elevator.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@suse.de> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/delay.h>
  35. #include <linux/blktrace_api.h>
  36. #include <linux/hash.h>
  37. #include <asm/uaccess.h>
  38. static DEFINE_SPINLOCK(elv_list_lock);
  39. static LIST_HEAD(elv_list);
  40. /*
  41. * Merge hash stuff.
  42. */
  43. static const int elv_hash_shift = 6;
  44. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  45. #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  46. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  47. #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
  48. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  49. /*
  50. * can we safely merge with this request?
  51. */
  52. inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  53. {
  54. if (!rq_mergeable(rq))
  55. return 0;
  56. /*
  57. * different data direction or already started, don't merge
  58. */
  59. if (bio_data_dir(bio) != rq_data_dir(rq))
  60. return 0;
  61. /*
  62. * same device and no special stuff set, merge is ok
  63. */
  64. if (rq->rq_disk == bio->bi_bdev->bd_disk &&
  65. !rq->waiting && !rq->special)
  66. return 1;
  67. return 0;
  68. }
  69. EXPORT_SYMBOL(elv_rq_merge_ok);
  70. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  71. {
  72. int ret = ELEVATOR_NO_MERGE;
  73. /*
  74. * we can merge and sequence is ok, check if it's possible
  75. */
  76. if (elv_rq_merge_ok(__rq, bio)) {
  77. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  78. ret = ELEVATOR_BACK_MERGE;
  79. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  80. ret = ELEVATOR_FRONT_MERGE;
  81. }
  82. return ret;
  83. }
  84. static struct elevator_type *elevator_find(const char *name)
  85. {
  86. struct elevator_type *e = NULL;
  87. struct list_head *entry;
  88. list_for_each(entry, &elv_list) {
  89. struct elevator_type *__e;
  90. __e = list_entry(entry, struct elevator_type, list);
  91. if (!strcmp(__e->elevator_name, name)) {
  92. e = __e;
  93. break;
  94. }
  95. }
  96. return e;
  97. }
  98. static void elevator_put(struct elevator_type *e)
  99. {
  100. module_put(e->elevator_owner);
  101. }
  102. static struct elevator_type *elevator_get(const char *name)
  103. {
  104. struct elevator_type *e;
  105. spin_lock_irq(&elv_list_lock);
  106. e = elevator_find(name);
  107. if (e && !try_module_get(e->elevator_owner))
  108. e = NULL;
  109. spin_unlock_irq(&elv_list_lock);
  110. return e;
  111. }
  112. static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq)
  113. {
  114. return eq->ops->elevator_init_fn(q, eq);
  115. }
  116. static void elevator_attach(request_queue_t *q, struct elevator_queue *eq,
  117. void *data)
  118. {
  119. q->elevator = eq;
  120. eq->elevator_data = data;
  121. }
  122. static char chosen_elevator[16];
  123. static int __init elevator_setup(char *str)
  124. {
  125. /*
  126. * Be backwards-compatible with previous kernels, so users
  127. * won't get the wrong elevator.
