hw.c 81 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "debug.h"
  26. #include "ath9k.h"
  27. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  28. MODULE_AUTHOR("Atheros Communications");
  29. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  30. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  31. MODULE_LICENSE("Dual BSD/GPL");
  32. static int __init ath9k_init(void)
  33. {
  34. return 0;
  35. }
  36. module_init(ath9k_init);
  37. static void __exit ath9k_exit(void)
  38. {
  39. return;
  40. }
  41. module_exit(ath9k_exit);
  42. /* Private hardware callbacks */
  43. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  46. }
  47. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  48. {
  49. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  50. }
  51. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  52. struct ath9k_channel *chan)
  53. {
  54. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  55. }
  56. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  57. {
  58. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  59. return;
  60. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  61. }
  62. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  63. {
  64. /* You will not have this callback if using the old ANI */
  65. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  66. return;
  67. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  68. }
  69. /********************/
  70. /* Helper Functions */
  71. /********************/
  72. #ifdef CONFIG_ATH9K_DEBUGFS
  73. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  74. {
  75. struct ath_softc *sc = common->priv;
  76. if (sync_cause)
  77. sc->debug.stats.istats.sync_cause_all++;
  78. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  79. sc->debug.stats.istats.sync_rtc_irq++;
  80. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  81. sc->debug.stats.istats.sync_mac_irq++;
  82. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  83. sc->debug.stats.istats.eeprom_illegal_access++;
  84. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  85. sc->debug.stats.istats.apb_timeout++;
  86. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  87. sc->debug.stats.istats.pci_mode_conflict++;
  88. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  89. sc->debug.stats.istats.host1_fatal++;
  90. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  91. sc->debug.stats.istats.host1_perr++;
  92. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  93. sc->debug.stats.istats.trcv_fifo_perr++;
  94. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  95. sc->debug.stats.istats.radm_cpl_ep++;
  96. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  97. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  98. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  99. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  100. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  101. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  102. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  103. sc->debug.stats.istats.radm_cpl_timeout++;
  104. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  105. sc->debug.stats.istats.local_timeout++;
  106. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  107. sc->debug.stats.istats.pm_access++;
  108. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  109. sc->debug.stats.istats.mac_awake++;
  110. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  111. sc->debug.stats.istats.mac_asleep++;
  112. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  113. sc->debug.stats.istats.mac_sleep_access++;
  114. }
  115. #endif
  116. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  117. {
  118. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  119. struct ath_common *common = ath9k_hw_common(ah);
  120. unsigned int clockrate;
  121. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  122. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  123. clockrate = 117;
  124. else if (!ah->curchan) /* should really check for CCK instead */
  125. clockrate = ATH9K_CLOCK_RATE_CCK;
  126. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  127. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  128. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  129. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  130. else
  131. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  132. if (conf_is_ht40(conf))
  133. clockrate *= 2;
  134. if (ah->curchan) {
  135. if (IS_CHAN_HALF_RATE(ah->curchan))
  136. clockrate /= 2;
  137. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  138. clockrate /= 4;
  139. }
  140. common->clockrate = clockrate;
  141. }
  142. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  143. {
  144. struct ath_common *common = ath9k_hw_common(ah);
  145. return usecs * common->clockrate;
  146. }
  147. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  148. {
  149. int i;
  150. BUG_ON(timeout < AH_TIME_QUANTUM);
  151. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  152. if ((REG_READ(ah, reg) & mask) == val)
  153. return true;
  154. udelay(AH_TIME_QUANTUM);
  155. }
  156. ath_dbg(ath9k_hw_common(ah), ANY,
  157. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  158. timeout, reg, REG_READ(ah, reg), mask, val);
  159. return false;
  160. }
  161. EXPORT_SYMBOL(ath9k_hw_wait);
  162. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  163. int hw_delay)
  164. {
  165. if (IS_CHAN_B(chan))
  166. hw_delay = (4 * hw_delay) / 22;
  167. else
  168. hw_delay /= 10;
  169. if (IS_CHAN_HALF_RATE(chan))
  170. hw_delay *= 2;
  171. else if (IS_CHAN_QUARTER_RATE(chan))
  172. hw_delay *= 4;
  173. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  174. }
  175. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  176. int column, unsigned int *writecnt)
  177. {
  178. int r;
  179. ENABLE_REGWRITE_BUFFER(ah);
  180. for (r = 0; r < array->ia_rows; r++) {
  181. REG_WRITE(ah, INI_RA(array, r, 0),
  182. INI_RA(array, r, column));
  183. DO_DELAY(*writecnt);
  184. }
  185. REGWRITE_BUFFER_FLUSH(ah);
  186. }
  187. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  188. {
  189. u32 retval;
  190. int i;
  191. for (i = 0, retval = 0; i < n; i++) {
  192. retval = (retval << 1) | (val & 1);
  193. val >>= 1;
  194. }
  195. return retval;
  196. }
  197. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  198. u8 phy, int kbps,
  199. u32 frameLen, u16 rateix,
  200. bool shortPreamble)
  201. {
  202. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  203. if (kbps == 0)
  204. return 0;
  205. switch (phy) {
  206. case WLAN_RC_PHY_CCK:
  207. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  208. if (shortPreamble)
  209. phyTime >>= 1;
  210. numBits = frameLen << 3;
  211. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  212. break;
  213. case WLAN_RC_PHY_OFDM:
  214. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  215. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  216. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  217. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  218. txTime = OFDM_SIFS_TIME_QUARTER
  219. + OFDM_PREAMBLE_TIME_QUARTER
  220. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  221. } else if (ah->curchan &&
  222. IS_CHAN_HALF_RATE(ah->curchan)) {
  223. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  224. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  225. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  226. txTime = OFDM_SIFS_TIME_HALF +
  227. OFDM_PREAMBLE_TIME_HALF
  228. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  229. } else {
  230. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  231. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  232. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  233. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  234. + (numSymbols * OFDM_SYMBOL_TIME);
  235. }
  236. break;
  237. default:
  238. ath_err(ath9k_hw_common(ah),
  239. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  240. txTime = 0;
  241. break;
  242. }
  243. return txTime;
  244. }
  245. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  246. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  247. struct ath9k_channel *chan,
  248. struct chan_centers *centers)
  249. {
  250. int8_t extoff;
  251. if (!IS_CHAN_HT40(chan)) {
  252. centers->ctl_center = centers->ext_center =
  253. centers->synth_center = chan->channel;
  254. return;
  255. }
  256. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  257. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  258. centers->synth_center =
  259. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  260. extoff = 1;
  261. } else {
  262. centers->synth_center =
  263. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  264. extoff = -1;
  265. }
  266. centers->ctl_center =
  267. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  268. /* 25 MHz spacing is supported by hw but not on upper layers */
  269. centers->ext_center =
  270. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  271. }
  272. /******************/
  273. /* Chip Revisions */
  274. /******************/
  275. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  276. {
  277. u32 val;
  278. switch (ah->hw_version.devid) {
  279. case AR5416_AR9100_DEVID:
  280. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  281. break;
  282. case AR9300_DEVID_AR9330:
  283. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  284. if (ah->get_mac_revision) {
  285. ah->hw_version.macRev = ah->get_mac_revision();
  286. } else {
  287. val = REG_READ(ah, AR_SREV);
  288. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  289. }
  290. return;
  291. case AR9300_DEVID_AR9340:
  292. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  293. val = REG_READ(ah, AR_SREV);
  294. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  295. return;
  296. }
  297. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  298. if (val == 0xFF) {
  299. val = REG_READ(ah, AR_SREV);
  300. ah->hw_version.macVersion =
  301. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  302. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  303. if (AR_SREV_9462(ah))
  304. ah->is_pciexpress = true;
  305. else
  306. ah->is_pciexpress = (val &
  307. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  308. } else {
  309. if (!AR_SREV_9100(ah))
  310. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  311. ah->hw_version.macRev = val & AR_SREV_REVISION;
  312. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  313. ah->is_pciexpress = true;
  314. }
  315. }
  316. /************************************/
  317. /* HW Attach, Detach, Init Routines */
  318. /************************************/
  319. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  320. {
  321. if (!AR_SREV_5416(ah))
  322. return;
  323. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  324. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  325. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  326. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  328. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  329. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  330. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  331. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  332. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  333. }
  334. static void ath9k_hw_aspm_init(struct ath_hw *ah)
  335. {
  336. struct ath_common *common = ath9k_hw_common(ah);
  337. if (common->bus_ops->aspm_init)
  338. common->bus_ops->aspm_init(common);
  339. }
  340. /* This should work for all families including legacy */
  341. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  342. {
  343. struct ath_common *common = ath9k_hw_common(ah);
  344. u32 regAddr[2] = { AR_STA_ID0 };
  345. u32 regHold[2];
  346. static const u32 patternData[4] = {
  347. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  348. };
  349. int i, j, loop_max;
  350. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  351. loop_max = 2;
  352. regAddr[1] = AR_PHY_BASE + (8 << 2);
  353. } else
  354. loop_max = 1;
  355. for (i = 0; i < loop_max; i++) {
  356. u32 addr = regAddr[i];
  357. u32 wrData, rdData;
  358. regHold[i] = REG_READ(ah, addr);
  359. for (j = 0; j < 0x100; j++) {
  360. wrData = (j << 16) | j;
  361. REG_WRITE(ah, addr, wrData);
  362. rdData = REG_READ(ah, addr);
  363. if (rdData != wrData) {
  364. ath_err(common,
  365. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  366. addr, wrData, rdData);
  367. return false;
  368. }
  369. }
  370. for (j = 0; j < 4; j++) {
  371. wrData = patternData[j];
  372. REG_WRITE(ah, addr, wrData);
  373. rdData = REG_READ(ah, addr);
  374. if (wrData != rdData) {
  375. ath_err(common,
  376. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  377. addr, wrData, rdData);
  378. return false;
  379. }
  380. }
  381. REG_WRITE(ah, regAddr[i], regHold[i]);
  382. }
  383. udelay(100);
  384. return true;
  385. }
  386. static void ath9k_hw_init_config(struct ath_hw *ah)
  387. {
  388. int i;
  389. ah->config.dma_beacon_response_time = 1;
  390. ah->config.sw_beacon_response_time = 6;
  391. ah->config.additional_swba_backoff = 0;
  392. ah->config.ack_6mb = 0x0;
  393. ah->config.cwm_ignore_extcca = 0;
  394. ah->config.pcie_clock_req = 0;
  395. ah->config.pcie_waen = 0;
  396. ah->config.analog_shiftreg = 1;
  397. ah->config.enable_ani = true;
  398. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  399. ah->config.spurchans[i][0] = AR_NO_SPUR;
  400. ah->config.spurchans[i][1] = AR_NO_SPUR;
  401. }
  402. /* PAPRD needs some more work to be enabled */
  403. ah->config.paprd_disable = 1;
  404. ah->config.rx_intr_mitigation = true;
  405. ah->config.pcieSerDesWrite = true;
  406. /*
  407. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  408. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  409. * This means we use it for all AR5416 devices, and the few
  410. * minor PCI AR9280 devices out there.
