disk-io.c 111 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <linux/semaphore.h>
  34. #include <asm/unaligned.h>
  35. #include "ctree.h"
  36. #include "disk-io.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #ifdef CONFIG_X86
  51. #include <asm/cpufeature.h>
  52. #endif
  53. static struct extent_io_ops btree_extent_io_ops;
  54. static void end_workqueue_fn(struct btrfs_work *work);
  55. static void free_fs_root(struct btrfs_root *root);
  56. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  57. int read_only);
  58. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  59. struct btrfs_root *root);
  60. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  61. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  62. struct btrfs_root *root);
  63. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  64. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  65. struct extent_io_tree *dirty_pages,
  66. int mark);
  67. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  68. struct extent_io_tree *pinned_extents);
  69. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  70. static void btrfs_error_commit_super(struct btrfs_root *root);
  71. /*
  72. * end_io_wq structs are used to do processing in task context when an IO is
  73. * complete. This is used during reads to verify checksums, and it is used
  74. * by writes to insert metadata for new file extents after IO is complete.
  75. */
  76. struct end_io_wq {
  77. struct bio *bio;
  78. bio_end_io_t *end_io;
  79. void *private;
  80. struct btrfs_fs_info *info;
  81. int error;
  82. int metadata;
  83. struct list_head list;
  84. struct btrfs_work work;
  85. };
  86. /*
  87. * async submit bios are used to offload expensive checksumming
  88. * onto the worker threads. They checksum file and metadata bios
  89. * just before they are sent down the IO stack.
  90. */
  91. struct async_submit_bio {
  92. struct inode *inode;
  93. struct bio *bio;
  94. struct list_head list;
  95. extent_submit_bio_hook_t *submit_bio_start;
  96. extent_submit_bio_hook_t *submit_bio_done;
  97. int rw;
  98. int mirror_num;
  99. unsigned long bio_flags;
  100. /*
  101. * bio_offset is optional, can be used if the pages in the bio
  102. * can't tell us where in the file the bio should go
  103. */
  104. u64 bio_offset;
  105. struct btrfs_work work;
  106. int error;
  107. };
  108. /*
  109. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  110. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  111. * the level the eb occupies in the tree.
  112. *
  113. * Different roots are used for different purposes and may nest inside each
  114. * other and they require separate keysets. As lockdep keys should be
  115. * static, assign keysets according to the purpose of the root as indicated
  116. * by btrfs_root->objectid. This ensures that all special purpose roots
  117. * have separate keysets.
  118. *
  119. * Lock-nesting across peer nodes is always done with the immediate parent
  120. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  121. * subclass to avoid triggering lockdep warning in such cases.
  122. *
  123. * The key is set by the readpage_end_io_hook after the buffer has passed
  124. * csum validation but before the pages are unlocked. It is also set by
  125. * btrfs_init_new_buffer on freshly allocated blocks.
  126. *
  127. * We also add a check to make sure the highest level of the tree is the
  128. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  129. * needs update as well.
  130. */
  131. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  132. # if BTRFS_MAX_LEVEL != 8
  133. # error
  134. # endif
  135. static struct btrfs_lockdep_keyset {
  136. u64 id; /* root objectid */
  137. const char *name_stem; /* lock name stem */
  138. char names[BTRFS_MAX_LEVEL + 1][20];
  139. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  140. } btrfs_lockdep_keysets[] = {
  141. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  142. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  143. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  144. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  145. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  146. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  147. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  148. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  149. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  150. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  151. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  152. { .id = 0, .name_stem = "tree" },
  153. };
  154. void __init btrfs_init_lockdep(void)
  155. {
  156. int i, j;
  157. /* initialize lockdep class names */
  158. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  159. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  160. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  161. snprintf(ks->names[j], sizeof(ks->names[j]),
  162. "btrfs-%s-%02d", ks->name_stem, j);
  163. }
  164. }
  165. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  166. int level)
  167. {
  168. struct btrfs_lockdep_keyset *ks;
  169. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  170. /* find the matching keyset, id 0 is the default entry */
  171. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  172. if (ks->id == objectid)
  173. break;
  174. lockdep_set_class_and_name(&eb->lock,
  175. &ks->keys[level], ks->names[level]);
  176. }
  177. #endif
  178. /*
  179. * extents on the btree inode are pretty simple, there's one extent
  180. * that covers the entire device
  181. */
  182. static struct extent_map *btree_get_extent(struct inode *inode,
  183. struct page *page, size_t pg_offset, u64 start, u64 len,
  184. int create)
  185. {
  186. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  187. struct extent_map *em;
  188. int ret;
  189. read_lock(&em_tree->lock);
  190. em = lookup_extent_mapping(em_tree, start, len);
  191. if (em) {
  192. em->bdev =
  193. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  194. read_unlock(&em_tree->lock);
  195. goto out;
  196. }
  197. read_unlock(&em_tree->lock);
  198. em = alloc_extent_map();
  199. if (!em) {
  200. em = ERR_PTR(-ENOMEM);
  201. goto out;
  202. }
  203. em->start = 0;
  204. em->len = (u64)-1;
  205. em->block_len = (u64)-1;
  206. em->block_start = 0;
  207. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  208. write_lock(&em_tree->lock);
  209. ret = add_extent_mapping(em_tree, em, 0);
  210. if (ret == -EEXIST) {
  211. free_extent_map(em);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (!em)
  214. em = ERR_PTR(-EIO);
  215. } else if (ret) {
  216. free_extent_map(em);
  217. em = ERR_PTR(ret);
  218. }
  219. write_unlock(&em_tree->lock);
  220. out:
  221. return em;
  222. }
  223. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  224. {
  225. return crc32c(seed, data, len);
  226. }
  227. void btrfs_csum_final(u32 crc, char *result)
  228. {
  229. put_unaligned_le32(~crc, result);
  230. }
  231. /*
  232. * compute the csum for a btree block, and either verify it or write it
  233. * into the csum field of the block.
  234. */
  235. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  236. int verify)
  237. {
  238. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  239. char *result = NULL;
  240. unsigned long len;
  241. unsigned long cur_len;
  242. unsigned long offset = BTRFS_CSUM_SIZE;
  243. char *kaddr;
  244. unsigned long map_start;
  245. unsigned long map_len;
  246. int err;
  247. u32 crc = ~(u32)0;
  248. unsigned long inline_result;
  249. len = buf->len - offset;
  250. while (len > 0) {
  251. err = map_private_extent_buffer(buf, offset, 32,
  252. &kaddr, &map_start, &map_len);
  253. if (err)
  254. return 1;
  255. cur_len = min(len, map_len - (offset - map_start));
  256. crc = btrfs_csum_data(kaddr + offset - map_start,
  257. crc, cur_len);
  258. len -= cur_len;
  259. offset += cur_len;
  260. }
  261. if (csum_size > sizeof(inline_result)) {
  262. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  263. if (!result)
  264. return 1;
  265. } else {
  266. result = (char *)&inline_result;
  267. }
  268. btrfs_csum_final(crc, result);
  269. if (verify) {
  270. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  271. u32 val;
  272. u32 found = 0;
  273. memcpy(&found, result, csum_size);
  274. read_extent_buffer(buf, &val, 0, csum_size);
  275. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  276. "failed on %llu wanted %X found %X "
  277. "level %d\n",
  278. root->fs_info->sb->s_id, buf->start,
  279. val, found, btrfs_header_level(buf));
  280. if (result != (char *)&inline_result)
  281. kfree(result);
  282. return 1;
  283. }
  284. } else {
  285. write_extent_buffer(buf, result, 0, csum_size);
  286. }
  287. if (result != (char *)&inline_result)
  288. kfree(result);
  289. return 0;
  290. }
  291. /*
  292. * we can't consider a given block up to date unless the transid of the
  293. * block matches the transid in the parent node's pointer. This is how we
  294. * detect blocks that either didn't get written at all or got written
  295. * in the wrong place.
  296. */
  297. static int verify_parent_transid(struct extent_io_tree *io_tree,
  298. struct extent_buffer *eb, u64 parent_transid,
  299. int atomic)
  300. {
  301. struct extent_state *cached_state = NULL;
  302. int ret;
  303. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  304. return 0;
  305. if (atomic)
  306. return -EAGAIN;
  307. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  308. 0, &cached_state);
  309. if (extent_buffer_uptodate(eb) &&
  310. btrfs_header_generation(eb) == parent_transid) {
  311. ret = 0;
  312. goto out;
  313. }
  314. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  315. "found %llu\n",
  316. eb->start, parent_transid, btrfs_header_generation(eb));
  317. ret = 1;
  318. clear_extent_buffer_uptodate(eb);
  319. out:
  320. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  321. &cached_state, GFP_NOFS);
  322. return ret;
  323. }
  324. /*
  325. * Return 0 if the superblock checksum type matches the checksum value of that
  326. * algorithm. Pass the raw disk superblock data.
  327. */
  328. static int btrfs_check_super_csum(char *raw_disk_sb)
  329. {
  330. struct btrfs_super_block *disk_sb =
  331. (struct btrfs_super_block *)raw_disk_sb;
  332. u16 csum_type = btrfs_super_csum_type(disk_sb);
  333. int ret = 0;
  334. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  335. u32 crc = ~(u32)0;
  336. const int csum_size = sizeof(crc);
  337. char result[csum_size];
  338. /*
  339. * The super_block structure does not span the whole
  340. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  341. * is filled with zeros and is included in the checkum.
  342. */
  343. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  344. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  345. btrfs_csum_final(crc, result);
  346. if (memcmp(raw_disk_sb, result, csum_size))
  347. ret = 1;
  348. if (ret && btrfs_super_generation(disk_sb) < 10) {
  349. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  350. ret = 0;
  351. }
  352. }
  353. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  354. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  355. csum_type);
  356. ret = 1;
  357. }
  358. return ret;
  359. }
  360. /*
  361. * helper to read a given tree block, doing retries as required when
  362. * the checksums don't match and we have alternate mirrors to try.
  363. */
  364. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  365. struct extent_buffer *eb,
  366. u64 start, u64 parent_transid)
  367. {
  368. struct extent_io_tree *io_tree;
  369. int failed = 0;
  370. int ret;
  371. int num_copies = 0;
  372. int mirror_num = 0;
  373. int failed_mirror = 0;
  374. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  375. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  376. while (1) {
  377. ret = read_extent_buffer_pages(io_tree, eb, start,
  378. WAIT_COMPLETE,
  379. btree_get_extent, mirror_num);
  380. if (!ret) {
  381. if (!verify_parent_transid(io_tree, eb,
  382. parent_transid, 0))
  383. break;
  384. else
  385. ret = -EIO;
  386. }
  387. /*
  388. * This buffer's crc is fine, but its contents are corrupted, so
  389. * there is no reason to read the other copies, they won't be
  390. * any less wrong.
  391. */
  392. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  393. break;
  394. num_copies = btrfs_num_copies(root->fs_info,
  395. eb->start, eb->len);
  396. if (num_copies == 1)
  397. break;
  398. if (!failed_mirror) {
  399. failed = 1;
  400. failed_mirror = eb->read_mirror;
  401. }
  402. mirror_num++;
  403. if (mirror_num == failed_mirror)
  404. mirror_num++;
  405. if (mirror_num > num_copies)
  406. break;
  407. }
  408. if (failed && !ret && failed_mirror)
  409. repair_eb_io_failure(root, eb, failed_mirror);
  410. return ret;
  411. }
  412. /*
  413. * checksum a dirty tree block before IO. This has extra checks to make sure
  414. * we only fill in the checksum field in the first page of a multi-page block
  415. */
  416. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  417. {
  418. struct extent_io_tree *tree;
  419. u64 start = page_offset(page);
  420. u64 found_start;
  421. struct extent_buffer *eb;
  422. tree = &BTRFS_I(page->mapping->host)->io_tree;
  423. eb = (struct extent_buffer *)page->private;
  424. if (page != eb->pages[0])
  425. return 0;
  426. found_start = btrfs_header_bytenr(eb);
  427. if (found_start != start) {
  428. WARN_ON(1);
  429. return 0;
  430. }
  431. if (!PageUptodate(page)) {
  432. WARN_ON(1);
  433. return 0;
  434. }
  435. csum_tree_block(root, eb, 0);
  436. return 0;
  437. }
  438. static int check_tree_block_fsid(struct btrfs_root *root,
  439. struct extent_buffer *eb)
  440. {
  441. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  442. u8 fsid[BTRFS_UUID_SIZE];
  443. int ret = 1;
  444. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  445. while (fs_devices) {
  446. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  447. ret = 0;
  448. break;
  449. }
  450. fs_devices = fs_devices->seed;
  451. }
  452. return ret;
  453. }
  454. #define CORRUPT(reason, eb, root, slot) \
  455. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  456. "root=%llu, slot=%d\n", reason, \
  457. btrfs_header_bytenr(eb), root->objectid, slot)
  458. static noinline int check_leaf(struct btrfs_root *root,
  459. struct extent_buffer *leaf)
  460. {
  461. struct btrfs_key key;
  462. struct btrfs_key leaf_key;
  463. u32 nritems = btrfs_header_nritems(leaf);
  464. int slot;
  465. if (nritems == 0)
  466. return 0;
  467. /* Check the 0 item */
  468. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  469. BTRFS_LEAF_DATA_SIZE(root)) {
  470. CORRUPT("invalid item offset size pair", leaf, root, 0);
  471. return -EIO;
  472. }
  473. /*
  474. * Check to make sure each items keys are in the correct order and their
  475. * offsets make sense. We only have to loop through nritems-1 because
  476. * we check the current slot against the next slot, which verifies the
  477. * next slot's offset+size makes sense and that the current's slot
  478. * offset is correct.
  479. */
  480. for (slot = 0; slot < nritems - 1; slot++) {
  481. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  482. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  483. /* Make sure the keys are in the right order */
  484. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  485. CORRUPT("bad key order", leaf, root, slot);
  486. return -EIO;
  487. }
  488. /*
  489. * Make sure the offset and ends are right, remember that the
  490. * item data starts at the end of the leaf and grows towards the
  491. * front.
  492. */
  493. if (btrfs_item_offset_nr(leaf, slot) !=
  494. btrfs_item_end_nr(leaf, slot + 1)) {
  495. CORRUPT("slot offset bad", leaf, root, slot);
  496. return -EIO;
  497. }
  498. /*
  499. * Check to make sure that we don't point outside of the leaf,
  500. * just incase all the items are consistent to eachother, but
  501. * all point outside of the leaf.