  128. */
  129. if (!strcmp(str, "as"))
  130. strcpy(chosen_elevator, "anticipatory");
  131. else
  132. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  133. return 1;
  134. }
  135. __setup("elevator=", elevator_setup);
  136. static struct kobj_type elv_ktype;
  137. static elevator_t *elevator_alloc(struct elevator_type *e)
  138. {
  139. elevator_t *eq;
  140. int i;
  141. eq = kmalloc(sizeof(elevator_t), GFP_KERNEL);
  142. if (unlikely(!eq))
  143. goto err;
  144. memset(eq, 0, sizeof(*eq));
  145. eq->ops = &e->ops;
  146. eq->elevator_type = e;
  147. kobject_init(&eq->kobj);
  148. snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
  149. eq->kobj.ktype = &elv_ktype;
  150. mutex_init(&eq->sysfs_lock);
  151. eq->hash = kmalloc(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, GFP_KERNEL);
  152. if (!eq->hash)
  153. goto err;
  154. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  155. INIT_HLIST_HEAD(&eq->hash[i]);
  156. return eq;
  157. err:
  158. kfree(eq);
  159. elevator_put(e);
  160. return NULL;
  161. }
  162. static void elevator_release(struct kobject *kobj)
  163. {
  164. elevator_t *e = container_of(kobj, elevator_t, kobj);
  165. elevator_put(e->elevator_type);
  166. kfree(e->hash);
  167. kfree(e);
  168. }
  169. int elevator_init(request_queue_t *q, char *name)
  170. {
  171. struct elevator_type *e = NULL;
  172. struct elevator_queue *eq;
  173. int ret = 0;
  174. void *data;
  175. INIT_LIST_HEAD(&q->queue_head);
  176. q->last_merge = NULL;
  177. q->end_sector = 0;
  178. q->boundary_rq = NULL;
  179. if (name && !(e = elevator_get(name)))
  180. return -EINVAL;
  181. if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
  182. printk("I/O scheduler %s not found\n", chosen_elevator);
  183. if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
  184. printk("Default I/O scheduler not found, using no-op\n");
  185. e = elevator_get("noop");
  186. }
  187. eq = elevator_alloc(e);
  188. if (!eq)
  189. return -ENOMEM;
  190. data = elevator_init_queue(q, eq);
  191. if (!data) {
  192. kobject_put(&eq->kobj);
  193. return -ENOMEM;
  194. }
  195. elevator_attach(q, eq, data);
  196. return ret;
  197. }
  198. EXPORT_SYMBOL(elevator_init);
  199. void elevator_exit(elevator_t *e)
  200. {
  201. mutex_lock(&e->sysfs_lock);
  202. if (e->ops->elevator_exit_fn)
  203. e->ops->elevator_exit_fn(e);
  204. e->ops = NULL;
  205. mutex_unlock(&e->sysfs_lock);
  206. kobject_put(&e->kobj);
  207. }
  208. EXPORT_SYMBOL(elevator_exit);
  209. static inline void __elv_rqhash_del(struct request *rq)
  210. {
  211. hlist_del_init(&rq->hash);
  212. }
  213. static void elv_rqhash_del(request_queue_t *q, struct request *rq)
  214. {
  215. if (ELV_ON_HASH(rq))
  216. __elv_rqhash_del(rq);
  217. }
  218. static void elv_rqhash_add(request_queue_t *q, struct request *rq)
  219. {
  220. elevator_t *e = q->elevator;
  221. BUG_ON(ELV_ON_HASH(rq));
  222. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  223. }
  224. static void elv_rqhash_reposition(request_queue_t *q, struct request *rq)
  225. {
  226. __elv_rqhash_del(rq);
  227. elv_rqhash_add(q, rq);
  228. }
  229. static struct request *elv_rqhash_find(request_queue_t *q, sector_t offset)
  230. {
  231. elevator_t *e = q->elevator;
  232. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  233. struct hlist_node *entry, *next;
  234. struct request *rq;
  235. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  236. BUG_ON(!ELV_ON_HASH(rq));
  237. if (unlikely(!rq_mergeable(rq))) {
  238. __elv_rqhash_del(rq);
  239. continue;
  240. }
  241. if (rq_hash_key(rq) == offset)
  242. return rq;
  243. }
  244. return NULL;
  245. }
  246. /*
  247. * RB-tree support functions for inserting/lookup/removal of requests
  248. * in a sorted RB tree.
