spi_bfin5xx.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2007 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/slab.h>
  15. #include <linux/io.h>
  16. #include <linux/ioport.h>
  17. #include <linux/irq.h>
  18. #include <linux/errno.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/workqueue.h>
  24. #include <asm/dma.h>
  25. #include <asm/portmux.h>
  26. #include <asm/bfin5xx_spi.h>
  27. #include <asm/cacheflush.h>
  28. #define DRV_NAME "bfin-spi"
  29. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  30. #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
  31. #define DRV_VERSION "1.0"
  32. MODULE_AUTHOR(DRV_AUTHOR);
  33. MODULE_DESCRIPTION(DRV_DESC);
  34. MODULE_LICENSE("GPL");
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. struct master_data;
  40. struct transfer_ops {
  41. void (*write) (struct master_data *);
  42. void (*read) (struct master_data *);
  43. void (*duplex) (struct master_data *);
  44. };
  45. struct master_data {
  46. /* Driver model hookup */
  47. struct platform_device *pdev;
  48. /* SPI framework hookup */
  49. struct spi_master *master;
  50. /* Regs base of SPI controller */
  51. void __iomem *regs_base;
  52. /* Pin request list */
  53. u16 *pin_req;
  54. /* BFIN hookup */
  55. struct bfin5xx_spi_master *master_info;
  56. /* Driver message queue */
  57. struct workqueue_struct *workqueue;
  58. struct work_struct pump_messages;
  59. spinlock_t lock;
  60. struct list_head queue;
  61. int busy;
  62. bool running;
  63. /* Message Transfer pump */
  64. struct tasklet_struct pump_transfers;
  65. /* Current message transfer state info */
  66. struct spi_message *cur_msg;
  67. struct spi_transfer *cur_transfer;
  68. struct slave_data *cur_chip;
  69. size_t len_in_bytes;
  70. size_t len;
  71. void *tx;
  72. void *tx_end;
  73. void *rx;
  74. void *rx_end;
  75. /* DMA stuffs */
  76. int dma_channel;
  77. int dma_mapped;
  78. int dma_requested;
  79. dma_addr_t rx_dma;
  80. dma_addr_t tx_dma;
  81. int irq_requested;
  82. int spi_irq;
  83. size_t rx_map_len;
  84. size_t tx_map_len;
  85. u8 n_bytes;
  86. u16 ctrl_reg;
  87. u16 flag_reg;
  88. int cs_change;
  89. const struct transfer_ops *ops;
  90. };
  91. struct slave_data {
  92. u16 ctl_reg;
  93. u16 baud;
  94. u16 flag;
  95. u8 chip_select_num;
  96. u8 enable_dma;
  97. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  98. u32 cs_gpio;
  99. u16 idle_tx_val;
  100. u8 pio_interrupt; /* use spi data irq */
  101. const struct transfer_ops *ops;
  102. };
  103. #define DEFINE_SPI_REG(reg, off) \
  104. static inline u16 read_##reg(struct master_data *drv_data) \
  105. { return bfin_read16(drv_data->regs_base + off); } \
  106. static inline void write_##reg(struct master_data *drv_data, u16 v) \
  107. { bfin_write16(drv_data->regs_base + off, v); }
  108. DEFINE_SPI_REG(CTRL, 0x00)
  109. DEFINE_SPI_REG(FLAG, 0x04)
  110. DEFINE_SPI_REG(STAT, 0x08)
  111. DEFINE_SPI_REG(TDBR, 0x0C)
  112. DEFINE_SPI_REG(RDBR, 0x10)
  113. DEFINE_SPI_REG(BAUD, 0x14)
  114. DEFINE_SPI_REG(SHAW, 0x18)
  115. static void bfin_spi_enable(struct master_data *drv_data)
  116. {
  117. u16 cr;
  118. cr = read_CTRL(drv_data);
  119. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  120. }
  121. static void bfin_spi_disable(struct master_data *drv_data)
  122. {
  123. u16 cr;
  124. cr = read_CTRL(drv_data);
  125. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  126. }
  127. /* Caculate the SPI_BAUD register value based on input HZ */
  128. static u16 hz_to_spi_baud(u32 speed_hz)
  129. {
  130. u_long sclk = get_sclk();
  131. u16 spi_baud = (sclk / (2 * speed_hz));
  132. if ((sclk % (2 * speed_hz)) > 0)
  133. spi_baud++;
  134. if (spi_baud < MIN_SPI_BAUD_VAL)
  135. spi_baud = MIN_SPI_BAUD_VAL;
  136. return spi_baud;
  137. }
  138. static int bfin_spi_flush(struct master_data *drv_data)
  139. {
  140. unsigned long limit = loops_per_jiffy << 1;
  141. /* wait for stop and clear stat */
  142. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && --limit)
  143. cpu_relax();
  144. write_STAT(drv_data, BIT_STAT_CLR);
  145. return limit;
  146. }
  147. /* Chip select operation functions for cs_change flag */
  148. static void bfin_spi_cs_active(struct master_data *drv_data, struct slave_data *chip)
  149. {
  150. if (likely(chip->chip_select_num < MAX_CTRL_CS)) {
  151. u16 flag = read_FLAG(drv_data);
  152. flag &= ~chip->flag;
  153. write_FLAG(drv_data, flag);
  154. } else {
  155. gpio_set_value(chip->cs_gpio, 0);
  156. }
  157. }
  158. static void bfin_spi_cs_deactive(struct master_data *drv_data, struct slave_data *chip)
  159. {
  160. if (likely(chip->chip_select_num < MAX_CTRL_CS)) {
  161. u16 flag = read_FLAG(drv_data);
  162. flag |= chip->flag;
  163. write_FLAG(drv_data, flag);
  164. } else {
  165. gpio_set_value(chip->cs_gpio, 1);
  166. }
  167. /* Move delay here for consistency */
  168. if (chip->cs_chg_udelay)
  169. udelay(chip->cs_chg_udelay);
  170. }
  171. /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
  172. static inline void bfin_spi_cs_enable(struct master_data *drv_data, struct slave_data *chip)
  173. {
  174. if (chip->chip_select_num < MAX_CTRL_CS) {
  175. u16 flag = read_FLAG(drv_data);
  176. flag |= (chip->flag >> 8);
  177. write_FLAG(drv_data, flag);
  178. }
  179. }
  180. static inline void bfin_spi_cs_disable(struct master_data *drv_data, struct slave_data *chip)
  181. {
  182. if (chip->chip_select_num < MAX_CTRL_CS) {
  183. u16 flag = read_FLAG(drv_data);
  184. flag &= ~(chip->flag >> 8);
  185. write_FLAG(drv_data, flag);
  186. }
  187. }
  188. /* stop controller and re-config current chip*/
  189. static void bfin_spi_restore_state(struct master_data *drv_data)
  190. {
  191. struct slave_data *chip = drv_data->cur_chip;
  192. /* Clear status and disable clock */
  193. write_STAT(drv_data, BIT_STAT_CLR);
  194. bfin_spi_disable(drv_data);
  195. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  196. SSYNC();
  197. /* Load the registers */
  198. write_CTRL(drv_data, chip->ctl_reg);
  199. write_BAUD(drv_data, chip->baud);
  200. bfin_spi_enable(drv_data);
  201. bfin_spi_cs_active(drv_data, chip);
  202. }
  203. /* used to kick off transfer in rx mode and read unwanted RX data */
  204. static inline void bfin_spi_dummy_read(struct master_data *drv_data)
  205. {
  206. (void) read_RDBR(drv_data);
  207. }
  208. static void bfin_spi_u8_writer(struct master_data *drv_data)
  209. {
  210. /* clear RXS (we check for RXS inside the loop) */
  211. bfin_spi_dummy_read(drv_data);
  212. while (drv_data->tx < drv_data->tx_end) {
  213. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  214. /* wait until transfer finished.