  502. */
  503. if (btrfs_item_end_nr(leaf, slot) >
  504. BTRFS_LEAF_DATA_SIZE(root)) {
  505. CORRUPT("slot end outside of leaf", leaf, root, slot);
  506. return -EIO;
  507. }
  508. }
  509. return 0;
  510. }
  511. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  512. u64 phy_offset, struct page *page,
  513. u64 start, u64 end, int mirror)
  514. {
  515. struct extent_io_tree *tree;
  516. u64 found_start;
  517. int found_level;
  518. struct extent_buffer *eb;
  519. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  520. int ret = 0;
  521. int reads_done;
  522. if (!page->private)
  523. goto out;
  524. tree = &BTRFS_I(page->mapping->host)->io_tree;
  525. eb = (struct extent_buffer *)page->private;
  526. /* the pending IO might have been the only thing that kept this buffer
  527. * in memory. Make sure we have a ref for all this other checks
  528. */
  529. extent_buffer_get(eb);
  530. reads_done = atomic_dec_and_test(&eb->io_pages);
  531. if (!reads_done)
  532. goto err;
  533. eb->read_mirror = mirror;
  534. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  535. ret = -EIO;
  536. goto err;
  537. }
  538. found_start = btrfs_header_bytenr(eb);
  539. if (found_start != eb->start) {
  540. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  541. "%llu %llu\n",
  542. found_start, eb->start);
  543. ret = -EIO;
  544. goto err;
  545. }
  546. if (check_tree_block_fsid(root, eb)) {
  547. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  548. eb->start);
  549. ret = -EIO;
  550. goto err;
  551. }
  552. found_level = btrfs_header_level(eb);
  553. if (found_level >= BTRFS_MAX_LEVEL) {
  554. btrfs_info(root->fs_info, "bad tree block level %d\n",
  555. (int)btrfs_header_level(eb));
  556. ret = -EIO;
  557. goto err;
  558. }
  559. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  560. eb, found_level);
  561. ret = csum_tree_block(root, eb, 1);
  562. if (ret) {
  563. ret = -EIO;
  564. goto err;
  565. }
  566. /*
  567. * If this is a leaf block and it is corrupt, set the corrupt bit so
  568. * that we don't try and read the other copies of this block, just
  569. * return -EIO.
  570. */
  571. if (found_level == 0 && check_leaf(root, eb)) {
  572. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  573. ret = -EIO;
  574. }
  575. if (!ret)
  576. set_extent_buffer_uptodate(eb);
  577. err:
  578. if (reads_done &&
  579. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  580. btree_readahead_hook(root, eb, eb->start, ret);
  581. if (ret) {
  582. /*
  583. * our io error hook is going to dec the io pages
  584. * again, we have to make sure it has something
  585. * to decrement
  586. */
  587. atomic_inc(&eb->io_pages);
  588. clear_extent_buffer_uptodate(eb);
  589. }
  590. free_extent_buffer(eb);
  591. out:
  592. return ret;
  593. }
  594. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  595. {
  596. struct extent_buffer *eb;
  597. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  598. eb = (struct extent_buffer *)page->private;
  599. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  600. eb->read_mirror = failed_mirror;
  601. atomic_dec(&eb->io_pages);
  602. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  603. btree_readahead_hook(root, eb, eb->start, -EIO);
  604. return -EIO; /* we fixed nothing */
  605. }
  606. static void end_workqueue_bio(struct bio *bio, int err)
  607. {
  608. struct end_io_wq *end_io_wq = bio->bi_private;
  609. struct btrfs_fs_info *fs_info;
  610. fs_info = end_io_wq->info;
  611. end_io_wq->error = err;
  612. end_io_wq->work.func = end_workqueue_fn;
  613. end_io_wq->work.flags = 0;
  614. if (bio->bi_rw & REQ_WRITE) {
  615. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  616. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  617. &end_io_wq->work);
  618. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  619. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  620. &end_io_wq->work);
  621. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  622. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  623. &end_io_wq->work);
  624. else
  625. btrfs_queue_worker(&fs_info->endio_write_workers,
  626. &end_io_wq->work);
  627. } else {
  628. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  629. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  630. &end_io_wq->work);
  631. else if (end_io_wq->metadata)
  632. btrfs_queue_worker(&fs_info->endio_meta_workers,
  633. &end_io_wq->work);
  634. else
  635. btrfs_queue_worker(&fs_info->endio_workers,
  636. &end_io_wq->work);
  637. }
  638. }
  639. /*
  640. * For the metadata arg you want
  641. *
  642. * 0 - if data
  643. * 1 - if normal metadta
  644. * 2 - if writing to the free space cache area
  645. * 3 - raid parity work
  646. */
  647. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  648. int metadata)
  649. {
  650. struct end_io_wq *end_io_wq;
  651. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  652. if (!end_io_wq)
  653. return -ENOMEM;
  654. end_io_wq->private = bio->bi_private;
  655. end_io_wq->end_io = bio->bi_end_io;
  656. end_io_wq->info = info;
  657. end_io_wq->error = 0;
  658. end_io_wq->bio = bio;
  659. end_io_wq->metadata = metadata;
  660. bio->bi_private = end_io_wq;
  661. bio->bi_end_io = end_workqueue_bio;
  662. return 0;
  663. }
  664. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  665. {
  666. unsigned long limit = min_t(unsigned long,
  667. info->workers.max_workers,
  668. info->fs_devices->open_devices);
  669. return 256 * limit;
  670. }
  671. static void run_one_async_start(struct btrfs_work *work)
  672. {
  673. struct async_submit_bio *async;
  674. int ret;
  675. async = container_of(work, struct async_submit_bio, work);
  676. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  677. async->mirror_num, async->bio_flags,
  678. async->bio_offset);
  679. if (ret)
  680. async->error = ret;
  681. }
  682. static void run_one_async_done(struct btrfs_work *work)
  683. {
  684. struct btrfs_fs_info *fs_info;
  685. struct async_submit_bio *async;
  686. int limit;
  687. async = container_of(work, struct async_submit_bio, work);
  688. fs_info = BTRFS_I(async->inode)->root->fs_info;
  689. limit = btrfs_async_submit_limit(fs_info);
  690. limit = limit * 2 / 3;
  691. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  692. waitqueue_active(&fs_info->async_submit_wait))
  693. wake_up(&fs_info->async_submit_wait);
  694. /* If an error occured we just want to clean up the bio and move on */
  695. if (async->error) {
  696. bio_endio(async->bio, async->error);
  697. return;
  698. }
  699. async->submit_bio_done(async->inode, async->rw, async->bio,
  700. async->mirror_num, async->bio_flags,
  701. async->bio_offset);
  702. }
  703. static void run_one_async_free(struct btrfs_work *work)
  704. {
  705. struct async_submit_bio *async;
  706. async = container_of(work, struct async_submit_bio, work);
  707. kfree(async);
  708. }
  709. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  710. int rw, struct bio *bio, int mirror_num,
  711. unsigned long bio_flags,
  712. u64 bio_offset,
  713. extent_submit_bio_hook_t *submit_bio_start,
  714. extent_submit_bio_hook_t *submit_bio_done)
  715. {
  716. struct async_submit_bio *async;
  717. async = kmalloc(sizeof(*async), GFP_NOFS);
  718. if (!async)
  719. return -ENOMEM;
  720. async->inode = inode;
  721. async->rw = rw;
  722. async->bio = bio;
  723. async->mirror_num = mirror_num;
  724. async->submit_bio_start = submit_bio_start;
  725. async->submit_bio_done = submit_bio_done;
  726. async->work.func = run_one_async_start;
  727. async->work.ordered_func = run_one_async_done;
  728. async->work.ordered_free = run_one_async_free;
  729. async->work.flags = 0;
  730. async->bio_flags = bio_flags;
  731. async->bio_offset = bio_offset;
  732. async->error = 0;
  733. atomic_inc(&fs_info->nr_async_submits);
  734. if (rw & REQ_SYNC)
  735. btrfs_set_work_high_prio(&async->work);
  736. btrfs_queue_worker(&fs_info->workers, &async->work);
  737. while (atomic_read(&fs_info->async_submit_draining) &&
  738. atomic_read(&fs_info->nr_async_submits)) {
  739. wait_event(fs_info->async_submit_wait,
  740. (atomic_read(&fs_info->nr_async_submits) == 0));
  741. }
  742. return 0;
  743. }
  744. static int btree_csum_one_bio(struct bio *bio)
  745. {
  746. struct bio_vec *bvec = bio->bi_io_vec;
  747. int bio_index = 0;
  748. struct btrfs_root *root;
  749. int ret = 0;
  750. WARN_ON(bio->bi_vcnt <= 0);
  751. while (bio_index < bio->bi_vcnt) {
  752. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  753. ret = csum_dirty_buffer(root, bvec->bv_page);
  754. if (ret)
  755. break;
  756. bio_index++;
  757. bvec++;
  758. }
  759. return ret;
  760. }
  761. static int __btree_submit_bio_start(struct inode *inode, int rw,
  762. struct bio *bio, int mirror_num,
  763. unsigned long bio_flags,
  764. u64 bio_offset)
  765. {
  766. /*
  767. * when we're called for a write, we're already in the async
  768. * submission context. Just jump into btrfs_map_bio
  769. */
  770. return btree_csum_one_bio(bio);
  771. }
  772. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  773. int mirror_num, unsigned long bio_flags,
  774. u64 bio_offset)
  775. {
  776. int ret;
  777. /*
  778. * when we're called for a write, we're already in the async
  779. * submission context. Just jump into btrfs_map_bio
  780. */
  781. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  782. if (ret)
  783. bio_endio(bio, ret);
  784. return ret;
  785. }
  786. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  787. {
  788. if (bio_flags & EXTENT_BIO_TREE_LOG)
  789. return 0;
  790. #ifdef CONFIG_X86
  791. if (cpu_has_xmm4_2)
  792. return 0;
  793. #endif
  794. return 1;
  795. }
  796. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  797. int mirror_num, unsigned long bio_flags,
  798. u64 bio_offset)
  799. {
  800. int async = check_async_write(inode, bio_flags);
  801. int ret;
  802. if (!(rw & REQ_WRITE)) {
  803. /*
  804. * called for a read, do the setup so that checksum validation
  805. * can happen in the async kernel threads
  806. */
  807. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  808. bio, 1);
  809. if (ret)
  810. goto out_w_error;
  811. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  812. mirror_num, 0);
  813. } else if (!async) {
  814. ret = btree_csum_one_bio(bio);
  815. if (ret)
  816. goto out_w_error;
  817. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  818. mirror_num, 0);
  819. } else {
  820. /*
  821. * kthread helpers are used to submit writes so that
  822. * checksumming can happen in parallel across all CPUs
  823. */
  824. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  825. inode, rw, bio, mirror_num, 0,
  826. bio_offset,
  827. __btree_submit_bio_start,
  828. __btree_submit_bio_done);
  829. }
  830. if (ret) {
  831. out_w_error:
  832. bio_endio(bio, ret);
  833. }
  834. return ret;
  835. }
  836. #ifdef CONFIG_MIGRATION
  837. static int btree_migratepage(struct address_space *mapping,
  838. struct page *newpage, struct page *page,
  839. enum migrate_mode mode)
  840. {
  841. /*
  842. * we can't safely write a btree page from here,
  843. * we haven't done the locking hook
  844. */
  845. if (PageDirty(page))
  846. return -EAGAIN;
  847. /*
  848. * Buffers may be managed in a filesystem specific way.
  849. * We must have no buffers or drop them.
  850. */
  851. if (page_has_private(page) &&
  852. !try_to_release_page(page, GFP_KERNEL))
  853. return -EAGAIN;
  854. return migrate_page(mapping, newpage, page, mode);
  855. }
  856. #endif
  857. static int btree_writepages(struct address_space *mapping,
  858. struct writeback_control *wbc)
  859. {
  860. struct extent_io_tree *tree;
  861. struct btrfs_fs_info *fs_info;
  862. int ret;
  863. tree = &BTRFS_I(mapping->host)->io_tree;
  864. if (wbc->sync_mode == WB_SYNC_NONE) {
  865. if (wbc->for_kupdate)
  866. return 0;
  867. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  868. /* this is a bit racy, but that's ok */
  869. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  870. BTRFS_DIRTY_METADATA_THRESH);
  871. if (ret < 0)
  872. return 0;
  873. }
  874. return btree_write_cache_pages(mapping, wbc);
  875. }
  876. static int btree_readpage(struct file *file, struct page *page)
  877. {
  878. struct extent_io_tree *tree;
  879. tree = &BTRFS_I(page->mapping->host)->io_tree;
  880. return extent_read_full_page(tree, page, btree_get_extent, 0);
  881. }
  882. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  883. {
  884. if (PageWriteback(page) || PageDirty(page))
  885. return 0;
  886. return try_release_extent_buffer(page);
  887. }
  888. static void btree_invalidatepage(struct page *page, unsigned int offset,
  889. unsigned int length)
  890. {
  891. struct extent_io_tree *tree;
  892. tree = &BTRFS_I(page->mapping->host)->io_tree;
  893. extent_invalidatepage(tree, page, offset);
  894. btree_releasepage(page, GFP_NOFS);
  895. if (PagePrivate(page)) {
  896. printk(KERN_WARNING "btrfs warning page private not zero "
  897. "on page %llu\n", (unsigned long long)page_offset(page));
  898. ClearPagePrivate(page);
  899. set_page_private(page, 0);
  900. page_cache_release(page);
  901. }
  902. }
  903. static int btree_set_page_dirty(struct page *page)
  904. {
  905. #ifdef DEBUG
  906. struct extent_buffer *eb;
  907. BUG_ON(!PagePrivate(page));
  908. eb = (struct extent_buffer *)page->private;
  909. BUG_ON(!eb);
  910. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  911. BUG_ON(!atomic_read(&eb->refs));
  912. btrfs_assert_tree_locked(eb);
  913. #endif
  914. return __set_page_dirty_nobuffers(page);
  915. }
  916. static const struct address_space_operations btree_aops = {
  917. .readpage = btree_readpage,
  918. .writepages = btree_writepages,
  919. .releasepage = btree_releasepage,
  920. .invalidatepage = btree_invalidatepage,
  921. #ifdef CONFIG_MIGRATION
  922. .migratepage = btree_migratepage,
  923. #endif
  924. .set_page_dirty = btree_set_page_dirty,
  925. };
  926. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  927. u64 parent_transid)
  928. {
  929. struct extent_buffer *buf = NULL;
  930. struct inode *btree_inode = root->fs_info->btree_inode;
  931. int ret = 0;
  932. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  933. if (!buf)
  934. return 0;
  935. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  936. buf, 0, WAIT_NONE, btree_get_extent, 0);
  937. free_extent_buffer(buf);
  938. return ret;
  939. }
  940. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  941. int mirror_num, struct extent_buffer **eb)
  942. {
  943. struct extent_buffer *buf = NULL;
  944. struct inode *btree_inode = root->fs_info->btree_inode;
  945. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  946. int ret;
  947. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  948. if (!buf)
  949. return 0;
  950. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  951. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  952. btree_get_extent, mirror_num);
  953. if (ret) {
  954. free_extent_buffer(buf);
  955. return ret;
  956. }
  957. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  958. free_extent_buffer(buf);
  959. return -EIO;
  960. } else if (extent_buffer_uptodate(buf)) {
  961. *eb = buf;
  962. } else {
  963. free_extent_buffer(buf);
  964. }
  965. return 0;
  966. }
  967. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  968. u64 bytenr, u32 blocksize)
  969. {
  970. struct inode *btree_inode = root->fs_info->btree_inode;
  971. struct extent_buffer *eb;
  972. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr);
  973. return eb;
  974. }
  975. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  976. u64 bytenr, u32 blocksize)
  977. {
  978. struct inode *btree_inode = root->fs_info->btree_inode;
  979. struct extent_buffer *eb;
  980. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  981. bytenr, blocksize);
  982. return eb;
  983. }
  984. int btrfs_write_tree_block(struct extent_buffer *buf)
  985. {
  986. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  987. buf->start + buf->len - 1);
  988. }
  989. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  990. {
  991. return filemap_fdatawait_range(buf->pages[0]->mapping,
