fsi.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479
  1. /*
  2. * Fifo-attached Serial Interface (FSI) support for SH7724
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on ssi.c
  8. * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/delay.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <sound/soc.h>
  19. #include <sound/sh_fsi.h>
  20. /* PortA/PortB register */
  21. #define REG_DO_FMT 0x0000
  22. #define REG_DOFF_CTL 0x0004
  23. #define REG_DOFF_ST 0x0008
  24. #define REG_DI_FMT 0x000C
  25. #define REG_DIFF_CTL 0x0010
  26. #define REG_DIFF_ST 0x0014
  27. #define REG_CKG1 0x0018
  28. #define REG_CKG2 0x001C
  29. #define REG_DIDT 0x0020
  30. #define REG_DODT 0x0024
  31. #define REG_MUTE_ST 0x0028
  32. #define REG_OUT_SEL 0x0030
  33. /* master register */
  34. #define MST_CLK_RST 0x0210
  35. #define MST_SOFT_RST 0x0214
  36. #define MST_FIFO_SZ 0x0218
  37. /* core register (depend on FSI version) */
  38. #define A_MST_CTLR 0x0180
  39. #define B_MST_CTLR 0x01A0
  40. #define CPU_INT_ST 0x01F4
  41. #define CPU_IEMSK 0x01F8
  42. #define CPU_IMSK 0x01FC
  43. #define INT_ST 0x0200
  44. #define IEMSK 0x0204
  45. #define IMSK 0x0208
  46. /* DO_FMT */
  47. /* DI_FMT */
  48. #define CR_BWS_24 (0x0 << 20) /* FSI2 */
  49. #define CR_BWS_16 (0x1 << 20) /* FSI2 */
  50. #define CR_BWS_20 (0x2 << 20) /* FSI2 */
  51. #define CR_DTMD_PCM (0x0 << 8) /* FSI2 */
  52. #define CR_DTMD_SPDIF_PCM (0x1 << 8) /* FSI2 */
  53. #define CR_DTMD_SPDIF_STREAM (0x2 << 8) /* FSI2 */
  54. #define CR_MONO (0x0 << 4)
  55. #define CR_MONO_D (0x1 << 4)
  56. #define CR_PCM (0x2 << 4)
  57. #define CR_I2S (0x3 << 4)
  58. #define CR_TDM (0x4 << 4)
  59. #define CR_TDM_D (0x5 << 4)
  60. /* DOFF_CTL */
  61. /* DIFF_CTL */
  62. #define IRQ_HALF 0x00100000
  63. #define FIFO_CLR 0x00000001
  64. /* DOFF_ST */
  65. #define ERR_OVER 0x00000010
  66. #define ERR_UNDER 0x00000001
  67. #define ST_ERR (ERR_OVER | ERR_UNDER)
  68. /* CKG1 */
  69. #define ACKMD_MASK 0x00007000
  70. #define BPFMD_MASK 0x00000700
  71. #define DIMD (1 << 4)
  72. #define DOMD (1 << 0)
  73. /* A/B MST_CTLR */
  74. #define BP (1 << 4) /* Fix the signal of Biphase output */
  75. #define SE (1 << 0) /* Fix the master clock */
  76. /* CLK_RST */
  77. #define CRB (1 << 4)
  78. #define CRA (1 << 0)
  79. /* IO SHIFT / MACRO */
  80. #define BI_SHIFT 12
  81. #define BO_SHIFT 8
  82. #define AI_SHIFT 4
  83. #define AO_SHIFT 0
  84. #define AB_IO(param, shift) (param << shift)
  85. /* SOFT_RST */
  86. #define PBSR (1 << 12) /* Port B Software Reset */
  87. #define PASR (1 << 8) /* Port A Software Reset */
  88. #define IR (1 << 4) /* Interrupt Reset */
  89. #define FSISR (1 << 0) /* Software Reset */
  90. /* OUT_SEL (FSI2) */
  91. #define DMMD (1 << 4) /* SPDIF output timing 0: Biphase only */
  92. /* 1: Biphase and serial */
  93. /* FIFO_SZ */
  94. #define FIFO_SZ_MASK 0x7
  95. #define FSI_RATES SNDRV_PCM_RATE_8000_96000
  96. #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
  97. typedef int (*set_rate_func)(struct device *dev, int is_porta, int rate, int enable);
  98. /*
  99. * FSI driver use below type name for variable
  100. *
  101. * xxx_num : number of data
  102. * xxx_pos : position of data
  103. * xxx_capa : capacity of data
  104. */
  105. /*
  106. * period/frame/sample image
  107. *
  108. * ex) PCM (2ch)
  109. *
  110. * period pos period pos
  111. * [n] [n + 1]
  112. * |<-------------------- period--------------------->|
  113. * ==|============================================ ... =|==
  114. * | |
  115. * ||<----- frame ----->|<------ frame ----->| ... |
  116. * |+--------------------+--------------------+- ... |
  117. * ||[ sample ][ sample ]|[ sample ][ sample ]| ... |
  118. * |+--------------------+--------------------+- ... |
  119. * ==|============================================ ... =|==
  120. */
  121. /*
  122. * FSI FIFO image
  123. *
  124. * | |
  125. * | |
  126. * | [ sample ] |
  127. * | [ sample ] |
  128. * | [ sample ] |
  129. * | [ sample ] |
  130. * --> go to codecs
  131. */
  132. /*
  133. * struct
  134. */
  135. struct fsi_stream {
  136. struct snd_pcm_substream *substream;
  137. int fifo_sample_capa; /* sample capacity of FSI FIFO */
  138. int buff_sample_capa; /* sample capacity of ALSA buffer */
  139. int buff_sample_pos; /* sample position of ALSA buffer */
  140. int period_samples; /* sample number / 1 period */
  141. int period_pos; /* current period position */
  142. int uerr_num;
  143. int oerr_num;
  144. };
  145. struct fsi_priv {
  146. void __iomem *base;
  147. struct fsi_master *master;
  148. struct fsi_stream playback;
  149. struct fsi_stream capture;
  150. int chan_num:16;
  151. int clk_master:1;
  152. long rate;
  153. /* for suspend/resume */
  154. u32 saved_do_fmt;
  155. u32 saved_di_fmt;
  156. u32 saved_ckg1;
  157. u32 saved_ckg2;
  158. u32 saved_out_sel;
  159. };
  160. struct fsi_core {
  161. int ver;
  162. u32 int_st;
  163. u32 iemsk;
  164. u32 imsk;
  165. u32 a_mclk;
  166. u32 b_mclk;
  167. };
  168. struct fsi_master {
  169. void __iomem *base;
  170. int irq;
  171. struct fsi_priv fsia;
  172. struct fsi_priv fsib;
  173. struct fsi_core *core;
  174. struct sh_fsi_platform_info *info;
  175. spinlock_t lock;
  176. /* for suspend/resume */
  177. u32 saved_a_mclk;
  178. u32 saved_b_mclk;
  179. u32 saved_iemsk;
  180. u32 saved_imsk;
  181. u32 saved_clk_rst;
  182. u32 saved_soft_rst;