  249. */
  250. struct request *elv_rb_add(struct rb_root *root, struct request *rq)
  251. {
  252. struct rb_node **p = &root->rb_node;
  253. struct rb_node *parent = NULL;
  254. struct request *__rq;
  255. while (*p) {
  256. parent = *p;
  257. __rq = rb_entry(parent, struct request, rb_node);
  258. if (rq->sector < __rq->sector)
  259. p = &(*p)->rb_left;
  260. else if (rq->sector > __rq->sector)
  261. p = &(*p)->rb_right;
  262. else
  263. return __rq;
  264. }
  265. rb_link_node(&rq->rb_node, parent, p);
  266. rb_insert_color(&rq->rb_node, root);
  267. return NULL;
  268. }
  269. EXPORT_SYMBOL(elv_rb_add);
  270. void elv_rb_del(struct rb_root *root, struct request *rq)
  271. {
  272. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  273. rb_erase(&rq->rb_node, root);
  274. RB_CLEAR_NODE(&rq->rb_node);
  275. }
  276. EXPORT_SYMBOL(elv_rb_del);
  277. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  278. {
  279. struct rb_node *n = root->rb_node;
  280. struct request *rq;
  281. while (n) {
  282. rq = rb_entry(n, struct request, rb_node);
  283. if (sector < rq->sector)
  284. n = n->rb_left;
  285. else if (sector > rq->sector)
  286. n = n->rb_right;
  287. else
  288. return rq;
  289. }
  290. return NULL;
  291. }
  292. EXPORT_SYMBOL(elv_rb_find);
  293. /*
  294. * Insert rq into dispatch queue of q. Queue lock must be held on
  295. * entry. rq is sort insted into the dispatch queue. To be used by
  296. * specific elevators.
  297. */
  298. void elv_dispatch_sort(request_queue_t *q, struct request *rq)
  299. {
  300. sector_t boundary;
  301. struct list_head *entry;
  302. if (q->last_merge == rq)
  303. q->last_merge = NULL;
  304. elv_rqhash_del(q, rq);
  305. q->nr_sorted--;
  306. boundary = q->end_sector;
  307. list_for_each_prev(entry, &q->queue_head) {
  308. struct request *pos = list_entry_rq(entry);
  309. if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
  310. break;
  311. if (rq->sector >= boundary) {
  312. if (pos->sector < boundary)
  313. continue;
  314. } else {
  315. if (pos->sector >= boundary)
  316. break;
  317. }
  318. if (rq->sector >= pos->sector)
  319. break;
  320. }
  321. list_add(&rq->queuelist, entry);
  322. }
  323. EXPORT_SYMBOL(elv_dispatch_sort);
  324. /*
  325. * Insert rq into dispatch queue of q. Queue lock must be held on
  326. * entry. rq is added to the back of the dispatch queue. To be used by
  327. * specific elevators.
  328. */
  329. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  330. {
  331. if (q->last_merge == rq)
  332. q->last_merge = NULL;
  333. elv_rqhash_del(q, rq);
  334. q->nr_sorted--;
  335. q->end_sector = rq_end_sector(rq);
  336. q->boundary_rq = rq;
  337. list_add_tail(&rq->queuelist, &q->queue_head);
  338. }
  339. EXPORT_SYMBOL(elv_dispatch_add_tail);
  340. int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
  341. {
  342. elevator_t *e = q->elevator;
  343. struct request *__rq;
  344. int ret;
  345. /*
  346. * First try one-hit cache.
  347. */
  348. if (q->last_merge) {
  349. ret = elv_try_merge(q->last_merge, bio);
  350. if (ret != ELEVATOR_NO_MERGE) {
  351. *req = q->last_merge;
  352. return ret;
  353. }
  354. }
  355. /*
  356. * See if our hash lookup can find a potential backmerge.