  992. buf->start, buf->start + buf->len - 1);
  993. }
  994. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  995. u32 blocksize, u64 parent_transid)
  996. {
  997. struct extent_buffer *buf = NULL;
  998. int ret;
  999. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1000. if (!buf)
  1001. return NULL;
  1002. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1003. if (ret) {
  1004. free_extent_buffer(buf);
  1005. return NULL;
  1006. }
  1007. return buf;
  1008. }
  1009. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1010. struct extent_buffer *buf)
  1011. {
  1012. struct btrfs_fs_info *fs_info = root->fs_info;
  1013. if (btrfs_header_generation(buf) ==
  1014. fs_info->running_transaction->transid) {
  1015. btrfs_assert_tree_locked(buf);
  1016. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1017. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1018. -buf->len,
  1019. fs_info->dirty_metadata_batch);
  1020. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1021. btrfs_set_lock_blocking(buf);
  1022. clear_extent_buffer_dirty(buf);
  1023. }
  1024. }
  1025. }
  1026. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1027. u32 stripesize, struct btrfs_root *root,
  1028. struct btrfs_fs_info *fs_info,
  1029. u64 objectid)
  1030. {
  1031. root->node = NULL;
  1032. root->commit_root = NULL;
  1033. root->sectorsize = sectorsize;
  1034. root->nodesize = nodesize;
  1035. root->leafsize = leafsize;
  1036. root->stripesize = stripesize;
  1037. root->ref_cows = 0;
  1038. root->track_dirty = 0;
  1039. root->in_radix = 0;
  1040. root->orphan_item_inserted = 0;
  1041. root->orphan_cleanup_state = 0;
  1042. root->objectid = objectid;
  1043. root->last_trans = 0;
  1044. root->highest_objectid = 0;
  1045. root->nr_delalloc_inodes = 0;
  1046. root->nr_ordered_extents = 0;
  1047. root->name = NULL;
  1048. root->inode_tree = RB_ROOT;
  1049. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1050. root->block_rsv = NULL;
  1051. root->orphan_block_rsv = NULL;
  1052. INIT_LIST_HEAD(&root->dirty_list);
  1053. INIT_LIST_HEAD(&root->root_list);
  1054. INIT_LIST_HEAD(&root->delalloc_inodes);
  1055. INIT_LIST_HEAD(&root->delalloc_root);
  1056. INIT_LIST_HEAD(&root->ordered_extents);
  1057. INIT_LIST_HEAD(&root->ordered_root);
  1058. INIT_LIST_HEAD(&root->logged_list[0]);
  1059. INIT_LIST_HEAD(&root->logged_list[1]);
  1060. spin_lock_init(&root->orphan_lock);
  1061. spin_lock_init(&root->inode_lock);
  1062. spin_lock_init(&root->delalloc_lock);
  1063. spin_lock_init(&root->ordered_extent_lock);
  1064. spin_lock_init(&root->accounting_lock);
  1065. spin_lock_init(&root->log_extents_lock[0]);
  1066. spin_lock_init(&root->log_extents_lock[1]);
  1067. mutex_init(&root->objectid_mutex);
  1068. mutex_init(&root->log_mutex);
  1069. init_waitqueue_head(&root->log_writer_wait);
  1070. init_waitqueue_head(&root->log_commit_wait[0]);
  1071. init_waitqueue_head(&root->log_commit_wait[1]);
  1072. atomic_set(&root->log_commit[0], 0);
  1073. atomic_set(&root->log_commit[1], 0);
  1074. atomic_set(&root->log_writers, 0);
  1075. atomic_set(&root->log_batch, 0);
  1076. atomic_set(&root->orphan_inodes, 0);
  1077. atomic_set(&root->refs, 1);
  1078. root->log_transid = 0;
  1079. root->last_log_commit = 0;
  1080. if (fs_info)
  1081. extent_io_tree_init(&root->dirty_log_pages,
  1082. fs_info->btree_inode->i_mapping);
  1083. memset(&root->root_key, 0, sizeof(root->root_key));
  1084. memset(&root->root_item, 0, sizeof(root->root_item));
  1085. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1086. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1087. if (fs_info)
  1088. root->defrag_trans_start = fs_info->generation;
  1089. else
  1090. root->defrag_trans_start = 0;
  1091. init_completion(&root->kobj_unregister);
  1092. root->defrag_running = 0;
  1093. root->root_key.objectid = objectid;
  1094. root->anon_dev = 0;
  1095. spin_lock_init(&root->root_item_lock);
  1096. }
  1097. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1098. {
  1099. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1100. if (root)
  1101. root->fs_info = fs_info;
  1102. return root;
  1103. }
  1104. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1105. /* Should only be used by the testing infrastructure */
  1106. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1107. {
  1108. struct btrfs_root *root;
  1109. root = btrfs_alloc_root(NULL);
  1110. if (!root)
  1111. return ERR_PTR(-ENOMEM);
  1112. __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
  1113. root->dummy_root = 1;
  1114. return root;
  1115. }
  1116. #endif
  1117. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1118. struct btrfs_fs_info *fs_info,
  1119. u64 objectid)
  1120. {
  1121. struct extent_buffer *leaf;
  1122. struct btrfs_root *tree_root = fs_info->tree_root;
  1123. struct btrfs_root *root;
  1124. struct btrfs_key key;
  1125. int ret = 0;
  1126. u64 bytenr;
  1127. uuid_le uuid;
  1128. root = btrfs_alloc_root(fs_info);
  1129. if (!root)
  1130. return ERR_PTR(-ENOMEM);
  1131. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1132. tree_root->sectorsize, tree_root->stripesize,
  1133. root, fs_info, objectid);
  1134. root->root_key.objectid = objectid;
  1135. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1136. root->root_key.offset = 0;
  1137. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1138. 0, objectid, NULL, 0, 0, 0);
  1139. if (IS_ERR(leaf)) {
  1140. ret = PTR_ERR(leaf);
  1141. leaf = NULL;
  1142. goto fail;
  1143. }
  1144. bytenr = leaf->start;
  1145. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1146. btrfs_set_header_bytenr(leaf, leaf->start);
  1147. btrfs_set_header_generation(leaf, trans->transid);
  1148. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1149. btrfs_set_header_owner(leaf, objectid);
  1150. root->node = leaf;
  1151. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1152. BTRFS_FSID_SIZE);
  1153. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1154. btrfs_header_chunk_tree_uuid(leaf),
  1155. BTRFS_UUID_SIZE);
  1156. btrfs_mark_buffer_dirty(leaf);
  1157. root->commit_root = btrfs_root_node(root);
  1158. root->track_dirty = 1;
  1159. root->root_item.flags = 0;
  1160. root->root_item.byte_limit = 0;
  1161. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1162. btrfs_set_root_generation(&root->root_item, trans->transid);
  1163. btrfs_set_root_level(&root->root_item, 0);
  1164. btrfs_set_root_refs(&root->root_item, 1);
  1165. btrfs_set_root_used(&root->root_item, leaf->len);
  1166. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1167. btrfs_set_root_dirid(&root->root_item, 0);
  1168. uuid_le_gen(&uuid);
  1169. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1170. root->root_item.drop_level = 0;
  1171. key.objectid = objectid;
  1172. key.type = BTRFS_ROOT_ITEM_KEY;
  1173. key.offset = 0;
  1174. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1175. if (ret)
  1176. goto fail;
  1177. btrfs_tree_unlock(leaf);
  1178. return root;
  1179. fail:
  1180. if (leaf) {
  1181. btrfs_tree_unlock(leaf);
  1182. free_extent_buffer(leaf);
  1183. }
  1184. kfree(root);
  1185. return ERR_PTR(ret);
  1186. }
  1187. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1188. struct btrfs_fs_info *fs_info)
  1189. {
  1190. struct btrfs_root *root;
  1191. struct btrfs_root *tree_root = fs_info->tree_root;
  1192. struct extent_buffer *leaf;
  1193. root = btrfs_alloc_root(fs_info);
  1194. if (!root)
  1195. return ERR_PTR(-ENOMEM);
  1196. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1197. tree_root->sectorsize, tree_root->stripesize,
  1198. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1199. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1200. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1201. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1202. /*
  1203. * log trees do not get reference counted because they go away
  1204. * before a real commit is actually done. They do store pointers
  1205. * to file data extents, and those reference counts still get
  1206. * updated (along with back refs to the log tree).
  1207. */
  1208. root->ref_cows = 0;
  1209. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1210. BTRFS_TREE_LOG_OBJECTID, NULL,
  1211. 0, 0, 0);
  1212. if (IS_ERR(leaf)) {
  1213. kfree(root);
  1214. return ERR_CAST(leaf);
  1215. }
  1216. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1217. btrfs_set_header_bytenr(leaf, leaf->start);
  1218. btrfs_set_header_generation(leaf, trans->transid);
  1219. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1220. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1221. root->node = leaf;
  1222. write_extent_buffer(root->node, root->fs_info->fsid,
  1223. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1224. btrfs_mark_buffer_dirty(root->node);
  1225. btrfs_tree_unlock(root->node);
  1226. return root;
  1227. }
  1228. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1229. struct btrfs_fs_info *fs_info)
  1230. {
  1231. struct btrfs_root *log_root;
  1232. log_root = alloc_log_tree(trans, fs_info);
  1233. if (IS_ERR(log_root))
  1234. return PTR_ERR(log_root);
  1235. WARN_ON(fs_info->log_root_tree);
  1236. fs_info->log_root_tree = log_root;
  1237. return 0;
  1238. }
  1239. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1240. struct btrfs_root *root)
  1241. {
  1242. struct btrfs_root *log_root;
  1243. struct btrfs_inode_item *inode_item;
  1244. log_root = alloc_log_tree(trans, root->fs_info);
  1245. if (IS_ERR(log_root))
  1246. return PTR_ERR(log_root);
  1247. log_root->last_trans = trans->transid;
  1248. log_root->root_key.offset = root->root_key.objectid;
  1249. inode_item = &log_root->root_item.inode;
  1250. btrfs_set_stack_inode_generation(inode_item, 1);
  1251. btrfs_set_stack_inode_size(inode_item, 3);
  1252. btrfs_set_stack_inode_nlink(inode_item, 1);
  1253. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1254. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1255. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1256. WARN_ON(root->log_root);
  1257. root->log_root = log_root;
  1258. root->log_transid = 0;
  1259. root->last_log_commit = 0;
  1260. return 0;
  1261. }
  1262. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1263. struct btrfs_key *key)
  1264. {
  1265. struct btrfs_root *root;
  1266. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1267. struct btrfs_path *path;
  1268. u64 generation;
  1269. u32 blocksize;
  1270. int ret;
  1271. path = btrfs_alloc_path();
  1272. if (!path)
  1273. return ERR_PTR(-ENOMEM);
  1274. root = btrfs_alloc_root(fs_info);
  1275. if (!root) {
  1276. ret = -ENOMEM;
  1277. goto alloc_fail;
  1278. }
  1279. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1280. tree_root->sectorsize, tree_root->stripesize,
  1281. root, fs_info, key->objectid);
  1282. ret = btrfs_find_root(tree_root, key, path,
  1283. &root->root_item, &root->root_key);
  1284. if (ret) {
  1285. if (ret > 0)
  1286. ret = -ENOENT;
  1287. goto find_fail;
  1288. }
  1289. generation = btrfs_root_generation(&root->root_item);
  1290. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1291. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1292. blocksize, generation);
  1293. if (!root->node) {
  1294. ret = -ENOMEM;
  1295. goto find_fail;
  1296. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1297. ret = -EIO;
  1298. goto read_fail;
  1299. }
  1300. root->commit_root = btrfs_root_node(root);
  1301. out:
  1302. btrfs_free_path(path);
  1303. return root;
  1304. read_fail:
  1305. free_extent_buffer(root->node);
  1306. find_fail:
  1307. kfree(root);
  1308. alloc_fail:
  1309. root = ERR_PTR(ret);
  1310. goto out;
  1311. }
  1312. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1313. struct btrfs_key *location)
  1314. {
  1315. struct btrfs_root *root;
  1316. root = btrfs_read_tree_root(tree_root, location);
  1317. if (IS_ERR(root))
  1318. return root;
  1319. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1320. root->ref_cows = 1;
  1321. btrfs_check_and_init_root_item(&root->root_item);
  1322. }
  1323. return root;
  1324. }
  1325. int btrfs_init_fs_root(struct btrfs_root *root)
  1326. {
  1327. int ret;
  1328. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1329. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1330. GFP_NOFS);
  1331. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1332. ret = -ENOMEM;
  1333. goto fail;
  1334. }
  1335. btrfs_init_free_ino_ctl(root);
  1336. mutex_init(&root->fs_commit_mutex);
  1337. spin_lock_init(&root->cache_lock);
  1338. init_waitqueue_head(&root->cache_wait);
  1339. ret = get_anon_bdev(&root->anon_dev);
  1340. if (ret)
  1341. goto fail;
  1342. return 0;
  1343. fail:
  1344. kfree(root->free_ino_ctl);
  1345. kfree(root->free_ino_pinned);
  1346. return ret;
  1347. }
  1348. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1349. u64 root_id)
  1350. {
  1351. struct btrfs_root *root;
  1352. spin_lock(&fs_info->fs_roots_radix_lock);
  1353. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1354. (unsigned long)root_id);
  1355. spin_unlock(&fs_info->fs_roots_radix_lock);
  1356. return root;
  1357. }
  1358. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1359. struct btrfs_root *root)
  1360. {
  1361. int ret;
  1362. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1363. if (ret)
  1364. return ret;
  1365. spin_lock(&fs_info->fs_roots_radix_lock);
  1366. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1367. (unsigned long)root->root_key.objectid,
  1368. root);
  1369. if (ret == 0)
  1370. root->in_radix = 1;
  1371. spin_unlock(&fs_info->fs_roots_radix_lock);
  1372. radix_tree_preload_end();
  1373. return ret;
  1374. }
  1375. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1376. struct btrfs_key *location,
  1377. bool check_ref)
  1378. {
  1379. struct btrfs_root *root;
  1380. int ret;
  1381. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1382. return fs_info->tree_root;
  1383. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1384. return fs_info->extent_root;
  1385. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1386. return fs_info->chunk_root;
  1387. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1388. return fs_info->dev_root;
  1389. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1390. return fs_info->csum_root;
  1391. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1392. return fs_info->quota_root ? fs_info->quota_root :
  1393. ERR_PTR(-ENOENT);
  1394. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1395. return fs_info->uuid_root ? fs_info->uuid_root :
  1396. ERR_PTR(-ENOENT);
  1397. again:
  1398. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1399. if (root) {
  1400. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1401. return ERR_PTR(-ENOENT);
  1402. return root;
  1403. }
  1404. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1405. if (IS_ERR(root))
  1406. return root;
  1407. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1408. ret = -ENOENT;
  1409. goto fail;
  1410. }
  1411. ret = btrfs_init_fs_root(root);
  1412. if (ret)
  1413. goto fail;
  1414. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1415. if (ret < 0)
  1416. goto fail;
  1417. if (ret == 0)
  1418. root->orphan_item_inserted = 1;
  1419. ret = btrfs_insert_fs_root(fs_info, root);
  1420. if (ret) {
  1421. if (ret == -EEXIST) {
  1422. free_fs_root(root);
  1423. goto again;
  1424. }
  1425. goto fail;
  1426. }
  1427. return root;
  1428. fail:
  1429. free_fs_root(root);
  1430. return ERR_PTR(ret);
  1431. }
  1432. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1433. {
  1434. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1435. int ret = 0;
  1436. struct btrfs_device *device;
  1437. struct backing_dev_info *bdi;
  1438. rcu_read_lock();
  1439. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1440. if (!device->bdev)
  1441. continue;
  1442. bdi = blk_get_backing_dev_info(device->bdev);
  1443. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1444. ret = 1;
  1445. break;
  1446. }
  1447. }
  1448. rcu_read_unlock();
  1449. return ret;
  1450. }
  1451. /*
  1452. * If this fails, caller must call bdi_destroy() to get rid of the
  1453. * bdi again.
