siena.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2010 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/random.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "spi.h"
  21. #include "regs.h"
  22. #include "io.h"
  23. #include "phy.h"
  24. #include "workarounds.h"
  25. #include "mcdi.h"
  26. #include "mcdi_pcol.h"
  27. /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
  28. static void siena_init_wol(struct efx_nic *efx);
  29. static void siena_push_irq_moderation(struct efx_channel *channel)
  30. {
  31. efx_dword_t timer_cmd;
  32. if (channel->irq_moderation)
  33. EFX_POPULATE_DWORD_2(timer_cmd,
  34. FRF_CZ_TC_TIMER_MODE,
  35. FFE_CZ_TIMER_MODE_INT_HLDOFF,
  36. FRF_CZ_TC_TIMER_VAL,
  37. channel->irq_moderation - 1);
  38. else
  39. EFX_POPULATE_DWORD_2(timer_cmd,
  40. FRF_CZ_TC_TIMER_MODE,
  41. FFE_CZ_TIMER_MODE_DIS,
  42. FRF_CZ_TC_TIMER_VAL, 0);
  43. efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  44. channel->channel);
  45. }
  46. static int siena_mdio_write(struct net_device *net_dev,
  47. int prtad, int devad, u16 addr, u16 value)
  48. {
  49. struct efx_nic *efx = netdev_priv(net_dev);
  50. uint32_t status;
  51. int rc;
  52. rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad,
  53. addr, value, &status);
  54. if (rc)
  55. return rc;
  56. if (status != MC_CMD_MDIO_STATUS_GOOD)
  57. return -EIO;
  58. return 0;
  59. }
  60. static int siena_mdio_read(struct net_device *net_dev,
  61. int prtad, int devad, u16 addr)
  62. {
  63. struct efx_nic *efx = netdev_priv(net_dev);
  64. uint16_t value;
  65. uint32_t status;
  66. int rc;
  67. rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad,
  68. addr, &value, &status);
  69. if (rc)
  70. return rc;
  71. if (status != MC_CMD_MDIO_STATUS_GOOD)
  72. return -EIO;
  73. return (int)value;
  74. }
  75. /* This call is responsible for hooking in the MAC and PHY operations */
  76. static int siena_probe_port(struct efx_nic *efx)
  77. {
  78. int rc;
  79. /* Hook in PHY operations table */
  80. efx->phy_op = &efx_mcdi_phy_ops;
  81. /* Set up MDIO structure for PHY */
  82. efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
  83. efx->mdio.mdio_read = siena_mdio_read;
  84. efx->mdio.mdio_write = siena_mdio_write;
  85. /* Fill out MDIO structure, loopback modes, and initial link state */
  86. rc = efx->phy_op->probe(efx);
  87. if (rc != 0)
  88. return rc;
  89. /* Allocate buffer for stats */
  90. rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
  91. MC_CMD_MAC_NSTATS * sizeof(u64));
  92. if (rc)
  93. return rc;
  94. netif_dbg(efx, probe, efx->net_dev,
  95. "stats buffer at %llx (virt %p phys %llx)\n",
  96. (u64)efx->stats_buffer.dma_addr,
  97. efx->stats_buffer.addr,
  98. (u64)virt_to_phys(efx->stats_buffer.addr));
  99. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1);
  100. return 0;
  101. }
  102. static void siena_remove_port(struct efx_nic *efx)
  103. {
  104. efx->phy_op->remove(efx);
  105. efx_nic_free_buffer(efx, &efx->stats_buffer);
  106. }
  107. static const struct efx_nic_register_test siena_register_tests[] = {
  108. { FR_AZ_ADR_REGION,
  109. EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
  110. { FR_CZ_USR_EV_CFG,
  111. EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
  112. { FR_AZ_RX_CFG,
  113. EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
  114. { FR_AZ_TX_CFG,
  115. EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
  116. { FR_AZ_TX_RESERVED,
  117. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  118. { FR_AZ_SRM_TX_DC_CFG,
  119. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  120. { FR_AZ_RX_DC_CFG,
  121. EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
  122. { FR_AZ_RX_DC_PF_WM,
  123. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  124. { FR_BZ_DP_CTRL,
  125. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  126. { FR_BZ_RX_RSS_TKEY,
  127. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  128. { FR_CZ_RX_RSS_IPV6_REG1,
  129. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  130. { FR_CZ_RX_RSS_IPV6_REG2,
  131. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  132. { FR_CZ_RX_RSS_IPV6_REG3,
  133. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
  134. };
  135. static int siena_test_registers(struct efx_nic *efx)
  136. {
  137. return efx_nic_test_registers(efx, siena_register_tests,
