  1282. int ret;
  1283. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1284. return fs_info->tree_root;
  1285. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1286. return fs_info->extent_root;
  1287. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1288. return fs_info->chunk_root;
  1289. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1290. return fs_info->dev_root;
  1291. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1292. return fs_info->csum_root;
  1293. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1294. return fs_info->quota_root ? fs_info->quota_root :
  1295. ERR_PTR(-ENOENT);
  1296. again:
  1297. spin_lock(&fs_info->fs_roots_radix_lock);
  1298. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1299. (unsigned long)location->objectid);
  1300. spin_unlock(&fs_info->fs_roots_radix_lock);
  1301. if (root)
  1302. return root;
  1303. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1304. if (IS_ERR(root))
  1305. return root;
  1306. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1307. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1308. GFP_NOFS);
  1309. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1310. ret = -ENOMEM;
  1311. goto fail;
  1312. }
  1313. btrfs_init_free_ino_ctl(root);
  1314. mutex_init(&root->fs_commit_mutex);
  1315. spin_lock_init(&root->cache_lock);
  1316. init_waitqueue_head(&root->cache_wait);
  1317. ret = get_anon_bdev(&root->anon_dev);
  1318. if (ret)
  1319. goto fail;
  1320. if (btrfs_root_refs(&root->root_item) == 0) {
  1321. ret = -ENOENT;
  1322. goto fail;
  1323. }
  1324. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1325. if (ret < 0)
  1326. goto fail;
  1327. if (ret == 0)
  1328. root->orphan_item_inserted = 1;
  1329. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1330. if (ret)
  1331. goto fail;
  1332. spin_lock(&fs_info->fs_roots_radix_lock);
  1333. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1334. (unsigned long)root->root_key.objectid,
  1335. root);
  1336. if (ret == 0)
  1337. root->in_radix = 1;
  1338. spin_unlock(&fs_info->fs_roots_radix_lock);
  1339. radix_tree_preload_end();
  1340. if (ret) {
  1341. if (ret == -EEXIST) {
  1342. free_fs_root(root);
  1343. goto again;
  1344. }
  1345. goto fail;
  1346. }
  1347. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1348. root->root_key.objectid);
  1349. WARN_ON(ret);
  1350. return root;
  1351. fail:
  1352. free_fs_root(root);
  1353. return ERR_PTR(ret);
  1354. }
  1355. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1356. {
  1357. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1358. int ret = 0;
  1359. struct btrfs_device *device;
  1360. struct backing_dev_info *bdi;
  1361. rcu_read_lock();
  1362. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1363. if (!device->bdev)
  1364. continue;
  1365. bdi = blk_get_backing_dev_info(device->bdev);
  1366. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1367. ret = 1;
  1368. break;
  1369. }
  1370. }
  1371. rcu_read_unlock();
  1372. return ret;
  1373. }
  1374. /*
  1375. * If this fails, caller must call bdi_destroy() to get rid of the
  1376. * bdi again.
  1377. */
  1378. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1379. {
  1380. int err;
  1381. bdi->capabilities = BDI_CAP_MAP_COPY;
  1382. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1383. if (err)
  1384. return err;
  1385. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1386. bdi->congested_fn = btrfs_congested_fn;
  1387. bdi->congested_data = info;
  1388. return 0;
  1389. }
  1390. /*
  1391. * called by the kthread helper functions to finally call the bio end_io
  1392. * functions. This is where read checksum verification actually happens
  1393. */
  1394. static void end_workqueue_fn(struct btrfs_work *work)
  1395. {
  1396. struct bio *bio;
  1397. struct end_io_wq *end_io_wq;
  1398. struct btrfs_fs_info *fs_info;
  1399. int error;
  1400. end_io_wq = container_of(work, struct end_io_wq, work);
  1401. bio = end_io_wq->bio;
  1402. fs_info = end_io_wq->info;
  1403. error = end_io_wq->error;
  1404. bio->bi_private = end_io_wq->private;
  1405. bio->bi_end_io = end_io_wq->end_io;
  1406. kfree(end_io_wq);
  1407. bio_endio(bio, error);
  1408. }
  1409. static int cleaner_kthread(void *arg)
  1410. {
  1411. struct btrfs_root *root = arg;
  1412. do {
  1413. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1414. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1415. btrfs_run_delayed_iputs(root);
  1416. btrfs_clean_old_snapshots(root);
  1417. mutex_unlock(&root->fs_info->cleaner_mutex);
  1418. btrfs_run_defrag_inodes(root->fs_info);
  1419. }
  1420. if (!try_to_freeze()) {
  1421. set_current_state(TASK_INTERRUPTIBLE);
  1422. if (!kthread_should_stop())
  1423. schedule();
  1424. __set_current_state(TASK_RUNNING);
  1425. }
  1426. } while (!kthread_should_stop());
  1427. return 0;
  1428. }
  1429. static int transaction_kthread(void *arg)
  1430. {
  1431. struct btrfs_root *root = arg;
  1432. struct btrfs_trans_handle *trans;
  1433. struct btrfs_transaction *cur;
  1434. u64 transid;
  1435. unsigned long now;
  1436. unsigned long delay;
  1437. bool cannot_commit;
  1438. do {
  1439. cannot_commit = false;
  1440. delay = HZ * 30;
  1441. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1442. spin_lock(&root->fs_info->trans_lock);
  1443. cur = root->fs_info->running_transaction;
  1444. if (!cur) {
  1445. spin_unlock(&root->fs_info->trans_lock);
  1446. goto sleep;
  1447. }
  1448. now = get_seconds();
  1449. if (!cur->blocked &&
  1450. (now < cur->start_time || now - cur->start_time < 30)) {
  1451. spin_unlock(&root->fs_info->trans_lock);
  1452. delay = HZ * 5;
  1453. goto sleep;
  1454. }
  1455. transid = cur->transid;
  1456. spin_unlock(&root->fs_info->trans_lock);
  1457. /* If the file system is aborted, this will always fail. */
  1458. trans = btrfs_join_transaction(root);
  1459. if (IS_ERR(trans)) {
  1460. cannot_commit = true;
  1461. goto sleep;
  1462. }
  1463. if (transid == trans->transid) {
  1464. btrfs_commit_transaction(trans, root);
  1465. } else {
  1466. btrfs_end_transaction(trans, root);
  1467. }
  1468. sleep:
  1469. wake_up_process(root->fs_info->cleaner_kthread);
  1470. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1471. if (!try_to_freeze()) {
  1472. set_current_state(TASK_INTERRUPTIBLE);
  1473. if (!kthread_should_stop() &&
  1474. (!btrfs_transaction_blocked(root->fs_info) ||
  1475. cannot_commit))
  1476. schedule_timeout(delay);
  1477. __set_current_state(TASK_RUNNING);
  1478. }
  1479. } while (!kthread_should_stop());
  1480. return 0;
  1481. }
  1482. /*
  1483. * this will find the highest generation in the array of
  1484. * root backups. The index of the highest array is returned,
  1485. * or -1 if we can't find anything.
  1486. *
  1487. * We check to make sure the array is valid by comparing the
  1488. * generation of the latest root in the array with the generation
  1489. * in the super block. If they don't match we pitch it.
  1490. */
  1491. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1492. {
  1493. u64 cur;
  1494. int newest_index = -1;
  1495. struct btrfs_root_backup *root_backup;
  1496. int i;
  1497. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1498. root_backup = info->super_copy->super_roots + i;
  1499. cur = btrfs_backup_tree_root_gen(root_backup);
  1500. if (cur == newest_gen)
  1501. newest_index = i;
  1502. }
  1503. /* check to see if we actually wrapped around */
  1504. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1505. root_backup = info->super_copy->super_roots;
  1506. cur = btrfs_backup_tree_root_gen(root_backup);
  1507. if (cur == newest_gen)
  1508. newest_index = 0;
  1509. }
  1510. return newest_index;
  1511. }
  1512. /*
  1513. * find the oldest backup so we know where to store new entries
  1514. * in the backup array. This will set the backup_root_index
  1515. * field in the fs_info struct
  1516. */
  1517. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1518. u64 newest_gen)
  1519. {
  1520. int newest_index = -1;
  1521. newest_index = find_newest_super_backup(info, newest_gen);
  1522. /* if there was garbage in there, just move along */
  1523. if (newest_index == -1) {
  1524. info->backup_root_index = 0;
  1525. } else {
  1526. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1527. }
  1528. }
  1529. /*
  1530. * copy all the root pointers into the super backup array.