  183. };
  184. /*
  185. * basic read write function
  186. */
  187. static void __fsi_reg_write(u32 reg, u32 data)
  188. {
  189. /* valid data area is 24bit */
  190. data &= 0x00ffffff;
  191. __raw_writel(data, reg);
  192. }
  193. static u32 __fsi_reg_read(u32 reg)
  194. {
  195. return __raw_readl(reg);
  196. }
  197. static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
  198. {
  199. u32 val = __fsi_reg_read(reg);
  200. val &= ~mask;
  201. val |= data & mask;
  202. __fsi_reg_write(reg, val);
  203. }
  204. #define fsi_reg_write(p, r, d)\
  205. __fsi_reg_write((u32)(p->base + REG_##r), d)
  206. #define fsi_reg_read(p, r)\
  207. __fsi_reg_read((u32)(p->base + REG_##r))
  208. #define fsi_reg_mask_set(p, r, m, d)\
  209. __fsi_reg_mask_set((u32)(p->base + REG_##r), m, d)
  210. #define fsi_master_read(p, r) _fsi_master_read(p, MST_##r)
  211. #define fsi_core_read(p, r) _fsi_master_read(p, p->core->r)
  212. static u32 _fsi_master_read(struct fsi_master *master, u32 reg)
  213. {
  214. u32 ret;
  215. unsigned long flags;
  216. spin_lock_irqsave(&master->lock, flags);
  217. ret = __fsi_reg_read((u32)(master->base + reg));
  218. spin_unlock_irqrestore(&master->lock, flags);
  219. return ret;
  220. }
  221. #define fsi_master_mask_set(p, r, m, d) _fsi_master_mask_set(p, MST_##r, m, d)
  222. #define fsi_core_mask_set(p, r, m, d) _fsi_master_mask_set(p, p->core->r, m, d)
  223. static void _fsi_master_mask_set(struct fsi_master *master,
  224. u32 reg, u32 mask, u32 data)
  225. {
  226. unsigned long flags;
  227. spin_lock_irqsave(&master->lock, flags);
  228. __fsi_reg_mask_set((u32)(master->base + reg), mask, data);
  229. spin_unlock_irqrestore(&master->lock, flags);
  230. }
  231. /*
  232. * basic function
  233. */
  234. static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
  235. {
  236. return fsi->master;
  237. }
  238. static int fsi_is_clk_master(struct fsi_priv *fsi)
  239. {
  240. return fsi->clk_master;
  241. }
  242. static int fsi_is_port_a(struct fsi_priv *fsi)
  243. {
  244. return fsi->master->base == fsi->base;
  245. }
  246. static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
  247. {
  248. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  249. return rtd->cpu_dai;
  250. }
  251. static struct fsi_priv *fsi_get_priv_frm_dai(struct snd_soc_dai *dai)
  252. {
  253. struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
  254. if (dai->id == 0)
  255. return &master->fsia;
  256. else
  257. return &master->fsib;
  258. }
  259. static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
  260. {
  261. return fsi_get_priv_frm_dai(fsi_get_dai(substream));
  262. }
  263. static set_rate_func fsi_get_info_set_rate(struct fsi_master *master)
  264. {
  265. if (!master->info)
  266. return NULL;
  267. return master->info->set_rate;
  268. }
  269. static u32 fsi_get_info_flags(struct fsi_priv *fsi)
  270. {
  271. int is_porta = fsi_is_port_a(fsi);
  272. struct fsi_master *master = fsi_get_master(fsi);
  273. if (!master->info)
  274. return 0;
  275. return is_porta ? master->info->porta_flags :
  276. master->info->portb_flags;
  277. }
  278. static inline int fsi_stream_is_play(int stream)
  279. {
  280. return stream == SNDRV_PCM_STREAM_PLAYBACK;
  281. }
  282. static inline int fsi_is_play(struct snd_pcm_substream *substream)
  283. {
  284. return fsi_stream_is_play(substream->stream);
  285. }
  286. static inline struct fsi_stream *fsi_get_stream(struct fsi_priv *fsi,
  287. int is_play)
  288. {
  289. return is_play ? &fsi->playback : &fsi->capture;
  290. }
  291. static u32 fsi_get_port_shift(struct fsi_priv *fsi, int is_play)
  292. {
  293. int is_porta = fsi_is_port_a(fsi);
  294. u32 shift;
  295. if (is_porta)
  296. shift = is_play ? AO_SHIFT : AI_SHIFT;
  297. else
  298. shift = is_play ? BO_SHIFT : BI_SHIFT;
  299. return shift;
  300. }
  301. static int fsi_frame2sample(struct fsi_priv *fsi, int frames)
  302. {
  303. return frames * fsi->chan_num;
  304. }
  305. static int fsi_sample2frame(struct fsi_priv *fsi, int samples)
  306. {
  307. return samples / fsi->chan_num;
  308. }
  309. static void fsi_stream_push(struct fsi_priv *fsi,
  310. int is_play,
  311. struct snd_pcm_substream *substream)
  312. {
  313. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  314. struct snd_pcm_runtime *runtime = substream->runtime;
  315. io->substream = substream;
  316. io->buff_sample_capa = fsi_frame2sample(fsi, runtime->buffer_size);
  317. io->buff_sample_pos = 0;
  318. io->period_samples = fsi_frame2sample(fsi, runtime->period_size);
  319. io->period_pos = 0;
  320. io->oerr_num = -1; /* ignore 1st err */
  321. io->uerr_num = -1; /* ignore 1st err */
  322. }
  323. static void fsi_stream_pop(struct fsi_priv *fsi, int is_play)
  324. {
  325. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  326. struct snd_soc_dai *dai = fsi_get_dai(io->substream);
  327. if (io->oerr_num > 0)
  328. dev_err(dai->dev, "over_run = %d\n", io->oerr_num);
  329. if (io->uerr_num > 0)
  330. dev_err(dai->dev, "under_run = %d\n", io->uerr_num);
  331. io->substream = NULL;
  332. io->buff_sample_capa = 0;
  333. io->buff_sample_pos = 0;
  334. io->period_samples = 0;
  335. io->period_pos = 0;
  336. io->oerr_num = 0;
  337. io->uerr_num = 0;
  338. }
  339. static int fsi_get_current_fifo_samples(struct fsi_priv *fsi, int is_play)
  340. {
  341. u32 status;
  342. int frames;
  343. status = is_play ?