  1454. */
  1455. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1456. {
  1457. int err;
  1458. bdi->capabilities = BDI_CAP_MAP_COPY;
  1459. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1460. if (err)
  1461. return err;
  1462. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1463. bdi->congested_fn = btrfs_congested_fn;
  1464. bdi->congested_data = info;
  1465. return 0;
  1466. }
  1467. /*
  1468. * called by the kthread helper functions to finally call the bio end_io
  1469. * functions. This is where read checksum verification actually happens
  1470. */
  1471. static void end_workqueue_fn(struct btrfs_work *work)
  1472. {
  1473. struct bio *bio;
  1474. struct end_io_wq *end_io_wq;
  1475. struct btrfs_fs_info *fs_info;
  1476. int error;
  1477. end_io_wq = container_of(work, struct end_io_wq, work);
  1478. bio = end_io_wq->bio;
  1479. fs_info = end_io_wq->info;
  1480. error = end_io_wq->error;
  1481. bio->bi_private = end_io_wq->private;
  1482. bio->bi_end_io = end_io_wq->end_io;
  1483. kfree(end_io_wq);
  1484. bio_endio(bio, error);
  1485. }
  1486. static int cleaner_kthread(void *arg)
  1487. {
  1488. struct btrfs_root *root = arg;
  1489. int again;
  1490. do {
  1491. again = 0;
  1492. /* Make the cleaner go to sleep early. */
  1493. if (btrfs_need_cleaner_sleep(root))
  1494. goto sleep;
  1495. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1496. goto sleep;
  1497. /*
  1498. * Avoid the problem that we change the status of the fs
  1499. * during the above check and trylock.
  1500. */
  1501. if (btrfs_need_cleaner_sleep(root)) {
  1502. mutex_unlock(&root->fs_info->cleaner_mutex);
  1503. goto sleep;
  1504. }
  1505. btrfs_run_delayed_iputs(root);
  1506. again = btrfs_clean_one_deleted_snapshot(root);
  1507. mutex_unlock(&root->fs_info->cleaner_mutex);
  1508. /*
  1509. * The defragger has dealt with the R/O remount and umount,
  1510. * needn't do anything special here.
  1511. */
  1512. btrfs_run_defrag_inodes(root->fs_info);
  1513. sleep:
  1514. if (!try_to_freeze() && !again) {
  1515. set_current_state(TASK_INTERRUPTIBLE);
  1516. if (!kthread_should_stop())
  1517. schedule();
  1518. __set_current_state(TASK_RUNNING);
  1519. }
  1520. } while (!kthread_should_stop());
  1521. return 0;
  1522. }
  1523. static int transaction_kthread(void *arg)
  1524. {
  1525. struct btrfs_root *root = arg;
  1526. struct btrfs_trans_handle *trans;
  1527. struct btrfs_transaction *cur;
  1528. u64 transid;
  1529. unsigned long now;
  1530. unsigned long delay;
  1531. bool cannot_commit;
  1532. do {
  1533. cannot_commit = false;
  1534. delay = HZ * root->fs_info->commit_interval;
  1535. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1536. spin_lock(&root->fs_info->trans_lock);
  1537. cur = root->fs_info->running_transaction;
  1538. if (!cur) {
  1539. spin_unlock(&root->fs_info->trans_lock);
  1540. goto sleep;
  1541. }
  1542. now = get_seconds();
  1543. if (cur->state < TRANS_STATE_BLOCKED &&
  1544. (now < cur->start_time ||
  1545. now - cur->start_time < root->fs_info->commit_interval)) {
  1546. spin_unlock(&root->fs_info->trans_lock);
  1547. delay = HZ * 5;
  1548. goto sleep;
  1549. }
  1550. transid = cur->transid;
  1551. spin_unlock(&root->fs_info->trans_lock);
  1552. /* If the file system is aborted, this will always fail. */
  1553. trans = btrfs_attach_transaction(root);
  1554. if (IS_ERR(trans)) {
  1555. if (PTR_ERR(trans) != -ENOENT)
  1556. cannot_commit = true;
  1557. goto sleep;
  1558. }
  1559. if (transid == trans->transid) {
  1560. btrfs_commit_transaction(trans, root);
  1561. } else {
  1562. btrfs_end_transaction(trans, root);
  1563. }
  1564. sleep:
  1565. wake_up_process(root->fs_info->cleaner_kthread);
  1566. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1567. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1568. &root->fs_info->fs_state)))
  1569. btrfs_cleanup_transaction(root);
  1570. if (!try_to_freeze()) {
  1571. set_current_state(TASK_INTERRUPTIBLE);
  1572. if (!kthread_should_stop() &&
  1573. (!btrfs_transaction_blocked(root->fs_info) ||
  1574. cannot_commit))
  1575. schedule_timeout(delay);
  1576. __set_current_state(TASK_RUNNING);
  1577. }
  1578. } while (!kthread_should_stop());
  1579. return 0;
  1580. }
  1581. /*
  1582. * this will find the highest generation in the array of
  1583. * root backups. The index of the highest array is returned,
  1584. * or -1 if we can't find anything.
  1585. *
  1586. * We check to make sure the array is valid by comparing the
  1587. * generation of the latest root in the array with the generation
  1588. * in the super block. If they don't match we pitch it.
  1589. */
  1590. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1591. {
  1592. u64 cur;
  1593. int newest_index = -1;
  1594. struct btrfs_root_backup *root_backup;
  1595. int i;
  1596. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1597. root_backup = info->super_copy->super_roots + i;
  1598. cur = btrfs_backup_tree_root_gen(root_backup);
  1599. if (cur == newest_gen)
  1600. newest_index = i;
  1601. }
  1602. /* check to see if we actually wrapped around */
  1603. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1604. root_backup = info->super_copy->super_roots;
  1605. cur = btrfs_backup_tree_root_gen(root_backup);
  1606. if (cur == newest_gen)
  1607. newest_index = 0;
  1608. }
  1609. return newest_index;
  1610. }
  1611. /*
  1612. * find the oldest backup so we know where to store new entries
  1613. * in the backup array. This will set the backup_root_index
  1614. * field in the fs_info struct
  1615. */
  1616. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1617. u64 newest_gen)
  1618. {
  1619. int newest_index = -1;
  1620. newest_index = find_newest_super_backup(info, newest_gen);
  1621. /* if there was garbage in there, just move along */
  1622. if (newest_index == -1) {
  1623. info->backup_root_index = 0;
  1624. } else {
  1625. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1626. }
  1627. }
  1628. /*
  1629. * copy all the root pointers into the super backup array.
  1630. * this will bump the backup pointer by one when it is
  1631. * done
  1632. */
  1633. static void backup_super_roots(struct btrfs_fs_info *info)
  1634. {
  1635. int next_backup;
  1636. struct btrfs_root_backup *root_backup;
  1637. int last_backup;
  1638. next_backup = info->backup_root_index;
  1639. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1640. BTRFS_NUM_BACKUP_ROOTS;
  1641. /*
  1642. * just overwrite the last backup if we're at the same generation
  1643. * this happens only at umount
  1644. */
  1645. root_backup = info->super_for_commit->super_roots + last_backup;
  1646. if (btrfs_backup_tree_root_gen(root_backup) ==
  1647. btrfs_header_generation(info->tree_root->node))
  1648. next_backup = last_backup;
  1649. root_backup = info->super_for_commit->super_roots + next_backup;
  1650. /*
  1651. * make sure all of our padding and empty slots get zero filled
  1652. * regardless of which ones we use today
  1653. */
  1654. memset(root_backup, 0, sizeof(*root_backup));
  1655. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1656. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1657. btrfs_set_backup_tree_root_gen(root_backup,
  1658. btrfs_header_generation(info->tree_root->node));
  1659. btrfs_set_backup_tree_root_level(root_backup,
  1660. btrfs_header_level(info->tree_root->node));
  1661. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1662. btrfs_set_backup_chunk_root_gen(root_backup,
  1663. btrfs_header_generation(info->chunk_root->node));
  1664. btrfs_set_backup_chunk_root_level(root_backup,
  1665. btrfs_header_level(info->chunk_root->node));
  1666. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1667. btrfs_set_backup_extent_root_gen(root_backup,
  1668. btrfs_header_generation(info->extent_root->node));
  1669. btrfs_set_backup_extent_root_level(root_backup,
  1670. btrfs_header_level(info->extent_root->node));
  1671. /*
  1672. * we might commit during log recovery, which happens before we set
  1673. * the fs_root. Make sure it is valid before we fill it in.
  1674. */
  1675. if (info->fs_root && info->fs_root->node) {
  1676. btrfs_set_backup_fs_root(root_backup,
  1677. info->fs_root->node->start);
  1678. btrfs_set_backup_fs_root_gen(root_backup,
  1679. btrfs_header_generation(info->fs_root->node));
  1680. btrfs_set_backup_fs_root_level(root_backup,
  1681. btrfs_header_level(info->fs_root->node));
  1682. }
  1683. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1684. btrfs_set_backup_dev_root_gen(root_backup,
  1685. btrfs_header_generation(info->dev_root->node));
  1686. btrfs_set_backup_dev_root_level(root_backup,
  1687. btrfs_header_level(info->dev_root->node));
  1688. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1689. btrfs_set_backup_csum_root_gen(root_backup,
  1690. btrfs_header_generation(info->csum_root->node));
  1691. btrfs_set_backup_csum_root_level(root_backup,
  1692. btrfs_header_level(info->csum_root->node));
  1693. btrfs_set_backup_total_bytes(root_backup,
  1694. btrfs_super_total_bytes(info->super_copy));
  1695. btrfs_set_backup_bytes_used(root_backup,
  1696. btrfs_super_bytes_used(info->super_copy));
  1697. btrfs_set_backup_num_devices(root_backup,
  1698. btrfs_super_num_devices(info->super_copy));
  1699. /*
  1700. * if we don't copy this out to the super_copy, it won't get remembered
  1701. * for the next commit
  1702. */
  1703. memcpy(&info->super_copy->super_roots,
  1704. &info->super_for_commit->super_roots,
  1705. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1706. }
  1707. /*
  1708. * this copies info out of the root backup array and back into
  1709. * the in-memory super block. It is meant to help iterate through
  1710. * the array, so you send it the number of backups you've already
  1711. * tried and the last backup index you used.
  1712. *
  1713. * this returns -1 when it has tried all the backups
  1714. */
  1715. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1716. struct btrfs_super_block *super,
  1717. int *num_backups_tried, int *backup_index)
  1718. {
  1719. struct btrfs_root_backup *root_backup;
  1720. int newest = *backup_index;
  1721. if (*num_backups_tried == 0) {
  1722. u64 gen = btrfs_super_generation(super);
  1723. newest = find_newest_super_backup(info, gen);
  1724. if (newest == -1)
  1725. return -1;
  1726. *backup_index = newest;
  1727. *num_backups_tried = 1;
  1728. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1729. /* we've tried all the backups, all done */
  1730. return -1;
  1731. } else {
  1732. /* jump to the next oldest backup */
  1733. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1734. BTRFS_NUM_BACKUP_ROOTS;
  1735. *backup_index = newest;
  1736. *num_backups_tried += 1;
  1737. }
  1738. root_backup = super->super_roots + newest;
  1739. btrfs_set_super_generation(super,
  1740. btrfs_backup_tree_root_gen(root_backup));
  1741. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1742. btrfs_set_super_root_level(super,
  1743. btrfs_backup_tree_root_level(root_backup));
  1744. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1745. /*
  1746. * fixme: the total bytes and num_devices need to match or we should
  1747. * need a fsck
  1748. */
  1749. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1750. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1751. return 0;
  1752. }
  1753. /* helper to cleanup workers */
  1754. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1755. {
  1756. btrfs_stop_workers(&fs_info->generic_worker);
  1757. btrfs_stop_workers(&fs_info->fixup_workers);
  1758. btrfs_stop_workers(&fs_info->delalloc_workers);
  1759. btrfs_stop_workers(&fs_info->workers);
  1760. btrfs_stop_workers(&fs_info->endio_workers);
  1761. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1762. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1763. btrfs_stop_workers(&fs_info->rmw_workers);
  1764. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1765. btrfs_stop_workers(&fs_info->endio_write_workers);
  1766. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1767. btrfs_stop_workers(&fs_info->submit_workers);
  1768. btrfs_stop_workers(&fs_info->delayed_workers);
  1769. btrfs_stop_workers(&fs_info->caching_workers);
  1770. btrfs_stop_workers(&fs_info->readahead_workers);
  1771. btrfs_stop_workers(&fs_info->flush_workers);
  1772. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1773. }
  1774. static void free_root_extent_buffers(struct btrfs_root *root)
  1775. {
  1776. if (root) {
  1777. free_extent_buffer(root->node);
  1778. free_extent_buffer(root->commit_root);
  1779. root->node = NULL;
  1780. root->commit_root = NULL;
  1781. }
  1782. }
  1783. /* helper to cleanup tree roots */
  1784. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1785. {
  1786. free_root_extent_buffers(info->tree_root);
  1787. free_root_extent_buffers(info->dev_root);
  1788. free_root_extent_buffers(info->extent_root);
  1789. free_root_extent_buffers(info->csum_root);
  1790. free_root_extent_buffers(info->quota_root);
  1791. free_root_extent_buffers(info->uuid_root);
  1792. if (chunk_root)
  1793. free_root_extent_buffers(info->chunk_root);
  1794. }
  1795. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1796. {
  1797. int ret;
  1798. struct btrfs_root *gang[8];
  1799. int i;
  1800. while (!list_empty(&fs_info->dead_roots)) {
  1801. gang[0] = list_entry(fs_info->dead_roots.next,
  1802. struct btrfs_root, root_list);
  1803. list_del(&gang[0]->root_list);
  1804. if (gang[0]->in_radix) {
  1805. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1806. } else {
  1807. free_extent_buffer(gang[0]->node);
  1808. free_extent_buffer(gang[0]->commit_root);
  1809. btrfs_put_fs_root(gang[0]);
  1810. }
  1811. }
  1812. while (1) {
  1813. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1814. (void **)gang, 0,
  1815. ARRAY_SIZE(gang));
  1816. if (!ret)
  1817. break;
  1818. for (i = 0; i < ret; i++)
  1819. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1820. }
  1821. }
  1822. int open_ctree(struct super_block *sb,
  1823. struct btrfs_fs_devices *fs_devices,
  1824. char *options)
  1825. {
  1826. u32 sectorsize;
  1827. u32 nodesize;
  1828. u32 leafsize;
  1829. u32 blocksize;
  1830. u32 stripesize;
  1831. u64 generation;
  1832. u64 features;
  1833. struct btrfs_key location;
  1834. struct buffer_head *bh;
  1835. struct btrfs_super_block *disk_super;
  1836. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1837. struct btrfs_root *tree_root;
  1838. struct btrfs_root *extent_root;
  1839. struct btrfs_root *csum_root;
  1840. struct btrfs_root *chunk_root;
  1841. struct btrfs_root *dev_root;
  1842. struct btrfs_root *quota_root;
  1843. struct btrfs_root *uuid_root;
  1844. struct btrfs_root *log_tree_root;
  1845. int ret;
  1846. int err = -EINVAL;
  1847. int num_backups_tried = 0;
  1848. int backup_index = 0;
  1849. bool create_uuid_tree;
  1850. bool check_uuid_tree;
  1851. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1852. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1853. if (!tree_root || !chunk_root) {
  1854. err = -ENOMEM;
  1855. goto fail;
  1856. }
  1857. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1858. if (ret) {
  1859. err = ret;
  1860. goto fail;
  1861. }
  1862. ret = setup_bdi(fs_info, &fs_info->bdi);
  1863. if (ret) {
  1864. err = ret;
  1865. goto fail_srcu;
  1866. }
