fs-writeback.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782
  1. /*
  2. * fs/fs-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains all the functions related to writing back and waiting
  7. * upon dirty inodes against superblocks, and writing back dirty
  8. * pages against inodes. ie: data writeback. Writeout of the
  9. * inode itself is not handled here.
  10. *
  11. * 10Apr2002 akpm@zip.com.au
  12. * Split out of fs/inode.c
  13. * Additions for address_space-based writeback
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/sched.h>
  19. #include <linux/fs.h>
  20. #include <linux/mm.h>
  21. #include <linux/writeback.h>
  22. #include <linux/blkdev.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/buffer_head.h>
  25. #include "internal.h"
  26. /**
  27. * __mark_inode_dirty - internal function
  28. * @inode: inode to mark
  29. * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
  30. * Mark an inode as dirty. Callers should use mark_inode_dirty or
  31. * mark_inode_dirty_sync.
  32. *
  33. * Put the inode on the super block's dirty list.
  34. *
  35. * CAREFUL! We mark it dirty unconditionally, but move it onto the
  36. * dirty list only if it is hashed or if it refers to a blockdev.
  37. * If it was not hashed, it will never be added to the dirty list
  38. * even if it is later hashed, as it will have been marked dirty already.
  39. *
  40. * In short, make sure you hash any inodes _before_ you start marking
  41. * them dirty.
  42. *
  43. * This function *must* be atomic for the I_DIRTY_PAGES case -
  44. * set_page_dirty() is called under spinlock in several places.
  45. *
  46. * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
  47. * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
  48. * the kernel-internal blockdev inode represents the dirtying time of the
  49. * blockdev's pages. This is why for I_DIRTY_PAGES we always use
  50. * page->mapping->host, so the page-dirtying time is recorded in the internal
  51. * blockdev inode.
  52. */
  53. void __mark_inode_dirty(struct inode *inode, int flags)
  54. {
  55. struct super_block *sb = inode->i_sb;
  56. /*
  57. * Don't do this for I_DIRTY_PAGES - that doesn't actually
  58. * dirty the inode itself
  59. */
  60. if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
  61. if (sb->s_op->dirty_inode)
  62. sb->s_op->dirty_inode(inode);
  63. }
  64. /*
  65. * make sure that changes are seen by all cpus before we test i_state
  66. * -- mikulas
  67. */
  68. smp_mb();
  69. /* avoid the locking if we can */
  70. if ((inode->i_state & flags) == flags)
  71. return;
  72. if (unlikely(block_dump)) {
  73. struct dentry *dentry = NULL;
  74. const char *name = "?";
  75. if (!list_empty(&inode->i_dentry)) {
  76. dentry = list_entry(inode->i_dentry.next,
  77. struct dentry, d_alias);
  78. if (dentry && dentry->d_name.name)
  79. name = (const char *) dentry->d_name.name;
  80. }
  81. if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
  82. printk(KERN_DEBUG
  83. "%s(%d): dirtied inode %lu (%s) on %s\n",
  84. current->comm, current->pid, inode->i_ino,
  85. name, inode->i_sb->s_id);
  86. }
  87. spin_lock(&inode_lock);
  88. if ((inode->i_state & flags) != flags) {
  89. const int was_dirty = inode->i_state & I_DIRTY;
  90. inode->i_state |= flags;
  91. /*
  92. * If the inode is locked, just update its dirty state.
  93. * The unlocker will place the inode on the appropriate
  94. * superblock list, based upon its state.
  95. */
  96. if (inode->i_state & I_LOCK)
  97. goto out;
  98. /*
  99. * Only add valid (hashed) inodes to the superblock's
  100. * dirty list. Add blockdev inodes as well.
  101. */
  102. if (!S_ISBLK(inode->i_mode)) {
  103. if (hlist_unhashed(&inode->i_hash))
  104. goto out;
  105. }
  106. if (inode->i_state & (I_FREEING|I_CLEAR))
  107. goto out;
  108. /*
  109. * If the inode was already on s_dirty/s_io/s_more_io, don't
  110. * reposition it (that would break s_dirty time-ordering).