  344. fsi_reg_read(fsi, DOFF_ST) :
  345. fsi_reg_read(fsi, DIFF_ST);
  346. frames = 0x1ff & (status >> 8);
  347. return fsi_frame2sample(fsi, frames);
  348. }
  349. static void fsi_count_fifo_err(struct fsi_priv *fsi)
  350. {
  351. u32 ostatus = fsi_reg_read(fsi, DOFF_ST);
  352. u32 istatus = fsi_reg_read(fsi, DIFF_ST);
  353. if (ostatus & ERR_OVER)
  354. fsi->playback.oerr_num++;
  355. if (ostatus & ERR_UNDER)
  356. fsi->playback.uerr_num++;
  357. if (istatus & ERR_OVER)
  358. fsi->capture.oerr_num++;
  359. if (istatus & ERR_UNDER)
  360. fsi->capture.uerr_num++;
  361. fsi_reg_write(fsi, DOFF_ST, 0);
  362. fsi_reg_write(fsi, DIFF_ST, 0);
  363. }
  364. /*
  365. * dma function
  366. */
  367. static u8 *fsi_dma_get_area(struct fsi_priv *fsi, int stream)
  368. {
  369. int is_play = fsi_stream_is_play(stream);
  370. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  371. struct snd_pcm_runtime *runtime = io->substream->runtime;
  372. return runtime->dma_area +
  373. samples_to_bytes(runtime, io->buff_sample_pos);
  374. }
  375. static void fsi_dma_soft_push16(struct fsi_priv *fsi, int num)
  376. {
  377. u16 *start;
  378. int i;
  379. start = (u16 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_PLAYBACK);
  380. for (i = 0; i < num; i++)
  381. fsi_reg_write(fsi, DODT, ((u32)*(start + i) << 8));
  382. }
  383. static void fsi_dma_soft_pop16(struct fsi_priv *fsi, int num)
  384. {
  385. u16 *start;
  386. int i;
  387. start = (u16 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_CAPTURE);
  388. for (i = 0; i < num; i++)
  389. *(start + i) = (u16)(fsi_reg_read(fsi, DIDT) >> 8);
  390. }
  391. static void fsi_dma_soft_push32(struct fsi_priv *fsi, int num)
  392. {
  393. u32 *start;
  394. int i;
  395. start = (u32 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_PLAYBACK);
  396. for (i = 0; i < num; i++)
  397. fsi_reg_write(fsi, DODT, *(start + i));
  398. }
  399. static void fsi_dma_soft_pop32(struct fsi_priv *fsi, int num)
  400. {
  401. u32 *start;
  402. int i;
  403. start = (u32 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_CAPTURE);
  404. for (i = 0; i < num; i++)
  405. *(start + i) = fsi_reg_read(fsi, DIDT);
  406. }
  407. /*
  408. * irq function
  409. */
  410. static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
  411. {
  412. u32 data = AB_IO(1, fsi_get_port_shift(fsi, is_play));
  413. struct fsi_master *master = fsi_get_master(fsi);
  414. fsi_core_mask_set(master, imsk, data, data);
  415. fsi_core_mask_set(master, iemsk, data, data);
  416. }
  417. static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
  418. {
  419. u32 data = AB_IO(1, fsi_get_port_shift(fsi, is_play));
  420. struct fsi_master *master = fsi_get_master(fsi);
  421. fsi_core_mask_set(master, imsk, data, 0);
  422. fsi_core_mask_set(master, iemsk, data, 0);
  423. }
  424. static u32 fsi_irq_get_status(struct fsi_master *master)
  425. {
  426. return fsi_core_read(master, int_st);
  427. }
  428. static void fsi_irq_clear_status(struct fsi_priv *fsi)
  429. {
  430. u32 data = 0;
  431. struct fsi_master *master = fsi_get_master(fsi);
  432. data |= AB_IO(1, fsi_get_port_shift(fsi, 0));
  433. data |= AB_IO(1, fsi_get_port_shift(fsi, 1));
  434. /* clear interrupt factor */
  435. fsi_core_mask_set(master, int_st, data, 0);
  436. }
  437. /*
  438. * SPDIF master clock function
  439. *
  440. * These functions are used later FSI2
  441. */
  442. static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
  443. {
  444. struct fsi_master *master = fsi_get_master(fsi);
  445. u32 mask, val;
  446. if (master->core->ver < 2) {
  447. pr_err("fsi: register access err (%s)\n", __func__);
  448. return;
  449. }
  450. mask = BP | SE;
  451. val = enable ? mask : 0;
  452. fsi_is_port_a(fsi) ?