  411. *
  412. * Serialization is required because these devices do not handle
  413. * well the case of two concurrent reads/writes due to the latency
  414. * involved. During one read/write another read/write can be issued
  415. * on another CPU while the previous read/write may still be working
  416. * on our hardware, if we hit this case the hardware poops in a loop.
  417. * We prevent this by serializing reads and writes.
  418. *
  419. * This issue is not present on PCI-Express devices or pre-AR5416
  420. * devices (legacy, 802.11abg).
  421. */
  422. if (num_possible_cpus() > 1)
  423. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  424. }
  425. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  426. {
  427. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  428. regulatory->country_code = CTRY_DEFAULT;
  429. regulatory->power_limit = MAX_RATE_POWER;
  430. ah->hw_version.magic = AR5416_MAGIC;
  431. ah->hw_version.subvendorid = 0;
  432. ah->atim_window = 0;
  433. ah->sta_id1_defaults =
  434. AR_STA_ID1_CRPT_MIC_ENABLE |
  435. AR_STA_ID1_MCAST_KSRCH;
  436. if (AR_SREV_9100(ah))
  437. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  438. ah->slottime = ATH9K_SLOT_TIME_9;
  439. ah->globaltxtimeout = (u32) -1;
  440. ah->power_mode = ATH9K_PM_UNDEFINED;
  441. ah->htc_reset_init = true;
  442. }
  443. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  444. {
  445. struct ath_common *common = ath9k_hw_common(ah);
  446. u32 sum;
  447. int i;
  448. u16 eeval;
  449. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  450. sum = 0;
  451. for (i = 0; i < 3; i++) {
  452. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  453. sum += eeval;
  454. common->macaddr[2 * i] = eeval >> 8;
  455. common->macaddr[2 * i + 1] = eeval & 0xff;
  456. }
  457. if (sum == 0 || sum == 0xffff * 3)
  458. return -EADDRNOTAVAIL;
  459. return 0;
  460. }
  461. static int ath9k_hw_post_init(struct ath_hw *ah)
  462. {
  463. struct ath_common *common = ath9k_hw_common(ah);
  464. int ecode;
  465. if (common->bus_ops->ath_bus_type != ATH_USB) {
  466. if (!ath9k_hw_chip_test(ah))
  467. return -ENODEV;
  468. }
  469. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  470. ecode = ar9002_hw_rf_claim(ah);
  471. if (ecode != 0)
  472. return ecode;
  473. }
  474. ecode = ath9k_hw_eeprom_init(ah);
  475. if (ecode != 0)
  476. return ecode;
  477. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  478. ah->eep_ops->get_eeprom_ver(ah),
  479. ah->eep_ops->get_eeprom_rev(ah));
  480. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  481. if (ecode) {
  482. ath_err(ath9k_hw_common(ah),
  483. "Failed allocating banks for external radio\n");
  484. ath9k_hw_rf_free_ext_banks(ah);
  485. return ecode;
  486. }
  487. if (ah->config.enable_ani) {
  488. ath9k_hw_ani_setup(ah);
  489. ath9k_hw_ani_init(ah);
  490. }
  491. return 0;
  492. }
  493. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  494. {
  495. if (AR_SREV_9300_20_OR_LATER(ah))
  496. ar9003_hw_attach_ops(ah);
  497. else
  498. ar9002_hw_attach_ops(ah);
  499. }
  500. /* Called for all hardware families */
  501. static int __ath9k_hw_init(struct ath_hw *ah)
  502. {
  503. struct ath_common *common = ath9k_hw_common(ah);
  504. int r = 0;
  505. ath9k_hw_read_revisions(ah);
  506. /*
  507. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  508. * We need to do this to avoid RMW of this register. We cannot
  509. * read the reg when chip is asleep.
  510. */
  511. ah->WARegVal = REG_READ(ah, AR_WA);
  512. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  513. AR_WA_ASPM_TIMER_BASED_DISABLE);
  514. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  515. ath_err(common, "Couldn't reset chip\n");
  516. return -EIO;
  517. }
  518. if (AR_SREV_9462(ah))
  519. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  520. ath9k_hw_init_defaults(ah);
  521. ath9k_hw_init_config(ah);
  522. ath9k_hw_attach_ops(ah);
  523. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  524. ath_err(common, "Couldn't wakeup chip\n");
  525. return -EIO;
  526. }
  527. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  528. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  529. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  530. !ah->is_pciexpress)) {
  531. ah->config.serialize_regmode =
  532. SER_REG_MODE_ON;
  533. } else {
  534. ah->config.serialize_regmode =
  535. SER_REG_MODE_OFF;
  536. }
  537. }
  538. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  539. ah->config.serialize_regmode);
  540. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  541. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  542. else
  543. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  544. switch (ah->hw_version.macVersion) {
  545. case AR_SREV_VERSION_5416_PCI:
  546. case AR_SREV_VERSION_5416_PCIE:
  547. case AR_SREV_VERSION_9160:
  548. case AR_SREV_VERSION_9100:
  549. case AR_SREV_VERSION_9280:
  550. case AR_SREV_VERSION_9285:
  551. case AR_SREV_VERSION_9287:
  552. case AR_SREV_VERSION_9271:
  553. case AR_SREV_VERSION_9300:
  554. case AR_SREV_VERSION_9330:
  555. case AR_SREV_VERSION_9485:
  556. case AR_SREV_VERSION_9340:
  557. case AR_SREV_VERSION_9462:
  558. break;
  559. default:
  560. ath_err(common,
  561. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  562. ah->hw_version.macVersion, ah->hw_version.macRev);
  563. return -EOPNOTSUPP;
  564. }
  565. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  566. AR_SREV_9330(ah))
  567. ah->is_pciexpress = false;
  568. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  569. ath9k_hw_init_cal_settings(ah);
  570. ah->ani_function = ATH9K_ANI_ALL;
  571. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  572. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  573. if (!AR_SREV_9300_20_OR_LATER(ah))
  574. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  575. /* disable ANI for 9340 */
  576. if (AR_SREV_9340(ah))
  577. ah->config.enable_ani = false;
  578. ath9k_hw_init_mode_regs(ah);
  579. if (!ah->is_pciexpress)
  580. ath9k_hw_disablepcie(ah);
  581. r = ath9k_hw_post_init(ah);
  582. if (r)
  583. return r;
  584. ath9k_hw_init_mode_gain_regs(ah);
  585. r = ath9k_hw_fill_cap_info(ah);
  586. if (r)
  587. return r;
  588. if (ah->is_pciexpress)
  589. ath9k_hw_aspm_init(ah);
  590. r = ath9k_hw_init_macaddr(ah);
  591. if (r) {
  592. ath_err(common, "Failed to initialize MAC address\n");
  593. return r;
  594. }
  595. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  596. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  597. else
  598. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  599. if (AR_SREV_9330(ah))
  600. ah->bb_watchdog_timeout_ms = 85;
  601. else
  602. ah->bb_watchdog_timeout_ms = 25;
  603. common->state = ATH_HW_INITIALIZED;
  604. return 0;
  605. }
  606. int ath9k_hw_init(struct ath_hw *ah)
  607. {
  608. int ret;
  609. struct ath_common *common = ath9k_hw_common(ah);
  610. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  611. switch (ah->hw_version.devid) {
  612. case AR5416_DEVID_PCI:
  613. case AR5416_DEVID_PCIE:
  614. case AR5416_AR9100_DEVID:
  615. case AR9160_DEVID_PCI:
  616. case AR9280_DEVID_PCI:
  617. case AR9280_DEVID_PCIE:
  618. case AR9285_DEVID_PCIE:
  619. case AR9287_DEVID_PCI:
  620. case AR9287_DEVID_PCIE:
  621. case AR2427_DEVID_PCIE:
  622. case AR9300_DEVID_PCIE:
  623. case AR9300_DEVID_AR9485_PCIE:
  624. case AR9300_DEVID_AR9330:
  625. case AR9300_DEVID_AR9340:
  626. case AR9300_DEVID_AR9580:
  627. case AR9300_DEVID_AR9462:
  628. break;
  629. default:
  630. if (common->bus_ops->ath_bus_type == ATH_USB)
  631. break;
  632. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  633. ah->hw_version.devid);
  634. return -EOPNOTSUPP;
  635. }
  636. ret = __ath9k_hw_init(ah);
  637. if (ret) {
  638. ath_err(common,
  639. "Unable to initialize hardware; initialization status: %d\n",
  640. ret);
  641. return ret;
  642. }
  643. return 0;
  644. }
  645. EXPORT_SYMBOL(ath9k_hw_init);
  646. static void ath9k_hw_init_qos(struct ath_hw *ah)
  647. {
  648. ENABLE_REGWRITE_BUFFER(ah);
  649. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  650. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  651. REG_WRITE(ah, AR_QOS_NO_ACK,
  652. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  653. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  654. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  655. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  656. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  657. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  658. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  659. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  660. REGWRITE_BUFFER_FLUSH(ah);
  661. }
  662. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  663. {
  664. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  665. udelay(100);
  666. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  667. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  668. udelay(100);
  669. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  670. }
  671. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  672. static void ath9k_hw_init_pll(struct ath_hw *ah,
  673. struct ath9k_channel *chan)
  674. {
  675. u32 pll;
  676. if (AR_SREV_9485(ah)) {
  677. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  678. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  679. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  680. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  681. AR_CH0_DPLL2_KD, 0x40);
  682. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  683. AR_CH0_DPLL2_KI, 0x4);
  684. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  685. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  686. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  687. AR_CH0_BB_DPLL1_NINI, 0x58);
  688. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  689. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  690. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  691. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  692. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  693. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  694. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  695. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  696. /* program BB PLL phase_shift to 0x6 */
  697. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  698. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  699. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  700. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  701. udelay(1000);
  702. } else if (AR_SREV_9330(ah)) {
  703. u32 ddr_dpll2, pll_control2, kd;
  704. if (ah->is_clk_25mhz) {
  705. ddr_dpll2 = 0x18e82f01;
  706. pll_control2 = 0xe04a3d;
  707. kd = 0x1d;
  708. } else {
  709. ddr_dpll2 = 0x19e82f01;
  710. pll_control2 = 0x886666;
  711. kd = 0x3d;
  712. }
  713. /* program DDR PLL ki and kd value */
  714. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  715. /* program DDR PLL phase_shift */
