ttm_tt.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. /**************************************************************************
  2. *
  3. * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
  4. * All Rights Reserved.
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the
  8. * "Software"), to deal in the Software without restriction, including
  9. * without limitation the rights to use, copy, modify, merge, publish,
  10. * distribute, sub license, and/or sell copies of the Software, and to
  11. * permit persons to whom the Software is furnished to do so, subject to
  12. * the following conditions:
  13. *
  14. * The above copyright notice and this permission notice (including the
  15. * next paragraph) shall be included in all copies or substantial portions
  16. * of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21. * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22. * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23. * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24. * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25. *
  26. **************************************************************************/
  27. /*
  28. * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29. */
  30. #include <linux/vmalloc.h>
  31. #include <linux/sched.h>
  32. #include <linux/highmem.h>
  33. #include <linux/pagemap.h>
  34. #include <linux/file.h>
  35. #include <linux/swap.h>
  36. #include "ttm/ttm_module.h"
  37. #include "ttm/ttm_bo_driver.h"
  38. #include "ttm/ttm_placement.h"
  39. static int ttm_tt_swapin(struct ttm_tt *ttm);
  40. #if defined(CONFIG_X86)
  41. static void ttm_tt_clflush_page(struct page *page)
  42. {
  43. uint8_t *page_virtual;
  44. unsigned int i;
  45. if (unlikely(page == NULL))
  46. return;
  47. page_virtual = kmap_atomic(page, KM_USER0);
  48. for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
  49. clflush(page_virtual + i);
  50. kunmap_atomic(page_virtual, KM_USER0);
  51. }
  52. static void ttm_tt_cache_flush_clflush(struct page *pages[],
  53. unsigned long num_pages)
  54. {
  55. unsigned long i;
  56. mb();
  57. for (i = 0; i < num_pages; ++i)
  58. ttm_tt_clflush_page(*pages++);
  59. mb();
  60. }
  61. #elif !defined(__powerpc__)
  62. static void ttm_tt_ipi_handler(void *null)
  63. {
  64. ;
  65. }
  66. #endif
  67. void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages)
  68. {
  69. #if defined(CONFIG_X86)
  70. if (cpu_has_clflush) {
  71. ttm_tt_cache_flush_clflush(pages, num_pages);
  72. return;
  73. }
  74. #elif defined(__powerpc__)
  75. unsigned long i;
  76. for (i = 0; i < num_pages; ++i) {
  77. struct page *page = pages[i];
  78. void *page_virtual;
  79. if (unlikely(page == NULL))
  80. continue;
  81. page_virtual = kmap_atomic(page, KM_USER0);
  82. flush_dcache_range((unsigned long) page_virtual,
  83. (unsigned long) page_virtual + PAGE_SIZE);
  84. kunmap_atomic(page_virtual, KM_USER0);
  85. }
  86. #else
  87. if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0)
  88. printk(KERN_ERR TTM_PFX
  89. "Timed out waiting for drm cache flush.\n");
  90. #endif
  91. }
  92. /**
  93. * Allocates storage for pointers to the pages that back the ttm.
  94. *
  95. * Uses kmalloc if possible. Otherwise falls back to vmalloc.
  96. */
  97. static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
  98. {
  99. unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
  100. ttm->pages = NULL;
  101. if (size <= PAGE_SIZE)
  102. ttm->pages = kzalloc(size, GFP_KERNEL);
  103. if (!ttm->pages) {
  104. ttm->pages = vmalloc_user(size);
  105. if (ttm->pages)
  106. ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
  107. }
  108. }
  109. static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
  110. {
  111. if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
  112. vfree(ttm->pages);
  113. ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
  114. } else {
  115. kfree(ttm->pages);