  1531. * this will bump the backup pointer by one when it is
  1532. * done
  1533. */
  1534. static void backup_super_roots(struct btrfs_fs_info *info)
  1535. {
  1536. int next_backup;
  1537. struct btrfs_root_backup *root_backup;
  1538. int last_backup;
  1539. next_backup = info->backup_root_index;
  1540. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1541. BTRFS_NUM_BACKUP_ROOTS;
  1542. /*
  1543. * just overwrite the last backup if we're at the same generation
  1544. * this happens only at umount
  1545. */
  1546. root_backup = info->super_for_commit->super_roots + last_backup;
  1547. if (btrfs_backup_tree_root_gen(root_backup) ==
  1548. btrfs_header_generation(info->tree_root->node))
  1549. next_backup = last_backup;
  1550. root_backup = info->super_for_commit->super_roots + next_backup;
  1551. /*
  1552. * make sure all of our padding and empty slots get zero filled
  1553. * regardless of which ones we use today
  1554. */
  1555. memset(root_backup, 0, sizeof(*root_backup));
  1556. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1557. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1558. btrfs_set_backup_tree_root_gen(root_backup,
  1559. btrfs_header_generation(info->tree_root->node));
  1560. btrfs_set_backup_tree_root_level(root_backup,
  1561. btrfs_header_level(info->tree_root->node));
  1562. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1563. btrfs_set_backup_chunk_root_gen(root_backup,
  1564. btrfs_header_generation(info->chunk_root->node));
  1565. btrfs_set_backup_chunk_root_level(root_backup,
  1566. btrfs_header_level(info->chunk_root->node));
  1567. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1568. btrfs_set_backup_extent_root_gen(root_backup,
  1569. btrfs_header_generation(info->extent_root->node));
  1570. btrfs_set_backup_extent_root_level(root_backup,
  1571. btrfs_header_level(info->extent_root->node));
  1572. /*
  1573. * we might commit during log recovery, which happens before we set
  1574. * the fs_root. Make sure it is valid before we fill it in.
  1575. */
  1576. if (info->fs_root && info->fs_root->node) {
  1577. btrfs_set_backup_fs_root(root_backup,
  1578. info->fs_root->node->start);
  1579. btrfs_set_backup_fs_root_gen(root_backup,
  1580. btrfs_header_generation(info->fs_root->node));
  1581. btrfs_set_backup_fs_root_level(root_backup,
  1582. btrfs_header_level(info->fs_root->node));
  1583. }
  1584. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1585. btrfs_set_backup_dev_root_gen(root_backup,
  1586. btrfs_header_generation(info->dev_root->node));
  1587. btrfs_set_backup_dev_root_level(root_backup,
  1588. btrfs_header_level(info->dev_root->node));
  1589. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1590. btrfs_set_backup_csum_root_gen(root_backup,
  1591. btrfs_header_generation(info->csum_root->node));
  1592. btrfs_set_backup_csum_root_level(root_backup,
  1593. btrfs_header_level(info->csum_root->node));
  1594. btrfs_set_backup_total_bytes(root_backup,
  1595. btrfs_super_total_bytes(info->super_copy));
  1596. btrfs_set_backup_bytes_used(root_backup,
  1597. btrfs_super_bytes_used(info->super_copy));
  1598. btrfs_set_backup_num_devices(root_backup,
  1599. btrfs_super_num_devices(info->super_copy));
  1600. /*
  1601. * if we don't copy this out to the super_copy, it won't get remembered
  1602. * for the next commit
  1603. */
  1604. memcpy(&info->super_copy->super_roots,
  1605. &info->super_for_commit->super_roots,
  1606. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1607. }
  1608. /*
  1609. * this copies info out of the root backup array and back into
  1610. * the in-memory super block. It is meant to help iterate through
  1611. * the array, so you send it the number of backups you've already
  1612. * tried and the last backup index you used.
  1613. *
  1614. * this returns -1 when it has tried all the backups
  1615. */
  1616. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1617. struct btrfs_super_block *super,
  1618. int *num_backups_tried, int *backup_index)
  1619. {
  1620. struct btrfs_root_backup *root_backup;
  1621. int newest = *backup_index;
  1622. if (*num_backups_tried == 0) {
  1623. u64 gen = btrfs_super_generation(super);
  1624. newest = find_newest_super_backup(info, gen);
  1625. if (newest == -1)
  1626. return -1;
  1627. *backup_index = newest;
  1628. *num_backups_tried = 1;
  1629. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1630. /* we've tried all the backups, all done */
  1631. return -1;
  1632. } else {
  1633. /* jump to the next oldest backup */
  1634. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1635. BTRFS_NUM_BACKUP_ROOTS;
  1636. *backup_index = newest;
  1637. *num_backups_tried += 1;
  1638. }
  1639. root_backup = super->super_roots + newest;
  1640. btrfs_set_super_generation(super,
  1641. btrfs_backup_tree_root_gen(root_backup));
  1642. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1643. btrfs_set_super_root_level(super,
  1644. btrfs_backup_tree_root_level(root_backup));
  1645. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1646. /*
  1647. * fixme: the total bytes and num_devices need to match or we should
  1648. * need a fsck
  1649. */
  1650. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1651. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1652. return 0;
  1653. }
  1654. /* helper to cleanup tree roots */
  1655. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1656. {
  1657. free_extent_buffer(info->tree_root->node);
  1658. free_extent_buffer(info->tree_root->commit_root);
  1659. free_extent_buffer(info->dev_root->node);
  1660. free_extent_buffer(info->dev_root->commit_root);
  1661. free_extent_buffer(info->extent_root->node);
  1662. free_extent_buffer(info->extent_root->commit_root);
  1663. free_extent_buffer(info->csum_root->node);
  1664. free_extent_buffer(info->csum_root->commit_root);
  1665. if (info->quota_root) {
  1666. free_extent_buffer(info->quota_root->node);
  1667. free_extent_buffer(info->quota_root->commit_root);
  1668. }
  1669. info->tree_root->node = NULL;
  1670. info->tree_root->commit_root = NULL;
  1671. info->dev_root->node = NULL;
  1672. info->dev_root->commit_root = NULL;
  1673. info->extent_root->node = NULL;
  1674. info->extent_root->commit_root = NULL;
  1675. info->csum_root->node = NULL;
  1676. info->csum_root->commit_root = NULL;
  1677. if (info->quota_root) {
  1678. info->quota_root->node = NULL;
  1679. info->quota_root->commit_root = NULL;
  1680. }
  1681. if (chunk_root) {
  1682. free_extent_buffer(info->chunk_root->node);
  1683. free_extent_buffer(info->chunk_root->commit_root);
  1684. info->chunk_root->node = NULL;
  1685. info->chunk_root->commit_root = NULL;
  1686. }
  1687. }
  1688. int open_ctree(struct super_block *sb,
  1689. struct btrfs_fs_devices *fs_devices,
  1690. char *options)
  1691. {
  1692. u32 sectorsize;
  1693. u32 nodesize;
  1694. u32 leafsize;
  1695. u32 blocksize;
  1696. u32 stripesize;
  1697. u64 generation;
  1698. u64 features;
  1699. struct btrfs_key location;
  1700. struct buffer_head *bh;
  1701. struct btrfs_super_block *disk_super;
  1702. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1703. struct btrfs_root *tree_root;
  1704. struct btrfs_root *extent_root;
  1705. struct btrfs_root *csum_root;
  1706. struct btrfs_root *chunk_root;
  1707. struct btrfs_root *dev_root;
  1708. struct btrfs_root *quota_root;
  1709. struct btrfs_root *log_tree_root;
  1710. int ret;
  1711. int err = -EINVAL;
  1712. int num_backups_tried = 0;
  1713. int backup_index = 0;
  1714. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1715. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1716. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1717. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1718. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1719. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1720. if (!tree_root || !extent_root || !csum_root ||
  1721. !chunk_root || !dev_root || !quota_root) {
  1722. err = -ENOMEM;
  1723. goto fail;
  1724. }
  1725. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1726. if (ret) {
  1727. err = ret;
  1728. goto fail;
  1729. }
  1730. ret = setup_bdi(fs_info, &fs_info->bdi);
  1731. if (ret) {
  1732. err = ret;
  1733. goto fail_srcu;
  1734. }
  1735. fs_info->btree_inode = new_inode(sb);
  1736. if (!fs_info->btree_inode) {
  1737. err = -ENOMEM;
  1738. goto fail_bdi;
  1739. }
  1740. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1741. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1742. INIT_LIST_HEAD(&fs_info->trans_list);
  1743. INIT_LIST_HEAD(&fs_info->dead_roots);
  1744. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1745. INIT_LIST_HEAD(&fs_info->hashers);
  1746. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1747. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1748. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1749. spin_lock_init(&fs_info->delalloc_lock);
  1750. spin_lock_init(&fs_info->trans_lock);
  1751. spin_lock_init(&fs_info->ref_cache_lock);
  1752. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1753. spin_lock_init(&fs_info->delayed_iput_lock);
  1754. spin_lock_init(&fs_info->defrag_inodes_lock);
  1755. spin_lock_init(&fs_info->free_chunk_lock);
  1756. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1757. rwlock_init(&fs_info->tree_mod_log_lock);
  1758. mutex_init(&fs_info->reloc_mutex);
  1759. init_completion(&fs_info->kobj_unregister);
  1760. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1761. INIT_LIST_HEAD(&fs_info->space_info);
  1762. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1763. btrfs_mapping_init(&fs_info->mapping_tree);
  1764. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1765. BTRFS_BLOCK_RSV_GLOBAL);
  1766. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1767. BTRFS_BLOCK_RSV_DELALLOC);
  1768. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1769. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1770. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1771. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1772. BTRFS_BLOCK_RSV_DELOPS);
  1773. atomic_set(&fs_info->nr_async_submits, 0);
  1774. atomic_set(&fs_info->async_delalloc_pages, 0);
  1775. atomic_set(&fs_info->async_submit_draining, 0);
  1776. atomic_set(&fs_info->nr_async_bios, 0);
  1777. atomic_set(&fs_info->defrag_running, 0);
  1778. atomic_set(&fs_info->tree_mod_seq, 0);
  1779. fs_info->sb = sb;
  1780. fs_info->max_inline = 8192 * 1024;
  1781. fs_info->metadata_ratio = 0;
  1782. fs_info->defrag_inodes = RB_ROOT;
  1783. fs_info->trans_no_join = 0;
  1784. fs_info->free_chunk_space = 0;
  1785. fs_info->tree_mod_log = RB_ROOT;
  1786. /* readahead state */
  1787. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1788. spin_lock_init(&fs_info->reada_lock);
  1789. fs_info->thread_pool_size = min_t(unsigned long,
  1790. num_online_cpus() + 2, 8);
  1791. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1792. spin_lock_init(&fs_info->ordered_extent_lock);
  1793. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1794. GFP_NOFS);
  1795. if (!fs_info->delayed_root) {
  1796. err = -ENOMEM;
  1797. goto fail_iput;
  1798. }
  1799. btrfs_init_delayed_root(fs_info->delayed_root);
  1800. mutex_init(&fs_info->scrub_lock);
  1801. atomic_set(&fs_info->scrubs_running, 0);
  1802. atomic_set(&fs_info->scrub_pause_req, 0);
  1803. atomic_set(&fs_info->scrubs_paused, 0);
  1804. atomic_set(&fs_info->scrub_cancel_req, 0);
  1805. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1806. init_rwsem(&fs_info->scrub_super_lock);
  1807. fs_info->scrub_workers_refcnt = 0;
  1808. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1809. fs_info->check_integrity_print_mask = 0;
  1810. #endif
  1811. spin_lock_init(&fs_info->balance_lock);
  1812. mutex_init(&fs_info->balance_mutex);
  1813. atomic_set(&fs_info->balance_running, 0);
  1814. atomic_set(&fs_info->balance_pause_req, 0);
  1815. atomic_set(&fs_info->balance_cancel_req, 0);
  1816. fs_info->balance_ctl = NULL;
  1817. init_waitqueue_head(&fs_info->balance_wait_q);
  1818. sb->s_blocksize = 4096;
  1819. sb->s_blocksize_bits = blksize_bits(4096);
  1820. sb->s_bdi = &fs_info->bdi;
  1821. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1822. set_nlink(fs_info->btree_inode, 1);
  1823. /*
  1824. * we set the i_size on the btree inode to the max possible int.