  716. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  717. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  718. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  719. udelay(1000);
  720. /* program refdiv, nint, frac to RTC register */
  721. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  722. /* program BB PLL kd and ki value */
  723. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  724. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  725. /* program BB PLL phase_shift */
  726. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  727. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  728. } else if (AR_SREV_9340(ah)) {
  729. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  730. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  731. udelay(1000);
  732. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  733. udelay(100);
  734. if (ah->is_clk_25mhz) {
  735. pll2_divint = 0x54;
  736. pll2_divfrac = 0x1eb85;
  737. refdiv = 3;
  738. } else {
  739. pll2_divint = 88;
  740. pll2_divfrac = 0;
  741. refdiv = 5;
  742. }
  743. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  744. regval |= (0x1 << 16);
  745. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  746. udelay(100);
  747. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  748. (pll2_divint << 18) | pll2_divfrac);
  749. udelay(100);
  750. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  751. regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
  752. (0x4 << 26) | (0x18 << 19);
  753. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  754. REG_WRITE(ah, AR_PHY_PLL_MODE,
  755. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  756. udelay(1000);
  757. }
  758. pll = ath9k_hw_compute_pll_control(ah, chan);
  759. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  760. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
  761. udelay(1000);
  762. /* Switch the core clock for ar9271 to 117Mhz */
  763. if (AR_SREV_9271(ah)) {
  764. udelay(500);
  765. REG_WRITE(ah, 0x50040, 0x304);
  766. }
  767. udelay(RTC_PLL_SETTLE_DELAY);
  768. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  769. if (AR_SREV_9340(ah)) {
  770. if (ah->is_clk_25mhz) {
  771. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  772. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  773. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  774. } else {
  775. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  776. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  777. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  778. }
  779. udelay(100);
  780. }
  781. }
  782. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  783. enum nl80211_iftype opmode)
  784. {
  785. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  786. u32 imr_reg = AR_IMR_TXERR |
  787. AR_IMR_TXURN |
  788. AR_IMR_RXERR |
  789. AR_IMR_RXORN |
  790. AR_IMR_BCNMISC;
  791. if (AR_SREV_9340(ah))
  792. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  793. if (AR_SREV_9300_20_OR_LATER(ah)) {
  794. imr_reg |= AR_IMR_RXOK_HP;
  795. if (ah->config.rx_intr_mitigation)
  796. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  797. else
  798. imr_reg |= AR_IMR_RXOK_LP;
  799. } else {
  800. if (ah->config.rx_intr_mitigation)
  801. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  802. else
  803. imr_reg |= AR_IMR_RXOK;
  804. }
  805. if (ah->config.tx_intr_mitigation)
  806. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  807. else
  808. imr_reg |= AR_IMR_TXOK;
  809. if (opmode == NL80211_IFTYPE_AP)
  810. imr_reg |= AR_IMR_MIB;
  811. ENABLE_REGWRITE_BUFFER(ah);
  812. REG_WRITE(ah, AR_IMR, imr_reg);
  813. ah->imrs2_reg |= AR_IMR_S2_GTT;
  814. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  815. if (!AR_SREV_9100(ah)) {
  816. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  817. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  818. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  819. }
  820. REGWRITE_BUFFER_FLUSH(ah);
  821. if (AR_SREV_9300_20_OR_LATER(ah)) {
  822. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  823. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  824. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  825. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  826. }
  827. }
  828. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  829. {
  830. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  831. val = min(val, (u32) 0xFFFF);
  832. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  833. }
  834. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  835. {
  836. u32 val = ath9k_hw_mac_to_clks(ah, us);
  837. val = min(val, (u32) 0xFFFF);
  838. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  839. }
  840. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  841. {
  842. u32 val = ath9k_hw_mac_to_clks(ah, us);
  843. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  844. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  845. }
  846. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  847. {
  848. u32 val = ath9k_hw_mac_to_clks(ah, us);
  849. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  850. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  851. }
  852. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  853. {
  854. if (tu > 0xFFFF) {
  855. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  856. tu);
  857. ah->globaltxtimeout = (u32) -1;
  858. return false;
  859. } else {
  860. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  861. ah->globaltxtimeout = tu;
  862. return true;
  863. }
  864. }
  865. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  866. {
  867. struct ath_common *common = ath9k_hw_common(ah);
  868. struct ieee80211_conf *conf = &common->hw->conf;
  869. const struct ath9k_channel *chan = ah->curchan;
  870. int acktimeout, ctstimeout, ack_offset = 0;
  871. int slottime;
  872. int sifstime;
  873. int rx_lat = 0, tx_lat = 0, eifs = 0;
  874. u32 reg;
  875. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  876. ah->misc_mode);
  877. if (!chan)
  878. return;
  879. if (ah->misc_mode != 0)
  880. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  881. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  882. rx_lat = 41;
  883. else
  884. rx_lat = 37;
  885. tx_lat = 54;
  886. if (IS_CHAN_5GHZ(chan))
  887. sifstime = 16;
  888. else
  889. sifstime = 10;
  890. if (IS_CHAN_HALF_RATE(chan)) {
  891. eifs = 175;
  892. rx_lat *= 2;
  893. tx_lat *= 2;
  894. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  895. tx_lat += 11;
  896. sifstime *= 2;
  897. ack_offset = 16;
  898. slottime = 13;
  899. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  900. eifs = 340;
  901. rx_lat = (rx_lat * 4) - 1;
  902. tx_lat *= 4;
  903. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  904. tx_lat += 22;
  905. sifstime *= 4;
  906. ack_offset = 32;
  907. slottime = 21;
  908. } else {
  909. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  910. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  911. reg = AR_USEC_ASYNC_FIFO;
  912. } else {
  913. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  914. common->clockrate;
  915. reg = REG_READ(ah, AR_USEC);
  916. }
  917. rx_lat = MS(reg, AR_USEC_RX_LAT);
  918. tx_lat = MS(reg, AR_USEC_TX_LAT);
  919. slottime = ah->slottime;
  920. }
  921. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  922. acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
  923. ctstimeout = acktimeout;
  924. /*
  925. * Workaround for early ACK timeouts, add an offset to match the
  926. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  927. * This was initially only meant to work around an issue with delayed
  928. * BA frames in some implementations, but it has been found to fix ACK
  929. * timeout issues in other cases as well.
  930. */
  931. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
  932. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  933. acktimeout += 64 - sifstime - ah->slottime;
  934. ctstimeout += 48 - sifstime - ah->slottime;
  935. }
  936. ath9k_hw_set_sifs_time(ah, sifstime);
  937. ath9k_hw_setslottime(ah, slottime);
  938. ath9k_hw_set_ack_timeout(ah, acktimeout);
  939. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  940. if (ah->globaltxtimeout != (u32) -1)
  941. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  942. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  943. REG_RMW(ah, AR_USEC,
  944. (common->clockrate - 1) |
  945. SM(rx_lat, AR_USEC_RX_LAT) |
  946. SM(tx_lat, AR_USEC_TX_LAT),
  947. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  948. }
  949. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  950. void ath9k_hw_deinit(struct ath_hw *ah)
  951. {
  952. struct ath_common *common = ath9k_hw_common(ah);
  953. if (common->state < ATH_HW_INITIALIZED)
  954. goto free_hw;
  955. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  956. free_hw:
  957. ath9k_hw_rf_free_ext_banks(ah);
  958. }
  959. EXPORT_SYMBOL(ath9k_hw_deinit);
  960. /*******/
  961. /* INI */
  962. /*******/
  963. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  964. {
  965. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  966. if (IS_CHAN_B(chan))
  967. ctl |= CTL_11B;
  968. else if (IS_CHAN_G(chan))
  969. ctl |= CTL_11G;
  970. else
  971. ctl |= CTL_11A;
  972. return ctl;
  973. }
  974. /****************************************/
  975. /* Reset and Channel Switching Routines */
  976. /****************************************/
  977. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  978. {
  979. struct ath_common *common = ath9k_hw_common(ah);
  980. ENABLE_REGWRITE_BUFFER(ah);
  981. /*
  982. * set AHB_MODE not to do cacheline prefetches
  983. */
  984. if (!AR_SREV_9300_20_OR_LATER(ah))
  985. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  986. /*
  987. * let mac dma reads be in 128 byte chunks
  988. */
  989. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  990. REGWRITE_BUFFER_FLUSH(ah);
  991. /*
  992. * Restore TX Trigger Level to its pre-reset value.
  993. * The initial value depends on whether aggregation is enabled, and is
  994. * adjusted whenever underruns are detected.
  995. */
  996. if (!AR_SREV_9300_20_OR_LATER(ah))
  997. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  998. ENABLE_REGWRITE_BUFFER(ah);
  999. /*
  1000. * let mac dma writes be in 128 byte chunks
  1001. */
  1002. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  1003. /*
  1004. * Setup receive FIFO threshold to hold off TX activities
  1005. */
  1006. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1007. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1008. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1009. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1010. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1011. ah->caps.rx_status_len);
  1012. }
  1013. /*
  1014. * reduce the number of usable entries in PCU TXBUF to avoid
  1015. * wrap around issues.
  1016. */
  1017. if (AR_SREV_9285(ah)) {
  1018. /* For AR9285 the number of Fifos are reduced to half.