  116. }
  117. ttm->pages = NULL;
  118. }
  119. static struct page *ttm_tt_alloc_page(unsigned page_flags)
  120. {
  121. gfp_t gfp_flags = GFP_USER;
  122. if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
  123. gfp_flags |= __GFP_ZERO;
  124. if (page_flags & TTM_PAGE_FLAG_DMA32)
  125. gfp_flags |= __GFP_DMA32;
  126. else
  127. gfp_flags |= __GFP_HIGHMEM;
  128. return alloc_page(gfp_flags);
  129. }
  130. static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
  131. {
  132. int write;
  133. int dirty;
  134. struct page *page;
  135. int i;
  136. struct ttm_backend *be = ttm->be;
  137. BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
  138. write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
  139. dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
  140. if (be)
  141. be->func->clear(be);
  142. for (i = 0; i < ttm->num_pages; ++i) {
  143. page = ttm->pages[i];
  144. if (page == NULL)
  145. continue;
  146. if (page == ttm->dummy_read_page) {
  147. BUG_ON(write);
  148. continue;
  149. }
  150. if (write && dirty && !PageReserved(page))
  151. set_page_dirty_lock(page);
  152. ttm->pages[i] = NULL;
  153. ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE, false);
  154. put_page(page);
  155. }
  156. ttm->state = tt_unpopulated;
  157. ttm->first_himem_page = ttm->num_pages;
  158. ttm->last_lomem_page = -1;
  159. }
  160. static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
  161. {
  162. struct page *p;
  163. struct ttm_bo_device *bdev = ttm->bdev;
  164. struct ttm_mem_global *mem_glob = bdev->mem_glob;
  165. int ret;
  166. while (NULL == (p = ttm->pages[index])) {
  167. p = ttm_tt_alloc_page(ttm->page_flags);
  168. if (!p)
  169. return NULL;
  170. if (PageHighMem(p)) {
  171. ret =
  172. ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
  173. false, false, true);
  174. if (unlikely(ret != 0))
  175. goto out_err;
  176. ttm->pages[--ttm->first_himem_page] = p;
  177. } else {
  178. ret =
  179. ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
  180. false, false, false);
  181. if (unlikely(ret != 0))
  182. goto out_err;
  183. ttm->pages[++ttm->last_lomem_page] = p;
  184. }
  185. }
  186. return p;
  187. out_err:
  188. put_page(p);
  189. return NULL;
  190. }
  191. struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
  192. {
  193. int ret;
  194. if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
  195. ret = ttm_tt_swapin(ttm);
  196. if (unlikely(ret != 0))
  197. return NULL;
  198. }
  199. return __ttm_tt_get_page(ttm, index);
  200. }
  201. int ttm_tt_populate(struct ttm_tt *ttm)
  202. {
  203. struct page *page;
  204. unsigned long i;
  205. struct ttm_backend *be;
  206. int ret;
  207. if (ttm->state != tt_unpopulated)
  208. return 0;
  209. if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
  210. ret = ttm_tt_swapin(ttm);
  211. if (unlikely(ret != 0))
  212. return ret;
  213. }
  214. be = ttm->be;
  215. for (i = 0; i < ttm->num_pages; ++i) {
  216. page = __ttm_tt_get_page(ttm, i);
  217. if (!page)
  218. return -ENOMEM;
  219. }
  220. be->func->populate(be, ttm->num_pages, ttm->pages,
  221. ttm->dummy_read_page);
  222. ttm->state = tt_unbound;
  223. return 0;
  224. }
  225. #ifdef CONFIG_X86
  226. static inline int ttm_tt_set_page_caching(struct page *p,
  227. enum ttm_caching_state c_state)
  228. {
  229. if (PageHighMem(p))
  230. return 0;
  231. switch (c_state) {
  232. case tt_cached:
  233. return set_pages_wb(p, 1);
  234. case tt_wc:
  235. return set_memory_wc((unsigned long) page_address(p), 1);
  236. default:
  237. return set_pages_uc(p, 1);
  238. }
  239. }
  240. #else /* CONFIG_X86 */
  241. static inline int ttm_tt_set_page_caching(struct page *p,
  242. enum ttm_caching_state c_state)
  243. {
  244. return 0;
  245. }
  246. #endif /* CONFIG_X86 */
  247. /*
  248. * Change caching policy for the linear kernel map
  249. * for range of pages in a ttm.