  111. */
  112. if (!was_dirty) {
  113. inode->dirtied_when = jiffies;
  114. list_move(&inode->i_list, &sb->s_dirty);
  115. }
  116. }
  117. out:
  118. spin_unlock(&inode_lock);
  119. }
  120. EXPORT_SYMBOL(__mark_inode_dirty);
  121. static int write_inode(struct inode *inode, int sync)
  122. {
  123. if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
  124. return inode->i_sb->s_op->write_inode(inode, sync);
  125. return 0;
  126. }
  127. /*
  128. * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
  129. * furthest end of its superblock's dirty-inode list.
  130. *
  131. * Before stamping the inode's ->dirtied_when, we check to see whether it is
  132. * already the most-recently-dirtied inode on the s_dirty list. If that is
  133. * the case then the inode must have been redirtied while it was being written
  134. * out and we don't reset its dirtied_when.
  135. */
  136. static void redirty_tail(struct inode *inode)
  137. {
  138. struct super_block *sb = inode->i_sb;
  139. if (!list_empty(&sb->s_dirty)) {
  140. struct inode *tail_inode;
  141. tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
  142. if (!time_after_eq(inode->dirtied_when,
  143. tail_inode->dirtied_when))
  144. inode->dirtied_when = jiffies;
  145. }
  146. list_move(&inode->i_list, &sb->s_dirty);
  147. }
  148. /*
  149. * requeue inode for re-scanning after sb->s_io list is exhausted.
  150. */
  151. static void requeue_io(struct inode *inode)
  152. {
  153. list_move(&inode->i_list, &inode->i_sb->s_more_io);
  154. }
  155. /*
  156. * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
  157. */
  158. static void move_expired_inodes(struct list_head *delaying_queue,
  159. struct list_head *dispatch_queue,
  160. unsigned long *older_than_this)
  161. {
  162. while (!list_empty(delaying_queue)) {
  163. struct inode *inode = list_entry(delaying_queue->prev,
  164. struct inode, i_list);
  165. if (older_than_this &&
  166. time_after(inode->dirtied_when, *older_than_this))
  167. break;
  168. list_move(&inode->i_list, dispatch_queue);
  169. }
  170. }
  171. /*
  172. * Queue all expired dirty inodes for io, eldest first.
  173. */
  174. static void queue_io(struct super_block *sb,
  175. unsigned long *older_than_this)
  176. {
  177. list_splice_init(&sb->s_more_io, sb->s_io.prev);
  178. move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this);
  179. }
  180. int sb_has_dirty_inodes(struct super_block *sb)
  181. {
  182. return !list_empty(&sb->s_dirty) ||
  183. !list_empty(&sb->s_io) ||
  184. !list_empty(&sb->s_more_io);
  185. }
  186. EXPORT_SYMBOL(sb_has_dirty_inodes);
  187. /*
  188. * Write a single inode's dirty pages and inode data out to disk.
  189. * If `wait' is set, wait on the writeout.
  190. *
  191. * The whole writeout design is quite complex and fragile. We want to avoid
  192. * starvation of particular inodes when others are being redirtied, prevent
  193. * livelocks, etc.
  194. *
  195. * Called under inode_lock.