  215. checking SPIF or TXS may not guarantee transfer completion */
  216. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  217. cpu_relax();
  218. /* discard RX data and clear RXS */
  219. bfin_spi_dummy_read(drv_data);
  220. }
  221. }
  222. static void bfin_spi_u8_reader(struct master_data *drv_data)
  223. {
  224. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  225. /* discard old RX data and clear RXS */
  226. bfin_spi_dummy_read(drv_data);
  227. while (drv_data->rx < drv_data->rx_end) {
  228. write_TDBR(drv_data, tx_val);
  229. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  230. cpu_relax();
  231. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  232. }
  233. }
  234. static void bfin_spi_u8_duplex(struct master_data *drv_data)
  235. {
  236. /* discard old RX data and clear RXS */
  237. bfin_spi_dummy_read(drv_data);
  238. while (drv_data->rx < drv_data->rx_end) {
  239. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  240. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  241. cpu_relax();
  242. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  243. }
  244. }
  245. static const struct transfer_ops bfin_transfer_ops_u8 = {
  246. .write = bfin_spi_u8_writer,
  247. .read = bfin_spi_u8_reader,
  248. .duplex = bfin_spi_u8_duplex,
  249. };
  250. static void bfin_spi_u16_writer(struct master_data *drv_data)
  251. {
  252. /* clear RXS (we check for RXS inside the loop) */
  253. bfin_spi_dummy_read(drv_data);
  254. while (drv_data->tx < drv_data->tx_end) {
  255. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  256. drv_data->tx += 2;
  257. /* wait until transfer finished.
  258. checking SPIF or TXS may not guarantee transfer completion */
  259. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  260. cpu_relax();
  261. /* discard RX data and clear RXS */
  262. bfin_spi_dummy_read(drv_data);
  263. }
  264. }
  265. static void bfin_spi_u16_reader(struct master_data *drv_data)
  266. {
  267. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  268. /* discard old RX data and clear RXS */
  269. bfin_spi_dummy_read(drv_data);
  270. while (drv_data->rx < drv_data->rx_end) {
  271. write_TDBR(drv_data, tx_val);
  272. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  273. cpu_relax();
  274. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  275. drv_data->rx += 2;
  276. }
  277. }
  278. static void bfin_spi_u16_duplex(struct master_data *drv_data)
  279. {
  280. /* discard old RX data and clear RXS */
  281. bfin_spi_dummy_read(drv_data);
  282. while (drv_data->rx < drv_data->rx_end) {
  283. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  284. drv_data->tx += 2;
  285. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  286. cpu_relax();
  287. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  288. drv_data->rx += 2;
  289. }
  290. }
  291. static const struct transfer_ops bfin_transfer_ops_u16 = {
  292. .write = bfin_spi_u16_writer,
  293. .read = bfin_spi_u16_reader,
  294. .duplex = bfin_spi_u16_duplex,
  295. };
  296. /* test if there is more transfer to be done */
  297. static void *bfin_spi_next_transfer(struct master_data *drv_data)
  298. {
  299. struct spi_message *msg = drv_data->cur_msg;
  300. struct spi_transfer *trans = drv_data->cur_transfer;
  301. /* Move to next transfer */
  302. if (trans->transfer_list.next != &msg->transfers) {
  303. drv_data->cur_transfer =
  304. list_entry(trans->transfer_list.next,
  305. struct spi_transfer, transfer_list);
  306. return RUNNING_STATE;
  307. } else
  308. return DONE_STATE;
  309. }
  310. /*
  311. * caller already set message->status;
  312. * dma and pio irqs are blocked give finished message back
  313. */
  314. static void bfin_spi_giveback(struct master_data *drv_data)
  315. {
  316. struct slave_data *chip = drv_data->cur_chip;
  317. struct spi_transfer *last_transfer;
  318. unsigned long flags;
  319. struct spi_message *msg;
  320. spin_lock_irqsave(&drv_data->lock, flags);
  321. msg = drv_data->cur_msg;
  322. drv_data->cur_msg = NULL;
  323. drv_data->cur_transfer = NULL;
  324. drv_data->cur_chip = NULL;
  325. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  326. spin_unlock_irqrestore(&drv_data->lock, flags);
  327. last_transfer = list_entry(msg->transfers.prev,
  328. struct spi_transfer, transfer_list);
  329. msg->state = NULL;
  330. if (!drv_data->cs_change)
  331. bfin_spi_cs_deactive(drv_data, chip);
  332. /* Not stop spi in autobuffer mode */
  333. if (drv_data->tx_dma != 0xFFFF)
  334. bfin_spi_disable(drv_data);
  335. if (msg->complete)
  336. msg->complete(msg->context);
  337. }
  338. /* spi data irq handler */
  339. static irqreturn_t bfin_spi_pio_irq_handler(int irq, void *dev_id)
  340. {
  341. struct master_data *drv_data = dev_id;
  342. struct slave_data *chip = drv_data->cur_chip;
  343. struct spi_message *msg = drv_data->cur_msg;
  344. int n_bytes = drv_data->n_bytes;
  345. /* wait until transfer finished. */
  346. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  347. cpu_relax();
  348. if ((drv_data->tx && drv_data->tx >= drv_data->tx_end) ||
  349. (drv_data->rx && drv_data->rx >= (drv_data->rx_end - n_bytes))) {
  350. /* last read */
  351. if (drv_data->rx) {
  352. dev_dbg(&drv_data->pdev->dev, "last read\n");
  353. if (n_bytes == 2)
  354. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  355. else if (n_bytes == 1)
  356. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  357. drv_data->rx += n_bytes;
  358. }
  359. msg->actual_length += drv_data->len_in_bytes;
  360. if (drv_data->cs_change)
  361. bfin_spi_cs_deactive(drv_data, chip);