  357. */
  358. __rq = elv_rqhash_find(q, bio->bi_sector);
  359. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  360. *req = __rq;
  361. return ELEVATOR_BACK_MERGE;
  362. }
  363. if (e->ops->elevator_merge_fn)
  364. return e->ops->elevator_merge_fn(q, req, bio);
  365. return ELEVATOR_NO_MERGE;
  366. }
  367. void elv_merged_request(request_queue_t *q, struct request *rq, int type)
  368. {
  369. elevator_t *e = q->elevator;
  370. if (e->ops->elevator_merged_fn)
  371. e->ops->elevator_merged_fn(q, rq, type);
  372. if (type == ELEVATOR_BACK_MERGE)
  373. elv_rqhash_reposition(q, rq);
  374. q->last_merge = rq;
  375. }
  376. void elv_merge_requests(request_queue_t *q, struct request *rq,
  377. struct request *next)
  378. {
  379. elevator_t *e = q->elevator;
  380. if (e->ops->elevator_merge_req_fn)
  381. e->ops->elevator_merge_req_fn(q, rq, next);
  382. elv_rqhash_reposition(q, rq);
  383. elv_rqhash_del(q, next);
  384. q->nr_sorted--;
  385. q->last_merge = rq;
  386. }
  387. void elv_requeue_request(request_queue_t *q, struct request *rq)
  388. {
  389. elevator_t *e = q->elevator;
  390. /*
  391. * it already went through dequeue, we need to decrement the
  392. * in_flight count again
  393. */
  394. if (blk_account_rq(rq)) {
  395. q->in_flight--;
  396. if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
  397. e->ops->elevator_deactivate_req_fn(q, rq);
  398. }
  399. rq->cmd_flags &= ~REQ_STARTED;
  400. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  401. }
  402. static void elv_drain_elevator(request_queue_t *q)
  403. {
  404. static int printed;
  405. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  406. ;
  407. if (q->nr_sorted == 0)
  408. return;
  409. if (printed++ < 10) {
  410. printk(KERN_ERR "%s: forced dispatching is broken "
  411. "(nr_sorted=%u), please report this\n",
  412. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  413. }
  414. }
  415. void elv_insert(request_queue_t *q, struct request *rq, int where)
  416. {
  417. struct list_head *pos;
  418. unsigned ordseq;
  419. int unplug_it = 1;
  420. blk_add_trace_rq(q, rq, BLK_TA_INSERT);
  421. rq->q = q;
  422. switch (where) {
  423. case ELEVATOR_INSERT_FRONT:
  424. rq->cmd_flags |= REQ_SOFTBARRIER;
  425. list_add(&rq->queuelist, &q->queue_head);
  426. break;
  427. case ELEVATOR_INSERT_BACK:
  428. rq->cmd_flags |= REQ_SOFTBARRIER;
  429. elv_drain_elevator(q);
  430. list_add_tail(&rq->queuelist, &q->queue_head);
  431. /*
  432. * We kick the queue here for the following reasons.
  433. * - The elevator might have returned NULL previously
  434. * to delay requests and returned them now. As the
  435. * queue wasn't empty before this request, ll_rw_blk
  436. * won't run the queue on return, resulting in hang.
  437. * - Usually, back inserted requests won't be merged
  438. * with anything. There's no point in delaying queue
  439. * processing.
  440. */
  441. blk_remove_plug(q);
  442. q->request_fn(q);
  443. break;
  444. case ELEVATOR_INSERT_SORT:
  445. BUG_ON(!blk_fs_request(rq));
  446. rq->cmd_flags |= REQ_SORTED;
  447. q->nr_sorted++;
  448. if (rq_mergeable(rq)) {
  449. elv_rqhash_add(q, rq);
  450. if (!q->last_merge)
  451. q->last_merge = rq;
  452. }
  453. /*
  454. * Some ioscheds (cfq) run q->request_fn directly, so
  455. * rq cannot be accessed after calling
  456. * elevator_add_req_fn.
  457. */
  458. q->elevator->ops->elevator_add_req_fn(q, rq);
  459. break;
  460. case ELEVATOR_INSERT_REQUEUE:
  461. /*
  462. * If ordered flush isn't in progress, we do front
  463. * insertion; otherwise, requests should be requeued
  464. * in ordseq order.