  1825. * the real end of the address space is determined by all of
  1826. * the devices in the system
  1827. */
  1828. fs_info->btree_inode->i_size = OFFSET_MAX;
  1829. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1830. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1831. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1832. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1833. fs_info->btree_inode->i_mapping);
  1834. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1835. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1836. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1837. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1838. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1839. sizeof(struct btrfs_key));
  1840. set_bit(BTRFS_INODE_DUMMY,
  1841. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1842. insert_inode_hash(fs_info->btree_inode);
  1843. spin_lock_init(&fs_info->block_group_cache_lock);
  1844. fs_info->block_group_cache_tree = RB_ROOT;
  1845. extent_io_tree_init(&fs_info->freed_extents[0],
  1846. fs_info->btree_inode->i_mapping);
  1847. extent_io_tree_init(&fs_info->freed_extents[1],
  1848. fs_info->btree_inode->i_mapping);
  1849. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1850. fs_info->do_barriers = 1;
  1851. mutex_init(&fs_info->ordered_operations_mutex);
  1852. mutex_init(&fs_info->tree_log_mutex);
  1853. mutex_init(&fs_info->chunk_mutex);
  1854. mutex_init(&fs_info->transaction_kthread_mutex);
  1855. mutex_init(&fs_info->cleaner_mutex);
  1856. mutex_init(&fs_info->volume_mutex);
  1857. init_rwsem(&fs_info->extent_commit_sem);
  1858. init_rwsem(&fs_info->cleanup_work_sem);
  1859. init_rwsem(&fs_info->subvol_sem);
  1860. spin_lock_init(&fs_info->qgroup_lock);
  1861. fs_info->qgroup_tree = RB_ROOT;
  1862. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1863. fs_info->qgroup_seq = 1;
  1864. fs_info->quota_enabled = 0;
  1865. fs_info->pending_quota_state = 0;
  1866. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1867. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1868. init_waitqueue_head(&fs_info->transaction_throttle);
  1869. init_waitqueue_head(&fs_info->transaction_wait);
  1870. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1871. init_waitqueue_head(&fs_info->async_submit_wait);
  1872. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1873. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1874. invalidate_bdev(fs_devices->latest_bdev);
  1875. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1876. if (!bh) {
  1877. err = -EINVAL;
  1878. goto fail_alloc;
  1879. }
  1880. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1881. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1882. sizeof(*fs_info->super_for_commit));
  1883. brelse(bh);
  1884. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1885. disk_super = fs_info->super_copy;
  1886. if (!btrfs_super_root(disk_super))
  1887. goto fail_alloc;
  1888. /* check FS state, whether FS is broken. */
  1889. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1890. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1891. if (ret) {
  1892. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1893. err = ret;
  1894. goto fail_alloc;
  1895. }
  1896. /*
  1897. * run through our array of backup supers and setup
  1898. * our ring pointer to the oldest one
  1899. */
  1900. generation = btrfs_super_generation(disk_super);
  1901. find_oldest_super_backup(fs_info, generation);
  1902. /*
  1903. * In the long term, we'll store the compression type in the super
  1904. * block, and it'll be used for per file compression control.
  1905. */
  1906. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1907. ret = btrfs_parse_options(tree_root, options);
  1908. if (ret) {
  1909. err = ret;
  1910. goto fail_alloc;
  1911. }
  1912. features = btrfs_super_incompat_flags(disk_super) &
  1913. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1914. if (features) {
  1915. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1916. "unsupported optional features (%Lx).\n",
  1917. (unsigned long long)features);
  1918. err = -EINVAL;
  1919. goto fail_alloc;
  1920. }
  1921. if (btrfs_super_leafsize(disk_super) !=
  1922. btrfs_super_nodesize(disk_super)) {
  1923. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1924. "blocksizes don't match. node %d leaf %d\n",
  1925. btrfs_super_nodesize(disk_super),
  1926. btrfs_super_leafsize(disk_super));
  1927. err = -EINVAL;
  1928. goto fail_alloc;
  1929. }
  1930. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1931. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1932. "blocksize (%d) was too large\n",
  1933. btrfs_super_leafsize(disk_super));
  1934. err = -EINVAL;
  1935. goto fail_alloc;
  1936. }
  1937. features = btrfs_super_incompat_flags(disk_super);
  1938. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1939. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1940. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1941. /*
  1942. * flag our filesystem as having big metadata blocks if
  1943. * they are bigger than the page size
  1944. */
  1945. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1946. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1947. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1948. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1949. }
  1950. nodesize = btrfs_super_nodesize(disk_super);
  1951. leafsize = btrfs_super_leafsize(disk_super);
  1952. sectorsize = btrfs_super_sectorsize(disk_super);
  1953. stripesize = btrfs_super_stripesize(disk_super);
  1954. /*
  1955. * mixed block groups end up with duplicate but slightly offset
  1956. * extent buffers for the same range. It leads to corruptions
  1957. */
  1958. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  1959. (sectorsize != leafsize)) {
  1960. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  1961. "are not allowed for mixed block groups on %s\n",
  1962. sb->s_id);
  1963. goto fail_alloc;
  1964. }
  1965. btrfs_set_super_incompat_flags(disk_super, features);
  1966. features = btrfs_super_compat_ro_flags(disk_super) &
  1967. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1968. if (!(sb->s_flags & MS_RDONLY) && features) {
  1969. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1970. "unsupported option features (%Lx).\n",
  1971. (unsigned long long)features);
  1972. err = -EINVAL;
  1973. goto fail_alloc;
  1974. }
  1975. btrfs_init_workers(&fs_info->generic_worker,
  1976. "genwork", 1, NULL);
  1977. btrfs_init_workers(&fs_info->workers, "worker",
  1978. fs_info->thread_pool_size,
  1979. &fs_info->generic_worker);
  1980. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1981. fs_info->thread_pool_size,
  1982. &fs_info->generic_worker);
  1983. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1984. min_t(u64, fs_devices->num_devices,
  1985. fs_info->thread_pool_size),
  1986. &fs_info->generic_worker);
  1987. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1988. 2, &fs_info->generic_worker);
  1989. /* a higher idle thresh on the submit workers makes it much more
  1990. * likely that bios will be send down in a sane order to the
  1991. * devices
  1992. */
  1993. fs_info->submit_workers.idle_thresh = 64;
  1994. fs_info->workers.idle_thresh = 16;
  1995. fs_info->workers.ordered = 1;
  1996. fs_info->delalloc_workers.idle_thresh = 2;
  1997. fs_info->delalloc_workers.ordered = 1;
  1998. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1999. &fs_info->generic_worker);
  2000. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2001. fs_info->thread_pool_size,
  2002. &fs_info->generic_worker);
  2003. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2004. fs_info->thread_pool_size,
  2005. &fs_info->generic_worker);
  2006. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2007. "endio-meta-write", fs_info->thread_pool_size,
  2008. &fs_info->generic_worker);
  2009. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2010. fs_info->thread_pool_size,
  2011. &fs_info->generic_worker);
  2012. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2013. 1, &fs_info->generic_worker);
  2014. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2015. fs_info->thread_pool_size,
  2016. &fs_info->generic_worker);
  2017. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2018. fs_info->thread_pool_size,
  2019. &fs_info->generic_worker);
  2020. /*
  2021. * endios are largely parallel and should have a very
  2022. * low idle thresh
  2023. */
  2024. fs_info->endio_workers.idle_thresh = 4;
  2025. fs_info->endio_meta_workers.idle_thresh = 4;
  2026. fs_info->endio_write_workers.idle_thresh = 2;
  2027. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2028. fs_info->readahead_workers.idle_thresh = 2;
  2029. /*
  2030. * btrfs_start_workers can really only fail because of ENOMEM so just
  2031. * return -ENOMEM if any of these fail.
