ieee80211_sta.c 117 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/rtnetlink.h>
  27. #include <net/iw_handler.h>
  28. #include <asm/types.h>
  29. #include <net/mac80211.h>
  30. #include "ieee80211_i.h"
  31. #include "ieee80211_rate.h"
  32. #include "ieee80211_led.h"
  33. #include "mesh.h"
  34. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  35. #define IEEE80211_AUTH_MAX_TRIES 3
  36. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  37. #define IEEE80211_ASSOC_MAX_TRIES 3
  38. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  39. #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
  40. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  41. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  42. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  43. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  44. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  45. #define IEEE80211_PROBE_DELAY (HZ / 33)
  46. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  47. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  48. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  49. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  50. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  51. #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
  52. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  53. #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
  54. #define ERP_INFO_USE_PROTECTION BIT(1)
  55. /* mgmt header + 1 byte action code */
  56. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  57. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  58. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  59. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  60. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  61. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  62. /* next values represent the buffer size for A-MPDU frame.
  63. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  64. #define IEEE80211_MIN_AMPDU_BUF 0x8
  65. #define IEEE80211_MAX_AMPDU_BUF 0x40
  66. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  67. u8 *ssid, size_t ssid_len);
  68. static struct ieee80211_sta_bss *
  69. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  70. u8 *ssid, u8 ssid_len);
  71. static void ieee80211_rx_bss_put(struct net_device *dev,
  72. struct ieee80211_sta_bss *bss);
  73. static int ieee80211_sta_find_ibss(struct net_device *dev,
  74. struct ieee80211_if_sta *ifsta);
  75. static int ieee80211_sta_wep_configured(struct net_device *dev);
  76. static int ieee80211_sta_start_scan(struct net_device *dev,
  77. u8 *ssid, size_t ssid_len);
  78. static int ieee80211_sta_config_auth(struct net_device *dev,
  79. struct ieee80211_if_sta *ifsta);
  80. void ieee802_11_parse_elems(u8 *start, size_t len,
  81. struct ieee802_11_elems *elems)
  82. {
  83. size_t left = len;
  84. u8 *pos = start;
  85. memset(elems, 0, sizeof(*elems));
  86. while (left >= 2) {
  87. u8 id, elen;
  88. id = *pos++;
  89. elen = *pos++;
  90. left -= 2;
  91. if (elen > left)
  92. return;
  93. switch (id) {
  94. case WLAN_EID_SSID:
  95. elems->ssid = pos;
  96. elems->ssid_len = elen;
  97. break;
  98. case WLAN_EID_SUPP_RATES:
  99. elems->supp_rates = pos;
  100. elems->supp_rates_len = elen;
  101. break;
  102. case WLAN_EID_FH_PARAMS:
  103. elems->fh_params = pos;
  104. elems->fh_params_len = elen;
  105. break;
  106. case WLAN_EID_DS_PARAMS:
  107. elems->ds_params = pos;
  108. elems->ds_params_len = elen;
  109. break;
  110. case WLAN_EID_CF_PARAMS:
  111. elems->cf_params = pos;
  112. elems->cf_params_len = elen;
  113. break;
  114. case WLAN_EID_TIM:
  115. elems->tim = pos;
  116. elems->tim_len = elen;
  117. break;
  118. case WLAN_EID_IBSS_PARAMS:
  119. elems->ibss_params = pos;
  120. elems->ibss_params_len = elen;
  121. break;
  122. case WLAN_EID_CHALLENGE:
  123. elems->challenge = pos;
  124. elems->challenge_len = elen;
  125. break;
  126. case WLAN_EID_WPA:
  127. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  128. pos[2] == 0xf2) {
  129. /* Microsoft OUI (00:50:F2) */
  130. if (pos[3] == 1) {
  131. /* OUI Type 1 - WPA IE */
  132. elems->wpa = pos;
  133. elems->wpa_len = elen;
  134. } else if (elen >= 5 && pos[3] == 2) {
  135. if (pos[4] == 0) {
  136. elems->wmm_info = pos;
  137. elems->wmm_info_len = elen;
  138. } else if (pos[4] == 1) {
  139. elems->wmm_param = pos;
  140. elems->wmm_param_len = elen;
  141. }
  142. }
  143. }
  144. break;
  145. case WLAN_EID_RSN:
  146. elems->rsn = pos;
  147. elems->rsn_len = elen;
  148. break;
  149. case WLAN_EID_ERP_INFO:
  150. elems->erp_info = pos;
  151. elems->erp_info_len = elen;
  152. break;
  153. case WLAN_EID_EXT_SUPP_RATES:
  154. elems->ext_supp_rates = pos;
  155. elems->ext_supp_rates_len = elen;
  156. break;
  157. case WLAN_EID_HT_CAPABILITY:
  158. elems->ht_cap_elem = pos;
  159. elems->ht_cap_elem_len = elen;
  160. break;
  161. case WLAN_EID_HT_EXTRA_INFO:
  162. elems->ht_info_elem = pos;
  163. elems->ht_info_elem_len = elen;
  164. break;
  165. case WLAN_EID_MESH_ID:
  166. elems->mesh_id = pos;
  167. elems->mesh_id_len = elen;
  168. break;
  169. case WLAN_EID_MESH_CONFIG:
  170. elems->mesh_config = pos;
  171. elems->mesh_config_len = elen;
  172. break;
  173. case WLAN_EID_PEER_LINK:
  174. elems->peer_link = pos;
  175. elems->peer_link_len = elen;
  176. break;
  177. case WLAN_EID_PREQ:
  178. elems->preq = pos;
  179. elems->preq_len = elen;
  180. break;
  181. case WLAN_EID_PREP:
  182. elems->prep = pos;
  183. elems->prep_len = elen;
  184. break;
  185. case WLAN_EID_PERR:
  186. elems->perr = pos;
  187. elems->perr_len = elen;
  188. break;
  189. default:
  190. break;
  191. }
  192. left -= elen;
  193. pos += elen;
  194. }
  195. }
  196. static int ecw2cw(int ecw)
  197. {
  198. return (1 << ecw) - 1;
  199. }
  200. static void ieee80211_sta_wmm_params(struct net_device *dev,
  201. struct ieee80211_if_sta *ifsta,
  202. u8 *wmm_param, size_t wmm_param_len)
  203. {
  204. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  205. struct ieee80211_tx_queue_params params;
  206. size_t left;
  207. int count;
  208. u8 *pos;
  209. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  210. return;
  211. count = wmm_param[6] & 0x0f;
  212. if (count == ifsta->wmm_last_param_set)
  213. return;
  214. ifsta->wmm_last_param_set = count;
  215. pos = wmm_param + 8;
  216. left = wmm_param_len - 8;
  217. memset(&params, 0, sizeof(params));
  218. if (!local->ops->conf_tx)
  219. return;
  220. local->wmm_acm = 0;
  221. for (; left >= 4; left -= 4, pos += 4) {
  222. int aci = (pos[0] >> 5) & 0x03;
  223. int acm = (pos[0] >> 4) & 0x01;
  224. int queue;
  225. switch (aci) {
  226. case 1:
  227. queue = IEEE80211_TX_QUEUE_DATA3;
  228. if (acm) {
  229. local->wmm_acm |= BIT(0) | BIT(3);
  230. }
  231. break;
  232. case 2:
  233. queue = IEEE80211_TX_QUEUE_DATA1;
  234. if (acm) {
  235. local->wmm_acm |= BIT(4) | BIT(5);
  236. }
  237. break;
  238. case 3:
  239. queue = IEEE80211_TX_QUEUE_DATA0;
  240. if (acm) {
  241. local->wmm_acm |= BIT(6) | BIT(7);
  242. }
  243. break;
  244. case 0:
