ar9003_phy.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447
  1. /*
  2. * Copyright (c) 2010-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/export.h>
  17. #include "hw.h"
  18. #include "ar9003_phy.h"
  19. static const int firstep_table[] =
  20. /* level: 0 1 2 3 4 5 6 7 8 */
  21. { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
  22. static const int cycpwrThr1_table[] =
  23. /* level: 0 1 2 3 4 5 6 7 8 */
  24. { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
  25. /*
  26. * register values to turn OFDM weak signal detection OFF
  27. */
  28. static const int m1ThreshLow_off = 127;
  29. static const int m2ThreshLow_off = 127;
  30. static const int m1Thresh_off = 127;
  31. static const int m2Thresh_off = 127;
  32. static const int m2CountThr_off = 31;
  33. static const int m2CountThrLow_off = 63;
  34. static const int m1ThreshLowExt_off = 127;
  35. static const int m2ThreshLowExt_off = 127;
  36. static const int m1ThreshExt_off = 127;
  37. static const int m2ThreshExt_off = 127;
  38. /**
  39. * ar9003_hw_set_channel - set channel on single-chip device
  40. * @ah: atheros hardware structure
  41. * @chan:
  42. *
  43. * This is the function to change channel on single-chip devices, that is
  44. * for AR9300 family of chipsets.
  45. *
  46. * This function takes the channel value in MHz and sets
  47. * hardware channel value. Assumes writes have been enabled to analog bus.
  48. *
  49. * Actual Expression,
  50. *
  51. * For 2GHz channel,
  52. * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  53. * (freq_ref = 40MHz)
  54. *
  55. * For 5GHz channel,
  56. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
  57. * (freq_ref = 40MHz/(24>>amodeRefSel))
  58. *
  59. * For 5GHz channels which are 5MHz spaced,
  60. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  61. * (freq_ref = 40MHz)
  62. */
  63. static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  64. {
  65. u16 bMode, fracMode = 0, aModeRefSel = 0;
  66. u32 freq, channelSel = 0, reg32 = 0;
  67. struct chan_centers centers;
  68. int loadSynthChannel;
  69. ath9k_hw_get_channel_centers(ah, chan, &centers);
  70. freq = centers.synth_center;
  71. if (freq < 4800) { /* 2 GHz, fractional mode */
  72. if (AR_SREV_9330(ah)) {
  73. u32 chan_frac;
  74. u32 div;
  75. if (ah->is_clk_25mhz)
  76. div = 75;
  77. else
  78. div = 120;
  79. channelSel = (freq * 4) / div;
  80. chan_frac = (((freq * 4) % div) * 0x20000) / div;
  81. channelSel = (channelSel << 17) | chan_frac;
  82. } else if (AR_SREV_9485(ah)) {
  83. u32 chan_frac;
  84. /*
  85. * freq_ref = 40 / (refdiva >> amoderefsel); where refdiva=1 and amoderefsel=0
  86. * ndiv = ((chan_mhz * 4) / 3) / freq_ref;
  87. * chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000
  88. */
  89. channelSel = (freq * 4) / 120;
  90. chan_frac = (((freq * 4) % 120) * 0x20000) / 120;
  91. channelSel = (channelSel << 17) | chan_frac;
  92. } else if (AR_SREV_9340(ah)) {
  93. if (ah->is_clk_25mhz) {
  94. u32 chan_frac;
  95. channelSel = (freq * 2) / 75;
  96. chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
  97. channelSel = (channelSel << 17) | chan_frac;
  98. } else
  99. channelSel = CHANSEL_2G(freq) >> 1;
  100. } else
  101. channelSel = CHANSEL_2G(freq);
  102. /* Set to 2G mode */
  103. bMode = 1;
  104. } else {
  105. if (AR_SREV_9340(ah) && ah->is_clk_25mhz) {
  106. u32 chan_frac;
  107. channelSel = (freq * 2) / 75;
  108. chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
  109. channelSel = (channelSel << 17) | chan_frac;
  110. } else {
  111. channelSel = CHANSEL_5G(freq);
  112. /* Doubler is ON, so, divide channelSel by 2. */
  113. channelSel >>= 1;
  114. }
  115. /* Set to 5G mode */
  116. bMode = 0;
  117. }
  118. /* Enable fractional mode for all channels */
  119. fracMode = 1;
  120. aModeRefSel = 0;
  121. loadSynthChannel = 0;
  122. reg32 = (bMode << 29);
  123. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  124. /* Enable Long shift Select for Synthesizer */
  125. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
  126. AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
  127. /* Program Synth. setting */
  128. reg32 = (channelSel << 2) | (fracMode << 30) |
  129. (aModeRefSel << 28) | (loadSynthChannel << 31);
  130. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  131. /* Toggle Load Synth channel bit */
  132. loadSynthChannel = 1;
  133. reg32 = (channelSel << 2) | (fracMode << 30) |
  134. (aModeRefSel << 28) | (loadSynthChannel << 31);
  135. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  136. ah->curchan = chan;
  137. return 0;
  138. }
  139. /**
  140. * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
  141. * @ah: atheros hardware structure
  142. * @chan:
  143. *
  144. * For single-chip solutions. Converts to baseband spur frequency given the
  145. * input channel frequency and compute register settings below.
  146. *
  147. * Spur mitigation for MRC CCK
  148. */
  149. static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
  150. struct ath9k_channel *chan)
  151. {
  152. static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
  153. int cur_bb_spur, negative = 0, cck_spur_freq;
  154. int i;
  155. int range, max_spur_cnts, synth_freq;
  156. u8 *spur_fbin_ptr = NULL;
  157. /*
  158. * Need to verify range +/- 10 MHz in control channel, otherwise spur
  159. * is out-of-band and can be ignored.