  2032. */
  2033. ret = btrfs_start_workers(&fs_info->workers);
  2034. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2035. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2036. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2037. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2038. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2039. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2040. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2041. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2042. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2043. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2044. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2045. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2046. if (ret) {
  2047. err = -ENOMEM;
  2048. goto fail_sb_buffer;
  2049. }
  2050. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2051. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2052. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2053. tree_root->nodesize = nodesize;
  2054. tree_root->leafsize = leafsize;
  2055. tree_root->sectorsize = sectorsize;
  2056. tree_root->stripesize = stripesize;
  2057. sb->s_blocksize = sectorsize;
  2058. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2059. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  2060. sizeof(disk_super->magic))) {
  2061. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2062. goto fail_sb_buffer;
  2063. }
  2064. if (sectorsize != PAGE_SIZE) {
  2065. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2066. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2067. goto fail_sb_buffer;
  2068. }
  2069. mutex_lock(&fs_info->chunk_mutex);
  2070. ret = btrfs_read_sys_array(tree_root);
  2071. mutex_unlock(&fs_info->chunk_mutex);
  2072. if (ret) {
  2073. printk(KERN_WARNING "btrfs: failed to read the system "
  2074. "array on %s\n", sb->s_id);
  2075. goto fail_sb_buffer;
  2076. }
  2077. blocksize = btrfs_level_size(tree_root,
  2078. btrfs_super_chunk_root_level(disk_super));
  2079. generation = btrfs_super_chunk_root_generation(disk_super);
  2080. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2081. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2082. chunk_root->node = read_tree_block(chunk_root,
  2083. btrfs_super_chunk_root(disk_super),
  2084. blocksize, generation);
  2085. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2086. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2087. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2088. sb->s_id);
  2089. goto fail_tree_roots;
  2090. }
  2091. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2092. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2093. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2094. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2095. BTRFS_UUID_SIZE);
  2096. ret = btrfs_read_chunk_tree(chunk_root);
  2097. if (ret) {
  2098. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2099. sb->s_id);
  2100. goto fail_tree_roots;
  2101. }
  2102. btrfs_close_extra_devices(fs_devices);
  2103. if (!fs_devices->latest_bdev) {
  2104. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2105. sb->s_id);
  2106. goto fail_tree_roots;
  2107. }
  2108. retry_root_backup:
  2109. blocksize = btrfs_level_size(tree_root,
  2110. btrfs_super_root_level(disk_super));
  2111. generation = btrfs_super_generation(disk_super);
  2112. tree_root->node = read_tree_block(tree_root,
  2113. btrfs_super_root(disk_super),
  2114. blocksize, generation);
  2115. if (!tree_root->node ||
  2116. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2117. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2118. sb->s_id);
  2119. goto recovery_tree_root;
  2120. }
  2121. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2122. tree_root->commit_root = btrfs_root_node(tree_root);
  2123. ret = find_and_setup_root(tree_root, fs_info,
  2124. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2125. if (ret)
  2126. goto recovery_tree_root;
  2127. extent_root->track_dirty = 1;
  2128. ret = find_and_setup_root(tree_root, fs_info,
  2129. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2130. if (ret)
  2131. goto recovery_tree_root;
  2132. dev_root->track_dirty = 1;
  2133. ret = find_and_setup_root(tree_root, fs_info,
  2134. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2135. if (ret)
  2136. goto recovery_tree_root;
  2137. csum_root->track_dirty = 1;
  2138. ret = find_and_setup_root(tree_root, fs_info,
  2139. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2140. if (ret) {
  2141. kfree(quota_root);
  2142. quota_root = fs_info->quota_root = NULL;
  2143. } else {
  2144. quota_root->track_dirty = 1;
  2145. fs_info->quota_enabled = 1;
  2146. fs_info->pending_quota_state = 1;
  2147. }
  2148. fs_info->generation = generation;
  2149. fs_info->last_trans_committed = generation;
  2150. ret = btrfs_recover_balance(fs_info);
  2151. if (ret) {
  2152. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2153. goto fail_block_groups;
  2154. }
  2155. ret = btrfs_init_dev_stats(fs_info);
  2156. if (ret) {
  2157. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2158. ret);
  2159. goto fail_block_groups;
  2160. }
  2161. ret = btrfs_init_space_info(fs_info);
  2162. if (ret) {
  2163. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2164. goto fail_block_groups;
  2165. }
  2166. ret = btrfs_read_block_groups(extent_root);
  2167. if (ret) {
  2168. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2169. goto fail_block_groups;
  2170. }
  2171. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2172. "btrfs-cleaner");
  2173. if (IS_ERR(fs_info->cleaner_kthread))
  2174. goto fail_block_groups;
  2175. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2176. tree_root,
  2177. "btrfs-transaction");
  2178. if (IS_ERR(fs_info->transaction_kthread))
  2179. goto fail_cleaner;
  2180. if (!btrfs_test_opt(tree_root, SSD) &&
  2181. !btrfs_test_opt(tree_root, NOSSD) &&
  2182. !fs_info->fs_devices->rotating) {
  2183. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2184. "mode\n");
  2185. btrfs_set_opt(fs_info->mount_opt, SSD);
  2186. }
  2187. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2188. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2189. ret = btrfsic_mount(tree_root, fs_devices,
  2190. btrfs_test_opt(tree_root,
  2191. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2192. 1 : 0,
  2193. fs_info->check_integrity_print_mask);
  2194. if (ret)
  2195. printk(KERN_WARNING "btrfs: failed to initialize"
  2196. " integrity check module %s\n", sb->s_id);
  2197. }
  2198. #endif
  2199. ret = btrfs_read_qgroup_config(fs_info);
  2200. if (ret)
  2201. goto fail_trans_kthread;
  2202. /* do not make disk changes in broken FS */
  2203. if (btrfs_super_log_root(disk_super) != 0) {
  2204. u64 bytenr = btrfs_super_log_root(disk_super);
  2205. if (fs_devices->rw_devices == 0) {
  2206. printk(KERN_WARNING "Btrfs log replay required "
  2207. "on RO media\n");
  2208. err = -EIO;
  2209. goto fail_qgroup;
  2210. }
  2211. blocksize =
  2212. btrfs_level_size(tree_root,
  2213. btrfs_super_log_root_level(disk_super));
  2214. log_tree_root = btrfs_alloc_root(fs_info);
  2215. if (!log_tree_root) {
  2216. err = -ENOMEM;
  2217. goto fail_qgroup;
  2218. }
  2219. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2220. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2221. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2222. blocksize,
  2223. generation + 1);
  2224. /* returns with log_tree_root freed on success */
  2225. ret = btrfs_recover_log_trees(log_tree_root);
  2226. if (ret) {
  2227. btrfs_error(tree_root->fs_info, ret,
  2228. "Failed to recover log tree");
  2229. free_extent_buffer(log_tree_root->node);
  2230. kfree(log_tree_root);
  2231. goto fail_trans_kthread;
  2232. }
  2233. if (sb->s_flags & MS_RDONLY) {
  2234. ret = btrfs_commit_super(tree_root);
  2235. if (ret)
  2236. goto fail_trans_kthread;
  2237. }
  2238. }
  2239. ret = btrfs_find_orphan_roots(tree_root);
  2240. if (ret)
  2241. goto fail_trans_kthread;
  2242. if (!(sb->s_flags & MS_RDONLY)) {
  2243. ret = btrfs_cleanup_fs_roots(fs_info);
  2244. if (ret)