  245. default:
  246. queue = IEEE80211_TX_QUEUE_DATA2;
  247. if (acm) {
  248. local->wmm_acm |= BIT(1) | BIT(2);
  249. }
  250. break;
  251. }
  252. params.aifs = pos[0] & 0x0f;
  253. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  254. params.cw_min = ecw2cw(pos[1] & 0x0f);
  255. params.txop = pos[2] | (pos[3] << 8);
  256. #ifdef CONFIG_MAC80211_DEBUG
  257. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  258. "cWmin=%d cWmax=%d txop=%d\n",
  259. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  260. params.cw_max, params.txop);
  261. #endif
  262. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  263. * AC for now) */
  264. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  265. printk(KERN_DEBUG "%s: failed to set TX queue "
  266. "parameters for queue %d\n", dev->name, queue);
  267. }
  268. }
  269. }
  270. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  271. u8 erp_value)
  272. {
  273. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  274. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  275. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  276. bool preamble_mode = (erp_value & WLAN_ERP_BARKER_PREAMBLE) != 0;
  277. DECLARE_MAC_BUF(mac);
  278. u32 changed = 0;
  279. if (use_protection != bss_conf->use_cts_prot) {
  280. if (net_ratelimit()) {
  281. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  282. "%s)\n",
  283. sdata->dev->name,
  284. use_protection ? "enabled" : "disabled",
  285. print_mac(mac, ifsta->bssid));
  286. }
  287. bss_conf->use_cts_prot = use_protection;
  288. changed |= BSS_CHANGED_ERP_CTS_PROT;
  289. }
  290. if (preamble_mode != bss_conf->use_short_preamble) {
  291. if (net_ratelimit()) {
  292. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  293. " (BSSID=%s)\n",
  294. sdata->dev->name,
  295. (preamble_mode == WLAN_ERP_PREAMBLE_SHORT) ?
  296. "short" : "long",
  297. print_mac(mac, ifsta->bssid));
  298. }
  299. bss_conf->use_short_preamble = preamble_mode;
  300. changed |= BSS_CHANGED_ERP_PREAMBLE;
  301. }
  302. return changed;
  303. }
  304. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  305. struct ieee80211_ht_info *ht_info)
  306. {
  307. if (ht_info == NULL)
  308. return -EINVAL;
  309. memset(ht_info, 0, sizeof(*ht_info));
  310. if (ht_cap_ie) {
  311. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  312. ht_info->ht_supported = 1;
  313. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  314. ht_info->ampdu_factor =
  315. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  316. ht_info->ampdu_density =
  317. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  318. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  319. } else
  320. ht_info->ht_supported = 0;
  321. return 0;
  322. }
  323. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  324. struct ieee80211_ht_addt_info *ht_add_info_ie,
  325. struct ieee80211_ht_bss_info *bss_info)
  326. {
  327. if (bss_info == NULL)
  328. return -EINVAL;
  329. memset(bss_info, 0, sizeof(*bss_info));
  330. if (ht_add_info_ie) {
  331. u16 op_mode;
  332. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  333. bss_info->primary_channel = ht_add_info_ie->control_chan;
  334. bss_info->bss_cap = ht_add_info_ie->ht_param;
  335. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  336. }
  337. return 0;
  338. }
  339. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  340. struct ieee80211_if_sta *ifsta)
  341. {
  342. char *buf;
  343. size_t len;
  344. int i;
  345. union iwreq_data wrqu;
  346. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  347. return;
  348. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  349. ifsta->assocresp_ies_len), GFP_KERNEL);
  350. if (!buf)
  351. return;
  352. len = sprintf(buf, "ASSOCINFO(");
  353. if (ifsta->assocreq_ies) {
  354. len += sprintf(buf + len, "ReqIEs=");
  355. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  356. len += sprintf(buf + len, "%02x",
  357. ifsta->assocreq_ies[i]);
  358. }
  359. }
  360. if (ifsta->assocresp_ies) {
  361. if (ifsta->assocreq_ies)
  362. len += sprintf(buf + len, " ");
  363. len += sprintf(buf + len, "RespIEs=");
  364. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  365. len += sprintf(buf + len, "%02x",
  366. ifsta->assocresp_ies[i]);
  367. }
  368. }
  369. len += sprintf(buf + len, ")");
  370. if (len > IW_CUSTOM_MAX) {
  371. len = sprintf(buf, "ASSOCRESPIE=");
  372. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  373. len += sprintf(buf + len, "%02x",
  374. ifsta->assocresp_ies[i]);
  375. }
  376. }
  377. memset(&wrqu, 0, sizeof(wrqu));
  378. wrqu.data.length = len;
  379. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  380. kfree(buf);
  381. }
  382. static void ieee80211_set_associated(struct net_device *dev,
  383. struct ieee80211_if_sta *ifsta,
  384. bool assoc)
  385. {
  386. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  387. struct ieee80211_local *local = sdata->local;
  388. union iwreq_data wrqu;
  389. u32 changed = BSS_CHANGED_ASSOC;
  390. if (assoc) {
  391. struct ieee80211_sta_bss *bss;
  392. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  393. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  394. return;
  395. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  396. local->hw.conf.channel->center_freq,
  397. ifsta->ssid, ifsta->ssid_len);
  398. if (bss) {
  399. if (bss->has_erp_value)
  400. changed |= ieee80211_handle_erp_ie(
  401. sdata, bss->erp_value);
  402. ieee80211_rx_bss_put(dev, bss);
  403. }
  404. netif_carrier_on(dev);
  405. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  406. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  407. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  408. ieee80211_sta_send_associnfo(dev, ifsta);
  409. } else {
  410. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  411. netif_carrier_off(dev);
  412. ieee80211_reset_erp_info(dev);
  413. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  414. }
  415. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  416. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  417. ifsta->last_probe = jiffies;
  418. ieee80211_led_assoc(local, assoc);
  419. sdata->bss_conf.assoc = assoc;
  420. ieee80211_bss_info_change_notify(sdata, changed);
  421. }
  422. static void ieee80211_set_disassoc(struct net_device *dev,
  423. struct ieee80211_if_sta *ifsta, int deauth)
  424. {
  425. if (deauth)
  426. ifsta->auth_tries = 0;
  427. ifsta->assoc_tries = 0;
  428. ieee80211_set_associated(dev, ifsta, 0);
  429. }
  430. void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  431. int encrypt)
  432. {
  433. struct ieee80211_sub_if_data *sdata;
  434. struct ieee80211_tx_packet_data *pkt_data;
  435. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  436. skb->dev = sdata->local->mdev;
  437. skb_set_mac_header(skb, 0);
  438. skb_set_network_header(skb, 0);
  439. skb_set_transport_header(skb, 0);
  440. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  441. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  442. pkt_data->ifindex = sdata->dev->ifindex;
  443. if (!encrypt)