  160. */
  161. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah)) {
  162. spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah,
  163. IS_CHAN_2GHZ(chan));
  164. if (spur_fbin_ptr[0] == 0) /* No spur */
  165. return;
  166. max_spur_cnts = 5;
  167. if (IS_CHAN_HT40(chan)) {
  168. range = 19;
  169. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  170. AR_PHY_GC_DYN2040_PRI_CH) == 0)
  171. synth_freq = chan->channel + 10;
  172. else
  173. synth_freq = chan->channel - 10;
  174. } else {
  175. range = 10;
  176. synth_freq = chan->channel;
  177. }
  178. } else {
  179. range = AR_SREV_9462(ah) ? 5 : 10;
  180. max_spur_cnts = 4;
  181. synth_freq = chan->channel;
  182. }
  183. for (i = 0; i < max_spur_cnts; i++) {
  184. if (AR_SREV_9462(ah) && (i == 0 || i == 3))
  185. continue;
  186. negative = 0;
  187. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
  188. cur_bb_spur = ath9k_hw_fbin2freq(spur_fbin_ptr[i],
  189. IS_CHAN_2GHZ(chan));
  190. else
  191. cur_bb_spur = spur_freq[i];
  192. cur_bb_spur -= synth_freq;
  193. if (cur_bb_spur < 0) {
  194. negative = 1;
  195. cur_bb_spur = -cur_bb_spur;
  196. }
  197. if (cur_bb_spur < range) {
  198. cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
  199. if (negative == 1)
  200. cck_spur_freq = -cck_spur_freq;
  201. cck_spur_freq = cck_spur_freq & 0xfffff;
  202. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  203. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
  204. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  205. AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
  206. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  207. AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
  208. 0x2);
  209. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  210. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
  211. 0x1);
  212. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  213. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
  214. cck_spur_freq);
  215. return;
  216. }
  217. }
  218. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  219. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
  220. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  221. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
  222. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  223. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
  224. }
  225. /* Clean all spur register fields */
  226. static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
  227. {
  228. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  229. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
  230. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  231. AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
  232. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  233. AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
  234. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  235. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
  236. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  237. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
  238. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  239. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
  240. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  241. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
  242. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  243. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
  244. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  245. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
  246. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  247. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
  248. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  249. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
  250. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  251. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
  252. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  253. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
  254. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  255. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
  256. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  257. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
  258. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  259. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
  260. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  261. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
  262. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  263. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
  264. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  265. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
  266. }
  267. static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
  268. int freq_offset,
  269. int spur_freq_sd,
  270. int spur_delta_phase,
  271. int spur_subchannel_sd)
  272. {
  273. int mask_index = 0;
  274. /* OFDM Spur mitigation */
  275. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  276. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
  277. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  278. AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
  279. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  280. AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
  281. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  282. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
  283. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  284. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
  285. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  286. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
  287. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  288. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
  289. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  290. AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
  291. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  292. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
  293. if (REG_READ_FIELD(ah, AR_PHY_MODE,
  294. AR_PHY_MODE_DYNAMIC) == 0x1)
  295. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  296. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
  297. mask_index = (freq_offset << 4) / 5;
  298. if (mask_index < 0)
  299. mask_index = mask_index - 1;
  300. mask_index = mask_index & 0x7f;
  301. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  302. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
  303. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  304. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
  305. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  306. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
  307. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  308. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
  309. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  310. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
  311. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  312. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
  313. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  314. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
  315. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  316. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
  317. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  318. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
  319. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  320. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