  196. */
  197. static int
  198. __sync_single_inode(struct inode *inode, struct writeback_control *wbc)
  199. {
  200. unsigned dirty;
  201. struct address_space *mapping = inode->i_mapping;
  202. int wait = wbc->sync_mode == WB_SYNC_ALL;
  203. int ret;
  204. BUG_ON(inode->i_state & I_LOCK);
  205. /* Set I_LOCK, reset I_DIRTY */
  206. dirty = inode->i_state & I_DIRTY;
  207. inode->i_state |= I_LOCK;
  208. inode->i_state &= ~I_DIRTY;
  209. spin_unlock(&inode_lock);
  210. ret = do_writepages(mapping, wbc);
  211. /* Don't write the inode if only I_DIRTY_PAGES was set */
  212. if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
  213. int err = write_inode(inode, wait);
  214. if (ret == 0)
  215. ret = err;
  216. }
  217. if (wait) {
  218. int err = filemap_fdatawait(mapping);
  219. if (ret == 0)
  220. ret = err;
  221. }
  222. spin_lock(&inode_lock);
  223. inode->i_state &= ~I_LOCK;
  224. if (!(inode->i_state & I_FREEING)) {
  225. if (!(inode->i_state & I_DIRTY) &&
  226. mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
  227. /*
  228. * We didn't write back all the pages. nfs_writepages()
  229. * sometimes bales out without doing anything. Redirty
  230. * the inode; Move it from s_io onto s_more_io/s_dirty.
  231. */
  232. /*
  233. * akpm: if the caller was the kupdate function we put
  234. * this inode at the head of s_dirty so it gets first
  235. * consideration. Otherwise, move it to the tail, for
  236. * the reasons described there. I'm not really sure
  237. * how much sense this makes. Presumably I had a good
  238. * reasons for doing it this way, and I'd rather not
  239. * muck with it at present.
  240. */
  241. if (wbc->for_kupdate) {
  242. /*
  243. * For the kupdate function we move the inode
  244. * to s_more_io so it will get more writeout as
  245. * soon as the queue becomes uncongested.
  246. */
  247. inode->i_state |= I_DIRTY_PAGES;
  248. requeue_io(inode);
  249. } else {
  250. /*
  251. * Otherwise fully redirty the inode so that
  252. * other inodes on this superblock will get some
  253. * writeout. Otherwise heavy writing to one
  254. * file would indefinitely suspend writeout of
  255. * all the other files.
  256. */
  257. inode->i_state |= I_DIRTY_PAGES;
  258. redirty_tail(inode);
  259. }
  260. } else if (inode->i_state & I_DIRTY) {
  261. /*
  262. * Someone redirtied the inode while were writing back
  263. * the pages.
  264. */
  265. redirty_tail(inode);
  266. } else if (atomic_read(&inode->i_count)) {
  267. /*
  268. * The inode is clean, inuse
  269. */
  270. list_move(&inode->i_list, &inode_in_use);
  271. } else {
  272. /*
  273. * The inode is clean, unused
  274. */
  275. list_move(&inode->i_list, &inode_unused);
  276. }
  277. }
  278. wake_up_inode(inode);
  279. return ret;
  280. }
  281. /*
  282. * Write out an inode's dirty pages. Called under inode_lock. Either the
  283. * caller has ref on the inode (either via __iget or via syscall against an fd)
  284. * or the inode has I_WILL_FREE set (via generic_forget_inode)
  285. */
  286. static int
  287. __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
  288. {
  289. wait_queue_head_t *wqh;
  290. if (!atomic_read(&inode->i_count))
  291. WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
  292. else
  293. WARN_ON(inode->i_state & I_WILL_FREE);
  294. if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_LOCK)) {
  295. struct address_space *mapping = inode->i_mapping;
  296. int ret;
  297. /*
  298. * We're skipping this inode because it's locked, and we're not
  299. * doing writeback-for-data-integrity. Move it to s_more_io so
  300. * that writeback can proceed with the other inodes on s_io.
  301. * We'll have another go at writing back this inode when we
  302. * completed a full scan of s_io.
  303. */
  304. requeue_io(inode);
  305. /*
  306. * Even if we don't actually write the inode itself here,
  307. * we can at least start some of the data writeout..
  308. */
  309. spin_unlock(&inode_lock);
  310. ret = do_writepages(mapping, wbc);
  311. spin_lock(&inode_lock);
  312. return ret;
  313. }
  314. /*
  315. * It's a data-integrity sync. We must wait.