  453. fsi_core_mask_set(master, a_mclk, mask, val) :
  454. fsi_core_mask_set(master, b_mclk, mask, val);
  455. }
  456. /*
  457. * clock function
  458. */
  459. static int fsi_set_master_clk(struct device *dev, struct fsi_priv *fsi,
  460. long rate, int enable)
  461. {
  462. struct fsi_master *master = fsi_get_master(fsi);
  463. set_rate_func set_rate = fsi_get_info_set_rate(master);
  464. int fsi_ver = master->core->ver;
  465. int ret;
  466. ret = set_rate(dev, fsi_is_port_a(fsi), rate, enable);
  467. if (ret < 0) /* error */
  468. return ret;
  469. if (!enable)
  470. return 0;
  471. if (ret > 0) {
  472. u32 data = 0;
  473. switch (ret & SH_FSI_ACKMD_MASK) {
  474. default:
  475. /* FALL THROUGH */
  476. case SH_FSI_ACKMD_512:
  477. data |= (0x0 << 12);
  478. break;
  479. case SH_FSI_ACKMD_256:
  480. data |= (0x1 << 12);
  481. break;
  482. case SH_FSI_ACKMD_128:
  483. data |= (0x2 << 12);
  484. break;
  485. case SH_FSI_ACKMD_64:
  486. data |= (0x3 << 12);
  487. break;
  488. case SH_FSI_ACKMD_32:
  489. if (fsi_ver < 2)
  490. dev_err(dev, "unsupported ACKMD\n");
  491. else
  492. data |= (0x4 << 12);
  493. break;
  494. }
  495. switch (ret & SH_FSI_BPFMD_MASK) {
  496. default:
  497. /* FALL THROUGH */
  498. case SH_FSI_BPFMD_32:
  499. data |= (0x0 << 8);
  500. break;
  501. case SH_FSI_BPFMD_64:
  502. data |= (0x1 << 8);
  503. break;
  504. case SH_FSI_BPFMD_128:
  505. data |= (0x2 << 8);
  506. break;
  507. case SH_FSI_BPFMD_256:
  508. data |= (0x3 << 8);
  509. break;
  510. case SH_FSI_BPFMD_512:
  511. data |= (0x4 << 8);
  512. break;
  513. case SH_FSI_BPFMD_16:
  514. if (fsi_ver < 2)
  515. dev_err(dev, "unsupported ACKMD\n");
  516. else
  517. data |= (0x7 << 8);
  518. break;
  519. }
  520. fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
  521. udelay(10);
  522. ret = 0;
  523. }
  524. return ret;
  525. }
  526. #define fsi_module_init(m, d) __fsi_module_clk_ctrl(m, d, 1)
  527. #define fsi_module_kill(m, d) __fsi_module_clk_ctrl(m, d, 0)
  528. static void __fsi_module_clk_ctrl(struct fsi_master *master,
  529. struct device *dev,
  530. int enable)
  531. {
  532. pm_runtime_get_sync(dev);
  533. if (enable) {
  534. /* enable only SR */
  535. fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
  536. fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
  537. } else {
  538. /* clear all registers */
  539. fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
  540. }
  541. pm_runtime_put_sync(dev);
  542. }
  543. #define fsi_port_start(f, i) __fsi_port_clk_ctrl(f, i, 1)
  544. #define fsi_port_stop(f, i) __fsi_port_clk_ctrl(f, i, 0)
  545. static void __fsi_port_clk_ctrl(struct fsi_priv *fsi, int is_play, int enable)
  546. {
  547. struct fsi_master *master = fsi_get_master(fsi);
  548. u32 soft = fsi_is_port_a(fsi) ? PASR : PBSR;
  549. u32 clk = fsi_is_port_a(fsi) ? CRA : CRB;
  550. int is_master = fsi_is_clk_master(fsi);
  551. if (enable)
  552. fsi_irq_enable(fsi, is_play);
  553. else
  554. fsi_irq_disable(fsi, is_play);
  555. fsi_master_mask_set(master, SOFT_RST, soft, (enable) ? soft : 0);
  556. if (is_master)
  557. fsi_master_mask_set(master, CLK_RST, clk, (enable) ? clk : 0);
  558. }
  559. /*
  560. * ctrl function
  561. */
  562. static void fsi_fifo_init(struct fsi_priv *fsi,
  563. int is_play,
  564. struct snd_soc_dai *dai)
  565. {
  566. struct fsi_master *master = fsi_get_master(fsi);
  567. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  568. u32 shift, i;
  569. int frame_capa;
  570. /* get on-chip RAM capacity */
  571. shift = fsi_master_read(master, FIFO_SZ);
  572. shift >>= fsi_get_port_shift(fsi, is_play);
  573. shift &= FIFO_SZ_MASK;
  574. frame_capa = 256 << shift;
  575. dev_dbg(dai->dev, "fifo = %d words\n", frame_capa);
  576. /*
  577. * The maximum number of sample data varies depending
  578. * on the number of channels selected for the format.
  579. *
  580. * FIFOs are used in 4-channel units in 3-channel mode
  581. * and in 8-channel units in 5- to 7-channel mode
  582. * meaning that more FIFOs than the required size of DPRAM
  583. * are used.
  584. *
  585. * ex) if 256 words of DP-RAM is connected
  586. * 1 channel: 256 (256 x 1 = 256)
  587. * 2 channels: 128 (128 x 2 = 256)
  588. * 3 channels: 64 ( 64 x 3 = 192)
  589. * 4 channels: 64 ( 64 x 4 = 256)
  590. * 5 channels: 32 ( 32 x 5 = 160)
  591. * 6 channels: 32 ( 32 x 6 = 192)
  592. * 7 channels: 32 ( 32 x 7 = 224)
  593. * 8 channels: 32 ( 32 x 8 = 256)
  594. */
  595. for (i = 1; i < fsi->chan_num; i <<= 1)
  596. frame_capa >>= 1;
  597. dev_dbg(dai->dev, "%d channel %d store\n",
  598. fsi->chan_num, frame_capa);
  599. io->fifo_sample_capa = fsi_frame2sample(fsi, frame_capa);
  600. /*
  601. * set interrupt generation factor
  602. * clear FIFO
  603. */
  604. if (is_play) {
  605. fsi_reg_write(fsi, DOFF_CTL, IRQ_HALF);
  606. fsi_reg_mask_set(fsi, DOFF_CTL, FIFO_CLR, FIFO_CLR);
  607. } else {
  608. fsi_reg_write(fsi, DIFF_CTL, IRQ_HALF);
  609. fsi_reg_mask_set(fsi, DIFF_CTL, FIFO_CLR, FIFO_CLR);
  610. }
  611. }
  612. static int fsi_fifo_data_ctrl(struct fsi_priv *fsi, int stream)
  613. {
  614. struct snd_pcm_runtime *runtime;
  615. struct snd_pcm_substream *substream = NULL;
  616. int is_play = fsi_stream_is_play(stream);
  617. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  618. int sample_residues;
  619. int sample_width;
  620. int samples;
  621. int samples_max;
  622. int over_period;
  623. void (*fn)(struct fsi_priv *fsi, int size);
  624. if (!fsi ||
  625. !io->substream ||
  626. !io->substream->runtime)
  627. return -EINVAL;
  628. over_period = 0;
  629. substream = io->substream;
  630. runtime = substream->runtime;
  631. /* FSI FIFO has limit.