  321. }
  322. static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
  323. struct ath9k_channel *chan,
  324. int freq_offset)
  325. {
  326. int spur_freq_sd = 0;
  327. int spur_subchannel_sd = 0;
  328. int spur_delta_phase = 0;
  329. if (IS_CHAN_HT40(chan)) {
  330. if (freq_offset < 0) {
  331. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  332. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  333. spur_subchannel_sd = 1;
  334. else
  335. spur_subchannel_sd = 0;
  336. spur_freq_sd = ((freq_offset + 10) << 9) / 11;
  337. } else {
  338. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  339. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  340. spur_subchannel_sd = 0;
  341. else
  342. spur_subchannel_sd = 1;
  343. spur_freq_sd = ((freq_offset - 10) << 9) / 11;
  344. }
  345. spur_delta_phase = (freq_offset << 17) / 5;
  346. } else {
  347. spur_subchannel_sd = 0;
  348. spur_freq_sd = (freq_offset << 9) /11;
  349. spur_delta_phase = (freq_offset << 18) / 5;
  350. }
  351. spur_freq_sd = spur_freq_sd & 0x3ff;
  352. spur_delta_phase = spur_delta_phase & 0xfffff;
  353. ar9003_hw_spur_ofdm(ah,
  354. freq_offset,
  355. spur_freq_sd,
  356. spur_delta_phase,
  357. spur_subchannel_sd);
  358. }
  359. /* Spur mitigation for OFDM */
  360. static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
  361. struct ath9k_channel *chan)
  362. {
  363. int synth_freq;
  364. int range = 10;
  365. int freq_offset = 0;
  366. int mode;
  367. u8* spurChansPtr;
  368. unsigned int i;
  369. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  370. if (IS_CHAN_5GHZ(chan)) {
  371. spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
  372. mode = 0;
  373. }
  374. else {
  375. spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
  376. mode = 1;
  377. }
  378. if (spurChansPtr[0] == 0)
  379. return; /* No spur in the mode */
  380. if (IS_CHAN_HT40(chan)) {
  381. range = 19;
  382. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  383. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  384. synth_freq = chan->channel - 10;
  385. else
  386. synth_freq = chan->channel + 10;
  387. } else {
  388. range = 10;
  389. synth_freq = chan->channel;
  390. }
  391. ar9003_hw_spur_ofdm_clear(ah);
  392. for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) {
  393. freq_offset = ath9k_hw_fbin2freq(spurChansPtr[i], mode);
  394. freq_offset -= synth_freq;
  395. if (abs(freq_offset) < range) {
  396. ar9003_hw_spur_ofdm_work(ah, chan, freq_offset);
  397. break;
  398. }
  399. }
  400. }
  401. static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
  402. struct ath9k_channel *chan)
  403. {
  404. ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
  405. ar9003_hw_spur_mitigate_ofdm(ah, chan);
  406. }
  407. static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
  408. struct ath9k_channel *chan)
  409. {
  410. u32 pll;
  411. pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
  412. if (chan && IS_CHAN_HALF_RATE(chan))
  413. pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
  414. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  415. pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
  416. pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
  417. return pll;
  418. }
  419. static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
  420. struct ath9k_channel *chan)
  421. {
  422. u32 phymode;
  423. u32 enableDacFifo = 0;
  424. enableDacFifo =
  425. (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
  426. /* Enable 11n HT, 20 MHz */
  427. phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 |
  428. AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
  429. /* Configure baseband for dynamic 20/40 operation */
  430. if (IS_CHAN_HT40(chan)) {
  431. phymode |= AR_PHY_GC_DYN2040_EN;
  432. /* Configure control (primary) channel at +-10MHz */
  433. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  434. (chan->chanmode == CHANNEL_G_HT40PLUS))
  435. phymode |= AR_PHY_GC_DYN2040_PRI_CH;
  436. }
  437. /* make sure we preserve INI settings */
  438. phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
  439. /* turn off Green Field detection for STA for now */
  440. phymode &= ~AR_PHY_GC_GF_DETECT_EN;
  441. REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
  442. /* Configure MAC for 20/40 operation */
  443. ath9k_hw_set11nmac2040(ah);
  444. /* global transmit timeout (25 TUs default)*/
  445. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  446. /* carrier sense timeout */
  447. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  448. }
  449. static void ar9003_hw_init_bb(struct ath_hw *ah,
  450. struct ath9k_channel *chan)
  451. {
  452. u32 synthDelay;
  453. /*
  454. * Wait for the frequency synth to settle (synth goes on
  455. * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
  456. * Value is in 100ns increments.
  457. */
  458. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  459. /* Activate the PHY (includes baseband activate + synthesizer on) */
  460. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  461. ath9k_hw_synth_delay(ah, chan, synthDelay);
  462. }
  463. static void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
  464. {
  465. switch (rx) {
  466. case 0x5:
  467. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  468. AR_PHY_SWAP_ALT_CHAIN);
  469. case 0x3:
  470. case 0x1:
  471. case 0x2:
  472. case 0x7:
  473. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
  474. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
  475. break;
  476. default:
  477. break;
  478. }
  479. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
  480. REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
  481. else if (AR_SREV_9462(ah))
  482. /* xxx only when MCI support is enabled */
  483. REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
  484. else
  485. REG_WRITE(ah, AR_SELFGEN_MASK, tx);
  486. if (tx == 0x5) {
  487. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  488. AR_PHY_SWAP_ALT_CHAIN);
  489. }
  490. }
  491. /*
  492. * Override INI values with chip specific configuration.
  493. */
  494. static void ar9003_hw_override_ini(struct ath_hw *ah)
  495. {
  496. u32 val;
  497. /*
  498. * Set the RX_ABORT and RX_DIS and clear it only after
  499. * RXE is set for MAC. This prevents frames with
  500. * corrupted descriptor status.
  501. */
  502. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  503. /*
  504. * For AR9280 and above, there is a new feature that allows
  505. * Multicast search based on both MAC Address and Key ID. By default,
  506. * this feature is enabled. But since the driver is not using this
  507. * feature, we switch it off; otherwise multicast search based on
  508. * MAC addr only will fail.
  509. */
  510. val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
  511. REG_WRITE(ah, AR_PCU_MISC_MODE2,
  512. val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
  513. REG_SET_BIT(ah, AR_PHY_CCK_DETECT,
  514. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  515. }
  516. static void ar9003_hw_prog_ini(struct ath_hw *ah,
  517. struct ar5416IniArray *iniArr,
  518. int column)
  519. {
  520. unsigned int i, regWrites = 0;
  521. /* New INI format: Array may be undefined (pre, core, post arrays) */
  522. if (!iniArr->ia_array)
  523. return;
  524. /*
  525. * New INI format: Pre, core, and post arrays for a given subsystem
  526. * may be modal (> 2 columns) or non-modal (2 columns). Determine if
  527. * the array is non-modal and force the column to 1.