  362. /* Move to next transfer */
  363. msg->state = bfin_spi_next_transfer(drv_data);
  364. disable_irq_nosync(drv_data->spi_irq);
  365. /* Schedule transfer tasklet */
  366. tasklet_schedule(&drv_data->pump_transfers);
  367. return IRQ_HANDLED;
  368. }
  369. if (drv_data->rx && drv_data->tx) {
  370. /* duplex */
  371. dev_dbg(&drv_data->pdev->dev, "duplex: write_TDBR\n");
  372. if (drv_data->n_bytes == 2) {
  373. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  374. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  375. } else if (drv_data->n_bytes == 1) {
  376. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  377. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  378. }
  379. } else if (drv_data->rx) {
  380. /* read */
  381. dev_dbg(&drv_data->pdev->dev, "read: write_TDBR\n");
  382. if (drv_data->n_bytes == 2)
  383. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  384. else if (drv_data->n_bytes == 1)
  385. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  386. write_TDBR(drv_data, chip->idle_tx_val);
  387. } else if (drv_data->tx) {
  388. /* write */
  389. dev_dbg(&drv_data->pdev->dev, "write: write_TDBR\n");
  390. bfin_spi_dummy_read(drv_data);
  391. if (drv_data->n_bytes == 2)
  392. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  393. else if (drv_data->n_bytes == 1)
  394. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  395. }
  396. if (drv_data->tx)
  397. drv_data->tx += n_bytes;
  398. if (drv_data->rx)
  399. drv_data->rx += n_bytes;
  400. return IRQ_HANDLED;
  401. }
  402. static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
  403. {
  404. struct master_data *drv_data = dev_id;
  405. struct slave_data *chip = drv_data->cur_chip;
  406. struct spi_message *msg = drv_data->cur_msg;
  407. unsigned long timeout;
  408. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  409. u16 spistat = read_STAT(drv_data);
  410. dev_dbg(&drv_data->pdev->dev,
  411. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  412. dmastat, spistat);
  413. clear_dma_irqstat(drv_data->dma_channel);
  414. /*
  415. * wait for the last transaction shifted out. HRM states:
  416. * at this point there may still be data in the SPI DMA FIFO waiting
  417. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  418. * register until it goes low for 2 successive reads
  419. */
  420. if (drv_data->tx != NULL) {
  421. while ((read_STAT(drv_data) & BIT_STAT_TXS) ||
  422. (read_STAT(drv_data) & BIT_STAT_TXS))
  423. cpu_relax();
  424. }
  425. dev_dbg(&drv_data->pdev->dev,
  426. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  427. dmastat, read_STAT(drv_data));
  428. timeout = jiffies + HZ;
  429. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  430. if (!time_before(jiffies, timeout)) {
  431. dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
  432. break;
  433. } else
  434. cpu_relax();
  435. if ((dmastat & DMA_ERR) && (spistat & BIT_STAT_RBSY)) {
  436. msg->state = ERROR_STATE;
  437. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  438. } else {
  439. msg->actual_length += drv_data->len_in_bytes;
  440. if (drv_data->cs_change)
  441. bfin_spi_cs_deactive(drv_data, chip);
  442. /* Move to next transfer */
  443. msg->state = bfin_spi_next_transfer(drv_data);
  444. }
  445. /* Schedule transfer tasklet */
  446. tasklet_schedule(&drv_data->pump_transfers);
  447. /* free the irq handler before next transfer */
  448. dev_dbg(&drv_data->pdev->dev,
  449. "disable dma channel irq%d\n",
  450. drv_data->dma_channel);
  451. dma_disable_irq_nosync(drv_data->dma_channel);
  452. return IRQ_HANDLED;
  453. }
  454. static void bfin_spi_pump_transfers(unsigned long data)
  455. {
  456. struct master_data *drv_data = (struct master_data *)data;
  457. struct spi_message *message = NULL;
  458. struct spi_transfer *transfer = NULL;
  459. struct spi_transfer *previous = NULL;
  460. struct slave_data *chip = NULL;
  461. unsigned int bits_per_word;
  462. u16 cr, cr_width, dma_width, dma_config;
  463. u32 tranf_success = 1;
  464. u8 full_duplex = 0;
  465. /* Get current state information */
  466. message = drv_data->cur_msg;
  467. transfer = drv_data->cur_transfer;
  468. chip = drv_data->cur_chip;
  469. /*
  470. * if msg is error or done, report it back using complete() callback
  471. */
  472. /* Handle for abort */
  473. if (message->state == ERROR_STATE) {
  474. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  475. message->status = -EIO;
  476. bfin_spi_giveback(drv_data);
  477. return;
  478. }
  479. /* Handle end of message */
  480. if (message->state == DONE_STATE) {
  481. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  482. message->status = 0;
  483. bfin_spi_giveback(drv_data);
  484. return;
  485. }
  486. /* Delay if requested at end of transfer */
  487. if (message->state == RUNNING_STATE) {
  488. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  489. previous = list_entry(transfer->transfer_list.prev,
  490. struct spi_transfer, transfer_list);
  491. if (previous->delay_usecs)
  492. udelay(previous->delay_usecs);
  493. }
  494. /* Flush any existing transfers that may be sitting in the hardware */
  495. if (bfin_spi_flush(drv_data) == 0) {
  496. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  497. message->status = -EIO;
  498. bfin_spi_giveback(drv_data);
  499. return;
  500. }
  501. if (transfer->len == 0) {
  502. /* Move to next transfer of this msg */
  503. message->state = bfin_spi_next_transfer(drv_data);
  504. /* Schedule next transfer tasklet */
  505. tasklet_schedule(&drv_data->pump_transfers);