  1867. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1868. if (ret) {
  1869. err = ret;
  1870. goto fail_bdi;
  1871. }
  1872. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1873. (1 + ilog2(nr_cpu_ids));
  1874. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1875. if (ret) {
  1876. err = ret;
  1877. goto fail_dirty_metadata_bytes;
  1878. }
  1879. fs_info->btree_inode = new_inode(sb);
  1880. if (!fs_info->btree_inode) {
  1881. err = -ENOMEM;
  1882. goto fail_delalloc_bytes;
  1883. }
  1884. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1885. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1886. INIT_LIST_HEAD(&fs_info->trans_list);
  1887. INIT_LIST_HEAD(&fs_info->dead_roots);
  1888. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1889. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1890. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1891. spin_lock_init(&fs_info->delalloc_root_lock);
  1892. spin_lock_init(&fs_info->trans_lock);
  1893. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1894. spin_lock_init(&fs_info->delayed_iput_lock);
  1895. spin_lock_init(&fs_info->defrag_inodes_lock);
  1896. spin_lock_init(&fs_info->free_chunk_lock);
  1897. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1898. spin_lock_init(&fs_info->super_lock);
  1899. rwlock_init(&fs_info->tree_mod_log_lock);
  1900. mutex_init(&fs_info->reloc_mutex);
  1901. seqlock_init(&fs_info->profiles_lock);
  1902. init_completion(&fs_info->kobj_unregister);
  1903. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1904. INIT_LIST_HEAD(&fs_info->space_info);
  1905. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1906. btrfs_mapping_init(&fs_info->mapping_tree);
  1907. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1908. BTRFS_BLOCK_RSV_GLOBAL);
  1909. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1910. BTRFS_BLOCK_RSV_DELALLOC);
  1911. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1912. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1913. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1914. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1915. BTRFS_BLOCK_RSV_DELOPS);
  1916. atomic_set(&fs_info->nr_async_submits, 0);
  1917. atomic_set(&fs_info->async_delalloc_pages, 0);
  1918. atomic_set(&fs_info->async_submit_draining, 0);
  1919. atomic_set(&fs_info->nr_async_bios, 0);
  1920. atomic_set(&fs_info->defrag_running, 0);
  1921. atomic64_set(&fs_info->tree_mod_seq, 0);
  1922. fs_info->sb = sb;
  1923. fs_info->max_inline = 8192 * 1024;
  1924. fs_info->metadata_ratio = 0;
  1925. fs_info->defrag_inodes = RB_ROOT;
  1926. fs_info->free_chunk_space = 0;
  1927. fs_info->tree_mod_log = RB_ROOT;
  1928. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1929. /* readahead state */
  1930. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1931. spin_lock_init(&fs_info->reada_lock);
  1932. fs_info->thread_pool_size = min_t(unsigned long,
  1933. num_online_cpus() + 2, 8);
  1934. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1935. spin_lock_init(&fs_info->ordered_root_lock);
  1936. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1937. GFP_NOFS);
  1938. if (!fs_info->delayed_root) {
  1939. err = -ENOMEM;
  1940. goto fail_iput;
  1941. }
  1942. btrfs_init_delayed_root(fs_info->delayed_root);
  1943. mutex_init(&fs_info->scrub_lock);
  1944. atomic_set(&fs_info->scrubs_running, 0);
  1945. atomic_set(&fs_info->scrub_pause_req, 0);
  1946. atomic_set(&fs_info->scrubs_paused, 0);
  1947. atomic_set(&fs_info->scrub_cancel_req, 0);
  1948. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1949. fs_info->scrub_workers_refcnt = 0;
  1950. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1951. fs_info->check_integrity_print_mask = 0;
  1952. #endif
  1953. spin_lock_init(&fs_info->balance_lock);
  1954. mutex_init(&fs_info->balance_mutex);
  1955. atomic_set(&fs_info->balance_running, 0);
  1956. atomic_set(&fs_info->balance_pause_req, 0);
  1957. atomic_set(&fs_info->balance_cancel_req, 0);
  1958. fs_info->balance_ctl = NULL;
  1959. init_waitqueue_head(&fs_info->balance_wait_q);
  1960. sb->s_blocksize = 4096;
  1961. sb->s_blocksize_bits = blksize_bits(4096);
  1962. sb->s_bdi = &fs_info->bdi;
  1963. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1964. set_nlink(fs_info->btree_inode, 1);
  1965. /*
  1966. * we set the i_size on the btree inode to the max possible int.
  1967. * the real end of the address space is determined by all of
  1968. * the devices in the system
  1969. */
  1970. fs_info->btree_inode->i_size = OFFSET_MAX;
  1971. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1972. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1973. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1974. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1975. fs_info->btree_inode->i_mapping);
  1976. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1977. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1978. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1979. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1980. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1981. sizeof(struct btrfs_key));
  1982. set_bit(BTRFS_INODE_DUMMY,
  1983. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1984. btrfs_insert_inode_hash(fs_info->btree_inode);
  1985. spin_lock_init(&fs_info->block_group_cache_lock);
  1986. fs_info->block_group_cache_tree = RB_ROOT;
  1987. fs_info->first_logical_byte = (u64)-1;
  1988. extent_io_tree_init(&fs_info->freed_extents[0],
  1989. fs_info->btree_inode->i_mapping);
  1990. extent_io_tree_init(&fs_info->freed_extents[1],
  1991. fs_info->btree_inode->i_mapping);
  1992. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1993. fs_info->do_barriers = 1;
  1994. mutex_init(&fs_info->ordered_operations_mutex);
  1995. mutex_init(&fs_info->ordered_extent_flush_mutex);
  1996. mutex_init(&fs_info->tree_log_mutex);
  1997. mutex_init(&fs_info->chunk_mutex);
  1998. mutex_init(&fs_info->transaction_kthread_mutex);
  1999. mutex_init(&fs_info->cleaner_mutex);
  2000. mutex_init(&fs_info->volume_mutex);
  2001. init_rwsem(&fs_info->extent_commit_sem);
  2002. init_rwsem(&fs_info->cleanup_work_sem);
  2003. init_rwsem(&fs_info->subvol_sem);
  2004. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2005. fs_info->dev_replace.lock_owner = 0;
  2006. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2007. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2008. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2009. mutex_init(&fs_info->dev_replace.lock);
  2010. spin_lock_init(&fs_info->qgroup_lock);
  2011. mutex_init(&fs_info->qgroup_ioctl_lock);
  2012. fs_info->qgroup_tree = RB_ROOT;
  2013. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2014. fs_info->qgroup_seq = 1;
  2015. fs_info->quota_enabled = 0;
  2016. fs_info->pending_quota_state = 0;
  2017. fs_info->qgroup_ulist = NULL;
  2018. mutex_init(&fs_info->qgroup_rescan_lock);
  2019. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2020. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2021. init_waitqueue_head(&fs_info->transaction_throttle);
  2022. init_waitqueue_head(&fs_info->transaction_wait);
  2023. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2024. init_waitqueue_head(&fs_info->async_submit_wait);
  2025. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2026. if (ret) {
  2027. err = ret;
  2028. goto fail_alloc;
  2029. }
  2030. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2031. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2032. invalidate_bdev(fs_devices->latest_bdev);
  2033. /*
  2034. * Read super block and check the signature bytes only
  2035. */
  2036. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2037. if (!bh) {
  2038. err = -EINVAL;
  2039. goto fail_alloc;
  2040. }
  2041. /*
  2042. * We want to check superblock checksum, the type is stored inside.
  2043. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2044. */
  2045. if (btrfs_check_super_csum(bh->b_data)) {
  2046. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2047. err = -EINVAL;
  2048. goto fail_alloc;
  2049. }
  2050. /*
  2051. * super_copy is zeroed at allocation time and we never touch the
  2052. * following bytes up to INFO_SIZE, the checksum is calculated from
  2053. * the whole block of INFO_SIZE
  2054. */
  2055. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2056. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2057. sizeof(*fs_info->super_for_commit));
  2058. brelse(bh);
  2059. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2060. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2061. if (ret) {
  2062. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2063. err = -EINVAL;
  2064. goto fail_alloc;
  2065. }
  2066. disk_super = fs_info->super_copy;
  2067. if (!btrfs_super_root(disk_super))
  2068. goto fail_alloc;
  2069. /* check FS state, whether FS is broken. */
  2070. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2071. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2072. /*
  2073. * run through our array of backup supers and setup
  2074. * our ring pointer to the oldest one
  2075. */
  2076. generation = btrfs_super_generation(disk_super);
  2077. find_oldest_super_backup(fs_info, generation);
  2078. /*
  2079. * In the long term, we'll store the compression type in the super
  2080. * block, and it'll be used for per file compression control.
  2081. */
  2082. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2083. ret = btrfs_parse_options(tree_root, options);
  2084. if (ret) {
  2085. err = ret;
  2086. goto fail_alloc;
  2087. }
  2088. features = btrfs_super_incompat_flags(disk_super) &
  2089. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2090. if (features) {
  2091. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2092. "unsupported optional features (%Lx).\n",
  2093. features);
  2094. err = -EINVAL;
  2095. goto fail_alloc;
  2096. }
  2097. if (btrfs_super_leafsize(disk_super) !=
  2098. btrfs_super_nodesize(disk_super)) {
  2099. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2100. "blocksizes don't match. node %d leaf %d\n",
  2101. btrfs_super_nodesize(disk_super),
  2102. btrfs_super_leafsize(disk_super));
  2103. err = -EINVAL;
  2104. goto fail_alloc;
  2105. }
  2106. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2107. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2108. "blocksize (%d) was too large\n",
  2109. btrfs_super_leafsize(disk_super));
  2110. err = -EINVAL;
  2111. goto fail_alloc;
  2112. }
  2113. features = btrfs_super_incompat_flags(disk_super);
  2114. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2115. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2116. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2117. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2118. printk(KERN_ERR "btrfs: has skinny extents\n");
  2119. /*
  2120. * flag our filesystem as having big metadata blocks if
  2121. * they are bigger than the page size
  2122. */
  2123. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2124. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2125. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2126. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2127. }
  2128. nodesize = btrfs_super_nodesize(disk_super);
  2129. leafsize = btrfs_super_leafsize(disk_super);
  2130. sectorsize = btrfs_super_sectorsize(disk_super);
  2131. stripesize = btrfs_super_stripesize(disk_super);
  2132. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2133. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2134. /*
  2135. * mixed block groups end up with duplicate but slightly offset
  2136. * extent buffers for the same range. It leads to corruptions
  2137. */
  2138. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2139. (sectorsize != leafsize)) {
  2140. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2141. "are not allowed for mixed block groups on %s\n",
  2142. sb->s_id);
  2143. goto fail_alloc;
  2144. }
  2145. /*
  2146. * Needn't use the lock because there is no other task which will
  2147. * update the flag.
  2148. */
  2149. btrfs_set_super_incompat_flags(disk_super, features);
  2150. features = btrfs_super_compat_ro_flags(disk_super) &
  2151. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2152. if (!(sb->s_flags & MS_RDONLY) && features) {
  2153. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2154. "unsupported option features (%Lx).\n",
  2155. features);
  2156. err = -EINVAL;
  2157. goto fail_alloc;
  2158. }
  2159. btrfs_init_workers(&fs_info->generic_worker,
  2160. "genwork", 1, NULL);
  2161. btrfs_init_workers(&fs_info->workers, "worker",
  2162. fs_info->thread_pool_size,
  2163. &fs_info->generic_worker);
  2164. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2165. fs_info->thread_pool_size, NULL);
  2166. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2167. fs_info->thread_pool_size, NULL);
  2168. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2169. min_t(u64, fs_devices->num_devices,
  2170. fs_info->thread_pool_size), NULL);
  2171. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2172. fs_info->thread_pool_size, NULL);
  2173. /* a higher idle thresh on the submit workers makes it much more
  2174. * likely that bios will be send down in a sane order to the
  2175. * devices
  2176. */
  2177. fs_info->submit_workers.idle_thresh = 64;
  2178. fs_info->workers.idle_thresh = 16;
  2179. fs_info->workers.ordered = 1;
  2180. fs_info->delalloc_workers.idle_thresh = 2;
  2181. fs_info->delalloc_workers.ordered = 1;
  2182. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2183. &fs_info->generic_worker);
  2184. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2185. fs_info->thread_pool_size,
  2186. &fs_info->generic_worker);
  2187. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2188. fs_info->thread_pool_size,
  2189. &fs_info->generic_worker);
  2190. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2191. "endio-meta-write", fs_info->thread_pool_size,
  2192. &fs_info->generic_worker);
  2193. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2194. "endio-raid56", fs_info->thread_pool_size,
  2195. &fs_info->generic_worker);
  2196. btrfs_init_workers(&fs_info->rmw_workers,
  2197. "rmw", fs_info->thread_pool_size,
  2198. &fs_info->generic_worker);
  2199. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2200. fs_info->thread_pool_size,
  2201. &fs_info->generic_worker);
  2202. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2203. 1, &fs_info->generic_worker);
  2204. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2205. fs_info->thread_pool_size,
  2206. &fs_info->generic_worker);
  2207. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2208. fs_info->thread_pool_size,
  2209. &fs_info->generic_worker);
  2210. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2211. &fs_info->generic_worker);
  2212. /*
  2213. * endios are largely parallel and should have a very
  2214. * low idle thresh
  2215. */
  2216. fs_info->endio_workers.idle_thresh = 4;
  2217. fs_info->endio_meta_workers.idle_thresh = 4;
  2218. fs_info->endio_raid56_workers.idle_thresh = 4;
  2219. fs_info->rmw_workers.idle_thresh = 2;
  2220. fs_info->endio_write_workers.idle_thresh = 2;
  2221. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2222. fs_info->readahead_workers.idle_thresh = 2;
  2223. /*
  2224. * btrfs_start_workers can really only fail because of ENOMEM so just
  2225. * return -ENOMEM if any of these fail.