  528. */
  529. if (column >= iniArr->ia_columns)
  530. column = 1;
  531. for (i = 0; i < iniArr->ia_rows; i++) {
  532. u32 reg = INI_RA(iniArr, i, 0);
  533. u32 val = INI_RA(iniArr, i, column);
  534. REG_WRITE(ah, reg, val);
  535. DO_DELAY(regWrites);
  536. }
  537. }
  538. static int ar9003_hw_process_ini(struct ath_hw *ah,
  539. struct ath9k_channel *chan)
  540. {
  541. unsigned int regWrites = 0, i;
  542. u32 modesIndex;
  543. switch (chan->chanmode) {
  544. case CHANNEL_A:
  545. case CHANNEL_A_HT20:
  546. modesIndex = 1;
  547. break;
  548. case CHANNEL_A_HT40PLUS:
  549. case CHANNEL_A_HT40MINUS:
  550. modesIndex = 2;
  551. break;
  552. case CHANNEL_G:
  553. case CHANNEL_G_HT20:
  554. case CHANNEL_B:
  555. modesIndex = 4;
  556. break;
  557. case CHANNEL_G_HT40PLUS:
  558. case CHANNEL_G_HT40MINUS:
  559. modesIndex = 3;
  560. break;
  561. default:
  562. return -EINVAL;
  563. }
  564. for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
  565. ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
  566. ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
  567. ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
  568. ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
  569. if (i == ATH_INI_POST && AR_SREV_9462_20(ah))
  570. ar9003_hw_prog_ini(ah,
  571. &ah->ini_radio_post_sys2ant,
  572. modesIndex);
  573. }
  574. REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
  575. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  576. /*
  577. * For 5GHz channels requiring Fast Clock, apply
  578. * different modal values.
  579. */
  580. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  581. REG_WRITE_ARRAY(&ah->iniModesFastClock,
  582. modesIndex, regWrites);
  583. REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites);
  584. if (chan->channel == 2484)
  585. ar9003_hw_prog_ini(ah, &ah->ini_japan2484, 1);
  586. ah->modes_index = modesIndex;
  587. ar9003_hw_override_ini(ah);
  588. ar9003_hw_set_channel_regs(ah, chan);
  589. ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
  590. ath9k_hw_apply_txpower(ah, chan, false);
  591. if (AR_SREV_9462(ah)) {
  592. if (REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_0,
  593. AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL))
  594. ah->enabled_cals |= TX_IQ_CAL;
  595. else
  596. ah->enabled_cals &= ~TX_IQ_CAL;
  597. if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE)
  598. ah->enabled_cals |= TX_CL_CAL;
  599. else
  600. ah->enabled_cals &= ~TX_CL_CAL;
  601. }
  602. return 0;
  603. }
  604. static void ar9003_hw_set_rfmode(struct ath_hw *ah,
  605. struct ath9k_channel *chan)
  606. {
  607. u32 rfMode = 0;
  608. if (chan == NULL)
  609. return;
  610. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  611. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  612. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  613. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  614. if (IS_CHAN_QUARTER_RATE(chan))
  615. rfMode |= AR_PHY_MODE_QUARTER;
  616. if (IS_CHAN_HALF_RATE(chan))
  617. rfMode |= AR_PHY_MODE_HALF;
  618. if (rfMode & (AR_PHY_MODE_QUARTER | AR_PHY_MODE_HALF))
  619. REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
  620. AR_PHY_FRAME_CTL_CF_OVERLAP_WINDOW, 3);
  621. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  622. }
  623. static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
  624. {
  625. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  626. }
  627. static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
  628. struct ath9k_channel *chan)
  629. {
  630. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  631. u32 clockMhzScaled = 0x64000000;
  632. struct chan_centers centers;
  633. /*
  634. * half and quarter rate can divide the scaled clock by 2 or 4
  635. * scale for selected channel bandwidth
  636. */
  637. if (IS_CHAN_HALF_RATE(chan))
  638. clockMhzScaled = clockMhzScaled >> 1;
  639. else if (IS_CHAN_QUARTER_RATE(chan))
  640. clockMhzScaled = clockMhzScaled >> 2;
  641. /*
  642. * ALGO -> coef = 1e8/fcarrier*fclock/40;
  643. * scaled coef to provide precision for this floating calculation
  644. */
  645. ath9k_hw_get_channel_centers(ah, chan, &centers);
  646. coef_scaled = clockMhzScaled / centers.synth_center;
  647. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  648. &ds_coef_exp);
  649. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  650. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  651. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  652. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  653. /*
  654. * For Short GI,
  655. * scaled coeff is 9/10 that of normal coeff
  656. */
  657. coef_scaled = (9 * coef_scaled) / 10;
  658. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  659. &ds_coef_exp);
  660. /* for short gi */
  661. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  662. AR_PHY_SGI_DSC_MAN, ds_coef_man);
  663. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  664. AR_PHY_SGI_DSC_EXP, ds_coef_exp);
  665. }
  666. static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
  667. {
  668. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  669. return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  670. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
  671. }
  672. /*
  673. * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
  674. * Read the phy active delay register. Value is in 100ns increments.
  675. */
  676. static void ar9003_hw_rfbus_done(struct ath_hw *ah)
  677. {
  678. u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  679. ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
  680. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  681. }
  682. static bool ar9003_hw_ani_control(struct ath_hw *ah,
  683. enum ath9k_ani_cmd cmd, int param)
  684. {
  685. struct ath_common *common = ath9k_hw_common(ah);
  686. struct ath9k_channel *chan = ah->curchan;
  687. struct ar5416AniState *aniState = &chan->ani;
  688. s32 value, value2;
  689. switch (cmd & ah->ani_function) {
  690. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  691. /*
  692. * on == 1 means ofdm weak signal detection is ON
  693. * on == 1 is the default, for less noise immunity
  694. *
  695. * on == 0 means ofdm weak signal detection is OFF
  696. * on == 0 means more noise imm
  697. */
  698. u32 on = param ? 1 : 0;
  699. if (on)
  700. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  701. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  702. else
  703. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  704. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  705. if (!on != aniState->ofdmWeakSigDetectOff) {
  706. ath_dbg(common, ANI,
  707. "** ch %d: ofdm weak signal: %s=>%s\n",
  708. chan->channel,
  709. !aniState->ofdmWeakSigDetectOff ?