  632. * So, this driver can not send periods data at a time
  633. */
  634. if (io->buff_sample_pos >=
  635. io->period_samples * (io->period_pos + 1)) {
  636. over_period = 1;
  637. io->period_pos = (io->period_pos + 1) % runtime->periods;
  638. if (0 == io->period_pos)
  639. io->buff_sample_pos = 0;
  640. }
  641. /* get 1 sample data width */
  642. sample_width = samples_to_bytes(runtime, 1);
  643. /* get number of residue samples */
  644. sample_residues = io->buff_sample_capa - io->buff_sample_pos;
  645. if (is_play) {
  646. /*
  647. * for play-back
  648. *
  649. * samples_max : number of FSI fifo free samples space
  650. * samples : number of ALSA residue samples
  651. */
  652. samples_max = io->fifo_sample_capa;
  653. samples_max -= fsi_get_current_fifo_samples(fsi, is_play);
  654. samples = sample_residues;
  655. switch (sample_width) {
  656. case 2:
  657. fn = fsi_dma_soft_push16;
  658. break;
  659. case 4:
  660. fn = fsi_dma_soft_push32;
  661. break;
  662. default:
  663. return -EINVAL;
  664. }
  665. } else {
  666. /*
  667. * for capture
  668. *
  669. * samples_max : number of ALSA free samples space
  670. * samples : number of samples in FSI fifo
  671. */
  672. samples_max = sample_residues;
  673. samples = fsi_get_current_fifo_samples(fsi, is_play);
  674. switch (sample_width) {
  675. case 2:
  676. fn = fsi_dma_soft_pop16;
  677. break;
  678. case 4:
  679. fn = fsi_dma_soft_pop32;
  680. break;
  681. default:
  682. return -EINVAL;
  683. }
  684. }
  685. samples = min(samples, samples_max);
  686. fn(fsi, samples);
  687. /* update buff_sample_pos */
  688. io->buff_sample_pos += samples;
  689. if (over_period)
  690. snd_pcm_period_elapsed(substream);
  691. return 0;
  692. }
  693. static int fsi_data_pop(struct fsi_priv *fsi)
  694. {
  695. return fsi_fifo_data_ctrl(fsi, SNDRV_PCM_STREAM_CAPTURE);
  696. }
  697. static int fsi_data_push(struct fsi_priv *fsi)
  698. {
  699. return fsi_fifo_data_ctrl(fsi, SNDRV_PCM_STREAM_PLAYBACK);
  700. }
  701. static irqreturn_t fsi_interrupt(int irq, void *data)
  702. {
  703. struct fsi_master *master = data;
  704. u32 int_st = fsi_irq_get_status(master);
  705. /* clear irq status */
  706. fsi_master_mask_set(master, SOFT_RST, IR, 0);
  707. fsi_master_mask_set(master, SOFT_RST, IR, IR);
  708. if (int_st & AB_IO(1, AO_SHIFT))
  709. fsi_data_push(&master->fsia);
  710. if (int_st & AB_IO(1, BO_SHIFT))
  711. fsi_data_push(&master->fsib);
  712. if (int_st & AB_IO(1, AI_SHIFT))
  713. fsi_data_pop(&master->fsia);
  714. if (int_st & AB_IO(1, BI_SHIFT))
  715. fsi_data_pop(&master->fsib);
  716. fsi_count_fifo_err(&master->fsia);
  717. fsi_count_fifo_err(&master->fsib);
  718. fsi_irq_clear_status(&master->fsia);
  719. fsi_irq_clear_status(&master->fsib);
  720. return IRQ_HANDLED;
  721. }
  722. /*
  723. * dai ops
  724. */
  725. static int fsi_dai_startup(struct snd_pcm_substream *substream,
  726. struct snd_soc_dai *dai)
  727. {
  728. struct fsi_priv *fsi = fsi_get_priv(substream);
  729. u32 flags = fsi_get_info_flags(fsi);
  730. u32 data;
  731. int is_play = fsi_is_play(substream);
  732. pm_runtime_get_sync(dai->dev);
  733. /* clock inversion (CKG2) */
  734. data = 0;
  735. if (SH_FSI_LRM_INV & flags)
  736. data |= 1 << 12;
  737. if (SH_FSI_BRM_INV & flags)
  738. data |= 1 << 8;
  739. if (SH_FSI_LRS_INV & flags)
  740. data |= 1 << 4;
  741. if (SH_FSI_BRS_INV & flags)
  742. data |= 1 << 0;
  743. fsi_reg_write(fsi, CKG2, data);
  744. /* irq clear */
  745. fsi_irq_disable(fsi, is_play);
  746. fsi_irq_clear_status(fsi);
  747. /* fifo init */
  748. fsi_fifo_init(fsi, is_play, dai);
  749. return 0;
  750. }
  751. static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
  752. struct snd_soc_dai *dai)
  753. {
  754. struct fsi_priv *fsi = fsi_get_priv(substream);
  755. if (fsi_is_clk_master(fsi))
  756. fsi_set_master_clk(dai->dev, fsi, fsi->rate, 0);
  757. fsi->rate = 0;
  758. pm_runtime_put_sync(dai->dev);
  759. }
  760. static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  761. struct snd_soc_dai *dai)
  762. {
  763. struct fsi_priv *fsi = fsi_get_priv(substream);
  764. int is_play = fsi_is_play(substream);
  765. int ret = 0;
  766. switch (cmd) {
  767. case SNDRV_PCM_TRIGGER_START:
  768. fsi_stream_push(fsi, is_play, substream);
  769. ret = is_play ? fsi_data_push(fsi) : fsi_data_pop(fsi);
  770. fsi_port_start(fsi, is_play);
  771. break;
  772. case SNDRV_PCM_TRIGGER_STOP:
  773. fsi_port_stop(fsi, is_play);
  774. fsi_stream_pop(fsi, is_play);
  775. break;
  776. }
  777. return ret;
  778. }