  2226. */
  2227. ret = btrfs_start_workers(&fs_info->workers);
  2228. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2229. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2230. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2231. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2232. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2233. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2234. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2235. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2236. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2237. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2238. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2239. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2240. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2241. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2242. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2243. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2244. if (ret) {
  2245. err = -ENOMEM;
  2246. goto fail_sb_buffer;
  2247. }
  2248. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2249. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2250. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2251. tree_root->nodesize = nodesize;
  2252. tree_root->leafsize = leafsize;
  2253. tree_root->sectorsize = sectorsize;
  2254. tree_root->stripesize = stripesize;
  2255. sb->s_blocksize = sectorsize;
  2256. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2257. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2258. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2259. goto fail_sb_buffer;
  2260. }
  2261. if (sectorsize != PAGE_SIZE) {
  2262. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2263. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2264. goto fail_sb_buffer;
  2265. }
  2266. mutex_lock(&fs_info->chunk_mutex);
  2267. ret = btrfs_read_sys_array(tree_root);
  2268. mutex_unlock(&fs_info->chunk_mutex);
  2269. if (ret) {
  2270. printk(KERN_WARNING "btrfs: failed to read the system "
  2271. "array on %s\n", sb->s_id);
  2272. goto fail_sb_buffer;
  2273. }
  2274. blocksize = btrfs_level_size(tree_root,
  2275. btrfs_super_chunk_root_level(disk_super));
  2276. generation = btrfs_super_chunk_root_generation(disk_super);
  2277. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2278. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2279. chunk_root->node = read_tree_block(chunk_root,
  2280. btrfs_super_chunk_root(disk_super),
  2281. blocksize, generation);
  2282. if (!chunk_root->node ||
  2283. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2284. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2285. sb->s_id);
  2286. goto fail_tree_roots;
  2287. }
  2288. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2289. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2290. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2291. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2292. ret = btrfs_read_chunk_tree(chunk_root);
  2293. if (ret) {
  2294. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2295. sb->s_id);
  2296. goto fail_tree_roots;
  2297. }
  2298. /*
  2299. * keep the device that is marked to be the target device for the
  2300. * dev_replace procedure
  2301. */
  2302. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2303. if (!fs_devices->latest_bdev) {
  2304. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2305. sb->s_id);
  2306. goto fail_tree_roots;
  2307. }
  2308. retry_root_backup:
  2309. blocksize = btrfs_level_size(tree_root,
  2310. btrfs_super_root_level(disk_super));
  2311. generation = btrfs_super_generation(disk_super);
  2312. tree_root->node = read_tree_block(tree_root,
  2313. btrfs_super_root(disk_super),
  2314. blocksize, generation);
  2315. if (!tree_root->node ||
  2316. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2317. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2318. sb->s_id);
  2319. goto recovery_tree_root;
  2320. }
  2321. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2322. tree_root->commit_root = btrfs_root_node(tree_root);
  2323. btrfs_set_root_refs(&tree_root->root_item, 1);
  2324. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2325. location.type = BTRFS_ROOT_ITEM_KEY;
  2326. location.offset = 0;
  2327. extent_root = btrfs_read_tree_root(tree_root, &location);
  2328. if (IS_ERR(extent_root)) {
  2329. ret = PTR_ERR(extent_root);
  2330. goto recovery_tree_root;
  2331. }
  2332. extent_root->track_dirty = 1;
  2333. fs_info->extent_root = extent_root;
  2334. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2335. dev_root = btrfs_read_tree_root(tree_root, &location);
  2336. if (IS_ERR(dev_root)) {
  2337. ret = PTR_ERR(dev_root);
  2338. goto recovery_tree_root;
  2339. }
  2340. dev_root->track_dirty = 1;
  2341. fs_info->dev_root = dev_root;
  2342. btrfs_init_devices_late(fs_info);
  2343. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2344. csum_root = btrfs_read_tree_root(tree_root, &location);
  2345. if (IS_ERR(csum_root)) {
  2346. ret = PTR_ERR(csum_root);
  2347. goto recovery_tree_root;
  2348. }
  2349. csum_root->track_dirty = 1;
  2350. fs_info->csum_root = csum_root;
  2351. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2352. quota_root = btrfs_read_tree_root(tree_root, &location);
  2353. if (!IS_ERR(quota_root)) {
  2354. quota_root->track_dirty = 1;
  2355. fs_info->quota_enabled = 1;
  2356. fs_info->pending_quota_state = 1;
  2357. fs_info->quota_root = quota_root;
  2358. }
  2359. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2360. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2361. if (IS_ERR(uuid_root)) {
  2362. ret = PTR_ERR(uuid_root);
  2363. if (ret != -ENOENT)
  2364. goto recovery_tree_root;
  2365. create_uuid_tree = true;
  2366. check_uuid_tree = false;
  2367. } else {
  2368. uuid_root->track_dirty = 1;
  2369. fs_info->uuid_root = uuid_root;
  2370. create_uuid_tree = false;
  2371. check_uuid_tree =
  2372. generation != btrfs_super_uuid_tree_generation(disk_super);
  2373. }
  2374. fs_info->generation = generation;
  2375. fs_info->last_trans_committed = generation;
  2376. ret = btrfs_recover_balance(fs_info);
  2377. if (ret) {
  2378. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2379. goto fail_block_groups;
  2380. }
  2381. ret = btrfs_init_dev_stats(fs_info);
  2382. if (ret) {
  2383. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2384. ret);
  2385. goto fail_block_groups;
  2386. }
  2387. ret = btrfs_init_dev_replace(fs_info);
  2388. if (ret) {
  2389. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2390. goto fail_block_groups;
  2391. }
  2392. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2393. ret = btrfs_init_space_info(fs_info);
  2394. if (ret) {
  2395. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2396. goto fail_block_groups;
  2397. }
  2398. ret = btrfs_read_block_groups(extent_root);
  2399. if (ret) {
  2400. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2401. goto fail_block_groups;
  2402. }
  2403. fs_info->num_tolerated_disk_barrier_failures =
  2404. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2405. if (fs_info->fs_devices->missing_devices >
  2406. fs_info->num_tolerated_disk_barrier_failures &&
  2407. !(sb->s_flags & MS_RDONLY)) {
  2408. printk(KERN_WARNING
  2409. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2410. goto fail_block_groups;
  2411. }
  2412. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2413. "btrfs-cleaner");
  2414. if (IS_ERR(fs_info->cleaner_kthread))
  2415. goto fail_block_groups;
  2416. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2417. tree_root,
  2418. "btrfs-transaction");
  2419. if (IS_ERR(fs_info->transaction_kthread))
  2420. goto fail_cleaner;
  2421. if (!btrfs_test_opt(tree_root, SSD) &&
  2422. !btrfs_test_opt(tree_root, NOSSD) &&
  2423. !fs_info->fs_devices->rotating) {
  2424. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2425. "mode\n");
  2426. btrfs_set_opt(fs_info->mount_opt, SSD);
  2427. }
  2428. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2429. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2430. ret = btrfsic_mount(tree_root, fs_devices,
  2431. btrfs_test_opt(tree_root,
  2432. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2433. 1 : 0,
  2434. fs_info->check_integrity_print_mask);
  2435. if (ret)
  2436. printk(KERN_WARNING "btrfs: failed to initialize"
  2437. " integrity check module %s\n", sb->s_id);
  2438. }
  2439. #endif
  2440. ret = btrfs_read_qgroup_config(fs_info);
  2441. if (ret)
  2442. goto fail_trans_kthread;
  2443. /* do not make disk changes in broken FS */
  2444. if (btrfs_super_log_root(disk_super) != 0) {
  2445. u64 bytenr = btrfs_super_log_root(disk_super);
  2446. if (fs_devices->rw_devices == 0) {
  2447. printk(KERN_WARNING "Btrfs log replay required "
  2448. "on RO media\n");
  2449. err = -EIO;
  2450. goto fail_qgroup;
  2451. }
  2452. blocksize =
  2453. btrfs_level_size(tree_root,
  2454. btrfs_super_log_root_level(disk_super));
  2455. log_tree_root = btrfs_alloc_root(fs_info);
  2456. if (!log_tree_root) {
  2457. err = -ENOMEM;
  2458. goto fail_qgroup;
  2459. }
  2460. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2461. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2462. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2463. blocksize,
  2464. generation + 1);
  2465. if (!log_tree_root->node ||
  2466. !extent_buffer_uptodate(log_tree_root->node)) {
  2467. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2468. free_extent_buffer(log_tree_root->node);
  2469. kfree(log_tree_root);
  2470. goto fail_trans_kthread;
  2471. }
  2472. /* returns with log_tree_root freed on success */
  2473. ret = btrfs_recover_log_trees(log_tree_root);
  2474. if (ret) {
  2475. btrfs_error(tree_root->fs_info, ret,
  2476. "Failed to recover log tree");
  2477. free_extent_buffer(log_tree_root->node);
  2478. kfree(log_tree_root);
  2479. goto fail_trans_kthread;
  2480. }
  2481. if (sb->s_flags & MS_RDONLY) {
  2482. ret = btrfs_commit_super(tree_root);
  2483. if (ret)
  2484. goto fail_trans_kthread;
  2485. }
  2486. }
  2487. ret = btrfs_find_orphan_roots(tree_root);
  2488. if (ret)
  2489. goto fail_trans_kthread;
  2490. if (!(sb->s_flags & MS_RDONLY)) {
  2491. ret = btrfs_cleanup_fs_roots(fs_info);
  2492. if (ret)
  2493. goto fail_trans_kthread;
  2494. ret = btrfs_recover_relocation(tree_root);
  2495. if (ret < 0) {
  2496. printk(KERN_WARNING
  2497. "btrfs: failed to recover relocation\n");
  2498. err = -EINVAL;
  2499. goto fail_qgroup;
  2500. }
  2501. }
  2502. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2503. location.type = BTRFS_ROOT_ITEM_KEY;
  2504. location.offset = 0;
  2505. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2506. if (IS_ERR(fs_info->fs_root)) {
  2507. err = PTR_ERR(fs_info->fs_root);
  2508. goto fail_qgroup;
  2509. }
  2510. if (sb->s_flags & MS_RDONLY)
  2511. return 0;
  2512. down_read(&fs_info->cleanup_work_sem);
  2513. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2514. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2515. up_read(&fs_info->cleanup_work_sem);
  2516. close_ctree(tree_root);
  2517. return ret;
  2518. }
  2519. up_read(&fs_info->cleanup_work_sem);
  2520. ret = btrfs_resume_balance_async(fs_info);
  2521. if (ret) {
  2522. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2523. close_ctree(tree_root);
  2524. return ret;
  2525. }
  2526. ret = btrfs_resume_dev_replace_async(fs_info);
  2527. if (ret) {
  2528. pr_warn("btrfs: failed to resume dev_replace\n");
  2529. close_ctree(tree_root);
  2530. return ret;
  2531. }
  2532. btrfs_qgroup_rescan_resume(fs_info);
  2533. if (create_uuid_tree) {
  2534. pr_info("btrfs: creating UUID tree\n");
  2535. ret = btrfs_create_uuid_tree(fs_info);
  2536. if (ret) {
  2537. pr_warn("btrfs: failed to create the UUID tree %d\n",
  2538. ret);
  2539. close_ctree(tree_root);
  2540. return ret;
  2541. }
  2542. } else if (check_uuid_tree ||
  2543. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2544. pr_info("btrfs: checking UUID tree\n");
  2545. ret = btrfs_check_uuid_tree(fs_info);
  2546. if (ret) {
  2547. pr_warn("btrfs: failed to check the UUID tree %d\n",
  2548. ret);
  2549. close_ctree(tree_root);
  2550. return ret;
  2551. }
  2552. } else {
  2553. fs_info->update_uuid_tree_gen = 1;
  2554. }
  2555. return 0;
  2556. fail_qgroup:
  2557. btrfs_free_qgroup_config(fs_info);
  2558. fail_trans_kthread:
  2559. kthread_stop(fs_info->transaction_kthread);
  2560. btrfs_cleanup_transaction(fs_info->tree_root);
  2561. del_fs_roots(fs_info);
  2562. fail_cleaner:
  2563. kthread_stop(fs_info->cleaner_kthread);
  2564. /*
  2565. * make sure we're done with the btree inode before we stop our
  2566. * kthreads
  2567. */
  2568. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2569. fail_block_groups:
  2570. btrfs_put_block_group_cache(fs_info);
  2571. btrfs_free_block_groups(fs_info);
  2572. fail_tree_roots:
  2573. free_root_pointers(fs_info, 1);
  2574. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2575. fail_sb_buffer:
  2576. btrfs_stop_all_workers(fs_info);
  2577. fail_alloc:
  2578. fail_iput:
  2579. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2580. iput(fs_info->btree_inode);
  2581. fail_delalloc_bytes:
  2582. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2583. fail_dirty_metadata_bytes:
  2584. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2585. fail_bdi:
  2586. bdi_destroy(&fs_info->bdi);
  2587. fail_srcu:
  2588. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2589. fail:
  2590. btrfs_free_stripe_hash_table(fs_info);
  2591. btrfs_close_devices(fs_info->fs_devices);
  2592. return err;
  2593. recovery_tree_root:
  2594. if (!btrfs_test_opt(tree_root, RECOVERY))
  2595. goto fail_tree_roots;
  2596. free_root_pointers(fs_info, 0);
  2597. /* don't use the log in recovery mode, it won't be valid */
  2598. btrfs_set_super_log_root(disk_super, 0);
  2599. /* we can't trust the free space cache either */
  2600. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2601. ret = next_root_backup(fs_info, fs_info->super_copy,
  2602. &num_backups_tried, &backup_index);
  2603. if (ret == -1)
  2604. goto fail_block_groups;
  2605. goto retry_root_backup;
  2606. }
  2607. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2608. {
  2609. if (uptodate) {
  2610. set_buffer_uptodate(bh);
  2611. } else {
  2612. struct btrfs_device *device = (struct btrfs_device *)
  2613. bh->b_private;
  2614. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2615. "I/O error on %s\n",
  2616. rcu_str_deref(device->name));
  2617. /* note, we dont' set_buffer_write_io_error because we have
  2618. * our own ways of dealing with the IO errors
  2619. */
  2620. clear_buffer_uptodate(bh);
  2621. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2622. }
  2623. unlock_buffer(bh);
  2624. put_bh(bh);
  2625. }
  2626. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2627. {
  2628. struct buffer_head *bh;
  2629. struct buffer_head *latest = NULL;
  2630. struct btrfs_super_block *super;
  2631. int i;
  2632. u64 transid = 0;
  2633. u64 bytenr;
  2634. /* we would like to check all the supers, but that would make
  2635. * a btrfs mount succeed after a mkfs from a different FS.
  2636. * So, we need to add a special mount option to scan for
  2637. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2638. */
  2639. for (i = 0; i < 1; i++) {
  2640. bytenr = btrfs_sb_offset(i);
  2641. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2642. i_size_read(bdev->bd_inode))
  2643. break;
  2644. bh = __bread(bdev, bytenr / 4096,
  2645. BTRFS_SUPER_INFO_SIZE);
  2646. if (!bh)
  2647. continue;
  2648. super = (struct btrfs_super_block *)bh->b_data;
  2649. if (btrfs_super_bytenr(super) != bytenr ||
  2650. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2651. brelse(bh);
  2652. continue;
  2653. }
  2654. if (!latest || btrfs_super_generation(super) > transid) {
  2655. brelse(latest);
  2656. latest = bh;
  2657. transid = btrfs_super_generation(super);
  2658. } else {
  2659. brelse(bh);
  2660. }
  2661. }
  2662. return latest;
  2663. }
  2664. /*
  2665. * this should be called twice, once with wait == 0 and
  2666. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2667. * we write are pinned.
  2668. *
  2669. * They are released when wait == 1 is done.
  2670. * max_mirrors must be the same for both runs, and it indicates how
  2671. * many supers on this one device should be written.
  2672. *
  2673. * max_mirrors == 0 means to write them all.