  506. }
  507. if (transfer->tx_buf != NULL) {
  508. drv_data->tx = (void *)transfer->tx_buf;
  509. drv_data->tx_end = drv_data->tx + transfer->len;
  510. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  511. transfer->tx_buf, drv_data->tx_end);
  512. } else {
  513. drv_data->tx = NULL;
  514. }
  515. if (transfer->rx_buf != NULL) {
  516. full_duplex = transfer->tx_buf != NULL;
  517. drv_data->rx = transfer->rx_buf;
  518. drv_data->rx_end = drv_data->rx + transfer->len;
  519. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  520. transfer->rx_buf, drv_data->rx_end);
  521. } else {
  522. drv_data->rx = NULL;
  523. }
  524. drv_data->rx_dma = transfer->rx_dma;
  525. drv_data->tx_dma = transfer->tx_dma;
  526. drv_data->len_in_bytes = transfer->len;
  527. drv_data->cs_change = transfer->cs_change;
  528. /* Bits per word setup */
  529. bits_per_word = transfer->bits_per_word ? : message->spi->bits_per_word;
  530. if (bits_per_word == 8) {
  531. drv_data->n_bytes = 1;
  532. drv_data->len = transfer->len;
  533. cr_width = 0;
  534. drv_data->ops = &bfin_transfer_ops_u8;
  535. } else if (bits_per_word == 16) {
  536. drv_data->n_bytes = 2;
  537. drv_data->len = (transfer->len) >> 1;
  538. cr_width = BIT_CTL_WORDSIZE;
  539. drv_data->ops = &bfin_transfer_ops_u16;
  540. } else {
  541. dev_err(&drv_data->pdev->dev, "transfer: unsupported bits_per_word\n");
  542. message->status = -EINVAL;
  543. bfin_spi_giveback(drv_data);
  544. return;
  545. }
  546. cr = read_CTRL(drv_data) & ~(BIT_CTL_TIMOD | BIT_CTL_WORDSIZE);
  547. cr |= cr_width;
  548. write_CTRL(drv_data, cr);
  549. dev_dbg(&drv_data->pdev->dev,
  550. "transfer: drv_data->ops is %p, chip->ops is %p, u8_ops is %p\n",
  551. drv_data->ops, chip->ops, &bfin_transfer_ops_u8);
  552. message->state = RUNNING_STATE;
  553. dma_config = 0;
  554. /* Speed setup (surely valid because already checked) */
  555. if (transfer->speed_hz)
  556. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  557. else
  558. write_BAUD(drv_data, chip->baud);
  559. write_STAT(drv_data, BIT_STAT_CLR);
  560. bfin_spi_cs_active(drv_data, chip);
  561. dev_dbg(&drv_data->pdev->dev,
  562. "now pumping a transfer: width is %d, len is %d\n",
  563. cr_width, transfer->len);
  564. /*
  565. * Try to map dma buffer and do a dma transfer. If successful use,
  566. * different way to r/w according to the enable_dma settings and if
  567. * we are not doing a full duplex transfer (since the hardware does
  568. * not support full duplex DMA transfers).
  569. */
  570. if (!full_duplex && drv_data->cur_chip->enable_dma
  571. && drv_data->len > 6) {
  572. unsigned long dma_start_addr, flags;
  573. disable_dma(drv_data->dma_channel);
  574. clear_dma_irqstat(drv_data->dma_channel);
  575. /* config dma channel */
  576. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  577. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  578. if (cr_width == BIT_CTL_WORDSIZE) {
  579. set_dma_x_modify(drv_data->dma_channel, 2);
  580. dma_width = WDSIZE_16;
  581. } else {
  582. set_dma_x_modify(drv_data->dma_channel, 1);
  583. dma_width = WDSIZE_8;
  584. }
  585. /* poll for SPI completion before start */
  586. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  587. cpu_relax();
  588. /* dirty hack for autobuffer DMA mode */
  589. if (drv_data->tx_dma == 0xFFFF) {
  590. dev_dbg(&drv_data->pdev->dev,
  591. "doing autobuffer DMA out.\n");
  592. /* no irq in autobuffer mode */
  593. dma_config =
  594. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  595. set_dma_config(drv_data->dma_channel, dma_config);
  596. set_dma_start_addr(drv_data->dma_channel,
  597. (unsigned long)drv_data->tx);
  598. enable_dma(drv_data->dma_channel);
  599. /* start SPI transfer */
  600. write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
  601. /* just return here, there can only be one transfer
  602. * in this mode
  603. */
  604. message->status = 0;
  605. bfin_spi_giveback(drv_data);
  606. return;
  607. }
  608. /* In dma mode, rx or tx must be NULL in one transfer */
  609. dma_config = (RESTART | dma_width | DI_EN);
  610. if (drv_data->rx != NULL) {
  611. /* set transfer mode, and enable SPI */
  612. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  613. drv_data->rx, drv_data->len_in_bytes);
  614. /* invalidate caches, if needed */
  615. if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
  616. invalidate_dcache_range((unsigned long) drv_data->rx,
  617. (unsigned long) (drv_data->rx +
  618. drv_data->len_in_bytes));
  619. dma_config |= WNR;
  620. dma_start_addr = (unsigned long)drv_data->rx;
  621. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  622. } else if (drv_data->tx != NULL) {
  623. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  624. /* flush caches, if needed */
  625. if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
  626. flush_dcache_range((unsigned long) drv_data->tx,
  627. (unsigned long) (drv_data->tx +
  628. drv_data->len_in_bytes));
  629. dma_start_addr = (unsigned long)drv_data->tx;
  630. cr |= BIT_CTL_TIMOD_DMA_TX;
  631. } else
  632. BUG();
  633. /* oh man, here there be monsters ... and i dont mean the
  634. * fluffy cute ones from pixar, i mean the kind that'll eat
  635. * your data, kick your dog, and love it all. do *not* try
  636. * and change these lines unless you (1) heavily test DMA
  637. * with SPI flashes on a loaded system (e.g. ping floods),
  638. * (2) know just how broken the DMA engine interaction with
  639. * the SPI peripheral is, and (3) have someone else to blame
  640. * when you screw it all up anyways.