  316. */
  317. if (inode->i_state & I_LOCK) {
  318. DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LOCK);
  319. wqh = bit_waitqueue(&inode->i_state, __I_LOCK);
  320. do {
  321. spin_unlock(&inode_lock);
  322. __wait_on_bit(wqh, &wq, inode_wait,
  323. TASK_UNINTERRUPTIBLE);
  324. spin_lock(&inode_lock);
  325. } while (inode->i_state & I_LOCK);
  326. }
  327. return __sync_single_inode(inode, wbc);
  328. }
  329. /*
  330. * Write out a superblock's list of dirty inodes. A wait will be performed
  331. * upon no inodes, all inodes or the final one, depending upon sync_mode.
  332. *
  333. * If older_than_this is non-NULL, then only write out inodes which
  334. * had their first dirtying at a time earlier than *older_than_this.
  335. *
  336. * If we're a pdlfush thread, then implement pdflush collision avoidance
  337. * against the entire list.
  338. *
  339. * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
  340. * that it can be located for waiting on in __writeback_single_inode().
  341. *
  342. * Called under inode_lock.
  343. *
  344. * If `bdi' is non-zero then we're being asked to writeback a specific queue.
  345. * This function assumes that the blockdev superblock's inodes are backed by
  346. * a variety of queues, so all inodes are searched. For other superblocks,
  347. * assume that all inodes are backed by the same queue.
  348. *
  349. * FIXME: this linear search could get expensive with many fileystems. But
  350. * how to fix? We need to go from an address_space to all inodes which share
  351. * a queue with that address_space. (Easy: have a global "dirty superblocks"
  352. * list).
  353. *
  354. * The inodes to be written are parked on sb->s_io. They are moved back onto
  355. * sb->s_dirty as they are selected for writing. This way, none can be missed
  356. * on the writer throttling path, and we get decent balancing between many
  357. * throttled threads: we don't want them all piling up on __wait_on_inode.
  358. */
  359. static void
  360. sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc)
  361. {
  362. const unsigned long start = jiffies; /* livelock avoidance */
  363. if (!wbc->for_kupdate || list_empty(&sb->s_io))
  364. queue_io(sb, wbc->older_than_this);
  365. while (!list_empty(&sb->s_io)) {
  366. struct inode *inode = list_entry(sb->s_io.prev,
  367. struct inode, i_list);
  368. struct address_space *mapping = inode->i_mapping;
  369. struct backing_dev_info *bdi = mapping->backing_dev_info;
  370. long pages_skipped;
  371. if (!bdi_cap_writeback_dirty(bdi)) {
  372. redirty_tail(inode);
  373. if (sb_is_blkdev_sb(sb)) {
  374. /*
  375. * Dirty memory-backed blockdev: the ramdisk
  376. * driver does this. Skip just this inode
  377. */
  378. continue;
  379. }
  380. /*
  381. * Dirty memory-backed inode against a filesystem other
  382. * than the kernel-internal bdev filesystem. Skip the
  383. * entire superblock.
  384. */
  385. break;
  386. }
  387. if (wbc->nonblocking && bdi_write_congested(bdi)) {
  388. wbc->encountered_congestion = 1;
  389. if (!sb_is_blkdev_sb(sb))
  390. break; /* Skip a congested fs */
  391. requeue_io(inode);
  392. continue; /* Skip a congested blockdev */
  393. }
  394. if (wbc->bdi && bdi != wbc->bdi) {
  395. if (!sb_is_blkdev_sb(sb))
  396. break; /* fs has the wrong queue */
  397. requeue_io(inode);
  398. continue; /* blockdev has wrong queue */
  399. }
  400. /* Was this inode dirtied after sync_sb_inodes was called? */
  401. if (time_after(inode->dirtied_when, start))
  402. break;
  403. /* Is another pdflush already flushing this queue? */
  404. if (current_is_pdflush() && !writeback_acquire(bdi))
  405. break;
  406. BUG_ON(inode->i_state & I_FREEING);
  407. __iget(inode);
  408. pages_skipped = wbc->pages_skipped;
  409. __writeback_single_inode(inode, wbc);
  410. if (wbc->sync_mode == WB_SYNC_HOLD) {
  411. inode->dirtied_when = jiffies;
  412. list_move(&inode->i_list, &sb->s_dirty);
  413. }
  414. if (current_is_pdflush())
  415. writeback_release(bdi);
  416. if (wbc->pages_skipped != pages_skipped) {
  417. /*
  418. * writeback is not making progress due to locked
  419. * buffers. Skip this inode for now.