  138. ARRAY_SIZE(siena_register_tests));
  139. }
  140. /**************************************************************************
  141. *
  142. * Device reset
  143. *
  144. **************************************************************************
  145. */
  146. static enum reset_type siena_map_reset_reason(enum reset_type reason)
  147. {
  148. return RESET_TYPE_ALL;
  149. }
  150. static int siena_map_reset_flags(u32 *flags)
  151. {
  152. enum {
  153. SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
  154. ETH_RESET_OFFLOAD | ETH_RESET_MAC |
  155. ETH_RESET_PHY),
  156. SIENA_RESET_MC = (SIENA_RESET_PORT |
  157. ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
  158. };
  159. if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
  160. *flags &= ~SIENA_RESET_MC;
  161. return RESET_TYPE_WORLD;
  162. }
  163. if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
  164. *flags &= ~SIENA_RESET_PORT;
  165. return RESET_TYPE_ALL;
  166. }
  167. /* no invisible reset implemented */
  168. return -EINVAL;
  169. }
  170. static int siena_reset_hw(struct efx_nic *efx, enum reset_type method)
  171. {
  172. int rc;
  173. /* Recover from a failed assertion pre-reset */
  174. rc = efx_mcdi_handle_assertion(efx);
  175. if (rc)
  176. return rc;
  177. if (method == RESET_TYPE_WORLD)
  178. return efx_mcdi_reset_mc(efx);
  179. else
  180. return efx_mcdi_reset_port(efx);
  181. }
  182. static int siena_probe_nvconfig(struct efx_nic *efx)
  183. {
  184. u32 caps = 0;
  185. int rc;
  186. rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);
  187. efx->timer_quantum_ns =
  188. (caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
  189. 3072 : 6144; /* 768 cycles */
  190. return rc;
  191. }
  192. static void siena_dimension_resources(struct efx_nic *efx)
  193. {
  194. /* Each port has a small block of internal SRAM dedicated to
  195. * the buffer table and descriptor caches. In theory we can
  196. * map both blocks to one port, but we don't.
  197. */
  198. efx_nic_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
  199. }
  200. static int siena_probe_nic(struct efx_nic *efx)
  201. {
  202. struct siena_nic_data *nic_data;
  203. bool already_attached = false;
  204. efx_oword_t reg;
  205. int rc;
  206. /* Allocate storage for hardware specific data */
  207. nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
  208. if (!nic_data)
  209. return -ENOMEM;
  210. efx->nic_data = nic_data;
  211. if (efx_nic_fpga_ver(efx) != 0) {
  212. netif_err(efx, probe, efx->net_dev,
  213. "Siena FPGA not supported\n");
  214. rc = -ENODEV;
  215. goto fail1;
  216. }
  217. efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
  218. efx->net_dev->dev_id = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
  219. efx_mcdi_init(efx);
  220. /* Recover from a failed assertion before probing */
  221. rc = efx_mcdi_handle_assertion(efx);
  222. if (rc)
  223. goto fail1;
  224. /* Let the BMC know that the driver is now in charge of link and
  225. * filter settings. We must do this before we reset the NIC */
  226. rc = efx_mcdi_drv_attach(efx, true, &already_attached);
  227. if (rc) {
  228. netif_err(efx, probe, efx->net_dev,
  229. "Unable to register driver with MCPU\n");
  230. goto fail2;
  231. }
  232. if (already_attached)
  233. /* Not a fatal error */
  234. netif_err(efx, probe, efx->net_dev,
  235. "Host already registered with MCPU\n");
  236. /* Now we can reset the NIC */
  237. rc = siena_reset_hw(efx, RESET_TYPE_ALL);
  238. if (rc) {
  239. netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
  240. goto fail3;
  241. }
  242. siena_init_wol(efx);
  243. /* Allocate memory for INT_KER */
  244. rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
  245. if (rc)
  246. goto fail4;
  247. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  248. netif_dbg(efx, probe, efx->net_dev,
  249. "INT_KER at %llx (virt %p phys %llx)\n",
  250. (unsigned long long)efx->irq_status.dma_addr,
  251. efx->irq_status.addr,
  252. (unsigned long long)virt_to_phys(efx->irq_status.addr));
  253. /* Read in the non-volatile configuration */
  254. rc = siena_probe_nvconfig(efx);
  255. if (rc == -EINVAL) {
  256. netif_err(efx, probe, efx->net_dev,
  257. "NVRAM is invalid therefore using defaults\n");
  258. efx->phy_type = PHY_TYPE_NONE;
  259. efx->mdio.prtad = MDIO_PRTAD_NONE;
  260. } else if (rc) {
  261. goto fail5;
  262. }