  1019. * So set the usable tx buf size also to half to
  1020. * avoid data/delimiter underruns
  1021. */
  1022. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1023. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1024. } else if (!AR_SREV_9271(ah)) {
  1025. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1026. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1027. }
  1028. REGWRITE_BUFFER_FLUSH(ah);
  1029. if (AR_SREV_9300_20_OR_LATER(ah))
  1030. ath9k_hw_reset_txstatus_ring(ah);
  1031. }
  1032. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1033. {
  1034. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1035. u32 set = AR_STA_ID1_KSRCH_MODE;
  1036. switch (opmode) {
  1037. case NL80211_IFTYPE_ADHOC:
  1038. case NL80211_IFTYPE_MESH_POINT:
  1039. set |= AR_STA_ID1_ADHOC;
  1040. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1041. break;
  1042. case NL80211_IFTYPE_AP:
  1043. set |= AR_STA_ID1_STA_AP;
  1044. /* fall through */
  1045. case NL80211_IFTYPE_STATION:
  1046. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1047. break;
  1048. default:
  1049. if (!ah->is_monitoring)
  1050. set = 0;
  1051. break;
  1052. }
  1053. REG_RMW(ah, AR_STA_ID1, set, mask);
  1054. }
  1055. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1056. u32 *coef_mantissa, u32 *coef_exponent)
  1057. {
  1058. u32 coef_exp, coef_man;
  1059. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1060. if ((coef_scaled >> coef_exp) & 0x1)
  1061. break;
  1062. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1063. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1064. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1065. *coef_exponent = coef_exp - 16;
  1066. }
  1067. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1068. {
  1069. u32 rst_flags;
  1070. u32 tmpReg;
  1071. if (AR_SREV_9100(ah)) {
  1072. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1073. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1074. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1075. }
  1076. ENABLE_REGWRITE_BUFFER(ah);
  1077. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1078. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1079. udelay(10);
  1080. }
  1081. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1082. AR_RTC_FORCE_WAKE_ON_INT);
  1083. if (AR_SREV_9100(ah)) {
  1084. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1085. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1086. } else {
  1087. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1088. if (tmpReg &
  1089. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1090. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1091. u32 val;
  1092. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1093. val = AR_RC_HOSTIF;
  1094. if (!AR_SREV_9300_20_OR_LATER(ah))
  1095. val |= AR_RC_AHB;
  1096. REG_WRITE(ah, AR_RC, val);
  1097. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1098. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1099. rst_flags = AR_RTC_RC_MAC_WARM;
  1100. if (type == ATH9K_RESET_COLD)
  1101. rst_flags |= AR_RTC_RC_MAC_COLD;
  1102. }
  1103. if (AR_SREV_9330(ah)) {
  1104. int npend = 0;
  1105. int i;
  1106. /* AR9330 WAR:
  1107. * call external reset function to reset WMAC if:
  1108. * - doing a cold reset
  1109. * - we have pending frames in the TX queues
  1110. */
  1111. for (i = 0; i < AR_NUM_QCU; i++) {
  1112. npend = ath9k_hw_numtxpending(ah, i);
  1113. if (npend)
  1114. break;
  1115. }
  1116. if (ah->external_reset &&
  1117. (npend || type == ATH9K_RESET_COLD)) {
  1118. int reset_err = 0;
  1119. ath_dbg(ath9k_hw_common(ah), RESET,
  1120. "reset MAC via external reset\n");
  1121. reset_err = ah->external_reset();
  1122. if (reset_err) {
  1123. ath_err(ath9k_hw_common(ah),
  1124. "External reset failed, err=%d\n",
  1125. reset_err);
  1126. return false;
  1127. }
  1128. REG_WRITE(ah, AR_RTC_RESET, 1);
  1129. }
  1130. }
  1131. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1132. REGWRITE_BUFFER_FLUSH(ah);
  1133. udelay(50);
  1134. REG_WRITE(ah, AR_RTC_RC, 0);
  1135. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1136. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1137. return false;
  1138. }
  1139. if (!AR_SREV_9100(ah))
  1140. REG_WRITE(ah, AR_RC, 0);
  1141. if (AR_SREV_9100(ah))
  1142. udelay(50);
  1143. return true;
  1144. }
  1145. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1146. {
  1147. ENABLE_REGWRITE_BUFFER(ah);
  1148. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1149. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1150. udelay(10);
  1151. }
  1152. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1153. AR_RTC_FORCE_WAKE_ON_INT);
  1154. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1155. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1156. REG_WRITE(ah, AR_RTC_RESET, 0);
  1157. REGWRITE_BUFFER_FLUSH(ah);
  1158. if (!AR_SREV_9300_20_OR_LATER(ah))
  1159. udelay(2);
  1160. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1161. REG_WRITE(ah, AR_RC, 0);
  1162. REG_WRITE(ah, AR_RTC_RESET, 1);
  1163. if (!ath9k_hw_wait(ah,
  1164. AR_RTC_STATUS,
  1165. AR_RTC_STATUS_M,
  1166. AR_RTC_STATUS_ON,
  1167. AH_WAIT_TIMEOUT)) {
  1168. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1169. return false;
  1170. }
  1171. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1172. }
  1173. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1174. {
  1175. bool ret = false;
  1176. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1177. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1178. udelay(10);
  1179. }
  1180. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1181. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1182. switch (type) {
  1183. case ATH9K_RESET_POWER_ON:
  1184. ret = ath9k_hw_set_reset_power_on(ah);
  1185. break;
  1186. case ATH9K_RESET_WARM:
  1187. case ATH9K_RESET_COLD:
  1188. ret = ath9k_hw_set_reset(ah, type);
  1189. break;
  1190. default:
  1191. break;
  1192. }
  1193. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1194. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1195. return ret;
  1196. }
  1197. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1198. struct ath9k_channel *chan)
  1199. {
  1200. int reset_type = ATH9K_RESET_WARM;
  1201. if (AR_SREV_9280(ah)) {
  1202. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1203. reset_type = ATH9K_RESET_POWER_ON;
  1204. else
  1205. reset_type = ATH9K_RESET_COLD;
  1206. }
  1207. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1208. return false;
  1209. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1210. return false;
  1211. ah->chip_fullsleep = false;
  1212. ath9k_hw_init_pll(ah, chan);
  1213. ath9k_hw_set_rfmode(ah, chan);
  1214. return true;
  1215. }
  1216. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1217. struct ath9k_channel *chan)
  1218. {
  1219. struct ath_common *common = ath9k_hw_common(ah);
  1220. u32 qnum;
  1221. int r;
  1222. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1223. bool band_switch, mode_diff;
  1224. u8 ini_reloaded;
  1225. band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
  1226. (ah->curchan->channelFlags & (CHANNEL_2GHZ |
  1227. CHANNEL_5GHZ));
  1228. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1229. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1230. if (ath9k_hw_numtxpending(ah, qnum)) {
  1231. ath_dbg(common, QUEUE,
  1232. "Transmit frames pending on queue %d\n", qnum);
  1233. return false;
  1234. }
  1235. }
  1236. if (!ath9k_hw_rfbus_req(ah)) {
  1237. ath_err(common, "Could not kill baseband RX\n");
  1238. return false;
  1239. }
  1240. if (edma && (band_switch || mode_diff)) {
  1241. ath9k_hw_mark_phy_inactive(ah);
  1242. udelay(5);
  1243. ath9k_hw_init_pll(ah, NULL);
  1244. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1245. ath_err(common, "Failed to do fast channel change\n");
  1246. return false;
  1247. }
  1248. }
  1249. ath9k_hw_set_channel_regs(ah, chan);
  1250. r = ath9k_hw_rf_set_freq(ah, chan);
  1251. if (r) {
  1252. ath_err(common, "Failed to set channel\n");
  1253. return false;
  1254. }
  1255. ath9k_hw_set_clockrate(ah);
  1256. ath9k_hw_apply_txpower(ah, chan, false);
  1257. ath9k_hw_rfbus_done(ah);
  1258. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1259. ath9k_hw_set_delta_slope(ah, chan);
  1260. ath9k_hw_spur_mitigate_freq(ah, chan);
  1261. if (edma && (band_switch || mode_diff)) {
  1262. ah->ah_flags |= AH_FASTCC;
  1263. if (band_switch || ini_reloaded)
  1264. ah->eep_ops->set_board_values(ah, chan);
  1265. ath9k_hw_init_bb(ah, chan);
  1266. if (band_switch || ini_reloaded)
  1267. ath9k_hw_init_cal(ah, chan);
  1268. ah->ah_flags &= ~AH_FASTCC;
  1269. }
  1270. return true;
  1271. }
  1272. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1273. {
  1274. u32 gpio_mask = ah->gpio_mask;
  1275. int i;
  1276. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1277. if (!(gpio_mask & 1))
  1278. continue;
  1279. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1280. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1281. }
  1282. }
  1283. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1284. int *hang_state, int *hang_pos)
  1285. {
  1286. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1287. u32 chain_state, dcs_pos, i;
  1288. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1289. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1290. for (i = 0; i < 3; i++) {
  1291. if (chain_state == dcu_chain_state[i]) {
  1292. *hang_state = chain_state;
  1293. *hang_pos = dcs_pos;
  1294. return true;
  1295. }
  1296. }
  1297. }
  1298. return false;
  1299. }
  1300. #define DCU_COMPLETE_STATE 1
  1301. #define DCU_COMPLETE_STATE_MASK 0x3
  1302. #define NUM_STATUS_READS 50
  1303. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1304. {
  1305. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1306. u32 i, hang_pos, hang_state, num_state = 6;
  1307. comp_state = REG_READ(ah, AR_DMADBG_6);
  1308. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1309. ath_dbg(ath9k_hw_common(ah), RESET,
  1310. "MAC Hang signature not found at DCU complete\n");
  1311. return false;
  1312. }
  1313. chain_state = REG_READ(ah, dcs_reg);
  1314. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1315. goto hang_check_iter;
  1316. dcs_reg = AR_DMADBG_5;
  1317. num_state = 4;
  1318. chain_state = REG_READ(ah, dcs_reg);
  1319. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1320. goto hang_check_iter;
  1321. ath_dbg(ath9k_hw_common(ah), RESET,
  1322. "MAC Hang signature 1 not found\n");
  1323. return false;
  1324. hang_check_iter:
  1325. ath_dbg(ath9k_hw_common(ah), RESET,
  1326. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1327. chain_state, comp_state, hang_state, hang_pos);
  1328. for (i = 0; i < NUM_STATUS_READS; i++) {
  1329. chain_state = REG_READ(ah, dcs_reg);
  1330. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1331. comp_state = REG_READ(ah, AR_DMADBG_6);
  1332. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1333. DCU_COMPLETE_STATE) ||
  1334. (chain_state != hang_state))
  1335. return false;
  1336. }
  1337. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1338. return true;
  1339. }
  1340. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1341. {
  1342. int count = 50;
  1343. u32 reg;
  1344. if (AR_SREV_9300(ah))
  1345. return !ath9k_hw_detect_mac_hang(ah);
  1346. if (AR_SREV_9285_12_OR_LATER(ah))
  1347. return true;
  1348. do {
  1349. reg = REG_READ(ah, AR_OBS_BUS_1);
  1350. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1351. continue;
  1352. switch (reg & 0x7E000B00) {
  1353. case 0x1E000000:
  1354. case 0x52000B00:
  1355. case 0x18000B00:
  1356. continue;
  1357. default:
  1358. return true;
  1359. }
  1360. } while (count-- > 0);
  1361. return false;
  1362. }
  1363. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1364. /*
  1365. * Fast channel change:
  1366. * (Change synthesizer based on channel freq without resetting chip)
  1367. *
  1368. * Don't do FCC when
  1369. * - Flag is not set
  1370. * - Chip is just coming out of full sleep
  1371. * - Channel to be set is same as current channel
  1372. * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
  1373. */
  1374. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1375. {
  1376. struct ath_common *common = ath9k_hw_common(ah);
  1377. int ret;
  1378. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1379. goto fail;
  1380. if (ah->chip_fullsleep)
  1381. goto fail;
  1382. if (!ah->curchan)
  1383. goto fail;
  1384. if (chan->channel == ah->curchan->channel)
  1385. goto fail;
  1386. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1387. (CHANNEL_HALF | CHANNEL_QUARTER))
  1388. goto fail;
  1389. if ((chan->channelFlags & CHANNEL_ALL) !=
  1390. (ah->curchan->channelFlags & CHANNEL_ALL))
  1391. goto fail;
  1392. if (!ath9k_hw_check_alive(ah))
  1393. goto fail;
  1394. /*
  1395. * For AR9462, make sure that calibration data for
  1396. * re-using are present.