  2245. goto fail_trans_kthread;
  2246. ret = btrfs_recover_relocation(tree_root);
  2247. if (ret < 0) {
  2248. printk(KERN_WARNING
  2249. "btrfs: failed to recover relocation\n");
  2250. err = -EINVAL;
  2251. goto fail_qgroup;
  2252. }
  2253. }
  2254. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2255. location.type = BTRFS_ROOT_ITEM_KEY;
  2256. location.offset = (u64)-1;
  2257. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2258. if (!fs_info->fs_root)
  2259. goto fail_qgroup;
  2260. if (IS_ERR(fs_info->fs_root)) {
  2261. err = PTR_ERR(fs_info->fs_root);
  2262. goto fail_qgroup;
  2263. }
  2264. if (sb->s_flags & MS_RDONLY)
  2265. return 0;
  2266. down_read(&fs_info->cleanup_work_sem);
  2267. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2268. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2269. up_read(&fs_info->cleanup_work_sem);
  2270. close_ctree(tree_root);
  2271. return ret;
  2272. }
  2273. up_read(&fs_info->cleanup_work_sem);
  2274. ret = btrfs_resume_balance_async(fs_info);
  2275. if (ret) {
  2276. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2277. close_ctree(tree_root);
  2278. return ret;
  2279. }
  2280. return 0;
  2281. fail_qgroup:
  2282. btrfs_free_qgroup_config(fs_info);
  2283. fail_trans_kthread:
  2284. kthread_stop(fs_info->transaction_kthread);
  2285. fail_cleaner:
  2286. kthread_stop(fs_info->cleaner_kthread);
  2287. /*
  2288. * make sure we're done with the btree inode before we stop our
  2289. * kthreads
  2290. */
  2291. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2292. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2293. fail_block_groups:
  2294. btrfs_free_block_groups(fs_info);
  2295. fail_tree_roots:
  2296. free_root_pointers(fs_info, 1);
  2297. fail_sb_buffer:
  2298. btrfs_stop_workers(&fs_info->generic_worker);
  2299. btrfs_stop_workers(&fs_info->readahead_workers);
  2300. btrfs_stop_workers(&fs_info->fixup_workers);
  2301. btrfs_stop_workers(&fs_info->delalloc_workers);
  2302. btrfs_stop_workers(&fs_info->workers);
  2303. btrfs_stop_workers(&fs_info->endio_workers);
  2304. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2305. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2306. btrfs_stop_workers(&fs_info->endio_write_workers);
  2307. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2308. btrfs_stop_workers(&fs_info->submit_workers);
  2309. btrfs_stop_workers(&fs_info->delayed_workers);
  2310. btrfs_stop_workers(&fs_info->caching_workers);
  2311. fail_alloc:
  2312. fail_iput:
  2313. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2314. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2315. iput(fs_info->btree_inode);
  2316. fail_bdi:
  2317. bdi_destroy(&fs_info->bdi);
  2318. fail_srcu:
  2319. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2320. fail:
  2321. btrfs_close_devices(fs_info->fs_devices);
  2322. return err;
  2323. recovery_tree_root:
  2324. if (!btrfs_test_opt(tree_root, RECOVERY))
  2325. goto fail_tree_roots;
  2326. free_root_pointers(fs_info, 0);
  2327. /* don't use the log in recovery mode, it won't be valid */
  2328. btrfs_set_super_log_root(disk_super, 0);
  2329. /* we can't trust the free space cache either */
  2330. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2331. ret = next_root_backup(fs_info, fs_info->super_copy,
  2332. &num_backups_tried, &backup_index);
  2333. if (ret == -1)
  2334. goto fail_block_groups;
  2335. goto retry_root_backup;
  2336. }
  2337. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2338. {
  2339. if (uptodate) {
  2340. set_buffer_uptodate(bh);
  2341. } else {
  2342. struct btrfs_device *device = (struct btrfs_device *)
  2343. bh->b_private;
  2344. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2345. "I/O error on %s\n",
  2346. rcu_str_deref(device->name));
  2347. /* note, we dont' set_buffer_write_io_error because we have
  2348. * our own ways of dealing with the IO errors
  2349. */
  2350. clear_buffer_uptodate(bh);
  2351. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2352. }
  2353. unlock_buffer(bh);
  2354. put_bh(bh);
  2355. }
  2356. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2357. {
  2358. struct buffer_head *bh;
  2359. struct buffer_head *latest = NULL;
  2360. struct btrfs_super_block *super;
  2361. int i;
  2362. u64 transid = 0;
  2363. u64 bytenr;
  2364. /* we would like to check all the supers, but that would make
  2365. * a btrfs mount succeed after a mkfs from a different FS.
  2366. * So, we need to add a special mount option to scan for
  2367. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2368. */
  2369. for (i = 0; i < 1; i++) {
  2370. bytenr = btrfs_sb_offset(i);
  2371. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2372. break;
  2373. bh = __bread(bdev, bytenr / 4096, 4096);
  2374. if (!bh)
  2375. continue;
  2376. super = (struct btrfs_super_block *)bh->b_data;
  2377. if (btrfs_super_bytenr(super) != bytenr ||
  2378. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2379. sizeof(super->magic))) {
  2380. brelse(bh);
  2381. continue;
  2382. }
  2383. if (!latest || btrfs_super_generation(super) > transid) {
  2384. brelse(latest);
  2385. latest = bh;
  2386. transid = btrfs_super_generation(super);
  2387. } else {
  2388. brelse(bh);
  2389. }
  2390. }
  2391. return latest;
  2392. }
  2393. /*
  2394. * this should be called twice, once with wait == 0 and
  2395. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2396. * we write are pinned.
  2397. *
  2398. * They are released when wait == 1 is done.
  2399. * max_mirrors must be the same for both runs, and it indicates how
  2400. * many supers on this one device should be written.
  2401. *
  2402. * max_mirrors == 0 means to write them all.
  2403. */
  2404. static int write_dev_supers(struct btrfs_device *device,
  2405. struct btrfs_super_block *sb,
  2406. int do_barriers, int wait, int max_mirrors)
  2407. {
  2408. struct buffer_head *bh;
  2409. int i;
  2410. int ret;
  2411. int errors = 0;
  2412. u32 crc;
  2413. u64 bytenr;
  2414. if (max_mirrors == 0)
  2415. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2416. for (i = 0; i < max_mirrors; i++) {
  2417. bytenr = btrfs_sb_offset(i);
  2418. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2419. break;
  2420. if (wait) {
  2421. bh = __find_get_block(device->bdev, bytenr / 4096,
  2422. BTRFS_SUPER_INFO_SIZE);
  2423. BUG_ON(!bh);
  2424. wait_on_buffer(bh);
  2425. if (!buffer_uptodate(bh))
  2426. errors++;
  2427. /* drop our reference */
  2428. brelse(bh);
  2429. /* drop the reference from the wait == 0 run */
  2430. brelse(bh);
  2431. continue;
  2432. } else {
  2433. btrfs_set_super_bytenr(sb, bytenr);
  2434. crc = ~(u32)0;
  2435. crc = btrfs_csum_data(NULL, (char *)sb +
  2436. BTRFS_CSUM_SIZE, crc,
  2437. BTRFS_SUPER_INFO_SIZE -
  2438. BTRFS_CSUM_SIZE);
  2439. btrfs_csum_final(crc, sb->csum);
  2440. /*
  2441. * one reference for us, and we leave it for the
  2442. * caller
  2443. */
  2444. bh = __getblk(device->bdev, bytenr / 4096,
  2445. BTRFS_SUPER_INFO_SIZE);
  2446. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2447. /* one reference for submit_bh */
  2448. get_bh(bh);
  2449. set_buffer_uptodate(bh);
  2450. lock_buffer(bh);
  2451. bh->b_end_io = btrfs_end_buffer_write_sync;
  2452. bh->b_private = device;
  2453. }
  2454. /*
  2455. * we fua the first super. The others we allow
  2456. * to go down lazy.
  2457. */
  2458. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2459. if (ret)
  2460. errors++;
  2461. }
  2462. return errors < i ? 0 : -1;
  2463. }
  2464. /*
  2465. * endio for the write_dev_flush, this will wake anyone waiting
  2466. * for the barrier when it is done
  2467. */
  2468. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2469. {
  2470. if (err) {
  2471. if (err == -EOPNOTSUPP)
  2472. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2473. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2474. }
  2475. if (bio->bi_private)
  2476. complete(bio->bi_private);
  2477. bio_put(bio);
  2478. }
  2479. /*
  2480. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2481. * sent down. With wait == 1, it waits for the previous flush.
