mmap.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845
  1. /**
  2. * eCryptfs: Linux filesystem encryption layer
  3. * This is where eCryptfs coordinates the symmetric encryption and
  4. * decryption of the file data as it passes between the lower
  5. * encrypted file and the upper decrypted file.
  6. *
  7. * Copyright (C) 1997-2003 Erez Zadok
  8. * Copyright (C) 2001-2003 Stony Brook University
  9. * Copyright (C) 2004-2007 International Business Machines Corp.
  10. * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License as
  14. * published by the Free Software Foundation; either version 2 of the
  15. * License, or (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful, but
  18. * WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  20. * General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  25. * 02111-1307, USA.
  26. */
  27. #include <linux/pagemap.h>
  28. #include <linux/writeback.h>
  29. #include <linux/page-flags.h>
  30. #include <linux/mount.h>
  31. #include <linux/file.h>
  32. #include <linux/crypto.h>
  33. #include <linux/scatterlist.h>
  34. #include "ecryptfs_kernel.h"
  35. struct kmem_cache *ecryptfs_lower_page_cache;
  36. /**
  37. * ecryptfs_get1page
  38. *
  39. * Get one page from cache or lower f/s, return error otherwise.
  40. *
  41. * Returns unlocked and up-to-date page (if ok), with increased
  42. * refcnt.
  43. */
  44. static struct page *ecryptfs_get1page(struct file *file, int index)
  45. {
  46. struct dentry *dentry;
  47. struct inode *inode;
  48. struct address_space *mapping;
  49. dentry = file->f_path.dentry;
  50. inode = dentry->d_inode;
  51. mapping = inode->i_mapping;
  52. return read_mapping_page(mapping, index, (void *)file);
  53. }
  54. static
  55. int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros);
  56. /**
  57. * ecryptfs_fill_zeros
  58. * @file: The ecryptfs file
  59. * @new_length: The new length of the data in the underlying file;
  60. * everything between the prior end of the file and the
  61. * new end of the file will be filled with zero's.
  62. * new_length must be greater than current length
  63. *
  64. * Function for handling lseek-ing past the end of the file.
  65. *
  66. * This function does not support shrinking, only growing a file.
  67. *
  68. * Returns zero on success; non-zero otherwise.
  69. */
  70. int ecryptfs_fill_zeros(struct file *file, loff_t new_length)
  71. {
  72. int rc = 0;
  73. struct dentry *dentry = file->f_path.dentry;
  74. struct inode *inode = dentry->d_inode;
  75. pgoff_t old_end_page_index = 0;
  76. pgoff_t index = old_end_page_index;
  77. int old_end_pos_in_page = -1;
  78. pgoff_t new_end_page_index;
  79. int new_end_pos_in_page;
  80. loff_t cur_length = i_size_read(inode);
  81. if (cur_length != 0) {
  82. index = old_end_page_index =
  83. ((cur_length - 1) >> PAGE_CACHE_SHIFT);
  84. old_end_pos_in_page = ((cur_length - 1) & ~PAGE_CACHE_MASK);
  85. }
  86. new_end_page_index = ((new_length - 1) >> PAGE_CACHE_SHIFT);
  87. new_end_pos_in_page = ((new_length - 1) & ~PAGE_CACHE_MASK);
  88. ecryptfs_printk(KERN_DEBUG, "old_end_page_index = [0x%.16x]; "
  89. "old_end_pos_in_page = [%d]; "
  90. "new_end_page_index = [0x%.16x]; "