  641. */
  642. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  643. set_dma_config(drv_data->dma_channel, dma_config);
  644. local_irq_save(flags);
  645. SSYNC();
  646. write_CTRL(drv_data, cr);
  647. enable_dma(drv_data->dma_channel);
  648. dma_enable_irq(drv_data->dma_channel);
  649. local_irq_restore(flags);
  650. return;
  651. }
  652. /*
  653. * We always use SPI_WRITE mode (transfer starts with TDBR write).
  654. * SPI_READ mode (transfer starts with RDBR read) seems to have
  655. * problems with setting up the output value in TDBR prior to the
  656. * start of the transfer.
  657. */
  658. write_CTRL(drv_data, cr | BIT_CTL_TXMOD);
  659. if (chip->pio_interrupt) {
  660. /* SPI irq should have been disabled by now */
  661. /* discard old RX data and clear RXS */
  662. bfin_spi_dummy_read(drv_data);
  663. /* start transfer */
  664. if (drv_data->tx == NULL)
  665. write_TDBR(drv_data, chip->idle_tx_val);
  666. else {
  667. if (bits_per_word == 8)
  668. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  669. else
  670. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  671. drv_data->tx += drv_data->n_bytes;
  672. }
  673. /* once TDBR is empty, interrupt is triggered */
  674. enable_irq(drv_data->spi_irq);
  675. return;
  676. }
  677. /* IO mode */
  678. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  679. if (full_duplex) {
  680. /* full duplex mode */
  681. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  682. (drv_data->rx_end - drv_data->rx));
  683. dev_dbg(&drv_data->pdev->dev,
  684. "IO duplex: cr is 0x%x\n", cr);
  685. drv_data->ops->duplex(drv_data);
  686. if (drv_data->tx != drv_data->tx_end)
  687. tranf_success = 0;
  688. } else if (drv_data->tx != NULL) {
  689. /* write only half duplex */
  690. dev_dbg(&drv_data->pdev->dev,
  691. "IO write: cr is 0x%x\n", cr);
  692. drv_data->ops->write(drv_data);
  693. if (drv_data->tx != drv_data->tx_end)
  694. tranf_success = 0;
  695. } else if (drv_data->rx != NULL) {
  696. /* read only half duplex */
  697. dev_dbg(&drv_data->pdev->dev,
  698. "IO read: cr is 0x%x\n", cr);
  699. drv_data->ops->read(drv_data);
  700. if (drv_data->rx != drv_data->rx_end)
  701. tranf_success = 0;
  702. }
  703. if (!tranf_success) {
  704. dev_dbg(&drv_data->pdev->dev,
  705. "IO write error!\n");
  706. message->state = ERROR_STATE;
  707. } else {
  708. /* Update total byte transfered */
  709. message->actual_length += drv_data->len_in_bytes;
  710. /* Move to next transfer of this msg */
  711. message->state = bfin_spi_next_transfer(drv_data);
  712. if (drv_data->cs_change)
  713. bfin_spi_cs_deactive(drv_data, chip);
  714. }
  715. /* Schedule next transfer tasklet */
  716. tasklet_schedule(&drv_data->pump_transfers);
  717. }
  718. /* pop a msg from queue and kick off real transfer */
  719. static void bfin_spi_pump_messages(struct work_struct *work)
  720. {
  721. struct master_data *drv_data;
  722. unsigned long flags;
  723. drv_data = container_of(work, struct master_data, pump_messages);
  724. /* Lock queue and check for queue work */
  725. spin_lock_irqsave(&drv_data->lock, flags);
  726. if (list_empty(&drv_data->queue) || !drv_data->running) {
  727. /* pumper kicked off but no work to do */
  728. drv_data->busy = 0;
  729. spin_unlock_irqrestore(&drv_data->lock, flags);
  730. return;
  731. }
  732. /* Make sure we are not already running a message */
  733. if (drv_data->cur_msg) {
  734. spin_unlock_irqrestore(&drv_data->lock, flags);
  735. return;
  736. }
  737. /* Extract head of queue */
  738. drv_data->cur_msg = list_entry(drv_data->queue.next,
  739. struct spi_message, queue);
  740. /* Setup the SSP using the per chip configuration */
  741. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  742. bfin_spi_restore_state(drv_data);
  743. list_del_init(&drv_data->cur_msg->queue);
  744. /* Initial message state */
  745. drv_data->cur_msg->state = START_STATE;
  746. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  747. struct spi_transfer, transfer_list);
  748. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  749. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  750. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  751. drv_data->cur_chip->ctl_reg);
  752. dev_dbg(&drv_data->pdev->dev,
  753. "the first transfer len is %d\n",
  754. drv_data->cur_transfer->len);
  755. /* Mark as busy and launch transfers */
  756. tasklet_schedule(&drv_data->pump_transfers);
  757. drv_data->busy = 1;
  758. spin_unlock_irqrestore(&drv_data->lock, flags);
  759. }
  760. /*
  761. * got a msg to transfer, queue it in drv_data->queue.