  250. */
  251. static int ttm_tt_set_caching(struct ttm_tt *ttm,
  252. enum ttm_caching_state c_state)
  253. {
  254. int i, j;
  255. struct page *cur_page;
  256. int ret;
  257. if (ttm->caching_state == c_state)
  258. return 0;
  259. if (c_state != tt_cached) {
  260. ret = ttm_tt_populate(ttm);
  261. if (unlikely(ret != 0))
  262. return ret;
  263. }
  264. if (ttm->caching_state == tt_cached)
  265. ttm_tt_cache_flush(ttm->pages, ttm->num_pages);
  266. for (i = 0; i < ttm->num_pages; ++i) {
  267. cur_page = ttm->pages[i];
  268. if (likely(cur_page != NULL)) {
  269. ret = ttm_tt_set_page_caching(cur_page, c_state);
  270. if (unlikely(ret != 0))
  271. goto out_err;
  272. }
  273. }
  274. ttm->caching_state = c_state;
  275. return 0;
  276. out_err:
  277. for (j = 0; j < i; ++j) {
  278. cur_page = ttm->pages[j];
  279. if (likely(cur_page != NULL)) {
  280. (void)ttm_tt_set_page_caching(cur_page,
  281. ttm->caching_state);
  282. }
  283. }
  284. return ret;
  285. }
  286. int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
  287. {
  288. enum ttm_caching_state state;
  289. if (placement & TTM_PL_FLAG_WC)
  290. state = tt_wc;
  291. else if (placement & TTM_PL_FLAG_UNCACHED)
  292. state = tt_uncached;
  293. else
  294. state = tt_cached;
  295. return ttm_tt_set_caching(ttm, state);
  296. }
  297. static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
  298. {
  299. int i;
  300. struct page *cur_page;
  301. struct ttm_backend *be = ttm->be;
  302. if (be)
  303. be->func->clear(be);
  304. (void)ttm_tt_set_caching(ttm, tt_cached);
  305. for (i = 0; i < ttm->num_pages; ++i) {
  306. cur_page = ttm->pages[i];
  307. ttm->pages[i] = NULL;
  308. if (cur_page) {
  309. if (page_count(cur_page) != 1)
  310. printk(KERN_ERR TTM_PFX
  311. "Erroneous page count. "
  312. "Leaking pages.\n");
  313. ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE,
  314. PageHighMem(cur_page));
  315. __free_page(cur_page);
  316. }
  317. }
  318. ttm->state = tt_unpopulated;
  319. ttm->first_himem_page = ttm->num_pages;
  320. ttm->last_lomem_page = -1;
  321. }
  322. void ttm_tt_destroy(struct ttm_tt *ttm)
  323. {
  324. struct ttm_backend *be;
  325. if (unlikely(ttm == NULL))
  326. return;
  327. be = ttm->be;
  328. if (likely(be != NULL)) {
  329. be->func->destroy(be);
  330. ttm->be = NULL;
  331. }
  332. if (likely(ttm->pages != NULL)) {
  333. if (ttm->page_flags & TTM_PAGE_FLAG_USER)
  334. ttm_tt_free_user_pages(ttm);
  335. else
  336. ttm_tt_free_alloced_pages(ttm);
  337. ttm_tt_free_page_directory(ttm);
  338. }
  339. if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
  340. ttm->swap_storage)
  341. fput(ttm->swap_storage);
  342. kfree(ttm);
  343. }
  344. int ttm_tt_set_user(struct ttm_tt *ttm,
  345. struct task_struct *tsk,
  346. unsigned long start, unsigned long num_pages)
  347. {
  348. struct mm_struct *mm = tsk->mm;
  349. int ret;
  350. int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
  351. struct ttm_mem_global *mem_glob = ttm->bdev->mem_glob;
  352. BUG_ON(num_pages != ttm->num_pages);
  353. BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
  354. /**
  355. * Account user pages as lowmem pages for now.
  356. */
  357. ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
  358. false, false, false);
  359. if (unlikely(ret != 0))
  360. return ret;
  361. down_read(&mm->mmap_sem);
  362. ret = get_user_pages(tsk, mm, start, num_pages,
  363. write, 0, ttm->pages, NULL);
  364. up_read(&mm->mmap_sem);
  365. if (ret != num_pages && write) {
  366. ttm_tt_free_user_pages(ttm);
  367. ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE, false);
  368. return -ENOMEM;
  369. }
  370. ttm->tsk = tsk;
  371. ttm->start = start;
  372. ttm->state = tt_unbound;
  373. return 0;
  374. }
  375. struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
  376. uint32_t page_flags, struct page *dummy_read_page)
  377. {
  378. struct ttm_bo_driver *bo_driver = bdev->driver;
  379. struct ttm_tt *ttm;
  380. if (!bo_driver)
  381. return NULL;
  382. ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
  383. if (!ttm)
  384. return NULL;
  385. ttm->bdev = bdev;
  386. ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  387. ttm->first_himem_page = ttm->num_pages;
  388. ttm->last_lomem_page = -1;
  389. ttm->caching_state = tt_cached;
  390. ttm->page_flags = page_flags;
  391. ttm->dummy_read_page = dummy_read_page;
  392. ttm_tt_alloc_page_directory(ttm);
  393. if (!ttm->pages) {
  394. ttm_tt_destroy(ttm);
  395. printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
  396. return NULL;
  397. }
  398. ttm->be = bo_driver->create_ttm_backend_entry(bdev);
  399. if (!ttm->be) {
  400. ttm_tt_destroy(ttm);