  91. "new_end_pos_in_page = [%d]\n",
  92. old_end_page_index, old_end_pos_in_page,
  93. new_end_page_index, new_end_pos_in_page);
  94. if (old_end_page_index == new_end_page_index) {
  95. /* Start and end are in the same page; we just need to
  96. * set a portion of the existing page to zero's */
  97. rc = write_zeros(file, index, (old_end_pos_in_page + 1),
  98. (new_end_pos_in_page - old_end_pos_in_page));
  99. if (rc)
  100. ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
  101. "index=[0x%.16x], "
  102. "old_end_pos_in_page=[d], "
  103. "(PAGE_CACHE_SIZE - new_end_pos_in_page"
  104. "=[%d]"
  105. ")=[d]) returned [%d]\n", file, index,
  106. old_end_pos_in_page,
  107. new_end_pos_in_page,
  108. (PAGE_CACHE_SIZE - new_end_pos_in_page),
  109. rc);
  110. goto out;
  111. }
  112. /* Fill the remainder of the previous last page with zeros */
  113. rc = write_zeros(file, index, (old_end_pos_in_page + 1),
  114. ((PAGE_CACHE_SIZE - 1) - old_end_pos_in_page));
  115. if (rc) {
  116. ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
  117. "index=[0x%.16x], old_end_pos_in_page=[d], "
  118. "(PAGE_CACHE_SIZE - old_end_pos_in_page)=[d]) "
  119. "returned [%d]\n", file, index,
  120. old_end_pos_in_page,
  121. (PAGE_CACHE_SIZE - old_end_pos_in_page), rc);
  122. goto out;
  123. }
  124. index++;
  125. while (index < new_end_page_index) {
  126. /* Fill all intermediate pages with zeros */
  127. rc = write_zeros(file, index, 0, PAGE_CACHE_SIZE);
  128. if (rc) {
  129. ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
  130. "index=[0x%.16x], "
  131. "old_end_pos_in_page=[d], "
  132. "(PAGE_CACHE_SIZE - new_end_pos_in_page"
  133. "=[%d]"
  134. ")=[d]) returned [%d]\n", file, index,
  135. old_end_pos_in_page,
  136. new_end_pos_in_page,
  137. (PAGE_CACHE_SIZE - new_end_pos_in_page),
  138. rc);
  139. goto out;
  140. }
  141. index++;
  142. }
  143. /* Fill the portion at the beginning of the last new page with
  144. * zero's */
  145. rc = write_zeros(file, index, 0, (new_end_pos_in_page + 1));
  146. if (rc) {
  147. ecryptfs_printk(KERN_ERR, "write_zeros(file="
  148. "[%p], index=[0x%.16x], 0, "
  149. "new_end_pos_in_page=[%d]"
  150. "returned [%d]\n", file, index,
  151. new_end_pos_in_page, rc);
  152. goto out;
  153. }
  154. out:
  155. return rc;
  156. }
  157. /**
  158. * ecryptfs_writepage
  159. * @page: Page that is locked before this call is made
  160. *
  161. * Returns zero on success; non-zero otherwise
  162. */
  163. static int ecryptfs_writepage(struct page *page, struct writeback_control *wbc)
  164. {
  165. struct ecryptfs_page_crypt_context ctx;
  166. int rc;
  167. ctx.page = page;
  168. ctx.mode = ECRYPTFS_WRITEPAGE_MODE;
  169. ctx.param.wbc = wbc;
  170. rc = ecryptfs_encrypt_page(&ctx);
  171. if (rc) {
  172. ecryptfs_printk(KERN_WARNING, "Error encrypting "
  173. "page (upper index [0x%.16x])\n", page->index);
  174. ClearPageUptodate(page);
  175. goto out;
  176. }
  177. SetPageUptodate(page);
  178. unlock_page(page);
  179. out:
  180. return rc;
  181. }
  182. /**
  183. * Reads the data from the lower file file at index lower_page_index
  184. * and copies that data into page.