  2674. */
  2675. static int write_dev_supers(struct btrfs_device *device,
  2676. struct btrfs_super_block *sb,
  2677. int do_barriers, int wait, int max_mirrors)
  2678. {
  2679. struct buffer_head *bh;
  2680. int i;
  2681. int ret;
  2682. int errors = 0;
  2683. u32 crc;
  2684. u64 bytenr;
  2685. if (max_mirrors == 0)
  2686. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2687. for (i = 0; i < max_mirrors; i++) {
  2688. bytenr = btrfs_sb_offset(i);
  2689. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2690. break;
  2691. if (wait) {
  2692. bh = __find_get_block(device->bdev, bytenr / 4096,
  2693. BTRFS_SUPER_INFO_SIZE);
  2694. if (!bh) {
  2695. errors++;
  2696. continue;
  2697. }
  2698. wait_on_buffer(bh);
  2699. if (!buffer_uptodate(bh))
  2700. errors++;
  2701. /* drop our reference */
  2702. brelse(bh);
  2703. /* drop the reference from the wait == 0 run */
  2704. brelse(bh);
  2705. continue;
  2706. } else {
  2707. btrfs_set_super_bytenr(sb, bytenr);
  2708. crc = ~(u32)0;
  2709. crc = btrfs_csum_data((char *)sb +
  2710. BTRFS_CSUM_SIZE, crc,
  2711. BTRFS_SUPER_INFO_SIZE -
  2712. BTRFS_CSUM_SIZE);
  2713. btrfs_csum_final(crc, sb->csum);
  2714. /*
  2715. * one reference for us, and we leave it for the
  2716. * caller
  2717. */
  2718. bh = __getblk(device->bdev, bytenr / 4096,
  2719. BTRFS_SUPER_INFO_SIZE);
  2720. if (!bh) {
  2721. printk(KERN_ERR "btrfs: couldn't get super "
  2722. "buffer head for bytenr %Lu\n", bytenr);
  2723. errors++;
  2724. continue;
  2725. }
  2726. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2727. /* one reference for submit_bh */
  2728. get_bh(bh);
  2729. set_buffer_uptodate(bh);
  2730. lock_buffer(bh);
  2731. bh->b_end_io = btrfs_end_buffer_write_sync;
  2732. bh->b_private = device;
  2733. }
  2734. /*
  2735. * we fua the first super. The others we allow
  2736. * to go down lazy.
  2737. */
  2738. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2739. if (ret)
  2740. errors++;
  2741. }
  2742. return errors < i ? 0 : -1;
  2743. }
  2744. /*
  2745. * endio for the write_dev_flush, this will wake anyone waiting
  2746. * for the barrier when it is done
  2747. */
  2748. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2749. {
  2750. if (err) {
  2751. if (err == -EOPNOTSUPP)
  2752. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2753. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2754. }
  2755. if (bio->bi_private)
  2756. complete(bio->bi_private);
  2757. bio_put(bio);
  2758. }
  2759. /*
  2760. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2761. * sent down. With wait == 1, it waits for the previous flush.
  2762. *
  2763. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2764. * capable
  2765. */
  2766. static int write_dev_flush(struct btrfs_device *device, int wait)
  2767. {
  2768. struct bio *bio;
  2769. int ret = 0;
  2770. if (device->nobarriers)
  2771. return 0;
  2772. if (wait) {
  2773. bio = device->flush_bio;
  2774. if (!bio)
  2775. return 0;
  2776. wait_for_completion(&device->flush_wait);
  2777. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2778. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2779. rcu_str_deref(device->name));
  2780. device->nobarriers = 1;
  2781. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2782. ret = -EIO;
  2783. btrfs_dev_stat_inc_and_print(device,
  2784. BTRFS_DEV_STAT_FLUSH_ERRS);
  2785. }
  2786. /* drop the reference from the wait == 0 run */
  2787. bio_put(bio);
  2788. device->flush_bio = NULL;
  2789. return ret;
  2790. }
  2791. /*
  2792. * one reference for us, and we leave it for the
  2793. * caller
  2794. */
  2795. device->flush_bio = NULL;
  2796. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2797. if (!bio)
  2798. return -ENOMEM;
  2799. bio->bi_end_io = btrfs_end_empty_barrier;
  2800. bio->bi_bdev = device->bdev;
  2801. init_completion(&device->flush_wait);
  2802. bio->bi_private = &device->flush_wait;
  2803. device->flush_bio = bio;
  2804. bio_get(bio);
  2805. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2806. return 0;
  2807. }
  2808. /*
  2809. * send an empty flush down to each device in parallel,
  2810. * then wait for them
  2811. */
  2812. static int barrier_all_devices(struct btrfs_fs_info *info)
  2813. {
  2814. struct list_head *head;
  2815. struct btrfs_device *dev;
  2816. int errors_send = 0;
  2817. int errors_wait = 0;
  2818. int ret;
  2819. /* send down all the barriers */
  2820. head = &info->fs_devices->devices;
  2821. list_for_each_entry_rcu(dev, head, dev_list) {
  2822. if (!dev->bdev) {
  2823. errors_send++;
  2824. continue;
  2825. }
  2826. if (!dev->in_fs_metadata || !dev->writeable)
  2827. continue;
  2828. ret = write_dev_flush(dev, 0);
  2829. if (ret)
  2830. errors_send++;
  2831. }
  2832. /* wait for all the barriers */
  2833. list_for_each_entry_rcu(dev, head, dev_list) {
  2834. if (!dev->bdev) {
  2835. errors_wait++;
  2836. continue;
  2837. }
  2838. if (!dev->in_fs_metadata || !dev->writeable)
  2839. continue;
  2840. ret = write_dev_flush(dev, 1);
  2841. if (ret)
  2842. errors_wait++;
  2843. }
  2844. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2845. errors_wait > info->num_tolerated_disk_barrier_failures)
  2846. return -EIO;
  2847. return 0;
  2848. }
  2849. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2850. struct btrfs_fs_info *fs_info)
  2851. {
  2852. struct btrfs_ioctl_space_info space;
  2853. struct btrfs_space_info *sinfo;
  2854. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2855. BTRFS_BLOCK_GROUP_SYSTEM,
  2856. BTRFS_BLOCK_GROUP_METADATA,
  2857. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2858. int num_types = 4;
  2859. int i;
  2860. int c;
  2861. int num_tolerated_disk_barrier_failures =
  2862. (int)fs_info->fs_devices->num_devices;
  2863. for (i = 0; i < num_types; i++) {
  2864. struct btrfs_space_info *tmp;
  2865. sinfo = NULL;
  2866. rcu_read_lock();
  2867. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2868. if (tmp->flags == types[i]) {
  2869. sinfo = tmp;
  2870. break;
  2871. }
  2872. }
  2873. rcu_read_unlock();
  2874. if (!sinfo)
  2875. continue;
  2876. down_read(&sinfo->groups_sem);
  2877. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2878. if (!list_empty(&sinfo->block_groups[c])) {
  2879. u64 flags;
  2880. btrfs_get_block_group_info(
  2881. &sinfo->block_groups[c], &space);
  2882. if (space.total_bytes == 0 ||
  2883. space.used_bytes == 0)
  2884. continue;
  2885. flags = space.flags;
  2886. /*
  2887. * return
  2888. * 0: if dup, single or RAID0 is configured for
  2889. * any of metadata, system or data, else
  2890. * 1: if RAID5 is configured, or if RAID1 or
  2891. * RAID10 is configured and only two mirrors
  2892. * are used, else
  2893. * 2: if RAID6 is configured, else
  2894. * num_mirrors - 1: if RAID1 or RAID10 is
  2895. * configured and more than
  2896. * 2 mirrors are used.
  2897. */
  2898. if (num_tolerated_disk_barrier_failures > 0 &&
  2899. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2900. BTRFS_BLOCK_GROUP_RAID0)) ||
  2901. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2902. == 0)))
  2903. num_tolerated_disk_barrier_failures = 0;
  2904. else if (num_tolerated_disk_barrier_failures > 1) {
  2905. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2906. BTRFS_BLOCK_GROUP_RAID5 |
  2907. BTRFS_BLOCK_GROUP_RAID10)) {
  2908. num_tolerated_disk_barrier_failures = 1;
  2909. } else if (flags &
  2910. BTRFS_BLOCK_GROUP_RAID6) {
  2911. num_tolerated_disk_barrier_failures = 2;
  2912. }
  2913. }
  2914. }
  2915. }
  2916. up_read(&sinfo->groups_sem);
  2917. }
  2918. return num_tolerated_disk_barrier_failures;
  2919. }
  2920. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2921. {
  2922. struct list_head *head;
  2923. struct btrfs_device *dev;
  2924. struct btrfs_super_block *sb;
  2925. struct btrfs_dev_item *dev_item;
  2926. int ret;
  2927. int do_barriers;
  2928. int max_errors;
  2929. int total_errors = 0;
  2930. u64 flags;
  2931. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2932. backup_super_roots(root->fs_info);
  2933. sb = root->fs_info->super_for_commit;
  2934. dev_item = &sb->dev_item;
  2935. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2936. head = &root->fs_info->fs_devices->devices;
  2937. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2938. if (do_barriers) {
  2939. ret = barrier_all_devices(root->fs_info);
  2940. if (ret) {
  2941. mutex_unlock(
  2942. &root->fs_info->fs_devices->device_list_mutex);
  2943. btrfs_error(root->fs_info, ret,
  2944. "errors while submitting device barriers.");
  2945. return ret;
  2946. }
  2947. }
  2948. list_for_each_entry_rcu(dev, head, dev_list) {
  2949. if (!dev->bdev) {
  2950. total_errors++;
  2951. continue;
  2952. }
  2953. if (!dev->in_fs_metadata || !dev->writeable)
  2954. continue;
  2955. btrfs_set_stack_device_generation(dev_item, 0);
  2956. btrfs_set_stack_device_type(dev_item, dev->type);
  2957. btrfs_set_stack_device_id(dev_item, dev->devid);
  2958. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2959. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2960. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2961. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2962. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2963. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2964. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2965. flags = btrfs_super_flags(sb);
  2966. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2967. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2968. if (ret)
  2969. total_errors++;
  2970. }
  2971. if (total_errors > max_errors) {
  2972. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2973. total_errors);
  2974. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2975. /* FUA is masked off if unsupported and can't be the reason */
  2976. btrfs_error(root->fs_info, -EIO,
  2977. "%d errors while writing supers", total_errors);
  2978. return -EIO;
  2979. }
  2980. total_errors = 0;
  2981. list_for_each_entry_rcu(dev, head, dev_list) {
  2982. if (!dev->bdev)
  2983. continue;
  2984. if (!dev->in_fs_metadata || !dev->writeable)
  2985. continue;
  2986. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2987. if (ret)
  2988. total_errors++;
  2989. }
  2990. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2991. if (total_errors > max_errors) {
  2992. btrfs_error(root->fs_info, -EIO,
  2993. "%d errors while writing supers", total_errors);
  2994. return -EIO;
  2995. }
  2996. return 0;
  2997. }
  2998. int write_ctree_super(struct btrfs_trans_handle *trans,
  2999. struct btrfs_root *root, int max_mirrors)
  3000. {
  3001. int ret;
  3002. ret = write_all_supers(root, max_mirrors);
  3003. return ret;
  3004. }
  3005. /* Drop a fs root from the radix tree and free it. */
  3006. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3007. struct btrfs_root *root)
  3008. {
  3009. spin_lock(&fs_info->fs_roots_radix_lock);
  3010. radix_tree_delete(&fs_info->fs_roots_radix,
  3011. (unsigned long)root->root_key.objectid);
  3012. spin_unlock(&fs_info->fs_roots_radix_lock);
  3013. if (btrfs_root_refs(&root->root_item) == 0)
  3014. synchronize_srcu(&fs_info->subvol_srcu);
  3015. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3016. btrfs_free_log(NULL, root);
  3017. btrfs_free_log_root_tree(NULL, fs_info);
  3018. }
  3019. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3020. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3021. free_fs_root(root);
  3022. }
  3023. static void free_fs_root(struct btrfs_root *root)
  3024. {
  3025. iput(root->cache_inode);
  3026. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3027. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3028. root->orphan_block_rsv = NULL;
  3029. if (root->anon_dev)
  3030. free_anon_bdev(root->anon_dev);
  3031. free_extent_buffer(root->node);
  3032. free_extent_buffer(root->commit_root);
  3033. kfree(root->free_ino_ctl);
  3034. kfree(root->free_ino_pinned);
  3035. kfree(root->name);
  3036. btrfs_put_fs_root(root);
  3037. }
  3038. void btrfs_free_fs_root(struct btrfs_root *root)
  3039. {
  3040. free_fs_root(root);
  3041. }
  3042. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3043. {
  3044. u64 root_objectid = 0;
  3045. struct btrfs_root *gang[8];
  3046. int i;
  3047. int ret;
  3048. while (1) {
  3049. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3050. (void **)gang, root_objectid,
  3051. ARRAY_SIZE(gang));
  3052. if (!ret)
  3053. break;
  3054. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3055. for (i = 0; i < ret; i++) {
  3056. int err;
  3057. root_objectid = gang[i]->root_key.objectid;
  3058. err = btrfs_orphan_cleanup(gang[i]);
  3059. if (err)
  3060. return err;
  3061. }
  3062. root_objectid++;
  3063. }
  3064. return 0;
  3065. }
  3066. int btrfs_commit_super(struct btrfs_root *root)
  3067. {
  3068. struct btrfs_trans_handle *trans;
  3069. int ret;
  3070. mutex_lock(&root->fs_info->cleaner_mutex);
  3071. btrfs_run_delayed_iputs(root);
  3072. mutex_unlock(&root->fs_info->cleaner_mutex);
  3073. wake_up_process(root->fs_info->cleaner_kthread);
  3074. /* wait until ongoing cleanup work done */
  3075. down_write(&root->fs_info->cleanup_work_sem);
  3076. up_write(&root->fs_info->cleanup_work_sem);
  3077. trans = btrfs_join_transaction(root);
  3078. if (IS_ERR(trans))
  3079. return PTR_ERR(trans);
  3080. ret = btrfs_commit_transaction(trans, root);
  3081. if (ret)
  3082. return ret;
  3083. /* run commit again to drop the original snapshot */
  3084. trans = btrfs_join_transaction(root);
  3085. if (IS_ERR(trans))
  3086. return PTR_ERR(trans);
  3087. ret = btrfs_commit_transaction(trans, root);
  3088. if (ret)
  3089. return ret;
  3090. ret = btrfs_write_and_wait_transaction(NULL, root);
  3091. if (ret) {
  3092. btrfs_error(root->fs_info, ret,
  3093. "Failed to sync btree inode to disk.");
  3094. return ret;
  3095. }
  3096. ret = write_ctree_super(NULL, root, 0);
  3097. return ret;
  3098. }
  3099. int close_ctree(struct btrfs_root *root)
  3100. {
  3101. struct btrfs_fs_info *fs_info = root->fs_info;
  3102. int ret;
  3103. fs_info->closing = 1;
  3104. smp_mb();
  3105. /* wait for the uuid_scan task to finish */
  3106. down(&fs_info->uuid_tree_rescan_sem);
  3107. /* avoid complains from lockdep et al., set sem back to initial state */
  3108. up(&fs_info->uuid_tree_rescan_sem);
  3109. /* pause restriper - we want to resume on mount */
  3110. btrfs_pause_balance(fs_info);
  3111. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3112. btrfs_scrub_cancel(fs_info);
  3113. /* wait for any defraggers to finish */
  3114. wait_event(fs_info->transaction_wait,
  3115. (atomic_read(&fs_info->defrag_running) == 0));
  3116. /* clear out the rbtree of defraggable inodes */
  3117. btrfs_cleanup_defrag_inodes(fs_info);
  3118. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3119. ret = btrfs_commit_super(root);
  3120. if (ret)
  3121. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3122. }
  3123. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3124. btrfs_error_commit_super(root);
  3125. btrfs_put_block_group_cache(fs_info);
  3126. kthread_stop(fs_info->transaction_kthread);
  3127. kthread_stop(fs_info->cleaner_kthread);
  3128. fs_info->closing = 2;
  3129. smp_mb();
  3130. btrfs_free_qgroup_config(root->fs_info);
  3131. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3132. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3133. percpu_counter_sum(&fs_info->delalloc_bytes));
  3134. }
  3135. del_fs_roots(fs_info);
  3136. btrfs_free_block_groups(fs_info);
  3137. btrfs_stop_all_workers(fs_info);
  3138. free_root_pointers(fs_info, 1);
  3139. iput(fs_info->btree_inode);
  3140. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3141. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3142. btrfsic_unmount(root, fs_info->fs_devices);
  3143. #endif
  3144. btrfs_close_devices(fs_info->fs_devices);
  3145. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3146. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3147. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3148. bdi_destroy(&fs_info->bdi);
  3149. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3150. btrfs_free_stripe_hash_table(fs_info);
  3151. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3152. root->orphan_block_rsv = NULL;
  3153. return 0;
  3154. }
  3155. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3156. int atomic)
  3157. {
  3158. int ret;
  3159. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3160. ret = extent_buffer_uptodate(buf);
  3161. if (!ret)
  3162. return ret;
  3163. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3164. parent_transid, atomic);
  3165. if (ret == -EAGAIN)
  3166. return ret;
  3167. return !ret;
  3168. }
  3169. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3170. {
  3171. return set_extent_buffer_uptodate(buf);
  3172. }
  3173. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3174. {
  3175. struct btrfs_root *root;
  3176. u64 transid = btrfs_header_generation(buf);
  3177. int was_dirty;
  3178. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3179. /*
  3180. * This is a fast path so only do this check if we have sanity tests
  3181. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3182. * outside of the sanity tests.