  263. rc = efx_mcdi_mon_probe(efx);
  264. if (rc)
  265. goto fail5;
  266. efx_sriov_probe(efx);
  267. return 0;
  268. fail5:
  269. efx_nic_free_buffer(efx, &efx->irq_status);
  270. fail4:
  271. fail3:
  272. efx_mcdi_drv_attach(efx, false, NULL);
  273. fail2:
  274. fail1:
  275. kfree(efx->nic_data);
  276. return rc;
  277. }
  278. /* This call performs hardware-specific global initialisation, such as
  279. * defining the descriptor cache sizes and number of RSS channels.
  280. * It does not set up any buffers, descriptor rings or event queues.
  281. */
  282. static int siena_init_nic(struct efx_nic *efx)
  283. {
  284. efx_oword_t temp;
  285. int rc;
  286. /* Recover from a failed assertion post-reset */
  287. rc = efx_mcdi_handle_assertion(efx);
  288. if (rc)
  289. return rc;
  290. /* Squash TX of packets of 16 bytes or less */
  291. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  292. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  293. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  294. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  295. * descriptors (which is bad).
  296. */
  297. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  298. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  299. EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
  300. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  301. efx_reado(efx, &temp, FR_AZ_RX_CFG);
  302. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
  303. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
  304. /* Enable hash insertion. This is broken for the 'Falcon' hash
  305. * if IPv6 hashing is also enabled, so also select Toeplitz
  306. * TCP/IPv4 and IPv4 hashes. */
  307. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
  308. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
  309. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
  310. efx_writeo(efx, &temp, FR_AZ_RX_CFG);
  311. /* Set hash key for IPv4 */
  312. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  313. efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
  314. /* Enable IPv6 RSS */
  315. BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
  316. 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
  317. FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
  318. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  319. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
  320. memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
  321. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
  322. EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
  323. FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
  324. memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
  325. FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
  326. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
  327. /* Enable event logging */
  328. rc = efx_mcdi_log_ctrl(efx, true, false, 0);
  329. if (rc)
  330. return rc;
  331. /* Set destination of both TX and RX Flush events */
  332. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  333. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  334. EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
  335. efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
  336. efx_nic_init_common(efx);
  337. return 0;
  338. }
  339. static void siena_remove_nic(struct efx_nic *efx)
  340. {
  341. efx_mcdi_mon_remove(efx);
  342. efx_nic_free_buffer(efx, &efx->irq_status);
  343. siena_reset_hw(efx, RESET_TYPE_ALL);
  344. /* Relinquish the device back to the BMC */
  345. efx_mcdi_drv_attach(efx, false, NULL);
  346. /* Tear down the private nic state */
  347. kfree(efx->nic_data);
  348. efx->nic_data = NULL;
  349. }
  350. #define STATS_GENERATION_INVALID ((__force __le64)(-1))
  351. static int siena_try_update_nic_stats(struct efx_nic *efx)
  352. {
  353. __le64 *dma_stats;
  354. struct efx_mac_stats *mac_stats;
  355. __le64 generation_start, generation_end;
  356. mac_stats = &efx->mac_stats;
  357. dma_stats = efx->stats_buffer.addr;
  358. generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
  359. if (generation_end == STATS_GENERATION_INVALID)
  360. return 0;
  361. rmb();
  362. #define MAC_STAT(M, D) \
  363. mac_stats->M = le64_to_cpu(dma_stats[MC_CMD_MAC_ ## D])
  364. MAC_STAT(tx_bytes, TX_BYTES);
  365. MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