  1397. */
  1398. if (AR_SREV_9462(ah) && (!ah->caldata ||
  1399. !ah->caldata->done_txiqcal_once ||
  1400. !ah->caldata->done_txclcal_once ||
  1401. !ah->caldata->rtt_hist.num_readings))
  1402. goto fail;
  1403. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1404. ah->curchan->channel, chan->channel);
  1405. ret = ath9k_hw_channel_change(ah, chan);
  1406. if (!ret)
  1407. goto fail;
  1408. ath9k_hw_loadnf(ah, ah->curchan);
  1409. ath9k_hw_start_nfcal(ah, true);
  1410. if ((ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && ar9003_mci_is_ready(ah))
  1411. ar9003_mci_2g5g_switch(ah, true);
  1412. if (AR_SREV_9271(ah))
  1413. ar9002_hw_load_ani_reg(ah, chan);
  1414. return 0;
  1415. fail:
  1416. return -EINVAL;
  1417. }
  1418. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1419. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1420. {
  1421. struct ath_common *common = ath9k_hw_common(ah);
  1422. u32 saveLedState;
  1423. u32 saveDefAntenna;
  1424. u32 macStaId1;
  1425. u64 tsf = 0;
  1426. int i, r;
  1427. bool start_mci_reset = false;
  1428. bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
  1429. bool save_fullsleep = ah->chip_fullsleep;
  1430. if (mci) {
  1431. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1432. if (start_mci_reset)
  1433. return 0;
  1434. }
  1435. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1436. return -EIO;
  1437. if (ah->curchan && !ah->chip_fullsleep)
  1438. ath9k_hw_getnf(ah, ah->curchan);
  1439. ah->caldata = caldata;
  1440. if (caldata &&
  1441. (chan->channel != caldata->channel ||
  1442. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1443. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1444. /* Operating channel changed, reset channel calibration data */
  1445. memset(caldata, 0, sizeof(*caldata));
  1446. ath9k_init_nfcal_hist_buffer(ah, chan);
  1447. }
  1448. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1449. if (fastcc) {
  1450. r = ath9k_hw_do_fastcc(ah, chan);
  1451. if (!r)
  1452. return r;
  1453. }
  1454. if (mci)
  1455. ar9003_mci_stop_bt(ah, save_fullsleep);
  1456. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1457. if (saveDefAntenna == 0)
  1458. saveDefAntenna = 1;
  1459. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1460. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1461. if (AR_SREV_9100(ah) ||
  1462. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1463. tsf = ath9k_hw_gettsf64(ah);
  1464. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1465. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1466. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1467. ath9k_hw_mark_phy_inactive(ah);
  1468. ah->paprd_table_write_done = false;
  1469. /* Only required on the first reset */
  1470. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1471. REG_WRITE(ah,
  1472. AR9271_RESET_POWER_DOWN_CONTROL,
  1473. AR9271_RADIO_RF_RST);
  1474. udelay(50);
  1475. }
  1476. if (!ath9k_hw_chip_reset(ah, chan)) {
  1477. ath_err(common, "Chip reset failed\n");
  1478. return -EINVAL;
  1479. }
  1480. /* Only required on the first reset */
  1481. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1482. ah->htc_reset_init = false;
  1483. REG_WRITE(ah,
  1484. AR9271_RESET_POWER_DOWN_CONTROL,
  1485. AR9271_GATE_MAC_CTL);
  1486. udelay(50);
  1487. }
  1488. /* Restore TSF */
  1489. if (tsf)
  1490. ath9k_hw_settsf64(ah, tsf);
  1491. if (AR_SREV_9280_20_OR_LATER(ah))
  1492. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1493. if (!AR_SREV_9300_20_OR_LATER(ah))
  1494. ar9002_hw_enable_async_fifo(ah);
  1495. r = ath9k_hw_process_ini(ah, chan);
  1496. if (r)
  1497. return r;
  1498. if (mci)
  1499. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1500. /*
  1501. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1502. * right after the chip reset. When that happens, write a new
  1503. * value after the initvals have been applied, with an offset
  1504. * based on measured time difference
  1505. */
  1506. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1507. tsf += 1500;
  1508. ath9k_hw_settsf64(ah, tsf);
  1509. }
  1510. /* Setup MFP options for CCMP */
  1511. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1512. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1513. * frames when constructing CCMP AAD. */
  1514. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1515. 0xc7ff);
  1516. ah->sw_mgmt_crypto = false;
  1517. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1518. /* Disable hardware crypto for management frames */
  1519. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1520. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1521. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1522. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1523. ah->sw_mgmt_crypto = true;
  1524. } else
  1525. ah->sw_mgmt_crypto = true;
  1526. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1527. ath9k_hw_set_delta_slope(ah, chan);
  1528. ath9k_hw_spur_mitigate_freq(ah, chan);
  1529. ah->eep_ops->set_board_values(ah, chan);
  1530. ENABLE_REGWRITE_BUFFER(ah);
  1531. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1532. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1533. | macStaId1
  1534. | AR_STA_ID1_RTS_USE_DEF
  1535. | (ah->config.
  1536. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1537. | ah->sta_id1_defaults);
  1538. ath_hw_setbssidmask(common);
  1539. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1540. ath9k_hw_write_associd(ah);
  1541. REG_WRITE(ah, AR_ISR, ~0);
  1542. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1543. REGWRITE_BUFFER_FLUSH(ah);
  1544. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1545. r = ath9k_hw_rf_set_freq(ah, chan);
  1546. if (r)
  1547. return r;
  1548. ath9k_hw_set_clockrate(ah);
  1549. ENABLE_REGWRITE_BUFFER(ah);
  1550. for (i = 0; i < AR_NUM_DCU; i++)
  1551. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1552. REGWRITE_BUFFER_FLUSH(ah);
  1553. ah->intr_txqs = 0;
  1554. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1555. ath9k_hw_resettxqueue(ah, i);
  1556. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1557. ath9k_hw_ani_cache_ini_regs(ah);
  1558. ath9k_hw_init_qos(ah);
  1559. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1560. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1561. ath9k_hw_init_global_settings(ah);
  1562. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1563. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1564. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1565. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1566. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1567. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1568. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1569. }
  1570. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1571. ath9k_hw_set_dma(ah);
  1572. REG_WRITE(ah, AR_OBS, 8);
  1573. if (ah->config.rx_intr_mitigation) {
  1574. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1575. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1576. }
  1577. if (ah->config.tx_intr_mitigation) {
  1578. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1579. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1580. }
  1581. ath9k_hw_init_bb(ah, chan);
  1582. if (caldata) {
  1583. caldata->done_txiqcal_once = false;
  1584. caldata->done_txclcal_once = false;
  1585. caldata->rtt_hist.num_readings = 0;
  1586. }
  1587. if (!ath9k_hw_init_cal(ah, chan))
  1588. return -EIO;
  1589. ath9k_hw_loadnf(ah, chan);
  1590. ath9k_hw_start_nfcal(ah, true);
  1591. if (mci && ar9003_mci_end_reset(ah, chan, caldata))
  1592. return -EIO;
  1593. ENABLE_REGWRITE_BUFFER(ah);
  1594. ath9k_hw_restore_chainmask(ah);
  1595. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1596. REGWRITE_BUFFER_FLUSH(ah);
  1597. /*
  1598. * For big endian systems turn on swapping for descriptors
  1599. */
  1600. if (AR_SREV_9100(ah)) {
  1601. u32 mask;
  1602. mask = REG_READ(ah, AR_CFG);
  1603. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1604. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1605. mask);
  1606. } else {
  1607. mask =
  1608. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1609. REG_WRITE(ah, AR_CFG, mask);
  1610. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1611. REG_READ(ah, AR_CFG));
  1612. }
  1613. } else {
  1614. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1615. /* Configure AR9271 target WLAN */
  1616. if (AR_SREV_9271(ah))
  1617. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1618. else
  1619. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1620. }
  1621. #ifdef __BIG_ENDIAN
  1622. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
  1623. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1624. else
  1625. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1626. #endif
  1627. }
  1628. if (ath9k_hw_btcoex_is_enabled(ah))
  1629. ath9k_hw_btcoex_enable(ah);
  1630. if (mci)
  1631. ar9003_mci_check_bt(ah);
  1632. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1633. ar9003_hw_bb_watchdog_config(ah);
  1634. ar9003_hw_disable_phy_restart(ah);
  1635. }
  1636. ath9k_hw_apply_gpio_override(ah);
  1637. return 0;
  1638. }
  1639. EXPORT_SYMBOL(ath9k_hw_reset);
  1640. /******************************/
  1641. /* Power Management (Chipset) */
  1642. /******************************/
  1643. /*
  1644. * Notify Power Mgt is disabled in self-generated frames.