  3183. */
  3184. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3185. return;
  3186. #endif
  3187. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3188. btrfs_assert_tree_locked(buf);
  3189. if (transid != root->fs_info->generation)
  3190. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3191. "found %llu running %llu\n",
  3192. buf->start, transid, root->fs_info->generation);
  3193. was_dirty = set_extent_buffer_dirty(buf);
  3194. if (!was_dirty)
  3195. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3196. buf->len,
  3197. root->fs_info->dirty_metadata_batch);
  3198. }
  3199. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3200. int flush_delayed)
  3201. {
  3202. /*
  3203. * looks as though older kernels can get into trouble with
  3204. * this code, they end up stuck in balance_dirty_pages forever
  3205. */
  3206. int ret;
  3207. if (current->flags & PF_MEMALLOC)
  3208. return;
  3209. if (flush_delayed)
  3210. btrfs_balance_delayed_items(root);
  3211. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3212. BTRFS_DIRTY_METADATA_THRESH);
  3213. if (ret > 0) {
  3214. balance_dirty_pages_ratelimited(
  3215. root->fs_info->btree_inode->i_mapping);
  3216. }
  3217. return;
  3218. }
  3219. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3220. {
  3221. __btrfs_btree_balance_dirty(root, 1);
  3222. }
  3223. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3224. {
  3225. __btrfs_btree_balance_dirty(root, 0);
  3226. }
  3227. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3228. {
  3229. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3230. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3231. }
  3232. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3233. int read_only)
  3234. {
  3235. /*
  3236. * Placeholder for checks
  3237. */
  3238. return 0;
  3239. }
  3240. static void btrfs_error_commit_super(struct btrfs_root *root)
  3241. {
  3242. mutex_lock(&root->fs_info->cleaner_mutex);
  3243. btrfs_run_delayed_iputs(root);
  3244. mutex_unlock(&root->fs_info->cleaner_mutex);
  3245. down_write(&root->fs_info->cleanup_work_sem);
  3246. up_write(&root->fs_info->cleanup_work_sem);
  3247. /* cleanup FS via transaction */
  3248. btrfs_cleanup_transaction(root);
  3249. }
  3250. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3251. struct btrfs_root *root)
  3252. {
  3253. struct btrfs_inode *btrfs_inode;
  3254. struct list_head splice;
  3255. INIT_LIST_HEAD(&splice);
  3256. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3257. spin_lock(&root->fs_info->ordered_root_lock);
  3258. list_splice_init(&t->ordered_operations, &splice);
  3259. while (!list_empty(&splice)) {
  3260. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3261. ordered_operations);
  3262. list_del_init(&btrfs_inode->ordered_operations);
  3263. spin_unlock(&root->fs_info->ordered_root_lock);
  3264. btrfs_invalidate_inodes(btrfs_inode->root);
  3265. spin_lock(&root->fs_info->ordered_root_lock);
  3266. }
  3267. spin_unlock(&root->fs_info->ordered_root_lock);
  3268. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3269. }
  3270. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3271. {
  3272. struct btrfs_ordered_extent *ordered;
  3273. spin_lock(&root->ordered_extent_lock);
  3274. /*
  3275. * This will just short circuit the ordered completion stuff which will
  3276. * make sure the ordered extent gets properly cleaned up.
  3277. */
  3278. list_for_each_entry(ordered, &root->ordered_extents,
  3279. root_extent_list)
  3280. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3281. spin_unlock(&root->ordered_extent_lock);
  3282. }
  3283. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3284. {
  3285. struct btrfs_root *root;
  3286. struct list_head splice;
  3287. INIT_LIST_HEAD(&splice);
  3288. spin_lock(&fs_info->ordered_root_lock);
  3289. list_splice_init(&fs_info->ordered_roots, &splice);
  3290. while (!list_empty(&splice)) {
  3291. root = list_first_entry(&splice, struct btrfs_root,
  3292. ordered_root);
  3293. list_move_tail(&root->ordered_root,
  3294. &fs_info->ordered_roots);
  3295. btrfs_destroy_ordered_extents(root);
  3296. cond_resched_lock(&fs_info->ordered_root_lock);
  3297. }
  3298. spin_unlock(&fs_info->ordered_root_lock);
  3299. }
  3300. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3301. struct btrfs_root *root)
  3302. {
  3303. struct rb_node *node;
  3304. struct btrfs_delayed_ref_root *delayed_refs;
  3305. struct btrfs_delayed_ref_node *ref;
  3306. int ret = 0;
  3307. delayed_refs = &trans->delayed_refs;
  3308. spin_lock(&delayed_refs->lock);
  3309. if (delayed_refs->num_entries == 0) {
  3310. spin_unlock(&delayed_refs->lock);
  3311. printk(KERN_INFO "delayed_refs has NO entry\n");
  3312. return ret;
  3313. }
  3314. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3315. struct btrfs_delayed_ref_head *head = NULL;
  3316. bool pin_bytes = false;
  3317. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3318. atomic_set(&ref->refs, 1);
  3319. if (btrfs_delayed_ref_is_head(ref)) {
  3320. head = btrfs_delayed_node_to_head(ref);
  3321. if (!mutex_trylock(&head->mutex)) {
  3322. atomic_inc(&ref->refs);
  3323. spin_unlock(&delayed_refs->lock);
  3324. /* Need to wait for the delayed ref to run */
  3325. mutex_lock(&head->mutex);
  3326. mutex_unlock(&head->mutex);
  3327. btrfs_put_delayed_ref(ref);
  3328. spin_lock(&delayed_refs->lock);
  3329. continue;
  3330. }
  3331. if (head->must_insert_reserved)
  3332. pin_bytes = true;
  3333. btrfs_free_delayed_extent_op(head->extent_op);
  3334. delayed_refs->num_heads--;
  3335. if (list_empty(&head->cluster))
  3336. delayed_refs->num_heads_ready--;
  3337. list_del_init(&head->cluster);
  3338. }
  3339. ref->in_tree = 0;
  3340. rb_erase(&ref->rb_node, &delayed_refs->root);
  3341. delayed_refs->num_entries--;
  3342. spin_unlock(&delayed_refs->lock);
  3343. if (head) {
  3344. if (pin_bytes)
  3345. btrfs_pin_extent(root, ref->bytenr,
  3346. ref->num_bytes, 1);
  3347. mutex_unlock(&head->mutex);
  3348. }
  3349. btrfs_put_delayed_ref(ref);
  3350. cond_resched();
  3351. spin_lock(&delayed_refs->lock);
  3352. }
  3353. spin_unlock(&delayed_refs->lock);
  3354. return ret;
  3355. }
  3356. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3357. {
  3358. struct btrfs_inode *btrfs_inode;
  3359. struct list_head splice;
  3360. INIT_LIST_HEAD(&splice);
  3361. spin_lock(&root->delalloc_lock);
  3362. list_splice_init(&root->delalloc_inodes, &splice);
  3363. while (!list_empty(&splice)) {
  3364. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3365. delalloc_inodes);
  3366. list_del_init(&btrfs_inode->delalloc_inodes);
  3367. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3368. &btrfs_inode->runtime_flags);
  3369. spin_unlock(&root->delalloc_lock);
  3370. btrfs_invalidate_inodes(btrfs_inode->root);
  3371. spin_lock(&root->delalloc_lock);
  3372. }
  3373. spin_unlock(&root->delalloc_lock);
  3374. }
  3375. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3376. {
  3377. struct btrfs_root *root;
  3378. struct list_head splice;
  3379. INIT_LIST_HEAD(&splice);
  3380. spin_lock(&fs_info->delalloc_root_lock);
  3381. list_splice_init(&fs_info->delalloc_roots, &splice);
  3382. while (!list_empty(&splice)) {
  3383. root = list_first_entry(&splice, struct btrfs_root,
  3384. delalloc_root);
  3385. list_del_init(&root->delalloc_root);
  3386. root = btrfs_grab_fs_root(root);
  3387. BUG_ON(!root);
  3388. spin_unlock(&fs_info->delalloc_root_lock);
  3389. btrfs_destroy_delalloc_inodes(root);
  3390. btrfs_put_fs_root(root);
  3391. spin_lock(&fs_info->delalloc_root_lock);
  3392. }
  3393. spin_unlock(&fs_info->delalloc_root_lock);
  3394. }
  3395. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3396. struct extent_io_tree *dirty_pages,
  3397. int mark)
  3398. {
  3399. int ret;
  3400. struct extent_buffer *eb;
  3401. u64 start = 0;
  3402. u64 end;
  3403. while (1) {
  3404. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3405. mark, NULL);
  3406. if (ret)
  3407. break;
  3408. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3409. while (start <= end) {
  3410. eb = btrfs_find_tree_block(root, start,
  3411. root->leafsize);
  3412. start += root->leafsize;
  3413. if (!eb)
  3414. continue;
  3415. wait_on_extent_buffer_writeback(eb);
  3416. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3417. &eb->bflags))
  3418. clear_extent_buffer_dirty(eb);
  3419. free_extent_buffer_stale(eb);
  3420. }
  3421. }
  3422. return ret;
  3423. }
  3424. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3425. struct extent_io_tree *pinned_extents)
  3426. {
  3427. struct extent_io_tree *unpin;
  3428. u64 start;
  3429. u64 end;
  3430. int ret;
  3431. bool loop = true;
  3432. unpin = pinned_extents;
  3433. again:
  3434. while (1) {
  3435. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3436. EXTENT_DIRTY, NULL);
  3437. if (ret)
  3438. break;
  3439. /* opt_discard */
  3440. if (btrfs_test_opt(root, DISCARD))
  3441. ret = btrfs_error_discard_extent(root, start,
  3442. end + 1 - start,
  3443. NULL);
  3444. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3445. btrfs_error_unpin_extent_range(root, start, end);
  3446. cond_resched();
  3447. }
  3448. if (loop) {
  3449. if (unpin == &root->fs_info->freed_extents[0])
  3450. unpin = &root->fs_info->freed_extents[1];
  3451. else
  3452. unpin = &root->fs_info->freed_extents[0];
  3453. loop = false;
  3454. goto again;
  3455. }
  3456. return 0;
  3457. }
  3458. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3459. struct btrfs_root *root)
  3460. {
  3461. btrfs_destroy_ordered_operations(cur_trans, root);
  3462. btrfs_destroy_delayed_refs(cur_trans, root);
  3463. cur_trans->state = TRANS_STATE_COMMIT_START;
  3464. wake_up(&root->fs_info->transaction_blocked_wait);
  3465. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3466. wake_up(&root->fs_info->transaction_wait);
  3467. btrfs_destroy_delayed_inodes(root);
  3468. btrfs_assert_delayed_root_empty(root);
  3469. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3470. EXTENT_DIRTY);
  3471. btrfs_destroy_pinned_extent(root,
  3472. root->fs_info->pinned_extents);
  3473. cur_trans->state =TRANS_STATE_COMPLETED;
  3474. wake_up(&cur_trans->commit_wait);
  3475. /*
  3476. memset(cur_trans, 0, sizeof(*cur_trans));
  3477. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3478. */
  3479. }
  3480. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3481. {
  3482. struct btrfs_transaction *t;
  3483. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3484. spin_lock(&root->fs_info->trans_lock);
  3485. while (!list_empty(&root->fs_info->trans_list)) {
  3486. t = list_first_entry(&root->fs_info->trans_list,
  3487. struct btrfs_transaction, list);
  3488. if (t->state >= TRANS_STATE_COMMIT_START) {
  3489. atomic_inc(&t->use_count);
  3490. spin_unlock(&root->fs_info->trans_lock);
  3491. btrfs_wait_for_commit(root, t->transid);
  3492. btrfs_put_transaction(t);
  3493. spin_lock(&root->fs_info->trans_lock);
  3494. continue;
  3495. }
  3496. if (t == root->fs_info->running_transaction) {
  3497. t->state = TRANS_STATE_COMMIT_DOING;
  3498. spin_unlock(&root->fs_info->trans_lock);
  3499. /*
  3500. * We wait for 0 num_writers since we don't hold a trans
  3501. * handle open currently for this transaction.
  3502. */
  3503. wait_event(t->writer_wait,
  3504. atomic_read(&t->num_writers) == 0);
  3505. } else {
  3506. spin_unlock(&root->fs_info->trans_lock);
  3507. }
  3508. btrfs_cleanup_one_transaction(t, root);
  3509. spin_lock(&root->fs_info->trans_lock);
  3510. if (t == root->fs_info->running_transaction)
  3511. root->fs_info->running_transaction = NULL;
  3512. list_del_init(&t->list);
  3513. spin_unlock(&root->fs_info->trans_lock);
  3514. btrfs_put_transaction(t);
  3515. trace_btrfs_transaction_commit(root);
  3516. spin_lock(&root->fs_info->trans_lock);
  3517. }
  3518. spin_unlock(&root->fs_info->trans_lock);
  3519. btrfs_destroy_all_ordered_extents(root->fs_info);
  3520. btrfs_destroy_delayed_inodes(root);
  3521. btrfs_assert_delayed_root_empty(root);
  3522. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3523. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3524. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3525. return 0;
  3526. }
  3527. static struct extent_io_ops btree_extent_io_ops = {
  3528. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3529. .readpage_io_failed_hook = btree_io_failed_hook,
  3530. .submit_bio_hook = btree_submit_bio_hook,
  3531. /* note we're sharing with inode.c for the merge bio hook */
  3532. .merge_bio_hook = btrfs_merge_bio_hook,
  3533. };