  2482. *
  2483. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2484. * capable
  2485. */
  2486. static int write_dev_flush(struct btrfs_device *device, int wait)
  2487. {
  2488. struct bio *bio;
  2489. int ret = 0;
  2490. if (device->nobarriers)
  2491. return 0;
  2492. if (wait) {
  2493. bio = device->flush_bio;
  2494. if (!bio)
  2495. return 0;
  2496. wait_for_completion(&device->flush_wait);
  2497. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2498. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2499. rcu_str_deref(device->name));
  2500. device->nobarriers = 1;
  2501. }
  2502. if (!bio_flagged(bio, BIO_UPTODATE)) {
  2503. ret = -EIO;
  2504. if (!bio_flagged(bio, BIO_EOPNOTSUPP))
  2505. btrfs_dev_stat_inc_and_print(device,
  2506. BTRFS_DEV_STAT_FLUSH_ERRS);
  2507. }
  2508. /* drop the reference from the wait == 0 run */
  2509. bio_put(bio);
  2510. device->flush_bio = NULL;
  2511. return ret;
  2512. }
  2513. /*
  2514. * one reference for us, and we leave it for the
  2515. * caller
  2516. */
  2517. device->flush_bio = NULL;
  2518. bio = bio_alloc(GFP_NOFS, 0);
  2519. if (!bio)
  2520. return -ENOMEM;
  2521. bio->bi_end_io = btrfs_end_empty_barrier;
  2522. bio->bi_bdev = device->bdev;
  2523. init_completion(&device->flush_wait);
  2524. bio->bi_private = &device->flush_wait;
  2525. device->flush_bio = bio;
  2526. bio_get(bio);
  2527. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2528. return 0;
  2529. }
  2530. /*
  2531. * send an empty flush down to each device in parallel,
  2532. * then wait for them
  2533. */
  2534. static int barrier_all_devices(struct btrfs_fs_info *info)
  2535. {
  2536. struct list_head *head;
  2537. struct btrfs_device *dev;
  2538. int errors = 0;
  2539. int ret;
  2540. /* send down all the barriers */
  2541. head = &info->fs_devices->devices;
  2542. list_for_each_entry_rcu(dev, head, dev_list) {
  2543. if (!dev->bdev) {
  2544. errors++;
  2545. continue;
  2546. }
  2547. if (!dev->in_fs_metadata || !dev->writeable)
  2548. continue;
  2549. ret = write_dev_flush(dev, 0);
  2550. if (ret)
  2551. errors++;
  2552. }
  2553. /* wait for all the barriers */
  2554. list_for_each_entry_rcu(dev, head, dev_list) {
  2555. if (!dev->bdev) {
  2556. errors++;
  2557. continue;
  2558. }
  2559. if (!dev->in_fs_metadata || !dev->writeable)
  2560. continue;
  2561. ret = write_dev_flush(dev, 1);
  2562. if (ret)
  2563. errors++;
  2564. }
  2565. if (errors)
  2566. return -EIO;
  2567. return 0;
  2568. }
  2569. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2570. {
  2571. struct list_head *head;
  2572. struct btrfs_device *dev;
  2573. struct btrfs_super_block *sb;
  2574. struct btrfs_dev_item *dev_item;
  2575. int ret;
  2576. int do_barriers;
  2577. int max_errors;
  2578. int total_errors = 0;
  2579. u64 flags;
  2580. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2581. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2582. backup_super_roots(root->fs_info);
  2583. sb = root->fs_info->super_for_commit;
  2584. dev_item = &sb->dev_item;
  2585. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2586. head = &root->fs_info->fs_devices->devices;
  2587. if (do_barriers)
  2588. barrier_all_devices(root->fs_info);
  2589. list_for_each_entry_rcu(dev, head, dev_list) {
  2590. if (!dev->bdev) {
  2591. total_errors++;
  2592. continue;
  2593. }
  2594. if (!dev->in_fs_metadata || !dev->writeable)
  2595. continue;
  2596. btrfs_set_stack_device_generation(dev_item, 0);
  2597. btrfs_set_stack_device_type(dev_item, dev->type);
  2598. btrfs_set_stack_device_id(dev_item, dev->devid);
  2599. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2600. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2601. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2602. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2603. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2604. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2605. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2606. flags = btrfs_super_flags(sb);
  2607. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2608. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2609. if (ret)
  2610. total_errors++;
  2611. }
  2612. if (total_errors > max_errors) {
  2613. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2614. total_errors);
  2615. /* This shouldn't happen. FUA is masked off if unsupported */
  2616. BUG();
  2617. }
  2618. total_errors = 0;
  2619. list_for_each_entry_rcu(dev, head, dev_list) {
  2620. if (!dev->bdev)
  2621. continue;
  2622. if (!dev->in_fs_metadata || !dev->writeable)
  2623. continue;
  2624. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2625. if (ret)
  2626. total_errors++;
  2627. }
  2628. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2629. if (total_errors > max_errors) {
  2630. btrfs_error(root->fs_info, -EIO,
  2631. "%d errors while writing supers", total_errors);
  2632. return -EIO;
  2633. }
  2634. return 0;
  2635. }
  2636. int write_ctree_super(struct btrfs_trans_handle *trans,
  2637. struct btrfs_root *root, int max_mirrors)
  2638. {
  2639. int ret;
  2640. ret = write_all_supers(root, max_mirrors);
  2641. return ret;
  2642. }
  2643. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2644. {
  2645. spin_lock(&fs_info->fs_roots_radix_lock);
  2646. radix_tree_delete(&fs_info->fs_roots_radix,
  2647. (unsigned long)root->root_key.objectid);
  2648. spin_unlock(&fs_info->fs_roots_radix_lock);
  2649. if (btrfs_root_refs(&root->root_item) == 0)
  2650. synchronize_srcu(&fs_info->subvol_srcu);
  2651. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2652. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2653. free_fs_root(root);
  2654. }
  2655. static void free_fs_root(struct btrfs_root *root)
  2656. {
  2657. iput(root->cache_inode);
  2658. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2659. if (root->anon_dev)
  2660. free_anon_bdev(root->anon_dev);
  2661. free_extent_buffer(root->node);
  2662. free_extent_buffer(root->commit_root);
  2663. kfree(root->free_ino_ctl);
  2664. kfree(root->free_ino_pinned);
  2665. kfree(root->name);
  2666. kfree(root);
  2667. }
  2668. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2669. {
  2670. int ret;
  2671. struct btrfs_root *gang[8];
  2672. int i;
  2673. while (!list_empty(&fs_info->dead_roots)) {
  2674. gang[0] = list_entry(fs_info->dead_roots.next,
  2675. struct btrfs_root, root_list);
  2676. list_del(&gang[0]->root_list);
  2677. if (gang[0]->in_radix) {
  2678. btrfs_free_fs_root(fs_info, gang[0]);
  2679. } else {
  2680. free_extent_buffer(gang[0]->node);
  2681. free_extent_buffer(gang[0]->commit_root);
  2682. kfree(gang[0]);
  2683. }
  2684. }
  2685. while (1) {
  2686. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2687. (void **)gang, 0,
  2688. ARRAY_SIZE(gang));
  2689. if (!ret)
  2690. break;
  2691. for (i = 0; i < ret; i++)
  2692. btrfs_free_fs_root(fs_info, gang[i]);
  2693. }
  2694. }
  2695. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2696. {
  2697. u64 root_objectid = 0;
  2698. struct btrfs_root *gang[8];
  2699. int i;
  2700. int ret;
  2701. while (1) {
  2702. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2703. (void **)gang, root_objectid,
  2704. ARRAY_SIZE(gang));
  2705. if (!ret)
  2706. break;
  2707. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2708. for (i = 0; i < ret; i++) {
  2709. int err;
  2710. root_objectid = gang[i]->root_key.objectid;
  2711. err = btrfs_orphan_cleanup(gang[i]);
  2712. if (err)
  2713. return err;
  2714. }
  2715. root_objectid++;
  2716. }
  2717. return 0;
  2718. }
  2719. int btrfs_commit_super(struct btrfs_root *root)
  2720. {
  2721. struct btrfs_trans_handle *trans;
  2722. int ret;
  2723. mutex_lock(&root->fs_info->cleaner_mutex);
  2724. btrfs_run_delayed_iputs(root);
  2725. btrfs_clean_old_snapshots(root);
  2726. mutex_unlock(&root->fs_info->cleaner_mutex);
  2727. /* wait until ongoing cleanup work done */
  2728. down_write(&root->fs_info->cleanup_work_sem);
  2729. up_write(&root->fs_info->cleanup_work_sem);
  2730. trans = btrfs_join_transaction(root);
  2731. if (IS_ERR(trans))
  2732. return PTR_ERR(trans);
  2733. ret = btrfs_commit_transaction(trans, root);
  2734. if (ret)
  2735. return ret;
  2736. /* run commit again to drop the original snapshot */
  2737. trans = btrfs_join_transaction(root);
  2738. if (IS_ERR(trans))
  2739. return PTR_ERR(trans);
  2740. ret = btrfs_commit_transaction(trans, root);
  2741. if (ret)
  2742. return ret;
  2743. ret = btrfs_write_and_wait_transaction(NULL, root);
  2744. if (ret) {
  2745. btrfs_error(root->fs_info, ret,
  2746. "Failed to sync btree inode to disk.");
  2747. return ret;
  2748. }
  2749. ret = write_ctree_super(NULL, root, 0);
  2750. return ret;
  2751. }
  2752. int close_ctree(struct btrfs_root *root)
  2753. {
  2754. struct btrfs_fs_info *fs_info = root->fs_info;
  2755. int ret;
  2756. fs_info->closing = 1;
  2757. smp_mb();
  2758. /* pause restriper - we want to resume on mount */
  2759. btrfs_pause_balance(root->fs_info);
  2760. btrfs_scrub_cancel(root);