  420. */
  421. redirty_tail(inode);
  422. }
  423. spin_unlock(&inode_lock);
  424. iput(inode);
  425. cond_resched();
  426. spin_lock(&inode_lock);
  427. if (wbc->nr_to_write <= 0)
  428. break;
  429. }
  430. if (!list_empty(&sb->s_more_io))
  431. wbc->more_io = 1;
  432. return; /* Leave any unwritten inodes on s_io */
  433. }
  434. /*
  435. * Start writeback of dirty pagecache data against all unlocked inodes.
  436. *
  437. * Note:
  438. * We don't need to grab a reference to superblock here. If it has non-empty
  439. * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
  440. * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all
  441. * empty. Since __sync_single_inode() regains inode_lock before it finally moves
  442. * inode from superblock lists we are OK.
  443. *
  444. * If `older_than_this' is non-zero then only flush inodes which have a
  445. * flushtime older than *older_than_this.
  446. *
  447. * If `bdi' is non-zero then we will scan the first inode against each
  448. * superblock until we find the matching ones. One group will be the dirty
  449. * inodes against a filesystem. Then when we hit the dummy blockdev superblock,
  450. * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
  451. * super-efficient but we're about to do a ton of I/O...
  452. */
  453. void
  454. writeback_inodes(struct writeback_control *wbc)
  455. {
  456. struct super_block *sb;
  457. might_sleep();
  458. spin_lock(&sb_lock);
  459. restart:
  460. sb = sb_entry(super_blocks.prev);
  461. for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
  462. if (sb_has_dirty_inodes(sb)) {
  463. /* we're making our own get_super here */
  464. sb->s_count++;
  465. spin_unlock(&sb_lock);
  466. /*
  467. * If we can't get the readlock, there's no sense in
  468. * waiting around, most of the time the FS is going to
  469. * be unmounted by the time it is released.
  470. */
  471. if (down_read_trylock(&sb->s_umount)) {
  472. if (sb->s_root) {
  473. spin_lock(&inode_lock);
  474. sync_sb_inodes(sb, wbc);
  475. spin_unlock(&inode_lock);
  476. }
  477. up_read(&sb->s_umount);
  478. }
  479. spin_lock(&sb_lock);
  480. if (__put_super_and_need_restart(sb))
  481. goto restart;
  482. }
  483. if (wbc->nr_to_write <= 0)
  484. break;
  485. }
  486. spin_unlock(&sb_lock);
  487. }
  488. /*
  489. * writeback and wait upon the filesystem's dirty inodes. The caller will
  490. * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is
  491. * used to park the written inodes on sb->s_dirty for the wait pass.
  492. *
  493. * A finite limit is set on the number of pages which will be written.
  494. * To prevent infinite livelock of sys_sync().
  495. *
  496. * We add in the number of potentially dirty inodes, because each inode write
  497. * can dirty pagecache in the underlying blockdev.