  444. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  445. dev_queue_xmit(skb);
  446. }
  447. static void ieee80211_send_auth(struct net_device *dev,
  448. struct ieee80211_if_sta *ifsta,
  449. int transaction, u8 *extra, size_t extra_len,
  450. int encrypt)
  451. {
  452. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  453. struct sk_buff *skb;
  454. struct ieee80211_mgmt *mgmt;
  455. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  456. sizeof(*mgmt) + 6 + extra_len);
  457. if (!skb) {
  458. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  459. "frame\n", dev->name);
  460. return;
  461. }
  462. skb_reserve(skb, local->hw.extra_tx_headroom);
  463. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  464. memset(mgmt, 0, 24 + 6);
  465. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  466. IEEE80211_STYPE_AUTH);
  467. if (encrypt)
  468. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  469. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  470. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  471. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  472. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  473. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  474. ifsta->auth_transaction = transaction + 1;
  475. mgmt->u.auth.status_code = cpu_to_le16(0);
  476. if (extra)
  477. memcpy(skb_put(skb, extra_len), extra, extra_len);
  478. ieee80211_sta_tx(dev, skb, encrypt);
  479. }
  480. static void ieee80211_authenticate(struct net_device *dev,
  481. struct ieee80211_if_sta *ifsta)
  482. {
  483. DECLARE_MAC_BUF(mac);
  484. ifsta->auth_tries++;
  485. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  486. printk(KERN_DEBUG "%s: authentication with AP %s"
  487. " timed out\n",
  488. dev->name, print_mac(mac, ifsta->bssid));
  489. ifsta->state = IEEE80211_DISABLED;
  490. return;
  491. }
  492. ifsta->state = IEEE80211_AUTHENTICATE;
  493. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  494. dev->name, print_mac(mac, ifsta->bssid));
  495. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  496. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  497. }
  498. static void ieee80211_send_assoc(struct net_device *dev,
  499. struct ieee80211_if_sta *ifsta)
  500. {
  501. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  502. struct sk_buff *skb;
  503. struct ieee80211_mgmt *mgmt;
  504. u8 *pos, *ies;
  505. int i, len;
  506. u16 capab;
  507. struct ieee80211_sta_bss *bss;
  508. int wmm = 0;
  509. struct ieee80211_supported_band *sband;
  510. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  511. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  512. ifsta->ssid_len);
  513. if (!skb) {
  514. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  515. "frame\n", dev->name);
  516. return;
  517. }
  518. skb_reserve(skb, local->hw.extra_tx_headroom);
  519. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  520. capab = ifsta->capab;
  521. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  522. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  523. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  524. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  525. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  526. }
  527. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  528. local->hw.conf.channel->center_freq,
  529. ifsta->ssid, ifsta->ssid_len);
  530. if (bss) {
  531. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  532. capab |= WLAN_CAPABILITY_PRIVACY;
  533. if (bss->wmm_ie) {
  534. wmm = 1;
  535. }
  536. ieee80211_rx_bss_put(dev, bss);
  537. }
  538. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  539. memset(mgmt, 0, 24);
  540. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  541. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  542. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  543. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  544. skb_put(skb, 10);
  545. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  546. IEEE80211_STYPE_REASSOC_REQ);
  547. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  548. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  549. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  550. ETH_ALEN);
  551. } else {
  552. skb_put(skb, 4);
  553. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  554. IEEE80211_STYPE_ASSOC_REQ);
  555. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  556. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  557. }
  558. /* SSID */
  559. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  560. *pos++ = WLAN_EID_SSID;
  561. *pos++ = ifsta->ssid_len;
  562. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  563. len = sband->n_bitrates;
  564. if (len > 8)
  565. len = 8;
  566. pos = skb_put(skb, len + 2);
  567. *pos++ = WLAN_EID_SUPP_RATES;
  568. *pos++ = len;
  569. for (i = 0; i < len; i++) {
  570. int rate = sband->bitrates[i].bitrate;
  571. *pos++ = (u8) (rate / 5);
  572. }
  573. if (sband->n_bitrates > len) {
  574. pos = skb_put(skb, sband->n_bitrates - len + 2);
  575. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  576. *pos++ = sband->n_bitrates - len;
  577. for (i = len; i < sband->n_bitrates; i++) {
  578. int rate = sband->bitrates[i].bitrate;
  579. *pos++ = (u8) (rate / 5);
  580. }
  581. }
  582. if (ifsta->extra_ie) {
  583. pos = skb_put(skb, ifsta->extra_ie_len);
  584. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  585. }
  586. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  587. pos = skb_put(skb, 9);
  588. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  589. *pos++ = 7; /* len */
  590. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  591. *pos++ = 0x50;
  592. *pos++ = 0xf2;
  593. *pos++ = 2; /* WME */
  594. *pos++ = 0; /* WME info */
  595. *pos++ = 1; /* WME ver */
  596. *pos++ = 0;
  597. }
  598. /* wmm support is a must to HT */
  599. if (wmm && sband->ht_info.ht_supported) {
  600. __le16 tmp = cpu_to_le16(sband->ht_info.cap);
  601. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  602. *pos++ = WLAN_EID_HT_CAPABILITY;
  603. *pos++ = sizeof(struct ieee80211_ht_cap);
  604. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  605. memcpy(pos, &tmp, sizeof(u16));
  606. pos += sizeof(u16);
  607. /* TODO: needs a define here for << 2 */
  608. *pos++ = sband->ht_info.ampdu_factor |
  609. (sband->ht_info.ampdu_density << 2);
  610. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  611. }
  612. kfree(ifsta->assocreq_ies);
  613. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  614. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  615. if (ifsta->assocreq_ies)
  616. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  617. ieee80211_sta_tx(dev, skb, 0);
  618. }
  619. static void ieee80211_send_deauth(struct net_device *dev,
  620. struct ieee80211_if_sta *ifsta, u16 reason)
  621. {
  622. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  623. struct sk_buff *skb;
  624. struct ieee80211_mgmt *mgmt;
  625. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  626. if (!skb) {
  627. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  628. "frame\n", dev->name);
  629. return;
  630. }