  1645. * If requested, force chip to sleep.
  1646. */
  1647. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1648. {
  1649. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1650. if (setChip) {
  1651. if (AR_SREV_9462(ah)) {
  1652. REG_WRITE(ah, AR_TIMER_MODE,
  1653. REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
  1654. REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
  1655. AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
  1656. REG_WRITE(ah, AR_SLP32_INC,
  1657. REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
  1658. /* xxx Required for WLAN only case ? */
  1659. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1660. udelay(100);
  1661. }
  1662. /*
  1663. * Clear the RTC force wake bit to allow the
  1664. * mac to go to sleep.
  1665. */
  1666. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1667. if (AR_SREV_9462(ah))
  1668. udelay(100);
  1669. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1670. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1671. /* Shutdown chip. Active low */
  1672. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1673. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1674. udelay(2);
  1675. }
  1676. }
  1677. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1678. if (AR_SREV_9300_20_OR_LATER(ah))
  1679. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1680. }
  1681. /*
  1682. * Notify Power Management is enabled in self-generating
  1683. * frames. If request, set power mode of chip to
  1684. * auto/normal. Duration in units of 128us (1/8 TU).
  1685. */
  1686. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1687. {
  1688. u32 val;
  1689. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1690. if (setChip) {
  1691. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1692. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1693. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1694. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1695. AR_RTC_FORCE_WAKE_ON_INT);
  1696. } else {
  1697. /* When chip goes into network sleep, it could be waken
  1698. * up by MCI_INT interrupt caused by BT's HW messages
  1699. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1700. * rate (~100us). This will cause chip to leave and
  1701. * re-enter network sleep mode frequently, which in
  1702. * consequence will have WLAN MCI HW to generate lots of
  1703. * SYS_WAKING and SYS_SLEEPING messages which will make
  1704. * BT CPU to busy to process.
  1705. */
  1706. if (AR_SREV_9462(ah)) {
  1707. val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
  1708. ~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
  1709. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
  1710. }
  1711. /*
  1712. * Clear the RTC force wake bit to allow the
  1713. * mac to go to sleep.
  1714. */
  1715. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1716. AR_RTC_FORCE_WAKE_EN);
  1717. if (AR_SREV_9462(ah))
  1718. udelay(30);
  1719. }
  1720. }
  1721. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1722. if (AR_SREV_9300_20_OR_LATER(ah))
  1723. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1724. }
  1725. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1726. {
  1727. u32 val;
  1728. int i;
  1729. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1730. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1731. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1732. udelay(10);
  1733. }
  1734. if (setChip) {
  1735. if ((REG_READ(ah, AR_RTC_STATUS) &
  1736. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1737. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1738. return false;
  1739. }
  1740. if (!AR_SREV_9300_20_OR_LATER(ah))
  1741. ath9k_hw_init_pll(ah, NULL);
  1742. }
  1743. if (AR_SREV_9100(ah))
  1744. REG_SET_BIT(ah, AR_RTC_RESET,
  1745. AR_RTC_RESET_EN);
  1746. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1747. AR_RTC_FORCE_WAKE_EN);
  1748. udelay(50);
  1749. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1750. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1751. if (val == AR_RTC_STATUS_ON)
  1752. break;
  1753. udelay(50);
  1754. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1755. AR_RTC_FORCE_WAKE_EN);
  1756. }
  1757. if (i == 0) {
  1758. ath_err(ath9k_hw_common(ah),
  1759. "Failed to wakeup in %uus\n",
  1760. POWER_UP_TIME / 20);
  1761. return false;
  1762. }
  1763. }
  1764. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1765. return true;
  1766. }
  1767. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1768. {
  1769. struct ath_common *common = ath9k_hw_common(ah);
  1770. int status = true, setChip = true;
  1771. static const char *modes[] = {
  1772. "AWAKE",
  1773. "FULL-SLEEP",
  1774. "NETWORK SLEEP",
  1775. "UNDEFINED"
  1776. };
  1777. if (ah->power_mode == mode)
  1778. return status;
  1779. ath_dbg(common, RESET, "%s -> %s\n",
  1780. modes[ah->power_mode], modes[mode]);
  1781. switch (mode) {
  1782. case ATH9K_PM_AWAKE:
  1783. status = ath9k_hw_set_power_awake(ah, setChip);
  1784. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1785. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1786. break;
  1787. case ATH9K_PM_FULL_SLEEP:
  1788. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1789. ar9003_mci_set_full_sleep(ah);
  1790. ath9k_set_power_sleep(ah, setChip);
  1791. ah->chip_fullsleep = true;
  1792. break;
  1793. case ATH9K_PM_NETWORK_SLEEP:
  1794. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1795. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1796. ath9k_set_power_network_sleep(ah, setChip);
  1797. break;
  1798. default:
  1799. ath_err(common, "Unknown power mode %u\n", mode);
  1800. return false;
  1801. }
  1802. ah->power_mode = mode;
  1803. /*
  1804. * XXX: If this warning never comes up after a while then
  1805. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1806. * ath9k_hw_setpower() return type void.
  1807. */
  1808. if (!(ah->ah_flags & AH_UNPLUGGED))
  1809. ATH_DBG_WARN_ON_ONCE(!status);
  1810. return status;
  1811. }
  1812. EXPORT_SYMBOL(ath9k_hw_setpower);
  1813. /*******************/
  1814. /* Beacon Handling */
  1815. /*******************/
  1816. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1817. {
  1818. int flags = 0;
  1819. ENABLE_REGWRITE_BUFFER(ah);
  1820. switch (ah->opmode) {
  1821. case NL80211_IFTYPE_ADHOC:
  1822. case NL80211_IFTYPE_MESH_POINT:
  1823. REG_SET_BIT(ah, AR_TXCFG,
  1824. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1825. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1826. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1827. flags |= AR_NDP_TIMER_EN;
  1828. case NL80211_IFTYPE_AP:
  1829. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1830. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1831. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1832. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1833. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1834. flags |=
  1835. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1836. break;
  1837. default:
  1838. ath_dbg(ath9k_hw_common(ah), BEACON,
  1839. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1840. return;
  1841. break;
  1842. }
  1843. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1844. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1845. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1846. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1847. REGWRITE_BUFFER_FLUSH(ah);
  1848. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1849. }
  1850. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1851. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1852. const struct ath9k_beacon_state *bs)
  1853. {
  1854. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1855. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1856. struct ath_common *common = ath9k_hw_common(ah);
  1857. ENABLE_REGWRITE_BUFFER(ah);
  1858. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1859. REG_WRITE(ah, AR_BEACON_PERIOD,
  1860. TU_TO_USEC(bs->bs_intval));
  1861. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1862. TU_TO_USEC(bs->bs_intval));
  1863. REGWRITE_BUFFER_FLUSH(ah);
  1864. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1865. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1866. beaconintval = bs->bs_intval;
  1867. if (bs->bs_sleepduration > beaconintval)
  1868. beaconintval = bs->bs_sleepduration;
  1869. dtimperiod = bs->bs_dtimperiod;
  1870. if (bs->bs_sleepduration > dtimperiod)
  1871. dtimperiod = bs->bs_sleepduration;
  1872. if (beaconintval == dtimperiod)
  1873. nextTbtt = bs->bs_nextdtim;
  1874. else
  1875. nextTbtt = bs->bs_nexttbtt;
  1876. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1877. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1878. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1879. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1880. ENABLE_REGWRITE_BUFFER(ah);
  1881. REG_WRITE(ah, AR_NEXT_DTIM,
  1882. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1883. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1884. REG_WRITE(ah, AR_SLEEP1,
  1885. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1886. | AR_SLEEP1_ASSUME_DTIM);
  1887. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1888. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1889. else
  1890. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1891. REG_WRITE(ah, AR_SLEEP2,
  1892. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1893. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1894. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1895. REGWRITE_BUFFER_FLUSH(ah);
  1896. REG_SET_BIT(ah, AR_TIMER_MODE,
  1897. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1898. AR_DTIM_TIMER_EN);
  1899. /* TSF Out of Range Threshold */
  1900. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1901. }
  1902. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1903. /*******************/
  1904. /* HW Capabilities */
  1905. /*******************/
  1906. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1907. {
  1908. eeprom_chainmask &= chip_chainmask;
  1909. if (eeprom_chainmask)
  1910. return eeprom_chainmask;
  1911. else
  1912. return chip_chainmask;
  1913. }
  1914. /**
  1915. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1916. * @ah: the atheros hardware data structure
  1917. *
  1918. * We enable DFS support upstream on chipsets which have passed a series
  1919. * of tests. The testing requirements are going to be documented. Desired
  1920. * test requirements are documented at:
  1921. *
  1922. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1923. *
  1924. * Once a new chipset gets properly tested an individual commit can be used
  1925. * to document the testing for DFS for that chipset.
  1926. */
  1927. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1928. {
  1929. switch (ah->hw_version.macVersion) {
  1930. /* AR9580 will likely be our first target to get testing on */
  1931. case AR_SREV_VERSION_9580:
  1932. default:
  1933. return false;
  1934. }
  1935. }
  1936. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1937. {
  1938. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1939. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1940. struct ath_common *common = ath9k_hw_common(ah);
  1941. unsigned int chip_chainmask;
  1942. u16 eeval;
  1943. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1944. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1945. regulatory->current_rd = eeval;
  1946. if (ah->opmode != NL80211_IFTYPE_AP &&
  1947. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1948. if (regulatory->current_rd == 0x64 ||
  1949. regulatory->current_rd == 0x65)
  1950. regulatory->current_rd += 5;
  1951. else if (regulatory->current_rd == 0x41)
  1952. regulatory->current_rd = 0x43;
  1953. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1954. regulatory->current_rd);
  1955. }
  1956. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1957. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1958. ath_err(common,
  1959. "no band has been marked as supported in EEPROM\n");
  1960. return -EINVAL;
  1961. }
  1962. if (eeval & AR5416_OPFLAGS_11A)
  1963. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1964. if (eeval & AR5416_OPFLAGS_11G)
  1965. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1966. if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
  1967. chip_chainmask = 1;
  1968. else if (AR_SREV_9462(ah))
  1969. chip_chainmask = 3;
  1970. else if (!AR_SREV_9280_20_OR_LATER(ah))
  1971. chip_chainmask = 7;
  1972. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  1973. chip_chainmask = 3;
  1974. else
  1975. chip_chainmask = 7;
  1976. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1977. /*
  1978. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1979. * the EEPROM.