  498. */
  499. void sync_inodes_sb(struct super_block *sb, int wait)
  500. {
  501. struct writeback_control wbc = {
  502. .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
  503. .range_start = 0,
  504. .range_end = LLONG_MAX,
  505. };
  506. unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
  507. unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
  508. wbc.nr_to_write = nr_dirty + nr_unstable +
  509. (inodes_stat.nr_inodes - inodes_stat.nr_unused) +
  510. nr_dirty + nr_unstable;
  511. wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */
  512. spin_lock(&inode_lock);
  513. sync_sb_inodes(sb, &wbc);
  514. spin_unlock(&inode_lock);
  515. }
  516. /*
  517. * Rather lame livelock avoidance.
  518. */
  519. static void set_sb_syncing(int val)
  520. {
  521. struct super_block *sb;
  522. spin_lock(&sb_lock);
  523. sb = sb_entry(super_blocks.prev);
  524. for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
  525. sb->s_syncing = val;
  526. }
  527. spin_unlock(&sb_lock);
  528. }
  529. /**
  530. * sync_inodes - writes all inodes to disk
  531. * @wait: wait for completion
  532. *
  533. * sync_inodes() goes through each super block's dirty inode list, writes the
  534. * inodes out, waits on the writeout and puts the inodes back on the normal
  535. * list.
  536. *
  537. * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle
  538. * part of the sync functions is that the blockdev "superblock" is processed
  539. * last. This is because the write_inode() function of a typical fs will
  540. * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
  541. * What we want to do is to perform all that dirtying first, and then write
  542. * back all those inode blocks via the blockdev mapping in one sweep. So the
  543. * additional (somewhat redundant) sync_blockdev() calls here are to make
  544. * sure that really happens. Because if we call sync_inodes_sb(wait=1) with
  545. * outstanding dirty inodes, the writeback goes block-at-a-time within the
  546. * filesystem's write_inode(). This is extremely slow.
  547. */
  548. static void __sync_inodes(int wait)
  549. {
  550. struct super_block *sb;
  551. spin_lock(&sb_lock);
  552. restart:
  553. list_for_each_entry(sb, &super_blocks, s_list) {
  554. if (sb->s_syncing)
  555. continue;
  556. sb->s_syncing = 1;
  557. sb->s_count++;
  558. spin_unlock(&sb_lock);
  559. down_read(&sb->s_umount);
  560. if (sb->s_root) {
  561. sync_inodes_sb(sb, wait);
  562. sync_blockdev(sb->s_bdev);
  563. }
  564. up_read(&sb->s_umount);
  565. spin_lock(&sb_lock);
  566. if (__put_super_and_need_restart(sb))
  567. goto restart;
  568. }
  569. spin_unlock(&sb_lock);
  570. }
  571. void sync_inodes(int wait)
  572. {
  573. set_sb_syncing(0);
  574. __sync_inodes(0);
  575. if (wait) {
  576. set_sb_syncing(0);
  577. __sync_inodes(1);
  578. }
  579. }
  580. /**
  581. * write_inode_now - write an inode to disk
  582. * @inode: inode to write to disk
  583. * @sync: whether the write should be synchronous or not
  584. *
  585. * This function commits an inode to disk immediately if it is dirty. This is
  586. * primarily needed by knfsd.
  587. *
  588. * The caller must either have a ref on the inode or must have set I_WILL_FREE.
  589. */
  590. int write_inode_now(struct inode *inode, int sync)
  591. {
  592. int ret;
  593. struct writeback_control wbc = {
  594. .nr_to_write = LONG_MAX,
  595. .sync_mode = WB_SYNC_ALL,
  596. .range_start = 0,
  597. .range_end = LLONG_MAX,
  598. };
  599. if (!mapping_cap_writeback_dirty(inode->i_mapping))
  600. wbc.nr_to_write = 0;
  601. might_sleep();
  602. spin_lock(&inode_lock);
  603. ret = __writeback_single_inode(inode, &wbc);
  604. spin_unlock(&inode_lock);
  605. if (sync)
  606. wait_on_inode(inode);
  607. return ret;
  608. }
  609. EXPORT_SYMBOL(write_inode_now);
  610. /**
  611. * sync_inode - write an inode and its pages to disk.