  185. *
  186. * @param page Page to fill
  187. * @param lower_page_index Index of the page in the lower file to get
  188. */
  189. int ecryptfs_do_readpage(struct file *file, struct page *page,
  190. pgoff_t lower_page_index)
  191. {
  192. int rc;
  193. struct dentry *dentry;
  194. struct file *lower_file;
  195. struct dentry *lower_dentry;
  196. struct inode *inode;
  197. struct inode *lower_inode;
  198. char *page_data;
  199. struct page *lower_page = NULL;
  200. char *lower_page_data;
  201. const struct address_space_operations *lower_a_ops;
  202. dentry = file->f_path.dentry;
  203. lower_file = ecryptfs_file_to_lower(file);
  204. lower_dentry = ecryptfs_dentry_to_lower(dentry);
  205. inode = dentry->d_inode;
  206. lower_inode = ecryptfs_inode_to_lower(inode);
  207. lower_a_ops = lower_inode->i_mapping->a_ops;
  208. lower_page = read_cache_page(lower_inode->i_mapping, lower_page_index,
  209. (filler_t *)lower_a_ops->readpage,
  210. (void *)lower_file);
  211. if (IS_ERR(lower_page)) {
  212. rc = PTR_ERR(lower_page);
  213. lower_page = NULL;
  214. ecryptfs_printk(KERN_ERR, "Error reading from page cache\n");
  215. goto out;
  216. }
  217. page_data = kmap_atomic(page, KM_USER0);
  218. lower_page_data = kmap_atomic(lower_page, KM_USER1);
  219. memcpy(page_data, lower_page_data, PAGE_CACHE_SIZE);
  220. kunmap_atomic(lower_page_data, KM_USER1);
  221. kunmap_atomic(page_data, KM_USER0);
  222. flush_dcache_page(page);
  223. rc = 0;
  224. out:
  225. if (likely(lower_page))
  226. page_cache_release(lower_page);
  227. if (rc == 0)
  228. SetPageUptodate(page);
  229. else
  230. ClearPageUptodate(page);
  231. return rc;
  232. }
  233. /**
  234. * Header Extent:
  235. * Octets 0-7: Unencrypted file size (big-endian)
  236. * Octets 8-15: eCryptfs special marker
  237. * Octets 16-19: Flags
  238. * Octet 16: File format version number (between 0 and 255)
  239. * Octets 17-18: Reserved
  240. * Octet 19: Bit 1 (lsb): Reserved
  241. * Bit 2: Encrypted?
  242. * Bits 3-8: Reserved
  243. * Octets 20-23: Header extent size (big-endian)
  244. * Octets 24-25: Number of header extents at front of file
  245. * (big-endian)
  246. * Octet 26: Begin RFC 2440 authentication token packet set
  247. */
  248. static void set_header_info(char *page_virt,
  249. struct ecryptfs_crypt_stat *crypt_stat)
  250. {
  251. size_t written;
  252. int save_num_header_extents_at_front =
  253. crypt_stat->num_header_extents_at_front;
  254. crypt_stat->num_header_extents_at_front = 1;
  255. ecryptfs_write_header_metadata(page_virt + 20, crypt_stat, &written);
  256. crypt_stat->num_header_extents_at_front =
  257. save_num_header_extents_at_front;
  258. }
  259. /**
  260. * ecryptfs_readpage
  261. * @file: This is an ecryptfs file
  262. * @page: ecryptfs associated page to stick the read data into
  263. *
  264. * Read in a page, decrypting if necessary.
  265. *
  266. * Returns zero on success; non-zero on error.
  267. */
  268. static int ecryptfs_readpage(struct file *file, struct page *page)
  269. {
  270. int rc = 0;
  271. struct ecryptfs_crypt_stat *crypt_stat;
  272. BUG_ON(!(file && file->f_path.dentry && file->f_path.dentry->d_inode));
  273. crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
  274. ->crypt_stat;
  275. if (!crypt_stat
  276. || !(crypt_stat->flags & ECRYPTFS_ENCRYPTED)
  277. || (crypt_stat->flags & ECRYPTFS_NEW_FILE)) {
  278. ecryptfs_printk(KERN_DEBUG,
  279. "Passing through unencrypted page\n");
  280. rc = ecryptfs_do_readpage(file, page, page->index);
  281. if (rc) {
  282. ecryptfs_printk(KERN_ERR, "Error reading page; rc = "
  283. "[%d]\n", rc);
  284. goto out;
  285. }
  286. } else if (crypt_stat->flags & ECRYPTFS_VIEW_AS_ENCRYPTED) {
  287. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
  288. int num_pages_in_header_region =
  289. (crypt_stat->header_extent_size
  290. / PAGE_CACHE_SIZE);
  291. if (page->index < num_pages_in_header_region) {
  292. char *page_virt;
  293. page_virt = kmap_atomic(page, KM_USER0);
  294. memset(page_virt, 0, PAGE_CACHE_SIZE);
  295. if (page->index == 0) {