  465. */
  466. rq->cmd_flags |= REQ_SOFTBARRIER;
  467. if (q->ordseq == 0) {
  468. list_add(&rq->queuelist, &q->queue_head);
  469. break;
  470. }
  471. ordseq = blk_ordered_req_seq(rq);
  472. list_for_each(pos, &q->queue_head) {
  473. struct request *pos_rq = list_entry_rq(pos);
  474. if (ordseq <= blk_ordered_req_seq(pos_rq))
  475. break;
  476. }
  477. list_add_tail(&rq->queuelist, pos);
  478. /*
  479. * most requeues happen because of a busy condition, don't
  480. * force unplug of the queue for that case.
  481. */
  482. unplug_it = 0;
  483. break;
  484. default:
  485. printk(KERN_ERR "%s: bad insertion point %d\n",
  486. __FUNCTION__, where);
  487. BUG();
  488. }
  489. if (unplug_it && blk_queue_plugged(q)) {
  490. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  491. - q->in_flight;
  492. if (nrq >= q->unplug_thresh)
  493. __generic_unplug_device(q);
  494. }
  495. }
  496. void __elv_add_request(request_queue_t *q, struct request *rq, int where,
  497. int plug)
  498. {
  499. if (q->ordcolor)
  500. rq->cmd_flags |= REQ_ORDERED_COLOR;
  501. if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  502. /*
  503. * toggle ordered color
  504. */
  505. if (blk_barrier_rq(rq))
  506. q->ordcolor ^= 1;
  507. /*
  508. * barriers implicitly indicate back insertion
  509. */
  510. if (where == ELEVATOR_INSERT_SORT)
  511. where = ELEVATOR_INSERT_BACK;
  512. /*
  513. * this request is scheduling boundary, update
  514. * end_sector
  515. */
  516. if (blk_fs_request(rq)) {
  517. q->end_sector = rq_end_sector(rq);
  518. q->boundary_rq = rq;
  519. }
  520. } else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
  521. where = ELEVATOR_INSERT_BACK;
  522. if (plug)
  523. blk_plug_device(q);
  524. elv_insert(q, rq, where);
  525. }
  526. EXPORT_SYMBOL(__elv_add_request);
  527. void elv_add_request(request_queue_t *q, struct request *rq, int where,
  528. int plug)
  529. {
  530. unsigned long flags;
  531. spin_lock_irqsave(q->queue_lock, flags);
  532. __elv_add_request(q, rq, where, plug);
  533. spin_unlock_irqrestore(q->queue_lock, flags);
  534. }
  535. EXPORT_SYMBOL(elv_add_request);
  536. static inline struct request *__elv_next_request(request_queue_t *q)
  537. {
  538. struct request *rq;
  539. while (1) {
  540. while (!list_empty(&q->queue_head)) {
  541. rq = list_entry_rq(q->queue_head.next);
  542. if (blk_do_ordered(q, &rq))
  543. return rq;
  544. }
  545. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  546. return NULL;
  547. }
  548. }
  549. struct request *elv_next_request(request_queue_t *q)
  550. {
  551. struct request *rq;
  552. int ret;
  553. while ((rq = __elv_next_request(q)) != NULL) {
  554. if (!(rq->cmd_flags & REQ_STARTED)) {
  555. elevator_t *e = q->elevator;
  556. /*
  557. * This is the first time the device driver
  558. * sees this request (possibly after
  559. * requeueing). Notify IO scheduler.
  560. */
  561. if (blk_sorted_rq(rq) &&
  562. e->ops->elevator_activate_req_fn)
  563. e->ops->elevator_activate_req_fn(q, rq);
  564. /*
  565. * just mark as started even if we don't start
  566. * it, a request that has been delayed should
  567. * not be passed by new incoming requests
  568. */
  569. rq->cmd_flags |= REQ_STARTED;
  570. blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
  571. }
  572. if (!q->boundary_rq || q->boundary_rq == rq) {
  573. q->end_sector = rq_end_sector(rq);
  574. q->boundary_rq = NULL;
  575. }
  576. if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
  577. break;
  578. ret = q->prep_rq_fn(q, rq);
  579. if (ret == BLKPREP_OK) {
  580. break;
  581. } else if (ret == BLKPREP_DEFER) {
  582. /*
  583. * the request may have been (partially) prepped.