  710. "on" : "off",
  711. on ? "on" : "off");
  712. if (on)
  713. ah->stats.ast_ani_ofdmon++;
  714. else
  715. ah->stats.ast_ani_ofdmoff++;
  716. aniState->ofdmWeakSigDetectOff = !on;
  717. }
  718. break;
  719. }
  720. case ATH9K_ANI_FIRSTEP_LEVEL:{
  721. u32 level = param;
  722. if (level >= ARRAY_SIZE(firstep_table)) {
  723. ath_dbg(common, ANI,
  724. "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
  725. level, ARRAY_SIZE(firstep_table));
  726. return false;
  727. }
  728. /*
  729. * make register setting relative to default
  730. * from INI file & cap value
  731. */
  732. value = firstep_table[level] -
  733. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  734. aniState->iniDef.firstep;
  735. if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  736. value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  737. if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  738. value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  739. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  740. AR_PHY_FIND_SIG_FIRSTEP,
  741. value);
  742. /*
  743. * we need to set first step low register too
  744. * make register setting relative to default
  745. * from INI file & cap value
  746. */
  747. value2 = firstep_table[level] -
  748. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  749. aniState->iniDef.firstepLow;
  750. if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  751. value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  752. if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  753. value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  754. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
  755. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
  756. if (level != aniState->firstepLevel) {
  757. ath_dbg(common, ANI,
  758. "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
  759. chan->channel,
  760. aniState->firstepLevel,
  761. level,
  762. ATH9K_ANI_FIRSTEP_LVL_NEW,
  763. value,
  764. aniState->iniDef.firstep);
  765. ath_dbg(common, ANI,
  766. "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
  767. chan->channel,
  768. aniState->firstepLevel,
  769. level,
  770. ATH9K_ANI_FIRSTEP_LVL_NEW,
  771. value2,
  772. aniState->iniDef.firstepLow);
  773. if (level > aniState->firstepLevel)
  774. ah->stats.ast_ani_stepup++;
  775. else if (level < aniState->firstepLevel)
  776. ah->stats.ast_ani_stepdown++;
  777. aniState->firstepLevel = level;
  778. }
  779. break;
  780. }
  781. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  782. u32 level = param;
  783. if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
  784. ath_dbg(common, ANI,
  785. "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
  786. level, ARRAY_SIZE(cycpwrThr1_table));
  787. return false;
  788. }
  789. /*
  790. * make register setting relative to default
  791. * from INI file & cap value
  792. */
  793. value = cycpwrThr1_table[level] -
  794. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  795. aniState->iniDef.cycpwrThr1;
  796. if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  797. value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  798. if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  799. value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  800. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  801. AR_PHY_TIMING5_CYCPWR_THR1,
  802. value);
  803. /*
  804. * set AR_PHY_EXT_CCA for extension channel
  805. * make register setting relative to default
  806. * from INI file & cap value
  807. */
  808. value2 = cycpwrThr1_table[level] -
  809. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  810. aniState->iniDef.cycpwrThr1Ext;
  811. if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  812. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  813. if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  814. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  815. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  816. AR_PHY_EXT_CYCPWR_THR1, value2);
  817. if (level != aniState->spurImmunityLevel) {
  818. ath_dbg(common, ANI,
  819. "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
  820. chan->channel,
  821. aniState->spurImmunityLevel,
  822. level,
  823. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  824. value,
  825. aniState->iniDef.cycpwrThr1);
  826. ath_dbg(common, ANI,
  827. "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
  828. chan->channel,
  829. aniState->spurImmunityLevel,
  830. level,
  831. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  832. value2,
  833. aniState->iniDef.cycpwrThr1Ext);
  834. if (level > aniState->spurImmunityLevel)
  835. ah->stats.ast_ani_spurup++;
  836. else if (level < aniState->spurImmunityLevel)
  837. ah->stats.ast_ani_spurdown++;
  838. aniState->spurImmunityLevel = level;
  839. }
  840. break;
  841. }
  842. case ATH9K_ANI_MRC_CCK:{
  843. /*
  844. * is_on == 1 means MRC CCK ON (default, less noise imm)
  845. * is_on == 0 means MRC CCK is OFF (more noise imm)
  846. */