  366. mac_stats->tx_good_bytes = (mac_stats->tx_bytes -
  367. mac_stats->tx_bad_bytes);
  368. MAC_STAT(tx_packets, TX_PKTS);
  369. MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
  370. MAC_STAT(tx_pause, TX_PAUSE_PKTS);
  371. MAC_STAT(tx_control, TX_CONTROL_PKTS);
  372. MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
  373. MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
  374. MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
  375. MAC_STAT(tx_lt64, TX_LT64_PKTS);
  376. MAC_STAT(tx_64, TX_64_PKTS);
  377. MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
  378. MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
  379. MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
  380. MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
  381. MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
  382. MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
  383. MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
  384. mac_stats->tx_collision = 0;
  385. MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
  386. MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
  387. MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
  388. MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
  389. MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
  390. mac_stats->tx_collision = (mac_stats->tx_single_collision +
  391. mac_stats->tx_multiple_collision +
  392. mac_stats->tx_excessive_collision +
  393. mac_stats->tx_late_collision);
  394. MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
  395. MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
  396. MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
  397. MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
  398. MAC_STAT(rx_bytes, RX_BYTES);
  399. MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
  400. mac_stats->rx_good_bytes = (mac_stats->rx_bytes -
  401. mac_stats->rx_bad_bytes);
  402. MAC_STAT(rx_packets, RX_PKTS);
  403. MAC_STAT(rx_good, RX_GOOD_PKTS);
  404. MAC_STAT(rx_bad, RX_BAD_FCS_PKTS);
  405. MAC_STAT(rx_pause, RX_PAUSE_PKTS);
  406. MAC_STAT(rx_control, RX_CONTROL_PKTS);
  407. MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
  408. MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
  409. MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
  410. MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
  411. MAC_STAT(rx_64, RX_64_PKTS);
  412. MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
  413. MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
  414. MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
  415. MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
  416. MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
  417. MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
  418. MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
  419. mac_stats->rx_bad_lt64 = 0;
  420. mac_stats->rx_bad_64_to_15xx = 0;
  421. mac_stats->rx_bad_15xx_to_jumbo = 0;
  422. MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
  423. MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
  424. mac_stats->rx_missed = 0;
  425. MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
  426. MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
  427. MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
  428. MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
  429. MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
  430. mac_stats->rx_good_lt64 = 0;
  431. efx->n_rx_nodesc_drop_cnt =
  432. le64_to_cpu(dma_stats[MC_CMD_MAC_RX_NODESC_DROPS]);
  433. #undef MAC_STAT
  434. rmb();
  435. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  436. if (generation_end != generation_start)
  437. return -EAGAIN;
  438. return 0;
  439. }
  440. static void siena_update_nic_stats(struct efx_nic *efx)
  441. {
  442. int retry;
  443. /* If we're unlucky enough to read statistics wduring the DMA, wait
  444. * up to 10ms for it to finish (typically takes <500us) */
  445. for (retry = 0; retry < 100; ++retry) {
  446. if (siena_try_update_nic_stats(efx) == 0)
  447. return;
  448. udelay(100);
  449. }
  450. /* Use the old values instead */
  451. }
  452. static void siena_start_nic_stats(struct efx_nic *efx)
  453. {
  454. __le64 *dma_stats = efx->stats_buffer.addr;
  455. dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID;
  456. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr,