  584. * we need to keep this request in the front to
  585. * avoid resource deadlock. REQ_STARTED will
  586. * prevent other fs requests from passing this one.
  587. */
  588. rq = NULL;
  589. break;
  590. } else if (ret == BLKPREP_KILL) {
  591. int nr_bytes = rq->hard_nr_sectors << 9;
  592. if (!nr_bytes)
  593. nr_bytes = rq->data_len;
  594. blkdev_dequeue_request(rq);
  595. rq->cmd_flags |= REQ_QUIET;
  596. end_that_request_chunk(rq, 0, nr_bytes);
  597. end_that_request_last(rq, 0);
  598. } else {
  599. printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
  600. ret);
  601. break;
  602. }
  603. }
  604. return rq;
  605. }
  606. EXPORT_SYMBOL(elv_next_request);
  607. void elv_dequeue_request(request_queue_t *q, struct request *rq)
  608. {
  609. BUG_ON(list_empty(&rq->queuelist));
  610. BUG_ON(ELV_ON_HASH(rq));
  611. list_del_init(&rq->queuelist);
  612. /*
  613. * the time frame between a request being removed from the lists
  614. * and to it is freed is accounted as io that is in progress at
  615. * the driver side.
  616. */
  617. if (blk_account_rq(rq))
  618. q->in_flight++;
  619. }
  620. EXPORT_SYMBOL(elv_dequeue_request);
  621. int elv_queue_empty(request_queue_t *q)
  622. {
  623. elevator_t *e = q->elevator;
  624. if (!list_empty(&q->queue_head))
  625. return 0;
  626. if (e->ops->elevator_queue_empty_fn)
  627. return e->ops->elevator_queue_empty_fn(q);
  628. return 1;
  629. }
  630. EXPORT_SYMBOL(elv_queue_empty);
  631. struct request *elv_latter_request(request_queue_t *q, struct request *rq)
  632. {
  633. elevator_t *e = q->elevator;
  634. if (e->ops->elevator_latter_req_fn)
  635. return e->ops->elevator_latter_req_fn(q, rq);
  636. return NULL;
  637. }
  638. struct request *elv_former_request(request_queue_t *q, struct request *rq)
  639. {
  640. elevator_t *e = q->elevator;
  641. if (e->ops->elevator_former_req_fn)
  642. return e->ops->elevator_former_req_fn(q, rq);
  643. return NULL;
  644. }
  645. int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
  646. gfp_t gfp_mask)
  647. {
  648. elevator_t *e = q->elevator;
  649. if (e->ops->elevator_set_req_fn)
  650. return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
  651. rq->elevator_private = NULL;
  652. return 0;
  653. }
  654. void elv_put_request(request_queue_t *q, struct request *rq)
  655. {
  656. elevator_t *e = q->elevator;
  657. if (e->ops->elevator_put_req_fn)
  658. e->ops->elevator_put_req_fn(q, rq);
  659. }
  660. int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
  661. {
  662. elevator_t *e = q->elevator;
  663. if (e->ops->elevator_may_queue_fn)
  664. return e->ops->elevator_may_queue_fn(q, rw, bio);
  665. return ELV_MQUEUE_MAY;
  666. }
  667. void elv_completed_request(request_queue_t *q, struct request *rq)
  668. {
  669. elevator_t *e = q->elevator;
  670. /*
  671. * request is released from the driver, io must be done
  672. */
  673. if (blk_account_rq(rq)) {
  674. q->in_flight--;
  675. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  676. e->ops->elevator_completed_req_fn(q, rq);
  677. }
  678. /*
  679. * Check if the queue is waiting for fs requests to be
  680. * drained for flush sequence.