  296. rc = ecryptfs_read_xattr_region(
  297. page_virt, file->f_path.dentry);
  298. set_header_info(page_virt, crypt_stat);
  299. }
  300. kunmap_atomic(page_virt, KM_USER0);
  301. flush_dcache_page(page);
  302. if (rc) {
  303. printk(KERN_ERR "Error reading xattr "
  304. "region\n");
  305. goto out;
  306. }
  307. } else {
  308. rc = ecryptfs_do_readpage(
  309. file, page,
  310. (page->index
  311. - num_pages_in_header_region));
  312. if (rc) {
  313. printk(KERN_ERR "Error reading page; "
  314. "rc = [%d]\n", rc);
  315. goto out;
  316. }
  317. }
  318. } else {
  319. rc = ecryptfs_do_readpage(file, page, page->index);
  320. if (rc) {
  321. printk(KERN_ERR "Error reading page; rc = "
  322. "[%d]\n", rc);
  323. goto out;
  324. }
  325. }
  326. } else {
  327. rc = ecryptfs_decrypt_page(file, page);
  328. if (rc) {
  329. ecryptfs_printk(KERN_ERR, "Error decrypting page; "
  330. "rc = [%d]\n", rc);
  331. goto out;
  332. }
  333. }
  334. SetPageUptodate(page);
  335. out:
  336. if (rc)
  337. ClearPageUptodate(page);
  338. ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
  339. page->index);
  340. unlock_page(page);
  341. return rc;
  342. }
  343. /**
  344. * Called with lower inode mutex held.
  345. */
  346. static int fill_zeros_to_end_of_page(struct page *page, unsigned int to)
  347. {
  348. struct inode *inode = page->mapping->host;
  349. int end_byte_in_page;
  350. if ((i_size_read(inode) / PAGE_CACHE_SIZE) != page->index)
  351. goto out;
  352. end_byte_in_page = i_size_read(inode) % PAGE_CACHE_SIZE;
  353. if (to > end_byte_in_page)
  354. end_byte_in_page = to;
  355. zero_user_page(page, end_byte_in_page,
  356. PAGE_CACHE_SIZE - end_byte_in_page, KM_USER0);
  357. out:
  358. return 0;
  359. }
  360. /**
  361. * eCryptfs does not currently support holes. When writing after a
  362. * seek past the end of the file, eCryptfs fills in 0's through to the
  363. * current location. The code to fill in the 0's to all the
  364. * intermediate pages calls ecryptfs_prepare_write_no_truncate().
  365. */
  366. static int
  367. ecryptfs_prepare_write_no_truncate(struct file *file, struct page *page,
  368. unsigned from, unsigned to)
  369. {
  370. int rc = 0;
  371. if (from == 0 && to == PAGE_CACHE_SIZE)
  372. goto out; /* If we are writing a full page, it will be
  373. up to date. */
  374. if (!PageUptodate(page))
  375. rc = ecryptfs_do_readpage(file, page, page->index);
  376. out:
  377. return rc;
  378. }
  379. static int ecryptfs_prepare_write(struct file *file, struct page *page,
  380. unsigned from, unsigned to)
  381. {
  382. loff_t pos;
  383. int rc = 0;
  384. if (from == 0 && to == PAGE_CACHE_SIZE)
  385. goto out; /* If we are writing a full page, it will be
  386. up to date. */
  387. if (!PageUptodate(page))
  388. rc = ecryptfs_do_readpage(file, page, page->index);
  389. pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  390. if (pos > i_size_read(page->mapping->host)) {
  391. rc = ecryptfs_truncate(file->f_path.dentry, pos);
  392. if (rc) {
  393. printk(KERN_ERR "Error on attempt to "
  394. "truncate to (higher) offset [%lld];"
  395. " rc = [%d]\n", pos, rc);
  396. goto out;
  397. }
  398. }
  399. out:
  400. return rc;
  401. }
  402. int ecryptfs_writepage_and_release_lower_page(struct page *lower_page,
  403. struct inode *lower_inode,
  404. struct writeback_control *wbc)
  405. {
  406. int rc = 0;
  407. rc = lower_inode->i_mapping->a_ops->writepage(lower_page, wbc);
  408. if (rc) {
  409. ecryptfs_printk(KERN_ERR, "Error calling lower writepage(); "
  410. "rc = [%d]\n", rc);
  411. goto out;
  412. }
  413. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  414. page_cache_release(lower_page);
  415. out:
  416. return rc;
  417. }
  418. static
  419. void ecryptfs_release_lower_page(struct page *lower_page, int page_locked)
  420. {
  421. if (page_locked)
  422. unlock_page(lower_page);
  423. page_cache_release(lower_page);
  424. }
  425. /**
  426. * ecryptfs_write_inode_size_to_header
  427. *
  428. * Writes the lower file size to the first 8 bytes of the header.