  779. static int fsi_set_fmt_dai(struct fsi_priv *fsi, unsigned int fmt)
  780. {
  781. u32 data = 0;
  782. switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
  783. case SND_SOC_DAIFMT_I2S:
  784. data = CR_I2S;
  785. fsi->chan_num = 2;
  786. break;
  787. case SND_SOC_DAIFMT_LEFT_J:
  788. data = CR_PCM;
  789. fsi->chan_num = 2;
  790. break;
  791. default:
  792. return -EINVAL;
  793. }
  794. fsi_reg_write(fsi, DO_FMT, data);
  795. fsi_reg_write(fsi, DI_FMT, data);
  796. return 0;
  797. }
  798. static int fsi_set_fmt_spdif(struct fsi_priv *fsi)
  799. {
  800. struct fsi_master *master = fsi_get_master(fsi);
  801. u32 data = 0;
  802. if (master->core->ver < 2)
  803. return -EINVAL;
  804. data = CR_BWS_16 | CR_DTMD_SPDIF_PCM | CR_PCM;
  805. fsi->chan_num = 2;
  806. fsi_spdif_clk_ctrl(fsi, 1);
  807. fsi_reg_mask_set(fsi, OUT_SEL, DMMD, DMMD);
  808. fsi_reg_write(fsi, DO_FMT, data);
  809. fsi_reg_write(fsi, DI_FMT, data);
  810. return 0;
  811. }
  812. static int fsi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
  813. {
  814. struct fsi_priv *fsi = fsi_get_priv_frm_dai(dai);
  815. struct fsi_master *master = fsi_get_master(fsi);
  816. set_rate_func set_rate = fsi_get_info_set_rate(master);
  817. u32 flags = fsi_get_info_flags(fsi);
  818. u32 data = 0;
  819. int ret;
  820. pm_runtime_get_sync(dai->dev);
  821. /* set master/slave audio interface */
  822. switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
  823. case SND_SOC_DAIFMT_CBM_CFM:
  824. data = DIMD | DOMD;
  825. fsi->clk_master = 1;
  826. break;
  827. case SND_SOC_DAIFMT_CBS_CFS:
  828. break;
  829. default:
  830. ret = -EINVAL;
  831. goto set_fmt_exit;
  832. }
  833. if (fsi_is_clk_master(fsi) && !set_rate) {
  834. dev_err(dai->dev, "platform doesn't have set_rate\n");
  835. ret = -EINVAL;
  836. goto set_fmt_exit;
  837. }
  838. fsi_reg_mask_set(fsi, CKG1, (DIMD | DOMD), data);
  839. /* set format */
  840. switch (flags & SH_FSI_FMT_MASK) {
  841. case SH_FSI_FMT_DAI:
  842. ret = fsi_set_fmt_dai(fsi, fmt & SND_SOC_DAIFMT_FORMAT_MASK);
  843. break;
  844. case SH_FSI_FMT_SPDIF:
  845. ret = fsi_set_fmt_spdif(fsi);
  846. break;
  847. default:
  848. ret = -EINVAL;
  849. }
  850. set_fmt_exit:
  851. pm_runtime_put_sync(dai->dev);
  852. return ret;
  853. }
  854. static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
  855. struct snd_pcm_hw_params *params,
  856. struct snd_soc_dai *dai)
  857. {
  858. struct fsi_priv *fsi = fsi_get_priv(substream);
  859. long rate = params_rate(params);
  860. int ret;
  861. if (!fsi_is_clk_master(fsi))
  862. return 0;
  863. ret = fsi_set_master_clk(dai->dev, fsi, rate, 1);
  864. if (ret < 0)
  865. return ret;
  866. fsi->rate = rate;
  867. return ret;
  868. }
  869. static struct snd_soc_dai_ops fsi_dai_ops = {
  870. .startup = fsi_dai_startup,
  871. .shutdown = fsi_dai_shutdown,
  872. .trigger = fsi_dai_trigger,
  873. .set_fmt = fsi_dai_set_fmt,
  874. .hw_params = fsi_dai_hw_params,
  875. };
  876. /*
  877. * pcm ops
  878. */
  879. static struct snd_pcm_hardware fsi_pcm_hardware = {
  880. .info = SNDRV_PCM_INFO_INTERLEAVED |
  881. SNDRV_PCM_INFO_MMAP |
  882. SNDRV_PCM_INFO_MMAP_VALID |
  883. SNDRV_PCM_INFO_PAUSE,
  884. .formats = FSI_FMTS,
  885. .rates = FSI_RATES,
  886. .rate_min = 8000,
  887. .rate_max = 192000,
  888. .channels_min = 1,
  889. .channels_max = 2,
  890. .buffer_bytes_max = 64 * 1024,
  891. .period_bytes_min = 32,
  892. .period_bytes_max = 8192,
  893. .periods_min = 1,
  894. .periods_max = 32,
  895. .fifo_size = 256,
  896. };
  897. static int fsi_pcm_open(struct snd_pcm_substream *substream)
  898. {
  899. struct snd_pcm_runtime *runtime = substream->runtime;
  900. int ret = 0;
  901. snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
  902. ret = snd_pcm_hw_constraint_integer(runtime,
  903. SNDRV_PCM_HW_PARAM_PERIODS);
  904. return ret;
  905. }
  906. static int fsi_hw_params(struct snd_pcm_substream *substream,
  907. struct snd_pcm_hw_params *hw_params)
  908. {
  909. return snd_pcm_lib_malloc_pages(substream,
  910. params_buffer_bytes(hw_params));
  911. }
  912. static int fsi_hw_free(struct snd_pcm_substream *substream)
  913. {
  914. return snd_pcm_lib_free_pages(substream);
  915. }
  916. static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
  917. {
  918. struct fsi_priv *fsi = fsi_get_priv(substream);
  919. struct fsi_stream *io = fsi_get_stream(fsi, fsi_is_play(substream));
  920. int samples_pos = io->buff_sample_pos - 1;
  921. if (samples_pos < 0)
  922. samples_pos = 0;
  923. return fsi_sample2frame(fsi, samples_pos);
  924. }
  925. static struct snd_pcm_ops fsi_pcm_ops = {