  762. * And kick off message pumper
  763. */
  764. static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  765. {
  766. struct master_data *drv_data = spi_master_get_devdata(spi->master);
  767. unsigned long flags;
  768. spin_lock_irqsave(&drv_data->lock, flags);
  769. if (!drv_data->running) {
  770. spin_unlock_irqrestore(&drv_data->lock, flags);
  771. return -ESHUTDOWN;
  772. }
  773. msg->actual_length = 0;
  774. msg->status = -EINPROGRESS;
  775. msg->state = START_STATE;
  776. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  777. list_add_tail(&msg->queue, &drv_data->queue);
  778. if (drv_data->running && !drv_data->busy)
  779. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  780. spin_unlock_irqrestore(&drv_data->lock, flags);
  781. return 0;
  782. }
  783. #define MAX_SPI_SSEL 7
  784. static u16 ssel[][MAX_SPI_SSEL] = {
  785. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  786. P_SPI0_SSEL4, P_SPI0_SSEL5,
  787. P_SPI0_SSEL6, P_SPI0_SSEL7},
  788. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  789. P_SPI1_SSEL4, P_SPI1_SSEL5,
  790. P_SPI1_SSEL6, P_SPI1_SSEL7},
  791. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  792. P_SPI2_SSEL4, P_SPI2_SSEL5,
  793. P_SPI2_SSEL6, P_SPI2_SSEL7},
  794. };
  795. /* setup for devices (may be called multiple times -- not just first setup) */
  796. static int bfin_spi_setup(struct spi_device *spi)
  797. {
  798. struct bfin5xx_spi_chip *chip_info;
  799. struct slave_data *chip = NULL;
  800. struct master_data *drv_data = spi_master_get_devdata(spi->master);
  801. u16 bfin_ctl_reg;
  802. int ret = -EINVAL;
  803. /* Only alloc (or use chip_info) on first setup */
  804. chip_info = NULL;
  805. chip = spi_get_ctldata(spi);
  806. if (chip == NULL) {
  807. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  808. if (!chip) {
  809. dev_err(&spi->dev, "cannot allocate chip data\n");
  810. ret = -ENOMEM;
  811. goto error;
  812. }
  813. chip->enable_dma = 0;
  814. chip_info = spi->controller_data;
  815. }
  816. /* Let people set non-standard bits directly */
  817. bfin_ctl_reg = BIT_CTL_OPENDRAIN | BIT_CTL_EMISO |
  818. BIT_CTL_PSSE | BIT_CTL_GM | BIT_CTL_SZ;
  819. /* chip_info isn't always needed */
  820. if (chip_info) {
  821. /* Make sure people stop trying to set fields via ctl_reg
  822. * when they should actually be using common SPI framework.
  823. * Currently we let through: WOM EMISO PSSE GM SZ.
  824. * Not sure if a user actually needs/uses any of these,
  825. * but let's assume (for now) they do.
  826. */
  827. if (chip_info->ctl_reg & ~bfin_ctl_reg) {
  828. dev_err(&spi->dev, "do not set bits in ctl_reg "
  829. "that the SPI framework manages\n");
  830. goto error;
  831. }
  832. chip->enable_dma = chip_info->enable_dma != 0
  833. && drv_data->master_info->enable_dma;
  834. chip->ctl_reg = chip_info->ctl_reg;
  835. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  836. chip->idle_tx_val = chip_info->idle_tx_val;
  837. chip->pio_interrupt = chip_info->pio_interrupt;
  838. spi->bits_per_word = chip_info->bits_per_word;
  839. } else {
  840. /* force a default base state */
  841. chip->ctl_reg &= bfin_ctl_reg;
  842. }
  843. if (spi->bits_per_word != 8 && spi->bits_per_word != 16) {
  844. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  845. spi->bits_per_word);
  846. goto error;
  847. }
  848. /* translate common spi framework into our register */
  849. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  850. dev_err(&spi->dev, "unsupported spi modes detected\n");
  851. goto error;
  852. }
  853. if (spi->mode & SPI_CPOL)
  854. chip->ctl_reg |= BIT_CTL_CPOL;
  855. if (spi->mode & SPI_CPHA)
  856. chip->ctl_reg |= BIT_CTL_CPHA;
  857. if (spi->mode & SPI_LSB_FIRST)
  858. chip->ctl_reg |= BIT_CTL_LSBF;
  859. /* we dont support running in slave mode (yet?) */
  860. chip->ctl_reg |= BIT_CTL_MASTER;
  861. /*
  862. * Notice: for blackfin, the speed_hz is the value of register
  863. * SPI_BAUD, not the real baudrate
  864. */
  865. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  866. chip->chip_select_num = spi->chip_select;
  867. if (chip->chip_select_num < MAX_CTRL_CS) {
  868. if (!(spi->mode & SPI_CPHA))
  869. dev_warn(&spi->dev, "Warning: SPI CPHA not set:"
  870. " Slave Select not under software control!\n"
  871. " See Documentation/blackfin/bfin-spi-notes.txt");
  872. chip->flag = (1 << spi->chip_select) << 8;
  873. } else
  874. chip->cs_gpio = chip->chip_select_num - MAX_CTRL_CS;
  875. if (chip->enable_dma && chip->pio_interrupt) {
  876. dev_err(&spi->dev, "enable_dma is set, "
  877. "do not set pio_interrupt\n");
  878. goto error;
  879. }
  880. /*