  847. bool is_on = param ? 1 : 0;
  848. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  849. AR_PHY_MRC_CCK_ENABLE, is_on);
  850. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  851. AR_PHY_MRC_CCK_MUX_REG, is_on);
  852. if (!is_on != aniState->mrcCCKOff) {
  853. ath_dbg(common, ANI, "** ch %d: MRC CCK: %s=>%s\n",
  854. chan->channel,
  855. !aniState->mrcCCKOff ? "on" : "off",
  856. is_on ? "on" : "off");
  857. if (is_on)
  858. ah->stats.ast_ani_ccklow++;
  859. else
  860. ah->stats.ast_ani_cckhigh++;
  861. aniState->mrcCCKOff = !is_on;
  862. }
  863. break;
  864. }
  865. case ATH9K_ANI_PRESENT:
  866. break;
  867. default:
  868. ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
  869. return false;
  870. }
  871. ath_dbg(common, ANI,
  872. "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
  873. aniState->spurImmunityLevel,
  874. !aniState->ofdmWeakSigDetectOff ? "on" : "off",
  875. aniState->firstepLevel,
  876. !aniState->mrcCCKOff ? "on" : "off",
  877. aniState->listenTime,
  878. aniState->ofdmPhyErrCount,
  879. aniState->cckPhyErrCount);
  880. return true;
  881. }
  882. static void ar9003_hw_do_getnf(struct ath_hw *ah,
  883. int16_t nfarray[NUM_NF_READINGS])
  884. {
  885. #define AR_PHY_CH_MINCCA_PWR 0x1FF00000
  886. #define AR_PHY_CH_MINCCA_PWR_S 20
  887. #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000
  888. #define AR_PHY_CH_EXT_MINCCA_PWR_S 16
  889. int16_t nf;
  890. int i;
  891. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  892. if (ah->rxchainmask & BIT(i)) {
  893. nf = MS(REG_READ(ah, ah->nf_regs[i]),
  894. AR_PHY_CH_MINCCA_PWR);
  895. nfarray[i] = sign_extend32(nf, 8);
  896. if (IS_CHAN_HT40(ah->curchan)) {
  897. u8 ext_idx = AR9300_MAX_CHAINS + i;
  898. nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]),
  899. AR_PHY_CH_EXT_MINCCA_PWR);
  900. nfarray[ext_idx] = sign_extend32(nf, 8);
  901. }
  902. }
  903. }
  904. }
  905. static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
  906. {
  907. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
  908. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
  909. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
  910. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
  911. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
  912. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
  913. if (AR_SREV_9330(ah))
  914. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9330_2GHZ;
  915. if (AR_SREV_9462(ah)) {
  916. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_2GHZ;
  917. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9462_2GHZ;
  918. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_5GHZ;
  919. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9462_5GHZ;
  920. }
  921. }
  922. /*
  923. * Initialize the ANI register values with default (ini) values.
  924. * This routine is called during a (full) hardware reset after
  925. * all the registers are initialised from the INI.
  926. */
  927. static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
  928. {
  929. struct ar5416AniState *aniState;
  930. struct ath_common *common = ath9k_hw_common(ah);
  931. struct ath9k_channel *chan = ah->curchan;
  932. struct ath9k_ani_default *iniDef;
  933. u32 val;
  934. aniState = &ah->curchan->ani;
  935. iniDef = &aniState->iniDef;
  936. ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz/0x%x\n",
  937. ah->hw_version.macVersion,
  938. ah->hw_version.macRev,
  939. ah->opmode,
  940. chan->channel,
  941. chan->channelFlags);
  942. val = REG_READ(ah, AR_PHY_SFCORR);
  943. iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
  944. iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
  945. iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
  946. val = REG_READ(ah, AR_PHY_SFCORR_LOW);
  947. iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
  948. iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
  949. iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
  950. val = REG_READ(ah, AR_PHY_SFCORR_EXT);
  951. iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
  952. iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
  953. iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
  954. iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
  955. iniDef->firstep = REG_READ_FIELD(ah,
  956. AR_PHY_FIND_SIG,
  957. AR_PHY_FIND_SIG_FIRSTEP);
  958. iniDef->firstepLow = REG_READ_FIELD(ah,
  959. AR_PHY_FIND_SIG_LOW,
  960. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
  961. iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
  962. AR_PHY_TIMING5,
  963. AR_PHY_TIMING5_CYCPWR_THR1);
  964. iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
  965. AR_PHY_EXT_CCA,
  966. AR_PHY_EXT_CYCPWR_THR1);
  967. /* these levels just got reset to defaults by the INI */
  968. aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
  969. aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
  970. aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG;
  971. aniState->mrcCCKOff = !ATH9K_ANI_ENABLE_MRC_CCK;
  972. }