  631. skb_reserve(skb, local->hw.extra_tx_headroom);
  632. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  633. memset(mgmt, 0, 24);
  634. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  635. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  636. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  637. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  638. IEEE80211_STYPE_DEAUTH);
  639. skb_put(skb, 2);
  640. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  641. ieee80211_sta_tx(dev, skb, 0);
  642. }
  643. static void ieee80211_send_disassoc(struct net_device *dev,
  644. struct ieee80211_if_sta *ifsta, u16 reason)
  645. {
  646. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  647. struct sk_buff *skb;
  648. struct ieee80211_mgmt *mgmt;
  649. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  650. if (!skb) {
  651. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  652. "frame\n", dev->name);
  653. return;
  654. }
  655. skb_reserve(skb, local->hw.extra_tx_headroom);
  656. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  657. memset(mgmt, 0, 24);
  658. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  659. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  660. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  661. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  662. IEEE80211_STYPE_DISASSOC);
  663. skb_put(skb, 2);
  664. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  665. ieee80211_sta_tx(dev, skb, 0);
  666. }
  667. static int ieee80211_privacy_mismatch(struct net_device *dev,
  668. struct ieee80211_if_sta *ifsta)
  669. {
  670. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  671. struct ieee80211_sta_bss *bss;
  672. int bss_privacy;
  673. int wep_privacy;
  674. int privacy_invoked;
  675. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  676. return 0;
  677. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  678. local->hw.conf.channel->center_freq,
  679. ifsta->ssid, ifsta->ssid_len);
  680. if (!bss)
  681. return 0;
  682. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  683. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  684. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  685. ieee80211_rx_bss_put(dev, bss);
  686. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  687. return 0;
  688. return 1;
  689. }
  690. static void ieee80211_associate(struct net_device *dev,
  691. struct ieee80211_if_sta *ifsta)
  692. {
  693. DECLARE_MAC_BUF(mac);
  694. ifsta->assoc_tries++;
  695. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  696. printk(KERN_DEBUG "%s: association with AP %s"
  697. " timed out\n",
  698. dev->name, print_mac(mac, ifsta->bssid));
  699. ifsta->state = IEEE80211_DISABLED;
  700. return;
  701. }
  702. ifsta->state = IEEE80211_ASSOCIATE;
  703. printk(KERN_DEBUG "%s: associate with AP %s\n",
  704. dev->name, print_mac(mac, ifsta->bssid));
  705. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  706. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  707. "mixed-cell disabled - abort association\n", dev->name);
  708. ifsta->state = IEEE80211_DISABLED;
  709. return;
  710. }
  711. ieee80211_send_assoc(dev, ifsta);
  712. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  713. }
  714. static void ieee80211_associated(struct net_device *dev,
  715. struct ieee80211_if_sta *ifsta)
  716. {
  717. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  718. struct sta_info *sta;
  719. int disassoc;
  720. DECLARE_MAC_BUF(mac);
  721. /* TODO: start monitoring current AP signal quality and number of
  722. * missed beacons. Scan other channels every now and then and search
  723. * for better APs. */
  724. /* TODO: remove expired BSSes */
  725. ifsta->state = IEEE80211_ASSOCIATED;
  726. rcu_read_lock();
  727. sta = sta_info_get(local, ifsta->bssid);
  728. if (!sta) {
  729. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  730. dev->name, print_mac(mac, ifsta->bssid));
  731. disassoc = 1;
  732. } else {
  733. disassoc = 0;
  734. if (time_after(jiffies,
  735. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  736. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  737. printk(KERN_DEBUG "%s: No ProbeResp from "
  738. "current AP %s - assume out of "
  739. "range\n",
  740. dev->name, print_mac(mac, ifsta->bssid));
  741. disassoc = 1;
  742. sta_info_unlink(&sta);
  743. } else
  744. ieee80211_send_probe_req(dev, ifsta->bssid,
  745. local->scan_ssid,
  746. local->scan_ssid_len);
  747. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  748. } else {
  749. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  750. if (time_after(jiffies, ifsta->last_probe +
  751. IEEE80211_PROBE_INTERVAL)) {
  752. ifsta->last_probe = jiffies;
  753. ieee80211_send_probe_req(dev, ifsta->bssid,
  754. ifsta->ssid,
  755. ifsta->ssid_len);
  756. }
  757. }
  758. }
  759. rcu_read_unlock();
  760. if (disassoc && sta) {
  761. synchronize_rcu();
  762. rtnl_lock();
  763. sta_info_destroy(sta);
  764. rtnl_unlock();
  765. }
  766. if (disassoc) {
  767. ifsta->state = IEEE80211_DISABLED;
  768. ieee80211_set_associated(dev, ifsta, 0);
  769. } else {
  770. mod_timer(&ifsta->timer, jiffies +
  771. IEEE80211_MONITORING_INTERVAL);
  772. }
  773. }
  774. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  775. u8 *ssid, size_t ssid_len)
  776. {
  777. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  778. struct ieee80211_supported_band *sband;
  779. struct sk_buff *skb;
  780. struct ieee80211_mgmt *mgmt;
  781. u8 *pos, *supp_rates, *esupp_rates = NULL;
  782. int i;
  783. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  784. if (!skb) {
  785. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  786. "request\n", dev->name);
  787. return;
  788. }
  789. skb_reserve(skb, local->hw.extra_tx_headroom);
  790. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  791. memset(mgmt, 0, 24);
  792. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  793. IEEE80211_STYPE_PROBE_REQ);
  794. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  795. if (dst) {
  796. memcpy(mgmt->da, dst, ETH_ALEN);
  797. memcpy(mgmt->bssid, dst, ETH_ALEN);
  798. } else {
  799. memset(mgmt->da, 0xff, ETH_ALEN);
  800. memset(mgmt->bssid, 0xff, ETH_ALEN);
  801. }
  802. pos = skb_put(skb, 2 + ssid_len);
  803. *pos++ = WLAN_EID_SSID;
  804. *pos++ = ssid_len;
  805. memcpy(pos, ssid, ssid_len);
  806. supp_rates = skb_put(skb, 2);
  807. supp_rates[0] = WLAN_EID_SUPP_RATES;
  808. supp_rates[1] = 0;
  809. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  810. for (i = 0; i < sband->n_bitrates; i++) {
  811. struct ieee80211_rate *rate = &sband->bitrates[i];
  812. if (esupp_rates) {
  813. pos = skb_put(skb, 1);
  814. esupp_rates[1]++;
  815. } else if (supp_rates[1] == 8) {
  816. esupp_rates = skb_put(skb, 3);
  817. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  818. esupp_rates[1] = 1;
  819. pos = &esupp_rates[2];
  820. } else {
  821. pos = skb_put(skb, 1);
  822. supp_rates[1]++;
  823. }
  824. *pos = rate->bitrate / 5;
  825. }
  826. ieee80211_sta_tx(dev, skb, 0);
  827. }
  828. static int ieee80211_sta_wep_configured(struct net_device *dev)