  881. * if any one SPI chip is registered and wants DMA, request the
  882. * DMA channel for it
  883. */
  884. if (chip->enable_dma && !drv_data->dma_requested) {
  885. /* register dma irq handler */
  886. ret = request_dma(drv_data->dma_channel, "BFIN_SPI_DMA");
  887. if (ret) {
  888. dev_err(&spi->dev,
  889. "Unable to request BlackFin SPI DMA channel\n");
  890. goto error;
  891. }
  892. drv_data->dma_requested = 1;
  893. ret = set_dma_callback(drv_data->dma_channel,
  894. bfin_spi_dma_irq_handler, drv_data);
  895. if (ret) {
  896. dev_err(&spi->dev, "Unable to set dma callback\n");
  897. goto error;
  898. }
  899. dma_disable_irq(drv_data->dma_channel);
  900. }
  901. if (chip->pio_interrupt && !drv_data->irq_requested) {
  902. ret = request_irq(drv_data->spi_irq, bfin_spi_pio_irq_handler,
  903. IRQF_DISABLED, "BFIN_SPI", drv_data);
  904. if (ret) {
  905. dev_err(&spi->dev, "Unable to register spi IRQ\n");
  906. goto error;
  907. }
  908. drv_data->irq_requested = 1;
  909. /* we use write mode, spi irq has to be disabled here */
  910. disable_irq(drv_data->spi_irq);
  911. }
  912. if (chip->chip_select_num >= MAX_CTRL_CS) {
  913. ret = gpio_request(chip->cs_gpio, spi->modalias);
  914. if (ret) {
  915. dev_err(&spi->dev, "gpio_request() error\n");
  916. goto pin_error;
  917. }
  918. gpio_direction_output(chip->cs_gpio, 1);
  919. }
  920. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  921. spi->modalias, spi->bits_per_word, chip->enable_dma);
  922. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  923. chip->ctl_reg, chip->flag);
  924. spi_set_ctldata(spi, chip);
  925. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  926. if (chip->chip_select_num < MAX_CTRL_CS) {
  927. ret = peripheral_request(ssel[spi->master->bus_num]
  928. [chip->chip_select_num-1], spi->modalias);
  929. if (ret) {
  930. dev_err(&spi->dev, "peripheral_request() error\n");
  931. goto pin_error;
  932. }
  933. }
  934. bfin_spi_cs_enable(drv_data, chip);
  935. bfin_spi_cs_deactive(drv_data, chip);
  936. return 0;
  937. pin_error:
  938. if (chip->chip_select_num >= MAX_CTRL_CS)
  939. gpio_free(chip->cs_gpio);
  940. else
  941. peripheral_free(ssel[spi->master->bus_num]
  942. [chip->chip_select_num - 1]);
  943. error:
  944. if (chip) {
  945. if (drv_data->dma_requested)
  946. free_dma(drv_data->dma_channel);
  947. drv_data->dma_requested = 0;
  948. kfree(chip);
  949. /* prevent free 'chip' twice */
  950. spi_set_ctldata(spi, NULL);
  951. }
  952. return ret;
  953. }
  954. /*
  955. * callback for spi framework.
  956. * clean driver specific data
  957. */
  958. static void bfin_spi_cleanup(struct spi_device *spi)
  959. {
  960. struct slave_data *chip = spi_get_ctldata(spi);
  961. struct master_data *drv_data = spi_master_get_devdata(spi->master);
  962. if (!chip)
  963. return;
  964. if (chip->chip_select_num < MAX_CTRL_CS) {
  965. peripheral_free(ssel[spi->master->bus_num]
  966. [chip->chip_select_num-1]);
  967. bfin_spi_cs_disable(drv_data, chip);
  968. } else
  969. gpio_free(chip->cs_gpio);
  970. kfree(chip);
  971. /* prevent free 'chip' twice */
  972. spi_set_ctldata(spi, NULL);
  973. }
  974. static inline int bfin_spi_init_queue(struct master_data *drv_data)
  975. {
  976. INIT_LIST_HEAD(&drv_data->queue);
  977. spin_lock_init(&drv_data->lock);
  978. drv_data->running = false;
  979. drv_data->busy = 0;
  980. /* init transfer tasklet */
  981. tasklet_init(&drv_data->pump_transfers,
  982. bfin_spi_pump_transfers, (unsigned long)drv_data);
  983. /* init messages workqueue */
  984. INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
  985. drv_data->workqueue = create_singlethread_workqueue(
  986. dev_name(drv_data->master->dev.parent));
  987. if (drv_data->workqueue == NULL)
  988. return -EBUSY;
  989. return 0;
  990. }
  991. static inline int bfin_spi_start_queue(struct master_data *drv_data)
  992. {
  993. unsigned long flags;
  994. spin_lock_irqsave(&drv_data->lock, flags);
  995. if (drv_data->running || drv_data->busy) {
  996. spin_unlock_irqrestore(&drv_data->lock, flags);
  997. return -EBUSY;
  998. }
  999. drv_data->running = true;
  1000. drv_data->cur_msg = NULL;
  1001. drv_data->cur_transfer = NULL;
  1002. drv_data->cur_chip = NULL;
  1003. spin_unlock_irqrestore(&drv_data->lock, flags);
  1004. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1005. return 0;
  1006. }
  1007. static inline int bfin_spi_stop_queue(struct master_data *drv_data)
  1008. {
  1009. unsigned long flags;
  1010. unsigned limit = 500;
  1011. int status = 0;
  1012. spin_lock_irqsave(&drv_data->lock, flags);
  1013. /*
  1014. * This is a bit lame, but is optimized for the common execution path.