  681. */
  682. if (unlikely(q->ordseq)) {
  683. struct request *first_rq = list_entry_rq(q->queue_head.next);
  684. if (q->in_flight == 0 &&
  685. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  686. blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
  687. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  688. q->request_fn(q);
  689. }
  690. }
  691. }
  692. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  693. static ssize_t
  694. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  695. {
  696. elevator_t *e = container_of(kobj, elevator_t, kobj);
  697. struct elv_fs_entry *entry = to_elv(attr);
  698. ssize_t error;
  699. if (!entry->show)
  700. return -EIO;
  701. mutex_lock(&e->sysfs_lock);
  702. error = e->ops ? entry->show(e, page) : -ENOENT;
  703. mutex_unlock(&e->sysfs_lock);
  704. return error;
  705. }
  706. static ssize_t
  707. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  708. const char *page, size_t length)
  709. {
  710. elevator_t *e = container_of(kobj, elevator_t, kobj);
  711. struct elv_fs_entry *entry = to_elv(attr);
  712. ssize_t error;
  713. if (!entry->store)
  714. return -EIO;
  715. mutex_lock(&e->sysfs_lock);
  716. error = e->ops ? entry->store(e, page, length) : -ENOENT;
  717. mutex_unlock(&e->sysfs_lock);
  718. return error;
  719. }
  720. static struct sysfs_ops elv_sysfs_ops = {
  721. .show = elv_attr_show,
  722. .store = elv_attr_store,
  723. };
  724. static struct kobj_type elv_ktype = {
  725. .sysfs_ops = &elv_sysfs_ops,
  726. .release = elevator_release,
  727. };
  728. int elv_register_queue(struct request_queue *q)
  729. {
  730. elevator_t *e = q->elevator;
  731. int error;
  732. e->kobj.parent = &q->kobj;
  733. error = kobject_add(&e->kobj);
  734. if (!error) {
  735. struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
  736. if (attr) {
  737. while (attr->attr.name) {
  738. if (sysfs_create_file(&e->kobj, &attr->attr))
  739. break;
  740. attr++;
  741. }
  742. }
  743. kobject_uevent(&e->kobj, KOBJ_ADD);
  744. }
  745. return error;
  746. }
  747. static void __elv_unregister_queue(elevator_t *e)
  748. {
  749. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  750. kobject_del(&e->kobj);
  751. }
  752. void elv_unregister_queue(struct request_queue *q)
  753. {
  754. if (q)
  755. __elv_unregister_queue(q->elevator);
  756. }
  757. int elv_register(struct elevator_type *e)
  758. {
  759. spin_lock_irq(&elv_list_lock);
  760. BUG_ON(elevator_find(e->elevator_name));
  761. list_add_tail(&e->list, &elv_list);
  762. spin_unlock_irq(&elv_list_lock);
  763. printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
  764. if (!strcmp(e->elevator_name, chosen_elevator) ||
  765. (!*chosen_elevator &&
  766. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  767. printk(" (default)");
  768. printk("\n");
  769. return 0;
  770. }
  771. EXPORT_SYMBOL_GPL(elv_register);
  772. void elv_unregister(struct elevator_type *e)
  773. {
  774. struct task_struct *g, *p;
  775. /*
  776. * Iterate every thread in the process to remove the io contexts.
  777. */
  778. if (e->ops.trim) {
  779. read_lock(&tasklist_lock);
  780. do_each_thread(g, p) {
  781. task_lock(p);
  782. if (p->io_context)
  783. e->ops.trim(p->io_context);
  784. task_unlock(p);
  785. } while_each_thread(g, p);
  786. read_unlock(&tasklist_lock);
  787. }
  788. spin_lock_irq(&elv_list_lock);
  789. list_del_init(&e->list);
  790. spin_unlock_irq(&elv_list_lock);
  791. }
  792. EXPORT_SYMBOL_GPL(elv_unregister);
  793. /*
  794. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  795. * we don't free the old io scheduler, before we have allocated what we
  796. * need for the new one. this way we have a chance of going back to the old
  797. * one, if the new one fails init for some reason.