  829. {
  830. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  831. if (!sdata || !sdata->default_key ||
  832. sdata->default_key->conf.alg != ALG_WEP)
  833. return 0;
  834. return 1;
  835. }
  836. static void ieee80211_auth_completed(struct net_device *dev,
  837. struct ieee80211_if_sta *ifsta)
  838. {
  839. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  840. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  841. ieee80211_associate(dev, ifsta);
  842. }
  843. static void ieee80211_auth_challenge(struct net_device *dev,
  844. struct ieee80211_if_sta *ifsta,
  845. struct ieee80211_mgmt *mgmt,
  846. size_t len)
  847. {
  848. u8 *pos;
  849. struct ieee802_11_elems elems;
  850. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  851. pos = mgmt->u.auth.variable;
  852. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  853. if (!elems.challenge) {
  854. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  855. "frame\n", dev->name);
  856. return;
  857. }
  858. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  859. elems.challenge_len + 2, 1);
  860. }
  861. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  862. u8 dialog_token, u16 status, u16 policy,
  863. u16 buf_size, u16 timeout)
  864. {
  865. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  866. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  867. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  868. struct sk_buff *skb;
  869. struct ieee80211_mgmt *mgmt;
  870. u16 capab;
  871. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  872. sizeof(mgmt->u.action.u.addba_resp));
  873. if (!skb) {
  874. printk(KERN_DEBUG "%s: failed to allocate buffer "
  875. "for addba resp frame\n", dev->name);
  876. return;
  877. }
  878. skb_reserve(skb, local->hw.extra_tx_headroom);
  879. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  880. memset(mgmt, 0, 24);
  881. memcpy(mgmt->da, da, ETH_ALEN);
  882. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  883. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  884. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  885. else
  886. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  887. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  888. IEEE80211_STYPE_ACTION);
  889. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  890. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  891. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  892. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  893. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  894. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  895. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  896. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  897. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  898. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  899. ieee80211_sta_tx(dev, skb, 0);
  900. return;
  901. }
  902. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  903. u16 tid, u8 dialog_token, u16 start_seq_num,
  904. u16 agg_size, u16 timeout)
  905. {
  906. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  907. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  908. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  909. struct sk_buff *skb;
  910. struct ieee80211_mgmt *mgmt;
  911. u16 capab;
  912. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  913. sizeof(mgmt->u.action.u.addba_req));
  914. if (!skb) {
  915. printk(KERN_ERR "%s: failed to allocate buffer "
  916. "for addba request frame\n", dev->name);
  917. return;
  918. }
  919. skb_reserve(skb, local->hw.extra_tx_headroom);
  920. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  921. memset(mgmt, 0, 24);
  922. memcpy(mgmt->da, da, ETH_ALEN);
  923. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  924. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  925. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  926. else
  927. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  928. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  929. IEEE80211_STYPE_ACTION);
  930. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  931. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  932. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  933. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  934. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  935. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  936. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  937. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  938. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  939. mgmt->u.action.u.addba_req.start_seq_num =
  940. cpu_to_le16(start_seq_num << 4);
  941. ieee80211_sta_tx(dev, skb, 0);
  942. }
  943. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  944. struct ieee80211_mgmt *mgmt,
  945. size_t len)
  946. {
  947. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  948. struct ieee80211_hw *hw = &local->hw;
  949. struct ieee80211_conf *conf = &hw->conf;
  950. struct sta_info *sta;
  951. struct tid_ampdu_rx *tid_agg_rx;
  952. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  953. u8 dialog_token;
  954. int ret = -EOPNOTSUPP;
  955. DECLARE_MAC_BUF(mac);
  956. rcu_read_lock();
  957. sta = sta_info_get(local, mgmt->sa);
  958. if (!sta) {
  959. rcu_read_unlock();
  960. return;
  961. }
  962. /* extract session parameters from addba request frame */
  963. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  964. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  965. start_seq_num =
  966. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  967. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  968. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  969. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  970. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  971. status = WLAN_STATUS_REQUEST_DECLINED;
  972. /* sanity check for incoming parameters:
  973. * check if configuration can support the BA policy
  974. * and if buffer size does not exceeds max value */
  975. if (((ba_policy != 1)
  976. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  977. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  978. status = WLAN_STATUS_INVALID_QOS_PARAM;
  979. #ifdef CONFIG_MAC80211_HT_DEBUG
  980. if (net_ratelimit())
  981. printk(KERN_DEBUG "Block Ack Req with bad params from "
  982. "%s on tid %u. policy %d, buffer size %d\n",
  983. print_mac(mac, mgmt->sa), tid, ba_policy,
  984. buf_size);
  985. #endif /* CONFIG_MAC80211_HT_DEBUG */
  986. goto end_no_lock;
  987. }
  988. /* determine default buffer size */
  989. if (buf_size == 0) {
  990. struct ieee80211_supported_band *sband;
  991. sband = local->hw.wiphy->bands[conf->channel->band];
  992. buf_size = IEEE80211_MIN_AMPDU_BUF;
  993. buf_size = buf_size << sband->ht_info.ampdu_factor;
  994. }
  995. tid_agg_rx = &sta->ampdu_mlme.tid_rx[tid];
  996. /* examine state machine */
  997. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  998. if (tid_agg_rx->state != HT_AGG_STATE_IDLE) {
  999. #ifdef CONFIG_MAC80211_HT_DEBUG
  1000. if (net_ratelimit())