  612. * @inode: the inode to sync
  613. * @wbc: controls the writeback mode
  614. *
  615. * sync_inode() will write an inode and its pages to disk. It will also
  616. * correctly update the inode on its superblock's dirty inode lists and will
  617. * update inode->i_state.
  618. *
  619. * The caller must have a ref on the inode.
  620. */
  621. int sync_inode(struct inode *inode, struct writeback_control *wbc)
  622. {
  623. int ret;
  624. spin_lock(&inode_lock);
  625. ret = __writeback_single_inode(inode, wbc);
  626. spin_unlock(&inode_lock);
  627. return ret;
  628. }
  629. EXPORT_SYMBOL(sync_inode);
  630. /**
  631. * generic_osync_inode - flush all dirty data for a given inode to disk
  632. * @inode: inode to write
  633. * @mapping: the address_space that should be flushed
  634. * @what: what to write and wait upon
  635. *
  636. * This can be called by file_write functions for files which have the
  637. * O_SYNC flag set, to flush dirty writes to disk.
  638. *
  639. * @what is a bitmask, specifying which part of the inode's data should be
  640. * written and waited upon.
  641. *
  642. * OSYNC_DATA: i_mapping's dirty data
  643. * OSYNC_METADATA: the buffers at i_mapping->private_list
  644. * OSYNC_INODE: the inode itself
  645. */
  646. int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
  647. {
  648. int err = 0;
  649. int need_write_inode_now = 0;
  650. int err2;
  651. if (what & OSYNC_DATA)
  652. err = filemap_fdatawrite(mapping);
  653. if (what & (OSYNC_METADATA|OSYNC_DATA)) {
  654. err2 = sync_mapping_buffers(mapping);
  655. if (!err)
  656. err = err2;
  657. }
  658. if (what & OSYNC_DATA) {
  659. err2 = filemap_fdatawait(mapping);
  660. if (!err)
  661. err = err2;
  662. }
  663. spin_lock(&inode_lock);
  664. if ((inode->i_state & I_DIRTY) &&
  665. ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
  666. need_write_inode_now = 1;
  667. spin_unlock(&inode_lock);
  668. if (need_write_inode_now) {
  669. err2 = write_inode_now(inode, 1);
  670. if (!err)
  671. err = err2;
  672. }
  673. else
  674. wait_on_inode(inode);
  675. return err;
  676. }
  677. EXPORT_SYMBOL(generic_osync_inode);
  678. /**
  679. * writeback_acquire: attempt to get exclusive writeback access to a device
  680. * @bdi: the device's backing_dev_info structure
  681. *
  682. * It is a waste of resources to have more than one pdflush thread blocked on
  683. * a single request queue. Exclusion at the request_queue level is obtained
  684. * via a flag in the request_queue's backing_dev_info.state.
  685. *
  686. * Non-request_queue-backed address_spaces will share default_backing_dev_info,
  687. * unless they implement their own. Which is somewhat inefficient, as this
  688. * may prevent concurrent writeback against multiple devices.
  689. */
  690. int writeback_acquire(struct backing_dev_info *bdi)
  691. {
  692. return !test_and_set_bit(BDI_pdflush, &bdi->state);
  693. }
  694. /**
  695. * writeback_in_progress: determine whether there is writeback in progress
  696. * @bdi: the device's backing_dev_info structure.
  697. *
  698. * Determine whether there is writeback in progress against a backing device.
  699. */
  700. int writeback_in_progress(struct backing_dev_info *bdi)
  701. {
  702. return test_bit(BDI_pdflush, &bdi->state);
  703. }
  704. /**
  705. * writeback_release: relinquish exclusive writeback access against a device.
  706. * @bdi: the device's backing_dev_info structure
  707. */
  708. void writeback_release(struct backing_dev_info *bdi)
  709. {
  710. BUG_ON(!writeback_in_progress(bdi));
  711. clear_bit(BDI_pdflush, &bdi->state);
  712. }