  401. printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
  402. return NULL;
  403. }
  404. ttm->state = tt_unpopulated;
  405. return ttm;
  406. }
  407. void ttm_tt_unbind(struct ttm_tt *ttm)
  408. {
  409. int ret;
  410. struct ttm_backend *be = ttm->be;
  411. if (ttm->state == tt_bound) {
  412. ret = be->func->unbind(be);
  413. BUG_ON(ret);
  414. ttm->state = tt_unbound;
  415. }
  416. }
  417. int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
  418. {
  419. int ret = 0;
  420. struct ttm_backend *be;
  421. if (!ttm)
  422. return -EINVAL;
  423. if (ttm->state == tt_bound)
  424. return 0;
  425. be = ttm->be;
  426. ret = ttm_tt_populate(ttm);
  427. if (ret)
  428. return ret;
  429. ret = be->func->bind(be, bo_mem);
  430. if (ret) {
  431. printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
  432. return ret;
  433. }
  434. ttm->state = tt_bound;
  435. if (ttm->page_flags & TTM_PAGE_FLAG_USER)
  436. ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
  437. return 0;
  438. }
  439. EXPORT_SYMBOL(ttm_tt_bind);
  440. static int ttm_tt_swapin(struct ttm_tt *ttm)
  441. {
  442. struct address_space *swap_space;
  443. struct file *swap_storage;
  444. struct page *from_page;
  445. struct page *to_page;
  446. void *from_virtual;
  447. void *to_virtual;
  448. int i;
  449. int ret;
  450. if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
  451. ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
  452. ttm->num_pages);
  453. if (unlikely(ret != 0))
  454. return ret;
  455. ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
  456. return 0;
  457. }
  458. swap_storage = ttm->swap_storage;
  459. BUG_ON(swap_storage == NULL);
  460. swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
  461. for (i = 0; i < ttm->num_pages; ++i) {
  462. from_page = read_mapping_page(swap_space, i, NULL);
  463. if (IS_ERR(from_page))
  464. goto out_err;
  465. to_page = __ttm_tt_get_page(ttm, i);
  466. if (unlikely(to_page == NULL))
  467. goto out_err;
  468. preempt_disable();
  469. from_virtual = kmap_atomic(from_page, KM_USER0);
  470. to_virtual = kmap_atomic(to_page, KM_USER1);
  471. memcpy(to_virtual, from_virtual, PAGE_SIZE);
  472. kunmap_atomic(to_virtual, KM_USER1);
  473. kunmap_atomic(from_virtual, KM_USER0);
  474. preempt_enable();
  475. page_cache_release(from_page);
  476. }
  477. if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
  478. fput(swap_storage);
  479. ttm->swap_storage = NULL;
  480. ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
  481. return 0;
  482. out_err:
  483. ttm_tt_free_alloced_pages(ttm);
  484. return -ENOMEM;
  485. }
  486. int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
  487. {
  488. struct address_space *swap_space;
  489. struct file *swap_storage;
  490. struct page *from_page;
  491. struct page *to_page;
  492. void *from_virtual;
  493. void *to_virtual;
  494. int i;
  495. BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
  496. BUG_ON(ttm->caching_state != tt_cached);
  497. /*
  498. * For user buffers, just unpin the pages, as there should be
  499. * vma references.
  500. */
  501. if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
  502. ttm_tt_free_user_pages(ttm);
  503. ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
  504. ttm->swap_storage = NULL;
  505. return 0;
  506. }
  507. if (!persistant_swap_storage) {
  508. swap_storage = shmem_file_setup("ttm swap",
  509. ttm->num_pages << PAGE_SHIFT,
  510. 0);
  511. if (unlikely(IS_ERR(swap_storage))) {
  512. printk(KERN_ERR "Failed allocating swap storage.\n");
  513. return -ENOMEM;
  514. }
  515. } else
  516. swap_storage = persistant_swap_storage;
  517. swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
  518. for (i = 0; i < ttm->num_pages; ++i) {
  519. from_page = ttm->pages[i];
  520. if (unlikely(from_page == NULL))
  521. continue;
  522. to_page = read_mapping_page(swap_space, i, NULL);
  523. if (unlikely(to_page == NULL))
  524. goto out_err;
  525. preempt_disable();
  526. from_virtual = kmap_atomic(from_page, KM_USER0);
  527. to_virtual = kmap_atomic(to_page, KM_USER1);
  528. memcpy(to_virtual, from_virtual, PAGE_SIZE);
  529. kunmap_atomic(to_virtual, KM_USER1);
  530. kunmap_atomic(from_virtual, KM_USER0);
  531. preempt_enable();
  532. set_page_dirty(to_page);
  533. mark_page_accessed(to_page);
  534. page_cache_release(to_page);
  535. }
  536. ttm_tt_free_alloced_pages(ttm);
  537. ttm->swap_storage = swap_storage;
  538. ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
  539. if (persistant_swap_storage)
  540. ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
  541. return 0;
  542. out_err:
  543. if (!persistant_swap_storage)
  544. fput(swap_storage);
  545. return -ENOMEM;
  546. }