  1980. */
  1981. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1982. !(eeval & AR5416_OPFLAGS_11A) &&
  1983. !(AR_SREV_9271(ah)))
  1984. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1985. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1986. else if (AR_SREV_9100(ah))
  1987. pCap->rx_chainmask = 0x7;
  1988. else
  1989. /* Use rx_chainmask from EEPROM. */
  1990. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1991. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  1992. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  1993. ah->txchainmask = pCap->tx_chainmask;
  1994. ah->rxchainmask = pCap->rx_chainmask;
  1995. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1996. /* enable key search for every frame in an aggregate */
  1997. if (AR_SREV_9300_20_OR_LATER(ah))
  1998. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1999. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  2000. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  2001. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2002. else
  2003. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2004. if (AR_SREV_9271(ah))
  2005. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  2006. else if (AR_DEVID_7010(ah))
  2007. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  2008. else if (AR_SREV_9300_20_OR_LATER(ah))
  2009. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  2010. else if (AR_SREV_9287_11_OR_LATER(ah))
  2011. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  2012. else if (AR_SREV_9285_12_OR_LATER(ah))
  2013. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2014. else if (AR_SREV_9280_20_OR_LATER(ah))
  2015. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2016. else
  2017. pCap->num_gpio_pins = AR_NUM_GPIO;
  2018. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  2019. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2020. else
  2021. pCap->rts_aggr_limit = (8 * 1024);
  2022. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2023. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2024. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2025. ah->rfkill_gpio =
  2026. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2027. ah->rfkill_polarity =
  2028. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2029. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2030. }
  2031. #endif
  2032. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2033. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2034. else
  2035. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2036. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2037. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2038. else
  2039. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2040. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2041. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2042. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
  2043. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2044. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2045. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2046. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2047. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2048. pCap->txs_len = sizeof(struct ar9003_txs);
  2049. if (!ah->config.paprd_disable &&
  2050. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  2051. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2052. } else {
  2053. pCap->tx_desc_len = sizeof(struct ath_desc);
  2054. if (AR_SREV_9280_20(ah))
  2055. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2056. }
  2057. if (AR_SREV_9300_20_OR_LATER(ah))
  2058. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2059. if (AR_SREV_9300_20_OR_LATER(ah))
  2060. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2061. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2062. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2063. if (AR_SREV_9285(ah))
  2064. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2065. ant_div_ctl1 =
  2066. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2067. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  2068. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2069. }
  2070. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2071. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2072. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2073. }
  2074. if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
  2075. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2076. /*
  2077. * enable the diversity-combining algorithm only when
  2078. * both enable_lna_div and enable_fast_div are set
  2079. * Table for Diversity
  2080. * ant_div_alt_lnaconf bit 0-1
  2081. * ant_div_main_lnaconf bit 2-3
  2082. * ant_div_alt_gaintb bit 4
  2083. * ant_div_main_gaintb bit 5
  2084. * enable_ant_div_lnadiv bit 6
  2085. * enable_ant_fast_div bit 7
  2086. */
  2087. if ((ant_div_ctl1 >> 0x6) == 0x3)
  2088. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2089. }
  2090. if (AR_SREV_9485_10(ah)) {
  2091. pCap->pcie_lcr_extsync_en = true;
  2092. pCap->pcie_lcr_offset = 0x80;
  2093. }
  2094. if (ath9k_hw_dfs_tested(ah))
  2095. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2096. tx_chainmask = pCap->tx_chainmask;
  2097. rx_chainmask = pCap->rx_chainmask;
  2098. while (tx_chainmask || rx_chainmask) {
  2099. if (tx_chainmask & BIT(0))
  2100. pCap->max_txchains++;
  2101. if (rx_chainmask & BIT(0))
  2102. pCap->max_rxchains++;
  2103. tx_chainmask >>= 1;
  2104. rx_chainmask >>= 1;
  2105. }
  2106. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2107. ah->enabled_cals |= TX_IQ_CAL;
  2108. if (AR_SREV_9485_OR_LATER(ah))
  2109. ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
  2110. }
  2111. if (AR_SREV_9462(ah)) {
  2112. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2113. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2114. if (AR_SREV_9462_20(ah))
  2115. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2116. }
  2117. return 0;
  2118. }
  2119. /****************************/
  2120. /* GPIO / RFKILL / Antennae */
  2121. /****************************/
  2122. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2123. u32 gpio, u32 type)
  2124. {
  2125. int addr;
  2126. u32 gpio_shift, tmp;
  2127. if (gpio > 11)
  2128. addr = AR_GPIO_OUTPUT_MUX3;
  2129. else if (gpio > 5)
  2130. addr = AR_GPIO_OUTPUT_MUX2;
  2131. else
  2132. addr = AR_GPIO_OUTPUT_MUX1;
  2133. gpio_shift = (gpio % 6) * 5;
  2134. if (AR_SREV_9280_20_OR_LATER(ah)
  2135. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2136. REG_RMW(ah, addr, (type << gpio_shift),
  2137. (0x1f << gpio_shift));
  2138. } else {
  2139. tmp = REG_READ(ah, addr);
  2140. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2141. tmp &= ~(0x1f << gpio_shift);
  2142. tmp |= (type << gpio_shift);
  2143. REG_WRITE(ah, addr, tmp);
  2144. }
  2145. }
  2146. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2147. {
  2148. u32 gpio_shift;
  2149. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2150. if (AR_DEVID_7010(ah)) {
  2151. gpio_shift = gpio;
  2152. REG_RMW(ah, AR7010_GPIO_OE,
  2153. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2154. (AR7010_GPIO_OE_MASK << gpio_shift));
  2155. return;
  2156. }
  2157. gpio_shift = gpio << 1;
  2158. REG_RMW(ah,
  2159. AR_GPIO_OE_OUT,
  2160. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2161. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2162. }
  2163. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2164. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2165. {
  2166. #define MS_REG_READ(x, y) \
  2167. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2168. if (gpio >= ah->caps.num_gpio_pins)
  2169. return 0xffffffff;
  2170. if (AR_DEVID_7010(ah)) {
  2171. u32 val;
  2172. val = REG_READ(ah, AR7010_GPIO_IN);
  2173. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2174. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2175. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2176. AR_GPIO_BIT(gpio)) != 0;
  2177. else if (AR_SREV_9271(ah))
  2178. return MS_REG_READ(AR9271, gpio) != 0;
  2179. else if (AR_SREV_9287_11_OR_LATER(ah))
  2180. return MS_REG_READ(AR9287, gpio) != 0;
  2181. else if (AR_SREV_9285_12_OR_LATER(ah))
  2182. return MS_REG_READ(AR9285, gpio) != 0;
  2183. else if (AR_SREV_9280_20_OR_LATER(ah))
  2184. return MS_REG_READ(AR928X, gpio) != 0;
  2185. else
  2186. return MS_REG_READ(AR, gpio) != 0;
  2187. }
  2188. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2189. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2190. u32 ah_signal_type)
  2191. {
  2192. u32 gpio_shift;
  2193. if (AR_DEVID_7010(ah)) {
  2194. gpio_shift = gpio;
  2195. REG_RMW(ah, AR7010_GPIO_OE,
  2196. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2197. (AR7010_GPIO_OE_MASK << gpio_shift));
  2198. return;
  2199. }
  2200. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2201. gpio_shift = 2 * gpio;
  2202. REG_RMW(ah,
  2203. AR_GPIO_OE_OUT,
  2204. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2205. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2206. }
  2207. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2208. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2209. {
  2210. if (AR_DEVID_7010(ah)) {
  2211. val = val ? 0 : 1;
  2212. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2213. AR_GPIO_BIT(gpio));
  2214. return;
  2215. }
  2216. if (AR_SREV_9271(ah))
  2217. val = ~val;
  2218. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2219. AR_GPIO_BIT(gpio));
  2220. }
  2221. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2222. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2223. {
  2224. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2225. }
  2226. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2227. /*********************/
  2228. /* General Operation */
  2229. /*********************/
  2230. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2231. {
  2232. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2233. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2234. if (phybits & AR_PHY_ERR_RADAR)
  2235. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2236. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2237. bits |= ATH9K_RX_FILTER_PHYERR;
  2238. return bits;
  2239. }
  2240. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2241. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2242. {
  2243. u32 phybits;
  2244. ENABLE_REGWRITE_BUFFER(ah);
  2245. if (AR_SREV_9462(ah))
  2246. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2247. REG_WRITE(ah, AR_RX_FILTER, bits);
  2248. phybits = 0;
  2249. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2250. phybits |= AR_PHY_ERR_RADAR;
  2251. if (bits & ATH9K_RX_FILTER_PHYERR)
  2252. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2253. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2254. if (phybits)
  2255. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2256. else
  2257. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2258. REGWRITE_BUFFER_FLUSH(ah);
  2259. }
  2260. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2261. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2262. {
  2263. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2264. return false;
  2265. ath9k_hw_init_pll(ah, NULL);
  2266. ah->htc_reset_init = true;
  2267. return true;
  2268. }
  2269. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2270. bool ath9k_hw_disable(struct ath_hw *ah)
  2271. {
  2272. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2273. return false;
  2274. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2275. return false;
  2276. ath9k_hw_init_pll(ah, NULL);
  2277. return true;
  2278. }
  2279. EXPORT_SYMBOL(ath9k_hw_disable);
  2280. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2281. {
  2282. enum eeprom_param gain_param;
  2283. if (IS_CHAN_2GHZ(chan))
  2284. gain_param = EEP_ANTENNA_GAIN_2G;
  2285. else
  2286. gain_param = EEP_ANTENNA_GAIN_5G;
  2287. return ah->eep_ops->get_eeprom(ah, gain_param);
  2288. }
  2289. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2290. bool test)
  2291. {
  2292. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2293. struct ieee80211_channel *channel;
  2294. int chan_pwr, new_pwr, max_gain;
  2295. int ant_gain, ant_reduction = 0;
  2296. if (!chan)
  2297. return;
  2298. channel = chan->chan;
  2299. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2300. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2301. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2302. ant_gain = get_antenna_gain(ah, chan);
  2303. if (ant_gain > max_gain)