  2761. /* wait for any defraggers to finish */
  2762. wait_event(fs_info->transaction_wait,
  2763. (atomic_read(&fs_info->defrag_running) == 0));
  2764. /* clear out the rbtree of defraggable inodes */
  2765. btrfs_run_defrag_inodes(fs_info);
  2766. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2767. ret = btrfs_commit_super(root);
  2768. if (ret)
  2769. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2770. }
  2771. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2772. btrfs_error_commit_super(root);
  2773. btrfs_put_block_group_cache(fs_info);
  2774. kthread_stop(fs_info->transaction_kthread);
  2775. kthread_stop(fs_info->cleaner_kthread);
  2776. fs_info->closing = 2;
  2777. smp_mb();
  2778. btrfs_free_qgroup_config(root->fs_info);
  2779. if (fs_info->delalloc_bytes) {
  2780. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2781. (unsigned long long)fs_info->delalloc_bytes);
  2782. }
  2783. if (fs_info->total_ref_cache_size) {
  2784. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2785. (unsigned long long)fs_info->total_ref_cache_size);
  2786. }
  2787. free_extent_buffer(fs_info->extent_root->node);
  2788. free_extent_buffer(fs_info->extent_root->commit_root);
  2789. free_extent_buffer(fs_info->tree_root->node);
  2790. free_extent_buffer(fs_info->tree_root->commit_root);
  2791. free_extent_buffer(fs_info->chunk_root->node);
  2792. free_extent_buffer(fs_info->chunk_root->commit_root);
  2793. free_extent_buffer(fs_info->dev_root->node);
  2794. free_extent_buffer(fs_info->dev_root->commit_root);
  2795. free_extent_buffer(fs_info->csum_root->node);
  2796. free_extent_buffer(fs_info->csum_root->commit_root);
  2797. if (fs_info->quota_root) {
  2798. free_extent_buffer(fs_info->quota_root->node);
  2799. free_extent_buffer(fs_info->quota_root->commit_root);
  2800. }
  2801. btrfs_free_block_groups(fs_info);
  2802. del_fs_roots(fs_info);
  2803. iput(fs_info->btree_inode);
  2804. btrfs_stop_workers(&fs_info->generic_worker);
  2805. btrfs_stop_workers(&fs_info->fixup_workers);
  2806. btrfs_stop_workers(&fs_info->delalloc_workers);
  2807. btrfs_stop_workers(&fs_info->workers);
  2808. btrfs_stop_workers(&fs_info->endio_workers);
  2809. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2810. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2811. btrfs_stop_workers(&fs_info->endio_write_workers);
  2812. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2813. btrfs_stop_workers(&fs_info->submit_workers);
  2814. btrfs_stop_workers(&fs_info->delayed_workers);
  2815. btrfs_stop_workers(&fs_info->caching_workers);
  2816. btrfs_stop_workers(&fs_info->readahead_workers);
  2817. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2818. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2819. btrfsic_unmount(root, fs_info->fs_devices);
  2820. #endif
  2821. btrfs_close_devices(fs_info->fs_devices);
  2822. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2823. bdi_destroy(&fs_info->bdi);
  2824. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2825. return 0;
  2826. }
  2827. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  2828. int atomic)
  2829. {
  2830. int ret;
  2831. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2832. ret = extent_buffer_uptodate(buf);
  2833. if (!ret)
  2834. return ret;
  2835. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2836. parent_transid, atomic);
  2837. if (ret == -EAGAIN)
  2838. return ret;
  2839. return !ret;
  2840. }
  2841. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2842. {
  2843. return set_extent_buffer_uptodate(buf);
  2844. }
  2845. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2846. {
  2847. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2848. u64 transid = btrfs_header_generation(buf);
  2849. int was_dirty;
  2850. btrfs_assert_tree_locked(buf);
  2851. if (transid != root->fs_info->generation) {
  2852. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2853. "found %llu running %llu\n",
  2854. (unsigned long long)buf->start,
  2855. (unsigned long long)transid,
  2856. (unsigned long long)root->fs_info->generation);
  2857. WARN_ON(1);
  2858. }
  2859. was_dirty = set_extent_buffer_dirty(buf);
  2860. if (!was_dirty) {
  2861. spin_lock(&root->fs_info->delalloc_lock);
  2862. root->fs_info->dirty_metadata_bytes += buf->len;
  2863. spin_unlock(&root->fs_info->delalloc_lock);
  2864. }
  2865. }
  2866. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2867. {
  2868. /*
  2869. * looks as though older kernels can get into trouble with
  2870. * this code, they end up stuck in balance_dirty_pages forever
  2871. */
  2872. u64 num_dirty;
  2873. unsigned long thresh = 32 * 1024 * 1024;
  2874. if (current->flags & PF_MEMALLOC)
  2875. return;
  2876. btrfs_balance_delayed_items(root);
  2877. num_dirty = root->fs_info->dirty_metadata_bytes;
  2878. if (num_dirty > thresh) {
  2879. balance_dirty_pages_ratelimited_nr(
  2880. root->fs_info->btree_inode->i_mapping, 1);
  2881. }
  2882. return;
  2883. }
  2884. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2885. {
  2886. /*
  2887. * looks as though older kernels can get into trouble with
  2888. * this code, they end up stuck in balance_dirty_pages forever
  2889. */
  2890. u64 num_dirty;
  2891. unsigned long thresh = 32 * 1024 * 1024;
  2892. if (current->flags & PF_MEMALLOC)
  2893. return;
  2894. num_dirty = root->fs_info->dirty_metadata_bytes;
  2895. if (num_dirty > thresh) {
  2896. balance_dirty_pages_ratelimited_nr(
  2897. root->fs_info->btree_inode->i_mapping, 1);
  2898. }
  2899. return;
  2900. }
  2901. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2902. {
  2903. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2904. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2905. }
  2906. int btree_lock_page_hook(struct page *page, void *data,
  2907. void (*flush_fn)(void *))
  2908. {
  2909. struct inode *inode = page->mapping->host;
  2910. struct btrfs_root *root = BTRFS_I(inode)->root;
  2911. struct extent_buffer *eb;
  2912. /*
  2913. * We culled this eb but the page is still hanging out on the mapping,
  2914. * carry on.
  2915. */
  2916. if (!PagePrivate(page))
  2917. goto out;
  2918. eb = (struct extent_buffer *)page->private;
  2919. if (!eb) {
  2920. WARN_ON(1);
  2921. goto out;
  2922. }
  2923. if (page != eb->pages[0])
  2924. goto out;
  2925. if (!btrfs_try_tree_write_lock(eb)) {
  2926. flush_fn(data);
  2927. btrfs_tree_lock(eb);
  2928. }
  2929. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2930. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2931. spin_lock(&root->fs_info->delalloc_lock);
  2932. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2933. root->fs_info->dirty_metadata_bytes -= eb->len;
  2934. else
  2935. WARN_ON(1);
  2936. spin_unlock(&root->fs_info->delalloc_lock);
  2937. }
  2938. btrfs_tree_unlock(eb);
  2939. out:
  2940. if (!trylock_page(page)) {
  2941. flush_fn(data);
  2942. lock_page(page);
  2943. }
  2944. return 0;
  2945. }
  2946. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2947. int read_only)
  2948. {
  2949. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  2950. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  2951. return -EINVAL;
  2952. }
  2953. if (read_only)
  2954. return 0;
  2955. return 0;
  2956. }
  2957. void btrfs_error_commit_super(struct btrfs_root *root)
  2958. {
  2959. mutex_lock(&root->fs_info->cleaner_mutex);
  2960. btrfs_run_delayed_iputs(root);
  2961. mutex_unlock(&root->fs_info->cleaner_mutex);
  2962. down_write(&root->fs_info->cleanup_work_sem);
  2963. up_write(&root->fs_info->cleanup_work_sem);
  2964. /* cleanup FS via transaction */
  2965. btrfs_cleanup_transaction(root);
  2966. }
  2967. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2968. {
  2969. struct btrfs_inode *btrfs_inode;
  2970. struct list_head splice;
  2971. INIT_LIST_HEAD(&splice);
  2972. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2973. spin_lock(&root->fs_info->ordered_extent_lock);
  2974. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2975. while (!list_empty(&splice)) {
  2976. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2977. ordered_operations);
  2978. list_del_init(&btrfs_inode->ordered_operations);
  2979. btrfs_invalidate_inodes(btrfs_inode->root);
  2980. }
  2981. spin_unlock(&root->fs_info->ordered_extent_lock);
  2982. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2983. }
  2984. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2985. {
  2986. struct list_head splice;
  2987. struct btrfs_ordered_extent *ordered;
  2988. struct inode *inode;
  2989. INIT_LIST_HEAD(&splice);
  2990. spin_lock(&root->fs_info->ordered_extent_lock);
  2991. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2992. while (!list_empty(&splice)) {
  2993. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2994. root_extent_list);
  2995. list_del_init(&ordered->root_extent_list);
  2996. atomic_inc(&ordered->refs);
  2997. /* the inode may be getting freed (in sys_unlink path). */
  2998. inode = igrab(ordered->inode);
  2999. spin_unlock(&root->fs_info->ordered_extent_lock);