  1015. * A wait_queue on the drv_data->busy could be used, but then the common
  1016. * execution path (pump_messages) would be required to call wake_up or
  1017. * friends on every SPI message. Do this instead
  1018. */
  1019. drv_data->running = false;
  1020. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1021. spin_unlock_irqrestore(&drv_data->lock, flags);
  1022. msleep(10);
  1023. spin_lock_irqsave(&drv_data->lock, flags);
  1024. }
  1025. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1026. status = -EBUSY;
  1027. spin_unlock_irqrestore(&drv_data->lock, flags);
  1028. return status;
  1029. }
  1030. static inline int bfin_spi_destroy_queue(struct master_data *drv_data)
  1031. {
  1032. int status;
  1033. status = bfin_spi_stop_queue(drv_data);
  1034. if (status != 0)
  1035. return status;
  1036. destroy_workqueue(drv_data->workqueue);
  1037. return 0;
  1038. }
  1039. static int __init bfin_spi_probe(struct platform_device *pdev)
  1040. {
  1041. struct device *dev = &pdev->dev;
  1042. struct bfin5xx_spi_master *platform_info;
  1043. struct spi_master *master;
  1044. struct master_data *drv_data;
  1045. struct resource *res;
  1046. int status = 0;
  1047. platform_info = dev->platform_data;
  1048. /* Allocate master with space for drv_data */
  1049. master = spi_alloc_master(dev, sizeof(*drv_data));
  1050. if (!master) {
  1051. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1052. return -ENOMEM;
  1053. }
  1054. drv_data = spi_master_get_devdata(master);
  1055. drv_data->master = master;
  1056. drv_data->master_info = platform_info;
  1057. drv_data->pdev = pdev;
  1058. drv_data->pin_req = platform_info->pin_req;
  1059. /* the spi->mode bits supported by this driver: */
  1060. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1061. master->bus_num = pdev->id;
  1062. master->num_chipselect = platform_info->num_chipselect;
  1063. master->cleanup = bfin_spi_cleanup;
  1064. master->setup = bfin_spi_setup;
  1065. master->transfer = bfin_spi_transfer;
  1066. /* Find and map our resources */
  1067. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1068. if (res == NULL) {
  1069. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1070. status = -ENOENT;
  1071. goto out_error_get_res;
  1072. }
  1073. drv_data->regs_base = ioremap(res->start, resource_size(res));
  1074. if (drv_data->regs_base == NULL) {
  1075. dev_err(dev, "Cannot map IO\n");
  1076. status = -ENXIO;
  1077. goto out_error_ioremap;
  1078. }
  1079. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  1080. if (res == NULL) {
  1081. dev_err(dev, "No DMA channel specified\n");
  1082. status = -ENOENT;
  1083. goto out_error_free_io;
  1084. }
  1085. drv_data->dma_channel = res->start;
  1086. drv_data->spi_irq = platform_get_irq(pdev, 0);
  1087. if (drv_data->spi_irq < 0) {
  1088. dev_err(dev, "No spi pio irq specified\n");
  1089. status = -ENOENT;
  1090. goto out_error_free_io;
  1091. }
  1092. /* Initial and start queue */
  1093. status = bfin_spi_init_queue(drv_data);
  1094. if (status != 0) {
  1095. dev_err(dev, "problem initializing queue\n");
  1096. goto out_error_queue_alloc;
  1097. }
  1098. status = bfin_spi_start_queue(drv_data);
  1099. if (status != 0) {
  1100. dev_err(dev, "problem starting queue\n");
  1101. goto out_error_queue_alloc;
  1102. }
  1103. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1104. if (status != 0) {
  1105. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1106. goto out_error_queue_alloc;
  1107. }
  1108. /* Reset SPI registers. If these registers were used by the boot loader,
  1109. * the sky may fall on your head if you enable the dma controller.
  1110. */
  1111. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1112. write_FLAG(drv_data, 0xFF00);
  1113. /* Register with the SPI framework */
  1114. platform_set_drvdata(pdev, drv_data);
  1115. status = spi_register_master(master);
  1116. if (status != 0) {
  1117. dev_err(dev, "problem registering spi master\n");
  1118. goto out_error_queue_alloc;
  1119. }
  1120. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1121. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1122. drv_data->dma_channel);
  1123. return status;
  1124. out_error_queue_alloc:
  1125. bfin_spi_destroy_queue(drv_data);
  1126. out_error_free_io:
  1127. iounmap((void *) drv_data->regs_base);
  1128. out_error_ioremap:
  1129. out_error_get_res:
  1130. spi_master_put(master);
  1131. return status;
  1132. }
  1133. /* stop hardware and remove the driver */
  1134. static int __devexit bfin_spi_remove(struct platform_device *pdev)
  1135. {
  1136. struct master_data *drv_data = platform_get_drvdata(pdev);
  1137. int status = 0;
  1138. if (!drv_data)
  1139. return 0;
  1140. /* Remove the queue */
  1141. status = bfin_spi_destroy_queue(drv_data);
  1142. if (status != 0)
  1143. return status;
  1144. /* Disable the SSP at the peripheral and SOC level */
  1145. bfin_spi_disable(drv_data);
  1146. /* Release DMA */
  1147. if (drv_data->master_info->enable_dma) {
  1148. if (dma_channel_active(drv_data->dma_channel))
  1149. free_dma(drv_data->dma_channel);
  1150. }
  1151. if (drv_data->irq_requested) {
  1152. free_irq(drv_data->spi_irq, drv_data);
  1153. drv_data->irq_requested = 0;
  1154. }
  1155. /* Disconnect from the SPI framework */
  1156. spi_unregister_master(drv_data->master);
  1157. peripheral_free_list(drv_data->pin_req);
  1158. /* Prevent double remove */
  1159. platform_set_drvdata(pdev, NULL);
  1160. return 0;
  1161. }
  1162. #ifdef CONFIG_PM
  1163. static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1164. {
  1165. struct master_data *drv_data = platform_get_drvdata(pdev);
  1166. int status = 0;
  1167. status = bfin_spi_stop_queue(drv_data);
  1168. if (status != 0)
  1169. return status;
  1170. drv_data->ctrl_reg = read_CTRL(drv_data);
  1171. drv_data->flag_reg = read_FLAG(drv_data);
  1172. /*
  1173. * reset SPI_CTL and SPI_FLG registers
  1174. */
  1175. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1176. write_FLAG(drv_data, 0xFF00);
  1177. return 0;
  1178. }
  1179. static int bfin_spi_resume(struct platform_device *pdev)
  1180. {
  1181. struct master_data *drv_data = platform_get_drvdata(pdev);
  1182. int status = 0;
  1183. write_CTRL(drv_data, drv_data->ctrl_reg);
  1184. write_FLAG(drv_data, drv_data->flag_reg);
  1185. /* Start the queue running */
  1186. status = bfin_spi_start_queue(drv_data);
  1187. if (status != 0) {
  1188. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1189. return status;
  1190. }
  1191. return 0;
  1192. }
  1193. #else
  1194. #define bfin_spi_suspend NULL
  1195. #define bfin_spi_resume NULL
  1196. #endif /* CONFIG_PM */
  1197. MODULE_ALIAS("platform:bfin-spi");
  1198. static struct platform_driver bfin_spi_driver = {
  1199. .driver = {
  1200. .name = DRV_NAME,
  1201. .owner = THIS_MODULE,
  1202. },
  1203. .suspend = bfin_spi_suspend,
  1204. .resume = bfin_spi_resume,
  1205. .remove = __devexit_p(bfin_spi_remove),
  1206. };
  1207. static int __init bfin_spi_init(void)
  1208. {
  1209. return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
  1210. }
  1211. module_init(bfin_spi_init);
  1212. static void __exit bfin_spi_exit(void)
  1213. {
  1214. platform_driver_unregister(&bfin_spi_driver);
  1215. }
  1216. module_exit(bfin_spi_exit);