  429. *
  430. * Returns zero on success; non-zero on error.
  431. */
  432. static int ecryptfs_write_inode_size_to_header(struct file *lower_file,
  433. struct inode *lower_inode,
  434. struct inode *inode)
  435. {
  436. int rc = 0;
  437. struct page *header_page;
  438. char *header_virt;
  439. const struct address_space_operations *lower_a_ops;
  440. u64 file_size;
  441. retry:
  442. header_page = grab_cache_page(lower_inode->i_mapping, 0);
  443. if (!header_page) {
  444. ecryptfs_printk(KERN_ERR, "grab_cache_page for "
  445. "lower_page_index 0 failed\n");
  446. rc = -EINVAL;
  447. goto out;
  448. }
  449. lower_a_ops = lower_inode->i_mapping->a_ops;
  450. rc = lower_a_ops->prepare_write(lower_file, header_page, 0, 8);
  451. if (rc) {
  452. if (rc == AOP_TRUNCATED_PAGE) {
  453. ecryptfs_release_lower_page(header_page, 0);
  454. goto retry;
  455. } else
  456. ecryptfs_release_lower_page(header_page, 1);
  457. goto out;
  458. }
  459. file_size = (u64)i_size_read(inode);
  460. ecryptfs_printk(KERN_DEBUG, "Writing size: [0x%.16x]\n", file_size);
  461. file_size = cpu_to_be64(file_size);
  462. header_virt = kmap_atomic(header_page, KM_USER0);
  463. memcpy(header_virt, &file_size, sizeof(u64));
  464. kunmap_atomic(header_virt, KM_USER0);
  465. flush_dcache_page(header_page);
  466. rc = lower_a_ops->commit_write(lower_file, header_page, 0, 8);
  467. if (rc < 0)
  468. ecryptfs_printk(KERN_ERR, "Error commiting header page "
  469. "write\n");
  470. if (rc == AOP_TRUNCATED_PAGE) {
  471. ecryptfs_release_lower_page(header_page, 0);
  472. goto retry;
  473. } else
  474. ecryptfs_release_lower_page(header_page, 1);
  475. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  476. mark_inode_dirty_sync(inode);
  477. out:
  478. return rc;
  479. }
  480. static int ecryptfs_write_inode_size_to_xattr(struct inode *lower_inode,
  481. struct inode *inode,
  482. struct dentry *ecryptfs_dentry,
  483. int lower_i_mutex_held)
  484. {
  485. ssize_t size;
  486. void *xattr_virt;
  487. struct dentry *lower_dentry;
  488. u64 file_size;
  489. int rc;
  490. xattr_virt = kmem_cache_alloc(ecryptfs_xattr_cache, GFP_KERNEL);
  491. if (!xattr_virt) {
  492. printk(KERN_ERR "Out of memory whilst attempting to write "
  493. "inode size to xattr\n");
  494. rc = -ENOMEM;
  495. goto out;
  496. }
  497. lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
  498. if (!lower_dentry->d_inode->i_op->getxattr ||
  499. !lower_dentry->d_inode->i_op->setxattr) {
  500. printk(KERN_WARNING
  501. "No support for setting xattr in lower filesystem\n");
  502. rc = -ENOSYS;
  503. kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
  504. goto out;
  505. }
  506. if (!lower_i_mutex_held)
  507. mutex_lock(&lower_dentry->d_inode->i_mutex);
  508. size = lower_dentry->d_inode->i_op->getxattr(lower_dentry,
  509. ECRYPTFS_XATTR_NAME,
  510. xattr_virt,
  511. PAGE_CACHE_SIZE);
  512. if (!lower_i_mutex_held)
  513. mutex_unlock(&lower_dentry->d_inode->i_mutex);
  514. if (size < 0)
  515. size = 8;
  516. file_size = (u64)i_size_read(inode);
  517. file_size = cpu_to_be64(file_size);