  2304. ant_reduction = ant_gain - max_gain;
  2305. ah->eep_ops->set_txpower(ah, chan,
  2306. ath9k_regd_get_ctl(reg, chan),
  2307. ant_reduction, new_pwr, test);
  2308. }
  2309. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2310. {
  2311. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2312. struct ath9k_channel *chan = ah->curchan;
  2313. struct ieee80211_channel *channel = chan->chan;
  2314. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2315. if (test)
  2316. channel->max_power = MAX_RATE_POWER / 2;
  2317. ath9k_hw_apply_txpower(ah, chan, test);
  2318. if (test)
  2319. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2320. }
  2321. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2322. void ath9k_hw_setopmode(struct ath_hw *ah)
  2323. {
  2324. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2325. }
  2326. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2327. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2328. {
  2329. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2330. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2331. }
  2332. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2333. void ath9k_hw_write_associd(struct ath_hw *ah)
  2334. {
  2335. struct ath_common *common = ath9k_hw_common(ah);
  2336. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2337. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2338. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2339. }
  2340. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2341. #define ATH9K_MAX_TSF_READ 10
  2342. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2343. {
  2344. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2345. int i;
  2346. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2347. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2348. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2349. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2350. if (tsf_upper2 == tsf_upper1)
  2351. break;
  2352. tsf_upper1 = tsf_upper2;
  2353. }
  2354. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2355. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2356. }
  2357. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2358. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2359. {
  2360. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2361. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2362. }
  2363. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2364. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2365. {
  2366. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2367. AH_TSF_WRITE_TIMEOUT))
  2368. ath_dbg(ath9k_hw_common(ah), RESET,
  2369. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2370. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2371. }
  2372. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2373. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  2374. {
  2375. if (setting)
  2376. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2377. else
  2378. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2379. }
  2380. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2381. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2382. {
  2383. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2384. u32 macmode;
  2385. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2386. macmode = AR_2040_JOINED_RX_CLEAR;
  2387. else
  2388. macmode = 0;
  2389. REG_WRITE(ah, AR_2040_MODE, macmode);
  2390. }
  2391. /* HW Generic timers configuration */
  2392. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2393. {
  2394. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2395. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2396. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2397. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2398. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2399. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2400. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2401. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2402. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2403. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2404. AR_NDP2_TIMER_MODE, 0x0002},
  2405. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2406. AR_NDP2_TIMER_MODE, 0x0004},
  2407. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2408. AR_NDP2_TIMER_MODE, 0x0008},
  2409. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2410. AR_NDP2_TIMER_MODE, 0x0010},
  2411. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2412. AR_NDP2_TIMER_MODE, 0x0020},
  2413. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2414. AR_NDP2_TIMER_MODE, 0x0040},
  2415. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2416. AR_NDP2_TIMER_MODE, 0x0080}
  2417. };
  2418. /* HW generic timer primitives */
  2419. /* compute and clear index of rightmost 1 */
  2420. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2421. {
  2422. u32 b;
  2423. b = *mask;
  2424. b &= (0-b);
  2425. *mask &= ~b;
  2426. b *= debruijn32;
  2427. b >>= 27;
  2428. return timer_table->gen_timer_index[b];
  2429. }
  2430. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2431. {
  2432. return REG_READ(ah, AR_TSF_L32);
  2433. }
  2434. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2435. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2436. void (*trigger)(void *),
  2437. void (*overflow)(void *),
  2438. void *arg,
  2439. u8 timer_index)
  2440. {
  2441. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2442. struct ath_gen_timer *timer;
  2443. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2444. if (timer == NULL) {
  2445. ath_err(ath9k_hw_common(ah),
  2446. "Failed to allocate memory for hw timer[%d]\n",
  2447. timer_index);
  2448. return NULL;
  2449. }
  2450. /* allocate a hardware generic timer slot */
  2451. timer_table->timers[timer_index] = timer;
  2452. timer->index = timer_index;
  2453. timer->trigger = trigger;
  2454. timer->overflow = overflow;
  2455. timer->arg = arg;
  2456. return timer;
  2457. }
  2458. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2459. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2460. struct ath_gen_timer *timer,
  2461. u32 trig_timeout,
  2462. u32 timer_period)
  2463. {
  2464. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2465. u32 tsf, timer_next;
  2466. BUG_ON(!timer_period);
  2467. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2468. tsf = ath9k_hw_gettsf32(ah);
  2469. timer_next = tsf + trig_timeout;
  2470. ath_dbg(ath9k_hw_common(ah), HWTIMER,
  2471. "current tsf %x period %x timer_next %x\n",
  2472. tsf, timer_period, timer_next);
  2473. /*
  2474. * Program generic timer registers
  2475. */
  2476. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2477. timer_next);
  2478. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2479. timer_period);
  2480. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2481. gen_tmr_configuration[timer->index].mode_mask);
  2482. if (AR_SREV_9462(ah)) {
  2483. /*
  2484. * Starting from AR9462, each generic timer can select which tsf
  2485. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2486. * 8 - 15 use tsf2.
  2487. */
  2488. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2489. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2490. (1 << timer->index));
  2491. else
  2492. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2493. (1 << timer->index));
  2494. }
  2495. /* Enable both trigger and thresh interrupt masks */
  2496. REG_SET_BIT(ah, AR_IMR_S5,
  2497. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2498. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2499. }
  2500. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2501. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2502. {
  2503. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2504. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2505. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2506. return;
  2507. }
  2508. /* Clear generic timer enable bits. */
  2509. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2510. gen_tmr_configuration[timer->index].mode_mask);
  2511. /* Disable both trigger and thresh interrupt masks */
  2512. REG_CLR_BIT(ah, AR_IMR_S5,
  2513. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2514. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2515. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2516. }
  2517. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2518. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2519. {
  2520. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2521. /* free the hardware generic timer slot */
  2522. timer_table->timers[timer->index] = NULL;
  2523. kfree(timer);
  2524. }
  2525. EXPORT_SYMBOL(ath_gen_timer_free);
  2526. /*
  2527. * Generic Timer Interrupts handling
  2528. */
  2529. void ath_gen_timer_isr(struct ath_hw *ah)
  2530. {
  2531. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2532. struct ath_gen_timer *timer;
  2533. struct ath_common *common = ath9k_hw_common(ah);
  2534. u32 trigger_mask, thresh_mask, index;
  2535. /* get hardware generic timer interrupt status */
  2536. trigger_mask = ah->intr_gen_timer_trigger;
  2537. thresh_mask = ah->intr_gen_timer_thresh;
  2538. trigger_mask &= timer_table->timer_mask.val;
  2539. thresh_mask &= timer_table->timer_mask.val;
  2540. trigger_mask &= ~thresh_mask;
  2541. while (thresh_mask) {
  2542. index = rightmost_index(timer_table, &thresh_mask);
  2543. timer = timer_table->timers[index];
  2544. BUG_ON(!timer);
  2545. ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
  2546. index);
  2547. timer->overflow(timer->arg);
  2548. }
  2549. while (trigger_mask) {
  2550. index = rightmost_index(timer_table, &trigger_mask);
  2551. timer = timer_table->timers[index];
  2552. BUG_ON(!timer);
  2553. ath_dbg(common, HWTIMER,
  2554. "Gen timer[%d] trigger\n", index);
  2555. timer->trigger(timer->arg);
  2556. }
  2557. }
  2558. EXPORT_SYMBOL(ath_gen_timer_isr);
  2559. /********/
  2560. /* HTC */
  2561. /********/
  2562. static struct {
  2563. u32 version;
  2564. const char * name;
  2565. } ath_mac_bb_names[] = {
  2566. /* Devices with external radios */
  2567. { AR_SREV_VERSION_5416_PCI, "5416" },
  2568. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2569. { AR_SREV_VERSION_9100, "9100" },
  2570. { AR_SREV_VERSION_9160, "9160" },
  2571. /* Single-chip solutions */
  2572. { AR_SREV_VERSION_9280, "9280" },
  2573. { AR_SREV_VERSION_9285, "9285" },
  2574. { AR_SREV_VERSION_9287, "9287" },
  2575. { AR_SREV_VERSION_9271, "9271" },
  2576. { AR_SREV_VERSION_9300, "9300" },
  2577. { AR_SREV_VERSION_9330, "9330" },
  2578. { AR_SREV_VERSION_9340, "9340" },
  2579. { AR_SREV_VERSION_9485, "9485" },
  2580. { AR_SREV_VERSION_9462, "9462" },
  2581. };
  2582. /* For devices with external radios */
  2583. static struct {
  2584. u16 version;
  2585. const char * name;
  2586. } ath_rf_names[] = {
  2587. { 0, "5133" },
  2588. { AR_RAD5133_SREV_MAJOR, "5133" },
  2589. { AR_RAD5122_SREV_MAJOR, "5122" },
  2590. { AR_RAD2133_SREV_MAJOR, "2133" },
  2591. { AR_RAD2122_SREV_MAJOR, "2122" }
  2592. };
  2593. /*
  2594. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2595. */
  2596. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2597. {
  2598. int i;
  2599. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2600. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2601. return ath_mac_bb_names[i].name;
  2602. }
  2603. }
  2604. return "????";
  2605. }
  2606. /*
  2607. * Return the RF name. "????" is returned if the RF is unknown.
  2608. * Used for devices with external radios.
  2609. */
  2610. static const char *ath9k_hw_rf_name(u16 rf_version)
  2611. {
  2612. int i;
  2613. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2614. if (ath_rf_names[i].version == rf_version) {
  2615. return ath_rf_names[i].name;
  2616. }
  2617. }
  2618. return "????";
  2619. }
  2620. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2621. {
  2622. int used;
  2623. /* chipsets >= AR9280 are single-chip */
  2624. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2625. used = snprintf(hw_name, len,
  2626. "Atheros AR%s Rev:%x",
  2627. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2628. ah->hw_version.macRev);
  2629. }
  2630. else {
  2631. used = snprintf(hw_name, len,
  2632. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2633. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2634. ah->hw_version.macRev,
  2635. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2636. AR_RADIO_SREV_MAJOR)),
  2637. ah->hw_version.phyRev);
  2638. }
  2639. hw_name[used] = '\0';
  2640. }
  2641. EXPORT_SYMBOL(ath9k_hw_name);