  798. */
  799. static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
  800. {
  801. elevator_t *old_elevator, *e;
  802. void *data;
  803. /*
  804. * Allocate new elevator
  805. */
  806. e = elevator_alloc(new_e);
  807. if (!e)
  808. return 0;
  809. data = elevator_init_queue(q, e);
  810. if (!data) {
  811. kobject_put(&e->kobj);
  812. return 0;
  813. }
  814. /*
  815. * Turn on BYPASS and drain all requests w/ elevator private data
  816. */
  817. spin_lock_irq(q->queue_lock);
  818. set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  819. elv_drain_elevator(q);
  820. while (q->rq.elvpriv) {
  821. blk_remove_plug(q);
  822. q->request_fn(q);
  823. spin_unlock_irq(q->queue_lock);
  824. msleep(10);
  825. spin_lock_irq(q->queue_lock);
  826. elv_drain_elevator(q);
  827. }
  828. /*
  829. * Remember old elevator.
  830. */
  831. old_elevator = q->elevator;
  832. /*
  833. * attach and start new elevator
  834. */
  835. elevator_attach(q, e, data);
  836. spin_unlock_irq(q->queue_lock);
  837. __elv_unregister_queue(old_elevator);
  838. if (elv_register_queue(q))
  839. goto fail_register;
  840. /*
  841. * finally exit old elevator and turn off BYPASS.
  842. */
  843. elevator_exit(old_elevator);
  844. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  845. return 1;
  846. fail_register:
  847. /*
  848. * switch failed, exit the new io scheduler and reattach the old
  849. * one again (along with re-adding the sysfs dir)
  850. */
  851. elevator_exit(e);
  852. q->elevator = old_elevator;
  853. elv_register_queue(q);
  854. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  855. return 0;
  856. }
  857. ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
  858. {
  859. char elevator_name[ELV_NAME_MAX];
  860. size_t len;
  861. struct elevator_type *e;
  862. elevator_name[sizeof(elevator_name) - 1] = '\0';
  863. strncpy(elevator_name, name, sizeof(elevator_name) - 1);
  864. len = strlen(elevator_name);
  865. if (len && elevator_name[len - 1] == '\n')
  866. elevator_name[len - 1] = '\0';
  867. e = elevator_get(elevator_name);
  868. if (!e) {
  869. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  870. return -EINVAL;
  871. }
  872. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  873. elevator_put(e);
  874. return count;
  875. }
  876. if (!elevator_switch(q, e))
  877. printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
  878. return count;
  879. }
  880. ssize_t elv_iosched_show(request_queue_t *q, char *name)
  881. {
  882. elevator_t *e = q->elevator;
  883. struct elevator_type *elv = e->elevator_type;
  884. struct list_head *entry;
  885. int len = 0;
  886. spin_lock_irq(q->queue_lock);
  887. list_for_each(entry, &elv_list) {
  888. struct elevator_type *__e;
  889. __e = list_entry(entry, struct elevator_type, list);
  890. if (!strcmp(elv->elevator_name, __e->elevator_name))
  891. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  892. else
  893. len += sprintf(name+len, "%s ", __e->elevator_name);
  894. }
  895. spin_unlock_irq(q->queue_lock);
  896. len += sprintf(len+name, "\n");
  897. return len;
  898. }
  899. struct request *elv_rb_former_request(request_queue_t *q, struct request *rq)
  900. {
  901. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  902. if (rbprev)
  903. return rb_entry_rq(rbprev);
  904. return NULL;
  905. }
  906. EXPORT_SYMBOL(elv_rb_former_request);
  907. struct request *elv_rb_latter_request(request_queue_t *q, struct request *rq)
  908. {
  909. struct rb_node *rbnext = rb_next(&rq->rb_node);
  910. if (rbnext)
  911. return rb_entry_rq(rbnext);
  912. return NULL;
  913. }
  914. EXPORT_SYMBOL(elv_rb_latter_request);