  973. static void ar9003_hw_set_radar_params(struct ath_hw *ah,
  974. struct ath_hw_radar_conf *conf)
  975. {
  976. u32 radar_0 = 0, radar_1 = 0;
  977. if (!conf) {
  978. REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
  979. return;
  980. }
  981. radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
  982. radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
  983. radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
  984. radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
  985. radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
  986. radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
  987. radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
  988. radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
  989. radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
  990. radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
  991. radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
  992. REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
  993. REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
  994. if (conf->ext_channel)
  995. REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  996. else
  997. REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  998. }
  999. static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
  1000. {
  1001. struct ath_hw_radar_conf *conf = &ah->radar_conf;
  1002. conf->fir_power = -28;
  1003. conf->radar_rssi = 0;
  1004. conf->pulse_height = 10;
  1005. conf->pulse_rssi = 24;
  1006. conf->pulse_inband = 8;
  1007. conf->pulse_maxlen = 255;
  1008. conf->pulse_inband_step = 12;
  1009. conf->radar_inband = 8;
  1010. }
  1011. static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah,
  1012. struct ath_hw_antcomb_conf *antconf)
  1013. {
  1014. u32 regval;
  1015. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1016. antconf->main_lna_conf = (regval & AR_PHY_9485_ANT_DIV_MAIN_LNACONF) >>
  1017. AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S;
  1018. antconf->alt_lna_conf = (regval & AR_PHY_9485_ANT_DIV_ALT_LNACONF) >>
  1019. AR_PHY_9485_ANT_DIV_ALT_LNACONF_S;
  1020. antconf->fast_div_bias = (regval & AR_PHY_9485_ANT_FAST_DIV_BIAS) >>
  1021. AR_PHY_9485_ANT_FAST_DIV_BIAS_S;
  1022. if (AR_SREV_9330_11(ah)) {
  1023. antconf->lna1_lna2_delta = -9;
  1024. antconf->div_group = 1;
  1025. } else if (AR_SREV_9485(ah)) {
  1026. antconf->lna1_lna2_delta = -9;
  1027. antconf->div_group = 2;
  1028. } else {
  1029. antconf->lna1_lna2_delta = -3;
  1030. antconf->div_group = 0;
  1031. }
  1032. }
  1033. static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah,
  1034. struct ath_hw_antcomb_conf *antconf)
  1035. {
  1036. u32 regval;
  1037. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1038. regval &= ~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
  1039. AR_PHY_9485_ANT_DIV_ALT_LNACONF |
  1040. AR_PHY_9485_ANT_FAST_DIV_BIAS |
  1041. AR_PHY_9485_ANT_DIV_MAIN_GAINTB |
  1042. AR_PHY_9485_ANT_DIV_ALT_GAINTB);
  1043. regval |= ((antconf->main_lna_conf <<
  1044. AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S)
  1045. & AR_PHY_9485_ANT_DIV_MAIN_LNACONF);
  1046. regval |= ((antconf->alt_lna_conf << AR_PHY_9485_ANT_DIV_ALT_LNACONF_S)
  1047. & AR_PHY_9485_ANT_DIV_ALT_LNACONF);
  1048. regval |= ((antconf->fast_div_bias << AR_PHY_9485_ANT_FAST_DIV_BIAS_S)
  1049. & AR_PHY_9485_ANT_FAST_DIV_BIAS);
  1050. regval |= ((antconf->main_gaintb << AR_PHY_9485_ANT_DIV_MAIN_GAINTB_S)
  1051. & AR_PHY_9485_ANT_DIV_MAIN_GAINTB);
  1052. regval |= ((antconf->alt_gaintb << AR_PHY_9485_ANT_DIV_ALT_GAINTB_S)
  1053. & AR_PHY_9485_ANT_DIV_ALT_GAINTB);
  1054. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1055. }
  1056. static int ar9003_hw_fast_chan_change(struct ath_hw *ah,
  1057. struct ath9k_channel *chan,
  1058. u8 *ini_reloaded)
  1059. {
  1060. unsigned int regWrites = 0;
  1061. u32 modesIndex;
  1062. switch (chan->chanmode) {
  1063. case CHANNEL_A:
  1064. case CHANNEL_A_HT20:
  1065. modesIndex = 1;
  1066. break;
  1067. case CHANNEL_A_HT40PLUS:
  1068. case CHANNEL_A_HT40MINUS:
  1069. modesIndex = 2;
  1070. break;
  1071. case CHANNEL_G:
  1072. case CHANNEL_G_HT20:
  1073. case CHANNEL_B:
  1074. modesIndex = 4;
  1075. break;
  1076. case CHANNEL_G_HT40PLUS:
  1077. case CHANNEL_G_HT40MINUS:
  1078. modesIndex = 3;
  1079. break;
  1080. default:
  1081. return -EINVAL;
  1082. }
  1083. if (modesIndex == ah->modes_index) {
  1084. *ini_reloaded = false;
  1085. goto set_rfmode;
  1086. }
  1087. ar9003_hw_prog_ini(ah, &ah->iniSOC[ATH_INI_POST], modesIndex);
  1088. ar9003_hw_prog_ini(ah, &ah->iniMac[ATH_INI_POST], modesIndex);
  1089. ar9003_hw_prog_ini(ah, &ah->iniBB[ATH_INI_POST], modesIndex);
  1090. ar9003_hw_prog_ini(ah, &ah->iniRadio[ATH_INI_POST], modesIndex);
  1091. if (AR_SREV_9462_20(ah))
  1092. ar9003_hw_prog_ini(ah,
  1093. &ah->ini_radio_post_sys2ant,
  1094. modesIndex);
  1095. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  1096. /*
  1097. * For 5GHz channels requiring Fast Clock, apply
  1098. * different modal values.