  1001. printk(KERN_DEBUG "unexpected Block Ack Req from "
  1002. "%s on tid %u\n",
  1003. print_mac(mac, mgmt->sa), tid);
  1004. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1005. goto end;
  1006. }
  1007. /* prepare reordering buffer */
  1008. tid_agg_rx->reorder_buf =
  1009. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  1010. if (!tid_agg_rx->reorder_buf) {
  1011. if (net_ratelimit())
  1012. printk(KERN_ERR "can not allocate reordering buffer "
  1013. "to tid %d\n", tid);
  1014. goto end;
  1015. }
  1016. memset(tid_agg_rx->reorder_buf, 0,
  1017. buf_size * sizeof(struct sk_buf *));
  1018. if (local->ops->ampdu_action)
  1019. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1020. sta->addr, tid, &start_seq_num);
  1021. #ifdef CONFIG_MAC80211_HT_DEBUG
  1022. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  1023. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1024. if (ret) {
  1025. kfree(tid_agg_rx->reorder_buf);
  1026. goto end;
  1027. }
  1028. /* change state and send addba resp */
  1029. tid_agg_rx->state = HT_AGG_STATE_OPERATIONAL;
  1030. tid_agg_rx->dialog_token = dialog_token;
  1031. tid_agg_rx->ssn = start_seq_num;
  1032. tid_agg_rx->head_seq_num = start_seq_num;
  1033. tid_agg_rx->buf_size = buf_size;
  1034. tid_agg_rx->timeout = timeout;
  1035. tid_agg_rx->stored_mpdu_num = 0;
  1036. status = WLAN_STATUS_SUCCESS;
  1037. end:
  1038. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1039. end_no_lock:
  1040. ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
  1041. dialog_token, status, 1, buf_size, timeout);
  1042. rcu_read_unlock();
  1043. }
  1044. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1045. struct ieee80211_mgmt *mgmt,
  1046. size_t len)
  1047. {
  1048. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1049. struct ieee80211_hw *hw = &local->hw;
  1050. struct sta_info *sta;
  1051. u16 capab;
  1052. u16 tid;
  1053. u8 *state;
  1054. rcu_read_lock();
  1055. sta = sta_info_get(local, mgmt->sa);
  1056. if (!sta) {
  1057. rcu_read_unlock();
  1058. return;
  1059. }
  1060. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1061. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1062. state = &sta->ampdu_mlme.tid_tx[tid].state;
  1063. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1064. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1065. sta->ampdu_mlme.tid_tx[tid].dialog_token) {
  1066. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1067. #ifdef CONFIG_MAC80211_HT_DEBUG
  1068. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1069. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1070. rcu_read_unlock();
  1071. return;
  1072. }
  1073. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid].addba_resp_timer);
  1074. #ifdef CONFIG_MAC80211_HT_DEBUG
  1075. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1076. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1077. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1078. == WLAN_STATUS_SUCCESS) {
  1079. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1080. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1081. printk(KERN_DEBUG "state not HT_ADDBA_REQUESTED_MSK:"
  1082. "%d\n", *state);
  1083. rcu_read_unlock();
  1084. return;
  1085. }
  1086. if (*state & HT_ADDBA_RECEIVED_MSK)
  1087. printk(KERN_DEBUG "double addBA response\n");
  1088. *state |= HT_ADDBA_RECEIVED_MSK;
  1089. sta->ampdu_mlme.tid_tx[tid].addba_req_num = 0;
  1090. if (*state == HT_AGG_STATE_OPERATIONAL) {
  1091. printk(KERN_DEBUG "Aggregation on for tid %d \n", tid);
  1092. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1093. }
  1094. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1095. printk(KERN_DEBUG "recipient accepted agg: tid %d \n", tid);
  1096. } else {
  1097. printk(KERN_DEBUG "recipient rejected agg: tid %d \n", tid);
  1098. sta->ampdu_mlme.tid_tx[tid].addba_req_num++;
  1099. /* this will allow the state check in stop_BA_session */
  1100. *state = HT_AGG_STATE_OPERATIONAL;
  1101. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1102. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1103. WLAN_BACK_INITIATOR);
  1104. }
  1105. rcu_read_unlock();
  1106. }
  1107. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1108. u16 initiator, u16 reason_code)
  1109. {
  1110. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1111. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1112. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1113. struct sk_buff *skb;
  1114. struct ieee80211_mgmt *mgmt;
  1115. u16 params;
  1116. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1117. sizeof(mgmt->u.action.u.delba));
  1118. if (!skb) {
  1119. printk(KERN_ERR "%s: failed to allocate buffer "
  1120. "for delba frame\n", dev->name);
  1121. return;
  1122. }
  1123. skb_reserve(skb, local->hw.extra_tx_headroom);
  1124. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1125. memset(mgmt, 0, 24);
  1126. memcpy(mgmt->da, da, ETH_ALEN);
  1127. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1128. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1129. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1130. else
  1131. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1132. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1133. IEEE80211_STYPE_ACTION);
  1134. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1135. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1136. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1137. params = (u16)(initiator << 11); /* bit 11 initiator */
  1138. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1139. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1140. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1141. ieee80211_sta_tx(dev, skb, 0);
  1142. }
  1143. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1144. u16 initiator, u16 reason)
  1145. {
  1146. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1147. struct ieee80211_hw *hw = &local->hw;
  1148. struct sta_info *sta;
  1149. int ret, i;
  1150. rcu_read_lock();
  1151. sta = sta_info_get(local, ra);
  1152. if (!sta) {
  1153. rcu_read_unlock();
  1154. return;
  1155. }
  1156. /* check if TID is in operational state */
  1157. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1158. if (sta->ampdu_mlme.tid_rx[tid].state
  1159. != HT_AGG_STATE_OPERATIONAL) {
  1160. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1161. rcu_read_unlock();
  1162. return;
  1163. }
  1164. sta->ampdu_mlme.tid_rx[tid].state =
  1165. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1166. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1167. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1168. /* stop HW Rx aggregation. ampdu_action existence
  1169. * already verified in session init so we add the BUG_ON */
  1170. BUG_ON(!local->ops->ampdu_action);
  1171. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1172. ra, tid, NULL);
  1173. if (ret)
  1174. printk(KERN_DEBUG "HW problem - can not stop rx "
  1175. "aggergation for tid %d\n", tid);
  1176. /* shutdown timer has not expired */
  1177. if (initiator != WLAN_BACK_TIMER)
  1178. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid].