  518. memcpy(xattr_virt, &file_size, sizeof(u64));
  519. if (!lower_i_mutex_held)
  520. mutex_lock(&lower_dentry->d_inode->i_mutex);
  521. rc = lower_dentry->d_inode->i_op->setxattr(lower_dentry,
  522. ECRYPTFS_XATTR_NAME,
  523. xattr_virt, size, 0);
  524. if (!lower_i_mutex_held)
  525. mutex_unlock(&lower_dentry->d_inode->i_mutex);
  526. if (rc)
  527. printk(KERN_ERR "Error whilst attempting to write inode size "
  528. "to lower file xattr; rc = [%d]\n", rc);
  529. kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
  530. out:
  531. return rc;
  532. }
  533. int
  534. ecryptfs_write_inode_size_to_metadata(struct file *lower_file,
  535. struct inode *lower_inode,
  536. struct inode *inode,
  537. struct dentry *ecryptfs_dentry,
  538. int lower_i_mutex_held)
  539. {
  540. struct ecryptfs_crypt_stat *crypt_stat;
  541. crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
  542. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
  543. return ecryptfs_write_inode_size_to_xattr(lower_inode, inode,
  544. ecryptfs_dentry,
  545. lower_i_mutex_held);
  546. else
  547. return ecryptfs_write_inode_size_to_header(lower_file,
  548. lower_inode,
  549. inode);
  550. }
  551. int ecryptfs_get_lower_page(struct page **lower_page, struct inode *lower_inode,
  552. struct file *lower_file,
  553. unsigned long lower_page_index, int byte_offset,
  554. int region_bytes)
  555. {
  556. int rc = 0;
  557. retry:
  558. *lower_page = grab_cache_page(lower_inode->i_mapping, lower_page_index);
  559. if (!(*lower_page)) {
  560. rc = -EINVAL;
  561. ecryptfs_printk(KERN_ERR, "Error attempting to grab "
  562. "lower page with index [0x%.16x]\n",
  563. lower_page_index);
  564. goto out;
  565. }
  566. rc = lower_inode->i_mapping->a_ops->prepare_write(lower_file,
  567. (*lower_page),
  568. byte_offset,
  569. region_bytes);
  570. if (rc) {
  571. if (rc == AOP_TRUNCATED_PAGE) {
  572. ecryptfs_release_lower_page(*lower_page, 0);
  573. goto retry;
  574. } else {
  575. ecryptfs_printk(KERN_ERR, "prepare_write for "
  576. "lower_page_index = [0x%.16x] failed; rc = "
  577. "[%d]\n", lower_page_index, rc);
  578. ecryptfs_release_lower_page(*lower_page, 1);
  579. (*lower_page) = NULL;
  580. }
  581. }
  582. out:
  583. return rc;
  584. }
  585. /**
  586. * ecryptfs_commit_lower_page
  587. *
  588. * Returns zero on success; non-zero on error
  589. */
  590. int
  591. ecryptfs_commit_lower_page(struct page *lower_page, struct inode *lower_inode,
  592. struct file *lower_file, int byte_offset,
  593. int region_size)
  594. {
  595. int page_locked = 1;
  596. int rc = 0;
  597. rc = lower_inode->i_mapping->a_ops->commit_write(
  598. lower_file, lower_page, byte_offset, region_size);
  599. if (rc == AOP_TRUNCATED_PAGE)
  600. page_locked = 0;
  601. if (rc < 0) {
  602. ecryptfs_printk(KERN_ERR,
  603. "Error committing write; rc = [%d]\n", rc);
  604. } else
  605. rc = 0;
  606. ecryptfs_release_lower_page(lower_page, page_locked);
  607. return rc;
  608. }
  609. /**
  610. * ecryptfs_copy_page_to_lower
  611. *
  612. * Used for plaintext pass-through; no page index interpolation
  613. * required.