  457. MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0);
  458. }
  459. static void siena_stop_nic_stats(struct efx_nic *efx)
  460. {
  461. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0);
  462. }
  463. /**************************************************************************
  464. *
  465. * Wake on LAN
  466. *
  467. **************************************************************************
  468. */
  469. static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  470. {
  471. struct siena_nic_data *nic_data = efx->nic_data;
  472. wol->supported = WAKE_MAGIC;
  473. if (nic_data->wol_filter_id != -1)
  474. wol->wolopts = WAKE_MAGIC;
  475. else
  476. wol->wolopts = 0;
  477. memset(&wol->sopass, 0, sizeof(wol->sopass));
  478. }
  479. static int siena_set_wol(struct efx_nic *efx, u32 type)
  480. {
  481. struct siena_nic_data *nic_data = efx->nic_data;
  482. int rc;
  483. if (type & ~WAKE_MAGIC)
  484. return -EINVAL;
  485. if (type & WAKE_MAGIC) {
  486. if (nic_data->wol_filter_id != -1)
  487. efx_mcdi_wol_filter_remove(efx,
  488. nic_data->wol_filter_id);
  489. rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
  490. &nic_data->wol_filter_id);
  491. if (rc)
  492. goto fail;
  493. pci_wake_from_d3(efx->pci_dev, true);
  494. } else {
  495. rc = efx_mcdi_wol_filter_reset(efx);
  496. nic_data->wol_filter_id = -1;
  497. pci_wake_from_d3(efx->pci_dev, false);
  498. if (rc)
  499. goto fail;
  500. }
  501. return 0;
  502. fail:
  503. netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
  504. __func__, type, rc);
  505. return rc;
  506. }
  507. static void siena_init_wol(struct efx_nic *efx)
  508. {
  509. struct siena_nic_data *nic_data = efx->nic_data;
  510. int rc;
  511. rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
  512. if (rc != 0) {
  513. /* If it failed, attempt to get into a synchronised
  514. * state with MC by resetting any set WoL filters */
  515. efx_mcdi_wol_filter_reset(efx);
  516. nic_data->wol_filter_id = -1;
  517. } else if (nic_data->wol_filter_id != -1) {
  518. pci_wake_from_d3(efx->pci_dev, true);
  519. }
  520. }
  521. /**************************************************************************
  522. *
  523. * Revision-dependent attributes used by efx.c and nic.c
  524. *
  525. **************************************************************************
  526. */
  527. const struct efx_nic_type siena_a0_nic_type = {
  528. .probe = siena_probe_nic,
  529. .remove = siena_remove_nic,
  530. .init = siena_init_nic,
  531. .dimension_resources = siena_dimension_resources,
  532. .fini = efx_port_dummy_op_void,
  533. .monitor = NULL,
  534. .map_reset_reason = siena_map_reset_reason,
  535. .map_reset_flags = siena_map_reset_flags,
  536. .reset = siena_reset_hw,
  537. .probe_port = siena_probe_port,
  538. .remove_port = siena_remove_port,
  539. .prepare_flush = efx_port_dummy_op_void,
  540. .update_stats = siena_update_nic_stats,
  541. .start_stats = siena_start_nic_stats,
  542. .stop_stats = siena_stop_nic_stats,
  543. .set_id_led = efx_mcdi_set_id_led,
  544. .push_irq_moderation = siena_push_irq_moderation,
  545. .reconfigure_mac = efx_mcdi_mac_reconfigure,
  546. .check_mac_fault = efx_mcdi_mac_check_fault,
  547. .reconfigure_port = efx_mcdi_phy_reconfigure,
  548. .get_wol = siena_get_wol,
  549. .set_wol = siena_set_wol,
  550. .resume_wol = siena_init_wol,
  551. .test_registers = siena_test_registers,
  552. .test_nvram = efx_mcdi_nvram_test_all,
  553. .revision = EFX_REV_SIENA_A0,
  554. .mem_map_size = (FR_CZ_MC_TREG_SMEM +
  555. FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS),
  556. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  557. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  558. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  559. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  560. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  561. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  562. .rx_buffer_hash_size = 0x10,
  563. .rx_buffer_padding = 0,
  564. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  565. .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
  566. * interrupt handler only supports 32
  567. * channels */
  568. .timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
  569. .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  570. NETIF_F_RXHASH | NETIF_F_NTUPLE),
  571. };