  926. .open = fsi_pcm_open,
  927. .ioctl = snd_pcm_lib_ioctl,
  928. .hw_params = fsi_hw_params,
  929. .hw_free = fsi_hw_free,
  930. .pointer = fsi_pointer,
  931. };
  932. /*
  933. * snd_soc_platform
  934. */
  935. #define PREALLOC_BUFFER (32 * 1024)
  936. #define PREALLOC_BUFFER_MAX (32 * 1024)
  937. static void fsi_pcm_free(struct snd_pcm *pcm)
  938. {
  939. snd_pcm_lib_preallocate_free_for_all(pcm);
  940. }
  941. static int fsi_pcm_new(struct snd_card *card,
  942. struct snd_soc_dai *dai,
  943. struct snd_pcm *pcm)
  944. {
  945. /*
  946. * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
  947. * in MMAP mode (i.e. aplay -M)
  948. */
  949. return snd_pcm_lib_preallocate_pages_for_all(
  950. pcm,
  951. SNDRV_DMA_TYPE_CONTINUOUS,
  952. snd_dma_continuous_data(GFP_KERNEL),
  953. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  954. }
  955. /*
  956. * alsa struct
  957. */
  958. static struct snd_soc_dai_driver fsi_soc_dai[] = {
  959. {
  960. .name = "fsia-dai",
  961. .playback = {
  962. .rates = FSI_RATES,
  963. .formats = FSI_FMTS,
  964. .channels_min = 1,
  965. .channels_max = 8,
  966. },
  967. .capture = {
  968. .rates = FSI_RATES,
  969. .formats = FSI_FMTS,
  970. .channels_min = 1,
  971. .channels_max = 8,
  972. },
  973. .ops = &fsi_dai_ops,
  974. },
  975. {
  976. .name = "fsib-dai",
  977. .playback = {
  978. .rates = FSI_RATES,
  979. .formats = FSI_FMTS,
  980. .channels_min = 1,
  981. .channels_max = 8,
  982. },
  983. .capture = {
  984. .rates = FSI_RATES,
  985. .formats = FSI_FMTS,
  986. .channels_min = 1,
  987. .channels_max = 8,
  988. },
  989. .ops = &fsi_dai_ops,
  990. },
  991. };
  992. static struct snd_soc_platform_driver fsi_soc_platform = {
  993. .ops = &fsi_pcm_ops,
  994. .pcm_new = fsi_pcm_new,
  995. .pcm_free = fsi_pcm_free,
  996. };
  997. /*
  998. * platform function
  999. */
  1000. static int fsi_probe(struct platform_device *pdev)
  1001. {
  1002. struct fsi_master *master;
  1003. const struct platform_device_id *id_entry;
  1004. struct resource *res;
  1005. unsigned int irq;
  1006. int ret;
  1007. id_entry = pdev->id_entry;
  1008. if (!id_entry) {
  1009. dev_err(&pdev->dev, "unknown fsi device\n");
  1010. return -ENODEV;
  1011. }
  1012. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1013. irq = platform_get_irq(pdev, 0);
  1014. if (!res || (int)irq <= 0) {
  1015. dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
  1016. ret = -ENODEV;
  1017. goto exit;
  1018. }
  1019. master = kzalloc(sizeof(*master), GFP_KERNEL);
  1020. if (!master) {
  1021. dev_err(&pdev->dev, "Could not allocate master\n");
  1022. ret = -ENOMEM;
  1023. goto exit;
  1024. }
  1025. master->base = ioremap_nocache(res->start, resource_size(res));
  1026. if (!master->base) {
  1027. ret = -ENXIO;
  1028. dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
  1029. goto exit_kfree;
  1030. }
  1031. /* master setting */
  1032. master->irq = irq;
  1033. master->info = pdev->dev.platform_data;
  1034. master->core = (struct fsi_core *)id_entry->driver_data;
  1035. spin_lock_init(&master->lock);
  1036. /* FSI A setting */
  1037. master->fsia.base = master->base;
  1038. master->fsia.master = master;
  1039. /* FSI B setting */
  1040. master->fsib.base = master->base + 0x40;
  1041. master->fsib.master = master;
  1042. pm_runtime_enable(&pdev->dev);
  1043. dev_set_drvdata(&pdev->dev, master);
  1044. fsi_module_init(master, &pdev->dev);
  1045. ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
  1046. id_entry->name, master);
  1047. if (ret) {
  1048. dev_err(&pdev->dev, "irq request err\n");
  1049. goto exit_iounmap;
  1050. }
  1051. ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
  1052. if (ret < 0) {
  1053. dev_err(&pdev->dev, "cannot snd soc register\n");
  1054. goto exit_free_irq;
  1055. }
  1056. ret = snd_soc_register_dais(&pdev->dev, fsi_soc_dai,
  1057. ARRAY_SIZE(fsi_soc_dai));
  1058. if (ret < 0) {
  1059. dev_err(&pdev->dev, "cannot snd dai register\n");
  1060. goto exit_snd_soc;
  1061. }
  1062. return ret;
  1063. exit_snd_soc:
  1064. snd_soc_unregister_platform(&pdev->dev);
  1065. exit_free_irq:
  1066. free_irq(irq, master);
  1067. exit_iounmap:
  1068. iounmap(master->base);
  1069. pm_runtime_disable(&pdev->dev);
  1070. exit_kfree:
  1071. kfree(master);
  1072. master = NULL;
  1073. exit:
  1074. return ret;
  1075. }
  1076. static int fsi_remove(struct platform_device *pdev)
  1077. {
  1078. struct fsi_master *master;
  1079. master = dev_get_drvdata(&pdev->dev);
  1080. fsi_module_kill(master, &pdev->dev);
  1081. free_irq(master->irq, master);