  614. */
  615. int ecryptfs_copy_page_to_lower(struct page *page, struct inode *lower_inode,
  616. struct file *lower_file)
  617. {
  618. int rc = 0;
  619. struct page *lower_page;
  620. rc = ecryptfs_get_lower_page(&lower_page, lower_inode, lower_file,
  621. page->index, 0, PAGE_CACHE_SIZE);
  622. if (rc) {
  623. ecryptfs_printk(KERN_ERR, "Error attempting to get page "
  624. "at index [0x%.16x]\n", page->index);
  625. goto out;
  626. }
  627. /* TODO: aops */
  628. memcpy((char *)page_address(lower_page), page_address(page),
  629. PAGE_CACHE_SIZE);
  630. rc = ecryptfs_commit_lower_page(lower_page, lower_inode, lower_file,
  631. 0, PAGE_CACHE_SIZE);
  632. if (rc)
  633. ecryptfs_printk(KERN_ERR, "Error attempting to commit page "
  634. "at index [0x%.16x]\n", page->index);
  635. out:
  636. return rc;
  637. }
  638. struct kmem_cache *ecryptfs_xattr_cache;
  639. /**
  640. * ecryptfs_commit_write
  641. * @file: The eCryptfs file object
  642. * @page: The eCryptfs page
  643. * @from: Ignored (we rotate the page IV on each write)
  644. * @to: Ignored
  645. *
  646. * This is where we encrypt the data and pass the encrypted data to
  647. * the lower filesystem. In OpenPGP-compatible mode, we operate on
  648. * entire underlying packets.
  649. */
  650. static int ecryptfs_commit_write(struct file *file, struct page *page,
  651. unsigned from, unsigned to)
  652. {
  653. struct ecryptfs_page_crypt_context ctx;
  654. loff_t pos;
  655. struct inode *inode;
  656. struct inode *lower_inode;
  657. struct file *lower_file;
  658. struct ecryptfs_crypt_stat *crypt_stat;
  659. int rc;
  660. inode = page->mapping->host;
  661. lower_inode = ecryptfs_inode_to_lower(inode);
  662. lower_file = ecryptfs_file_to_lower(file);
  663. mutex_lock(&lower_inode->i_mutex);
  664. crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
  665. ->crypt_stat;
  666. if (crypt_stat->flags & ECRYPTFS_NEW_FILE) {
  667. ecryptfs_printk(KERN_DEBUG, "ECRYPTFS_NEW_FILE flag set in "
  668. "crypt_stat at memory location [%p]\n", crypt_stat);
  669. crypt_stat->flags &= ~(ECRYPTFS_NEW_FILE);
  670. } else
  671. ecryptfs_printk(KERN_DEBUG, "Not a new file\n");
  672. ecryptfs_printk(KERN_DEBUG, "Calling fill_zeros_to_end_of_page"
  673. "(page w/ index = [0x%.16x], to = [%d])\n", page->index,
  674. to);
  675. rc = fill_zeros_to_end_of_page(page, to);
  676. if (rc) {
  677. ecryptfs_printk(KERN_WARNING, "Error attempting to fill "
  678. "zeros in page with index = [0x%.16x]\n",
  679. page->index);
  680. goto out;
  681. }
  682. ctx.page = page;
  683. ctx.mode = ECRYPTFS_PREPARE_COMMIT_MODE;
  684. ctx.param.lower_file = lower_file;
  685. rc = ecryptfs_encrypt_page(&ctx);
  686. if (rc) {
  687. ecryptfs_printk(KERN_WARNING, "Error encrypting page (upper "
  688. "index [0x%.16x])\n", page->index);
  689. goto out;
  690. }
  691. inode->i_blocks = lower_inode->i_blocks;
  692. pos = (page->index << PAGE_CACHE_SHIFT) + to;
  693. if (pos > i_size_read(inode)) {
  694. i_size_write(inode, pos);
  695. ecryptfs_printk(KERN_DEBUG, "Expanded file size to "
  696. "[0x%.16x]\n", i_size_read(inode));
  697. }
  698. rc = ecryptfs_write_inode_size_to_metadata(lower_file, lower_inode,
  699. inode, file->f_dentry,
  700. ECRYPTFS_LOWER_I_MUTEX_HELD);
  701. if (rc)
  702. printk(KERN_ERR "Error writing inode size to metadata; "
  703. "rc = [%d]\n", rc);
  704. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  705. mark_inode_dirty_sync(inode);
  706. out:
  707. if (rc < 0)
  708. ClearPageUptodate(page);
  709. else
  710. SetPageUptodate(page);
  711. mutex_unlock(&lower_inode->i_mutex);
  712. return rc;
  713. }
  714. /**
  715. * write_zeros
  716. * @file: The ecryptfs file
  717. * @index: The index in which we are writing
  718. * @start: The position after the last block of data
  719. * @num_zeros: The number of zeros to write
  720. *
  721. * Write a specified number of zero's to a page.