  3000. if (inode)
  3001. iput(inode);
  3002. atomic_set(&ordered->refs, 1);
  3003. btrfs_put_ordered_extent(ordered);
  3004. spin_lock(&root->fs_info->ordered_extent_lock);
  3005. }
  3006. spin_unlock(&root->fs_info->ordered_extent_lock);
  3007. }
  3008. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3009. struct btrfs_root *root)
  3010. {
  3011. struct rb_node *node;
  3012. struct btrfs_delayed_ref_root *delayed_refs;
  3013. struct btrfs_delayed_ref_node *ref;
  3014. int ret = 0;
  3015. delayed_refs = &trans->delayed_refs;
  3016. spin_lock(&delayed_refs->lock);
  3017. if (delayed_refs->num_entries == 0) {
  3018. spin_unlock(&delayed_refs->lock);
  3019. printk(KERN_INFO "delayed_refs has NO entry\n");
  3020. return ret;
  3021. }
  3022. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3023. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3024. atomic_set(&ref->refs, 1);
  3025. if (btrfs_delayed_ref_is_head(ref)) {
  3026. struct btrfs_delayed_ref_head *head;
  3027. head = btrfs_delayed_node_to_head(ref);
  3028. if (!mutex_trylock(&head->mutex)) {
  3029. atomic_inc(&ref->refs);
  3030. spin_unlock(&delayed_refs->lock);
  3031. /* Need to wait for the delayed ref to run */
  3032. mutex_lock(&head->mutex);
  3033. mutex_unlock(&head->mutex);
  3034. btrfs_put_delayed_ref(ref);
  3035. spin_lock(&delayed_refs->lock);
  3036. continue;
  3037. }
  3038. kfree(head->extent_op);
  3039. delayed_refs->num_heads--;
  3040. if (list_empty(&head->cluster))
  3041. delayed_refs->num_heads_ready--;
  3042. list_del_init(&head->cluster);
  3043. }
  3044. ref->in_tree = 0;
  3045. rb_erase(&ref->rb_node, &delayed_refs->root);
  3046. delayed_refs->num_entries--;
  3047. spin_unlock(&delayed_refs->lock);
  3048. btrfs_put_delayed_ref(ref);
  3049. cond_resched();
  3050. spin_lock(&delayed_refs->lock);
  3051. }
  3052. spin_unlock(&delayed_refs->lock);
  3053. return ret;
  3054. }
  3055. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  3056. {
  3057. struct btrfs_pending_snapshot *snapshot;
  3058. struct list_head splice;
  3059. INIT_LIST_HEAD(&splice);
  3060. list_splice_init(&t->pending_snapshots, &splice);
  3061. while (!list_empty(&splice)) {
  3062. snapshot = list_entry(splice.next,
  3063. struct btrfs_pending_snapshot,
  3064. list);
  3065. list_del_init(&snapshot->list);
  3066. kfree(snapshot);
  3067. }
  3068. }
  3069. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3070. {
  3071. struct btrfs_inode *btrfs_inode;
  3072. struct list_head splice;
  3073. INIT_LIST_HEAD(&splice);
  3074. spin_lock(&root->fs_info->delalloc_lock);
  3075. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3076. while (!list_empty(&splice)) {
  3077. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3078. delalloc_inodes);
  3079. list_del_init(&btrfs_inode->delalloc_inodes);
  3080. btrfs_invalidate_inodes(btrfs_inode->root);
  3081. }
  3082. spin_unlock(&root->fs_info->delalloc_lock);
  3083. }
  3084. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3085. struct extent_io_tree *dirty_pages,
  3086. int mark)
  3087. {
  3088. int ret;
  3089. struct page *page;
  3090. struct inode *btree_inode = root->fs_info->btree_inode;
  3091. struct extent_buffer *eb;
  3092. u64 start = 0;
  3093. u64 end;
  3094. u64 offset;
  3095. unsigned long index;
  3096. while (1) {
  3097. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3098. mark);
  3099. if (ret)
  3100. break;
  3101. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3102. while (start <= end) {
  3103. index = start >> PAGE_CACHE_SHIFT;
  3104. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3105. page = find_get_page(btree_inode->i_mapping, index);
  3106. if (!page)
  3107. continue;
  3108. offset = page_offset(page);
  3109. spin_lock(&dirty_pages->buffer_lock);
  3110. eb = radix_tree_lookup(
  3111. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3112. offset >> PAGE_CACHE_SHIFT);
  3113. spin_unlock(&dirty_pages->buffer_lock);
  3114. if (eb)
  3115. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3116. &eb->bflags);
  3117. if (PageWriteback(page))
  3118. end_page_writeback(page);
  3119. lock_page(page);
  3120. if (PageDirty(page)) {
  3121. clear_page_dirty_for_io(page);
  3122. spin_lock_irq(&page->mapping->tree_lock);
  3123. radix_tree_tag_clear(&page->mapping->page_tree,
  3124. page_index(page),
  3125. PAGECACHE_TAG_DIRTY);
  3126. spin_unlock_irq(&page->mapping->tree_lock);
  3127. }
  3128. unlock_page(page);
  3129. page_cache_release(page);
  3130. }
  3131. }
  3132. return ret;
  3133. }
  3134. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3135. struct extent_io_tree *pinned_extents)
  3136. {
  3137. struct extent_io_tree *unpin;
  3138. u64 start;
  3139. u64 end;
  3140. int ret;
  3141. bool loop = true;
  3142. unpin = pinned_extents;
  3143. again:
  3144. while (1) {
  3145. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3146. EXTENT_DIRTY);
  3147. if (ret)
  3148. break;
  3149. /* opt_discard */
  3150. if (btrfs_test_opt(root, DISCARD))
  3151. ret = btrfs_error_discard_extent(root, start,
  3152. end + 1 - start,
  3153. NULL);
  3154. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3155. btrfs_error_unpin_extent_range(root, start, end);
  3156. cond_resched();
  3157. }
  3158. if (loop) {
  3159. if (unpin == &root->fs_info->freed_extents[0])
  3160. unpin = &root->fs_info->freed_extents[1];
  3161. else
  3162. unpin = &root->fs_info->freed_extents[0];
  3163. loop = false;
  3164. goto again;
  3165. }
  3166. return 0;
  3167. }
  3168. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3169. struct btrfs_root *root)
  3170. {
  3171. btrfs_destroy_delayed_refs(cur_trans, root);
  3172. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3173. cur_trans->dirty_pages.dirty_bytes);
  3174. /* FIXME: cleanup wait for commit */
  3175. cur_trans->in_commit = 1;
  3176. cur_trans->blocked = 1;
  3177. wake_up(&root->fs_info->transaction_blocked_wait);
  3178. cur_trans->blocked = 0;
  3179. wake_up(&root->fs_info->transaction_wait);
  3180. cur_trans->commit_done = 1;
  3181. wake_up(&cur_trans->commit_wait);
  3182. btrfs_destroy_delayed_inodes(root);
  3183. btrfs_assert_delayed_root_empty(root);
  3184. btrfs_destroy_pending_snapshots(cur_trans);
  3185. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3186. EXTENT_DIRTY);
  3187. btrfs_destroy_pinned_extent(root,
  3188. root->fs_info->pinned_extents);
  3189. /*
  3190. memset(cur_trans, 0, sizeof(*cur_trans));
  3191. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3192. */
  3193. }
  3194. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3195. {
  3196. struct btrfs_transaction *t;
  3197. LIST_HEAD(list);
  3198. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3199. spin_lock(&root->fs_info->trans_lock);
  3200. list_splice_init(&root->fs_info->trans_list, &list);
  3201. root->fs_info->trans_no_join = 1;
  3202. spin_unlock(&root->fs_info->trans_lock);
  3203. while (!list_empty(&list)) {
  3204. t = list_entry(list.next, struct btrfs_transaction, list);
  3205. if (!t)
  3206. break;
  3207. btrfs_destroy_ordered_operations(root);
  3208. btrfs_destroy_ordered_extents(root);
  3209. btrfs_destroy_delayed_refs(t, root);
  3210. btrfs_block_rsv_release(root,
  3211. &root->fs_info->trans_block_rsv,
  3212. t->dirty_pages.dirty_bytes);
  3213. /* FIXME: cleanup wait for commit */
  3214. t->in_commit = 1;
  3215. t->blocked = 1;
  3216. smp_mb();
  3217. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3218. wake_up(&root->fs_info->transaction_blocked_wait);
  3219. t->blocked = 0;
  3220. smp_mb();
  3221. if (waitqueue_active(&root->fs_info->transaction_wait))
  3222. wake_up(&root->fs_info->transaction_wait);
  3223. t->commit_done = 1;
  3224. smp_mb();
  3225. if (waitqueue_active(&t->commit_wait))
  3226. wake_up(&t->commit_wait);
  3227. btrfs_destroy_delayed_inodes(root);
  3228. btrfs_assert_delayed_root_empty(root);
  3229. btrfs_destroy_pending_snapshots(t);
  3230. btrfs_destroy_delalloc_inodes(root);
  3231. spin_lock(&root->fs_info->trans_lock);
  3232. root->fs_info->running_transaction = NULL;
  3233. spin_unlock(&root->fs_info->trans_lock);
  3234. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3235. EXTENT_DIRTY);
  3236. btrfs_destroy_pinned_extent(root,
  3237. root->fs_info->pinned_extents);
  3238. atomic_set(&t->use_count, 0);
  3239. list_del_init(&t->list);
  3240. memset(t, 0, sizeof(*t));
  3241. kmem_cache_free(btrfs_transaction_cachep, t);
  3242. }
  3243. spin_lock(&root->fs_info->trans_lock);
  3244. root->fs_info->trans_no_join = 0;
  3245. spin_unlock(&root->fs_info->trans_lock);
  3246. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3247. return 0;
  3248. }
  3249. static struct extent_io_ops btree_extent_io_ops = {
  3250. .write_cache_pages_lock_hook = btree_lock_page_hook,
  3251. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3252. .readpage_io_failed_hook = btree_io_failed_hook,
  3253. .submit_bio_hook = btree_submit_bio_hook,
  3254. /* note we're sharing with inode.c for the merge bio hook */
  3255. .merge_bio_hook = btrfs_merge_bio_hook,
  3256. };