  1082. pm_runtime_disable(&pdev->dev);
  1083. snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
  1084. snd_soc_unregister_platform(&pdev->dev);
  1085. iounmap(master->base);
  1086. kfree(master);
  1087. return 0;
  1088. }
  1089. static void __fsi_suspend(struct fsi_priv *fsi,
  1090. struct device *dev)
  1091. {
  1092. fsi->saved_do_fmt = fsi_reg_read(fsi, DO_FMT);
  1093. fsi->saved_di_fmt = fsi_reg_read(fsi, DI_FMT);
  1094. fsi->saved_ckg1 = fsi_reg_read(fsi, CKG1);
  1095. fsi->saved_ckg2 = fsi_reg_read(fsi, CKG2);
  1096. fsi->saved_out_sel = fsi_reg_read(fsi, OUT_SEL);
  1097. if (fsi_is_clk_master(fsi))
  1098. fsi_set_master_clk(dev, fsi, fsi->rate, 0);
  1099. }
  1100. static void __fsi_resume(struct fsi_priv *fsi,
  1101. struct device *dev)
  1102. {
  1103. fsi_reg_write(fsi, DO_FMT, fsi->saved_do_fmt);
  1104. fsi_reg_write(fsi, DI_FMT, fsi->saved_di_fmt);
  1105. fsi_reg_write(fsi, CKG1, fsi->saved_ckg1);
  1106. fsi_reg_write(fsi, CKG2, fsi->saved_ckg2);
  1107. fsi_reg_write(fsi, OUT_SEL, fsi->saved_out_sel);
  1108. if (fsi_is_clk_master(fsi))
  1109. fsi_set_master_clk(dev, fsi, fsi->rate, 1);
  1110. }
  1111. static int fsi_suspend(struct device *dev)
  1112. {
  1113. struct fsi_master *master = dev_get_drvdata(dev);
  1114. pm_runtime_get_sync(dev);
  1115. __fsi_suspend(&master->fsia, dev);
  1116. __fsi_suspend(&master->fsib, dev);
  1117. master->saved_a_mclk = fsi_core_read(master, a_mclk);
  1118. master->saved_b_mclk = fsi_core_read(master, b_mclk);
  1119. master->saved_iemsk = fsi_core_read(master, iemsk);
  1120. master->saved_imsk = fsi_core_read(master, imsk);
  1121. master->saved_clk_rst = fsi_master_read(master, CLK_RST);
  1122. master->saved_soft_rst = fsi_master_read(master, SOFT_RST);
  1123. fsi_module_kill(master, dev);
  1124. pm_runtime_put_sync(dev);
  1125. return 0;
  1126. }
  1127. static int fsi_resume(struct device *dev)
  1128. {
  1129. struct fsi_master *master = dev_get_drvdata(dev);
  1130. pm_runtime_get_sync(dev);
  1131. fsi_module_init(master, dev);
  1132. fsi_master_mask_set(master, SOFT_RST, 0xffff, master->saved_soft_rst);
  1133. fsi_master_mask_set(master, CLK_RST, 0xffff, master->saved_clk_rst);
  1134. fsi_core_mask_set(master, a_mclk, 0xffff, master->saved_a_mclk);
  1135. fsi_core_mask_set(master, b_mclk, 0xffff, master->saved_b_mclk);
  1136. fsi_core_mask_set(master, iemsk, 0xffff, master->saved_iemsk);
  1137. fsi_core_mask_set(master, imsk, 0xffff, master->saved_imsk);
  1138. __fsi_resume(&master->fsia, dev);
  1139. __fsi_resume(&master->fsib, dev);
  1140. pm_runtime_put_sync(dev);
  1141. return 0;
  1142. }
  1143. static int fsi_runtime_nop(struct device *dev)
  1144. {
  1145. /* Runtime PM callback shared between ->runtime_suspend()
  1146. * and ->runtime_resume(). Simply returns success.
  1147. *
  1148. * This driver re-initializes all registers after
  1149. * pm_runtime_get_sync() anyway so there is no need
  1150. * to save and restore registers here.
  1151. */
  1152. return 0;
  1153. }
  1154. static struct dev_pm_ops fsi_pm_ops = {
  1155. .suspend = fsi_suspend,
  1156. .resume = fsi_resume,
  1157. .runtime_suspend = fsi_runtime_nop,
  1158. .runtime_resume = fsi_runtime_nop,
  1159. };
  1160. static struct fsi_core fsi1_core = {
  1161. .ver = 1,
  1162. /* Interrupt */
  1163. .int_st = INT_ST,
  1164. .iemsk = IEMSK,
  1165. .imsk = IMSK,
  1166. };
  1167. static struct fsi_core fsi2_core = {
  1168. .ver = 2,
  1169. /* Interrupt */
  1170. .int_st = CPU_INT_ST,
  1171. .iemsk = CPU_IEMSK,
  1172. .imsk = CPU_IMSK,
  1173. .a_mclk = A_MST_CTLR,
  1174. .b_mclk = B_MST_CTLR,
  1175. };
  1176. static struct platform_device_id fsi_id_table[] = {
  1177. { "sh_fsi", (kernel_ulong_t)&fsi1_core },
  1178. { "sh_fsi2", (kernel_ulong_t)&fsi2_core },
  1179. {},
  1180. };
  1181. MODULE_DEVICE_TABLE(platform, fsi_id_table);
  1182. static struct platform_driver fsi_driver = {
  1183. .driver = {
  1184. .name = "fsi-pcm-audio",
  1185. .pm = &fsi_pm_ops,
  1186. },
  1187. .probe = fsi_probe,
  1188. .remove = fsi_remove,
  1189. .id_table = fsi_id_table,
  1190. };
  1191. static int __init fsi_mobile_init(void)
  1192. {
  1193. return platform_driver_register(&fsi_driver);
  1194. }
  1195. static void __exit fsi_mobile_exit(void)
  1196. {
  1197. platform_driver_unregister(&fsi_driver);
  1198. }
  1199. module_init(fsi_mobile_init);
  1200. module_exit(fsi_mobile_exit);
  1201. MODULE_LICENSE("GPL");
  1202. MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
  1203. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
  1204. MODULE_ALIAS("platform:fsi-pcm-audio");