  1179. session_timer);
  1180. /* check if this is a self generated aggregation halt */
  1181. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1182. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1183. /* free the reordering buffer */
  1184. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid].buf_size; i++) {
  1185. if (sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]) {
  1186. /* release the reordered frames */
  1187. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]);
  1188. sta->ampdu_mlme.tid_rx[tid].stored_mpdu_num--;
  1189. sta->ampdu_mlme.tid_rx[tid].reorder_buf[i] = NULL;
  1190. }
  1191. }
  1192. kfree(sta->ampdu_mlme.tid_rx[tid].reorder_buf);
  1193. sta->ampdu_mlme.tid_rx[tid].state = HT_AGG_STATE_IDLE;
  1194. rcu_read_unlock();
  1195. }
  1196. static void ieee80211_sta_process_delba(struct net_device *dev,
  1197. struct ieee80211_mgmt *mgmt, size_t len)
  1198. {
  1199. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1200. struct sta_info *sta;
  1201. u16 tid, params;
  1202. u16 initiator;
  1203. DECLARE_MAC_BUF(mac);
  1204. rcu_read_lock();
  1205. sta = sta_info_get(local, mgmt->sa);
  1206. if (!sta) {
  1207. rcu_read_unlock();
  1208. return;
  1209. }
  1210. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1211. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1212. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1213. #ifdef CONFIG_MAC80211_HT_DEBUG
  1214. if (net_ratelimit())
  1215. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1216. print_mac(mac, mgmt->sa),
  1217. initiator ? "initiator" : "recipient", tid,
  1218. mgmt->u.action.u.delba.reason_code);
  1219. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1220. if (initiator == WLAN_BACK_INITIATOR)
  1221. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1222. WLAN_BACK_INITIATOR, 0);
  1223. else { /* WLAN_BACK_RECIPIENT */
  1224. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1225. sta->ampdu_mlme.tid_tx[tid].state =
  1226. HT_AGG_STATE_OPERATIONAL;
  1227. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1228. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1229. WLAN_BACK_RECIPIENT);
  1230. }
  1231. rcu_read_unlock();
  1232. }
  1233. /*
  1234. * After sending add Block Ack request we activated a timer until
  1235. * add Block Ack response will arrive from the recipient.
  1236. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1237. */
  1238. void sta_addba_resp_timer_expired(unsigned long data)
  1239. {
  1240. /* not an elegant detour, but there is no choice as the timer passes
  1241. * only one argument, and both sta_info and TID are needed, so init
  1242. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1243. * array gives the sta through container_of */
  1244. u16 tid = *(int *)data;
  1245. struct sta_info *temp_sta = container_of((void *)data,
  1246. struct sta_info, timer_to_tid[tid]);
  1247. struct ieee80211_local *local = temp_sta->local;
  1248. struct ieee80211_hw *hw = &local->hw;
  1249. struct sta_info *sta;
  1250. u8 *state;
  1251. rcu_read_lock();
  1252. sta = sta_info_get(local, temp_sta->addr);
  1253. if (!sta) {
  1254. rcu_read_unlock();
  1255. return;
  1256. }
  1257. state = &sta->ampdu_mlme.tid_tx[tid].state;
  1258. /* check if the TID waits for addBA response */
  1259. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1260. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1261. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1262. *state = HT_AGG_STATE_IDLE;
  1263. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1264. "expecting addBA response there", tid);
  1265. goto timer_expired_exit;
  1266. }
  1267. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1268. /* go through the state check in stop_BA_session */
  1269. *state = HT_AGG_STATE_OPERATIONAL;
  1270. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1271. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1272. WLAN_BACK_INITIATOR);
  1273. timer_expired_exit:
  1274. rcu_read_unlock();
  1275. }
  1276. /*
  1277. * After receiving Block Ack Request (BAR) we activated a
  1278. * timer after each frame arrives from the originator.
  1279. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1280. */
  1281. void sta_rx_agg_session_timer_expired(unsigned long data)
  1282. {
  1283. /* not an elegant detour, but there is no choice as the timer passes
  1284. * only one argument, and verious sta_info are needed here, so init
  1285. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1286. * array gives the sta through container_of */
  1287. u8 *ptid = (u8 *)data;
  1288. u8 *timer_to_id = ptid - *ptid;
  1289. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1290. timer_to_tid[0]);
  1291. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1292. ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
  1293. (u16)*ptid, WLAN_BACK_TIMER,
  1294. WLAN_REASON_QSTA_TIMEOUT);
  1295. }
  1296. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1297. struct ieee80211_if_sta *ifsta,
  1298. struct ieee80211_mgmt *mgmt,
  1299. size_t len)
  1300. {
  1301. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1302. u16 auth_alg, auth_transaction, status_code;
  1303. DECLARE_MAC_BUF(mac);
  1304. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1305. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1306. printk(KERN_DEBUG "%s: authentication frame received from "
  1307. "%s, but not in authenticate state - ignored\n",
  1308. dev->name, print_mac(mac, mgmt->sa));
  1309. return;
  1310. }
  1311. if (len < 24 + 6) {
  1312. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1313. "received from %s - ignored\n",
  1314. dev->name, len, print_mac(mac, mgmt->sa));
  1315. return;
  1316. }
  1317. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1318. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1319. printk(KERN_DEBUG "%s: authentication frame received from "
  1320. "unknown AP (SA=%s BSSID=%s) - "
  1321. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1322. print_mac(mac, mgmt->bssid));
  1323. return;
  1324. }
  1325. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1326. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1327. printk(KERN_DEBUG "%s: authentication frame received from "
  1328. "unknown BSSID (SA=%s BSSID=%s) - "
  1329. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1330. print_mac(mac, mgmt->bssid));
  1331. return;
  1332. }
  1333. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1334. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1335. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1336. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1337. "transaction=%d status=%d)\n",
  1338. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1339. auth_transaction, status_code);
  1340. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1341. /* IEEE 802.11 standard does not require authentication in IBSS
  1342. * networks and most implementations do not seem to use it.
  1343. * However, try to reply to authentication attempts if someone
  1344. * has actually implemented this.