  1099. */
  1100. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  1101. REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, regWrites);
  1102. REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites);
  1103. ah->modes_index = modesIndex;
  1104. *ini_reloaded = true;
  1105. set_rfmode:
  1106. ar9003_hw_set_rfmode(ah, chan);
  1107. return 0;
  1108. }
  1109. void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
  1110. {
  1111. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  1112. struct ath_hw_ops *ops = ath9k_hw_ops(ah);
  1113. static const u32 ar9300_cca_regs[6] = {
  1114. AR_PHY_CCA_0,
  1115. AR_PHY_CCA_1,
  1116. AR_PHY_CCA_2,
  1117. AR_PHY_EXT_CCA,
  1118. AR_PHY_EXT_CCA_1,
  1119. AR_PHY_EXT_CCA_2,
  1120. };
  1121. priv_ops->rf_set_freq = ar9003_hw_set_channel;
  1122. priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
  1123. priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
  1124. priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
  1125. priv_ops->init_bb = ar9003_hw_init_bb;
  1126. priv_ops->process_ini = ar9003_hw_process_ini;
  1127. priv_ops->set_rfmode = ar9003_hw_set_rfmode;
  1128. priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
  1129. priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
  1130. priv_ops->rfbus_req = ar9003_hw_rfbus_req;
  1131. priv_ops->rfbus_done = ar9003_hw_rfbus_done;
  1132. priv_ops->ani_control = ar9003_hw_ani_control;
  1133. priv_ops->do_getnf = ar9003_hw_do_getnf;
  1134. priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
  1135. priv_ops->set_radar_params = ar9003_hw_set_radar_params;
  1136. priv_ops->fast_chan_change = ar9003_hw_fast_chan_change;
  1137. ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get;
  1138. ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set;
  1139. ar9003_hw_set_nf_limits(ah);
  1140. ar9003_hw_set_radar_conf(ah);
  1141. memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
  1142. }
  1143. void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
  1144. {
  1145. struct ath_common *common = ath9k_hw_common(ah);
  1146. u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
  1147. u32 val, idle_count;
  1148. if (!idle_tmo_ms) {
  1149. /* disable IRQ, disable chip-reset for BB panic */
  1150. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1151. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
  1152. ~(AR_PHY_WATCHDOG_RST_ENABLE |
  1153. AR_PHY_WATCHDOG_IRQ_ENABLE));
  1154. /* disable watchdog in non-IDLE mode, disable in IDLE mode */
  1155. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1156. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
  1157. ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1158. AR_PHY_WATCHDOG_IDLE_ENABLE));
  1159. ath_dbg(common, RESET, "Disabled BB Watchdog\n");
  1160. return;
  1161. }
  1162. /* enable IRQ, disable chip-reset for BB watchdog */
  1163. val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
  1164. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1165. (val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
  1166. ~AR_PHY_WATCHDOG_RST_ENABLE);
  1167. /* bound limit to 10 secs */
  1168. if (idle_tmo_ms > 10000)
  1169. idle_tmo_ms = 10000;
  1170. /*
  1171. * The time unit for watchdog event is 2^15 44/88MHz cycles.
  1172. *
  1173. * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
  1174. * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
  1175. *
  1176. * Given we use fast clock now in 5 GHz, these time units should
  1177. * be common for both 2 GHz and 5 GHz.
  1178. */
  1179. idle_count = (100 * idle_tmo_ms) / 74;
  1180. if (ah->curchan && IS_CHAN_HT40(ah->curchan))
  1181. idle_count = (100 * idle_tmo_ms) / 37;
  1182. /*
  1183. * enable watchdog in non-IDLE mode, disable in IDLE mode,
  1184. * set idle time-out.
  1185. */
  1186. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1187. AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1188. AR_PHY_WATCHDOG_IDLE_MASK |
  1189. (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
  1190. ath_dbg(common, RESET, "Enabled BB Watchdog timeout (%u ms)\n",
  1191. idle_tmo_ms);
  1192. }
  1193. void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
  1194. {
  1195. /*
  1196. * we want to avoid printing in ISR context so we save the
  1197. * watchdog status to be printed later in bottom half context.
  1198. */
  1199. ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
  1200. /*
  1201. * the watchdog timer should reset on status read but to be sure
  1202. * sure we write 0 to the watchdog status bit.
  1203. */
  1204. REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
  1205. ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
  1206. }
  1207. void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
  1208. {
  1209. struct ath_common *common = ath9k_hw_common(ah);
  1210. u32 status;
  1211. if (likely(!(common->debug_mask & ATH_DBG_RESET)))
  1212. return;
  1213. status = ah->bb_watchdog_last_status;
  1214. ath_dbg(common, RESET,
  1215. "\n==== BB update: BB status=0x%08x ====\n", status);
  1216. ath_dbg(common, RESET,
  1217. "** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
  1218. MS(status, AR_PHY_WATCHDOG_INFO),
  1219. MS(status, AR_PHY_WATCHDOG_DET_HANG),
  1220. MS(status, AR_PHY_WATCHDOG_RADAR_SM),
  1221. MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
  1222. MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
  1223. MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
  1224. MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
  1225. MS(status, AR_PHY_WATCHDOG_AGC_SM),
  1226. MS(status, AR_PHY_WATCHDOG_SRCH_SM));
  1227. ath_dbg(common, RESET, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
  1228. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
  1229. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
  1230. ath_dbg(common, RESET, "** BB mode: BB_gen_controls=0x%08x **\n",
  1231. REG_READ(ah, AR_PHY_GEN_CTRL));
  1232. #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles)
  1233. if (common->cc_survey.cycles)
  1234. ath_dbg(common, RESET,
  1235. "** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n",
  1236. PCT(rx_busy), PCT(rx_frame), PCT(tx_frame));
  1237. ath_dbg(common, RESET, "==== BB update: done ====\n\n");
  1238. }
  1239. EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);
  1240. void ar9003_hw_disable_phy_restart(struct ath_hw *ah)
  1241. {
  1242. u32 val;
  1243. /* While receiving unsupported rate frame rx state machine
  1244. * gets into a state 0xb and if phy_restart happens in that
  1245. * state, BB would go hang. If RXSM is in 0xb state after
  1246. * first bb panic, ensure to disable the phy_restart.
  1247. */
  1248. if (!((MS(ah->bb_watchdog_last_status,
  1249. AR_PHY_WATCHDOG_RX_OFDM_SM) == 0xb) ||
  1250. ah->bb_hang_rx_ofdm))
  1251. return;
  1252. ah->bb_hang_rx_ofdm = true;
  1253. val = REG_READ(ah, AR_PHY_RESTART);
  1254. val &= ~AR_PHY_RESTART_ENA;
  1255. REG_WRITE(ah, AR_PHY_RESTART, val);
  1256. }
  1257. EXPORT_SYMBOL(ar9003_hw_disable_phy_restart);