  722. *
  723. * (start + num_zeros) must be less than or equal to PAGE_CACHE_SIZE
  724. */
  725. static
  726. int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros)
  727. {
  728. int rc = 0;
  729. struct page *tmp_page;
  730. tmp_page = ecryptfs_get1page(file, index);
  731. if (IS_ERR(tmp_page)) {
  732. ecryptfs_printk(KERN_ERR, "Error getting page at index "
  733. "[0x%.16x]\n", index);
  734. rc = PTR_ERR(tmp_page);
  735. goto out;
  736. }
  737. if ((rc = ecryptfs_prepare_write_no_truncate(file, tmp_page, start,
  738. (start + num_zeros)))) {
  739. ecryptfs_printk(KERN_ERR, "Error preparing to write zero's "
  740. "to page at index [0x%.16x]\n",
  741. index);
  742. page_cache_release(tmp_page);
  743. goto out;
  744. }
  745. zero_user_page(tmp_page, start, num_zeros, KM_USER0);
  746. rc = ecryptfs_commit_write(file, tmp_page, start, start + num_zeros);
  747. if (rc < 0) {
  748. ecryptfs_printk(KERN_ERR, "Error attempting to write zero's "
  749. "to remainder of page at index [0x%.16x]\n",
  750. index);
  751. page_cache_release(tmp_page);
  752. goto out;
  753. }
  754. rc = 0;
  755. page_cache_release(tmp_page);
  756. out:
  757. return rc;
  758. }
  759. static sector_t ecryptfs_bmap(struct address_space *mapping, sector_t block)
  760. {
  761. int rc = 0;
  762. struct inode *inode;
  763. struct inode *lower_inode;
  764. inode = (struct inode *)mapping->host;
  765. lower_inode = ecryptfs_inode_to_lower(inode);
  766. if (lower_inode->i_mapping->a_ops->bmap)
  767. rc = lower_inode->i_mapping->a_ops->bmap(lower_inode->i_mapping,
  768. block);
  769. return rc;
  770. }
  771. static void ecryptfs_sync_page(struct page *page)
  772. {
  773. struct inode *inode;
  774. struct inode *lower_inode;
  775. struct page *lower_page;
  776. inode = page->mapping->host;
  777. lower_inode = ecryptfs_inode_to_lower(inode);
  778. /* NOTE: Recently swapped with grab_cache_page(), since
  779. * sync_page() just makes sure that pending I/O gets done. */
  780. lower_page = find_lock_page(lower_inode->i_mapping, page->index);
  781. if (!lower_page) {
  782. ecryptfs_printk(KERN_DEBUG, "find_lock_page failed\n");
  783. return;
  784. }
  785. lower_page->mapping->a_ops->sync_page(lower_page);
  786. ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
  787. lower_page->index);
  788. unlock_page(lower_page);
  789. page_cache_release(lower_page);
  790. }
  791. struct address_space_operations ecryptfs_aops = {
  792. .writepage = ecryptfs_writepage,
  793. .readpage = ecryptfs_readpage,
  794. .prepare_write = ecryptfs_prepare_write,
  795. .commit_write = ecryptfs_commit_write,
  796. .bmap = ecryptfs_bmap,
  797. .sync_page = ecryptfs_sync_page,
  798. };