  1345. * TODO: Could implement shared key authentication. */
  1346. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1347. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1348. "frame (alg=%d transaction=%d)\n",
  1349. dev->name, auth_alg, auth_transaction);
  1350. return;
  1351. }
  1352. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1353. }
  1354. if (auth_alg != ifsta->auth_alg ||
  1355. auth_transaction != ifsta->auth_transaction) {
  1356. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1357. "(alg=%d transaction=%d)\n",
  1358. dev->name, auth_alg, auth_transaction);
  1359. return;
  1360. }
  1361. if (status_code != WLAN_STATUS_SUCCESS) {
  1362. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1363. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1364. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1365. u8 algs[3];
  1366. const int num_algs = ARRAY_SIZE(algs);
  1367. int i, pos;
  1368. algs[0] = algs[1] = algs[2] = 0xff;
  1369. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1370. algs[0] = WLAN_AUTH_OPEN;
  1371. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1372. algs[1] = WLAN_AUTH_SHARED_KEY;
  1373. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1374. algs[2] = WLAN_AUTH_LEAP;
  1375. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1376. pos = 0;
  1377. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1378. pos = 1;
  1379. else
  1380. pos = 2;
  1381. for (i = 0; i < num_algs; i++) {
  1382. pos++;
  1383. if (pos >= num_algs)
  1384. pos = 0;
  1385. if (algs[pos] == ifsta->auth_alg ||
  1386. algs[pos] == 0xff)
  1387. continue;
  1388. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1389. !ieee80211_sta_wep_configured(dev))
  1390. continue;
  1391. ifsta->auth_alg = algs[pos];
  1392. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1393. "next try\n",
  1394. dev->name, ifsta->auth_alg);
  1395. break;
  1396. }
  1397. }
  1398. return;
  1399. }
  1400. switch (ifsta->auth_alg) {
  1401. case WLAN_AUTH_OPEN:
  1402. case WLAN_AUTH_LEAP:
  1403. ieee80211_auth_completed(dev, ifsta);
  1404. break;
  1405. case WLAN_AUTH_SHARED_KEY:
  1406. if (ifsta->auth_transaction == 4)
  1407. ieee80211_auth_completed(dev, ifsta);
  1408. else
  1409. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1410. break;
  1411. }
  1412. }
  1413. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1414. struct ieee80211_if_sta *ifsta,
  1415. struct ieee80211_mgmt *mgmt,
  1416. size_t len)
  1417. {
  1418. u16 reason_code;
  1419. DECLARE_MAC_BUF(mac);
  1420. if (len < 24 + 2) {
  1421. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1422. "received from %s - ignored\n",
  1423. dev->name, len, print_mac(mac, mgmt->sa));
  1424. return;
  1425. }
  1426. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1427. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1428. "unknown AP (SA=%s BSSID=%s) - "
  1429. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1430. print_mac(mac, mgmt->bssid));
  1431. return;
  1432. }
  1433. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1434. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1435. " (reason=%d)\n",
  1436. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1437. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1438. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1439. }
  1440. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1441. ifsta->state == IEEE80211_ASSOCIATE ||
  1442. ifsta->state == IEEE80211_ASSOCIATED) {
  1443. ifsta->state = IEEE80211_AUTHENTICATE;
  1444. mod_timer(&ifsta->timer, jiffies +
  1445. IEEE80211_RETRY_AUTH_INTERVAL);
  1446. }
  1447. ieee80211_set_disassoc(dev, ifsta, 1);
  1448. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1449. }
  1450. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1451. struct ieee80211_if_sta *ifsta,
  1452. struct ieee80211_mgmt *mgmt,
  1453. size_t len)
  1454. {
  1455. u16 reason_code;
  1456. DECLARE_MAC_BUF(mac);
  1457. if (len < 24 + 2) {
  1458. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1459. "received from %s - ignored\n",
  1460. dev->name, len, print_mac(mac, mgmt->sa));
  1461. return;
  1462. }
  1463. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1464. printk(KERN_DEBUG "%s: disassociation frame received from "
  1465. "unknown AP (SA=%s BSSID=%s) - "
  1466. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1467. print_mac(mac, mgmt->bssid));
  1468. return;
  1469. }
  1470. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1471. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1472. " (reason=%d)\n",
  1473. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1474. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1475. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1476. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1477. ifsta->state = IEEE80211_ASSOCIATE;
  1478. mod_timer(&ifsta->timer, jiffies +
  1479. IEEE80211_RETRY_AUTH_INTERVAL);
  1480. }
  1481. ieee80211_set_disassoc(dev, ifsta, 0);
  1482. }
  1483. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1484. struct ieee80211_if_sta *ifsta,
  1485. struct ieee80211_mgmt *mgmt,
  1486. size_t len,
  1487. int reassoc)
  1488. {
  1489. struct ieee80211_local *local = sdata->local;
  1490. struct net_device *dev = sdata->dev;
  1491. struct ieee80211_supported_band *sband;
  1492. struct sta_info *sta;
  1493. u64 rates, basic_rates;
  1494. u16 capab_info, status_code, aid;
  1495. struct ieee802_11_elems elems;
  1496. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1497. u8 *pos;
  1498. int i, j;
  1499. DECLARE_MAC_BUF(mac);
  1500. bool have_higher_than_11mbit = false;
  1501. /* AssocResp and ReassocResp have identical structure, so process both
  1502. * of them in this function. */
  1503. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1504. printk(KERN_DEBUG "%s: association frame received from "
  1505. "%s, but not in associate state - ignored\n",
  1506. dev->name, print_mac(mac, mgmt->sa));
  1507. return;
  1508. }
  1509. if (len < 24 + 6) {
  1510. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1511. "received from %s - ignored\n",
  1512. dev->name, len, print_mac(mac, mgmt->sa));
  1513. return;
  1514. }
  1515. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1516. printk(KERN_DEBUG "%s: association frame received from "
  1517. "unknown AP (SA=%s BSSID=%s) - "
  1518. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1519. print_mac(mac, mgmt->bssid));
  1520. return;
  1521. }
  1522. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1523. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1524. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1525. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1526. "status=%d aid=%d)\n",
  1527. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1528. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1529. if (status_code != WLAN_STATUS_SUCCESS) {
  1530. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1531. dev->name, status_code);
  1532. /* if this was a reassociation, ensure we try a "full"
  1533. * association next time. This works around some broken APs
  1534. * which do not correctly reject reassociation requests. */
  1535. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1536. return;
  1537. }
  1538. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1539. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1540. "set\n", dev->name, aid);
  1541. aid &= ~(BIT(15) | BIT(14));
  1542. pos = mgmt->u.assoc_resp.variable;
  1543. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1544. if (!elems.supp_rates) {
  1545. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1546. dev->name);
  1547. return;
  1548. }
  1549. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1550. ifsta->aid = aid;
  1551. ifsta->ap_capab = capab_info;
  1552. kfree(ifsta->assocresp_ies);
  1553. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1554. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1555. if (ifsta->assocresp_ies)
  1556. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1557. rcu_read_lock();
  1558. /* Add STA entry for the AP */
  1559. sta = sta_info_get(local, ifsta->bssid);
  1560. if (!sta) {
  1561. struct ieee80211_sta_bss *bss;
  1562. int err;
  1563. sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
  1564. if (!sta) {
  1565. printk(KERN_DEBUG "%s: failed to alloc STA entry for"
  1566. " the AP\n", dev->name);
  1567. rcu_read_unlock();
  1568. return;
  1569. }
  1570. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1571. local->hw.conf.channel->center_freq,
  1572. ifsta->ssid, ifsta->ssid_len);
  1573. if (bss) {
  1574. sta->last_rssi = bss->rssi;
  1575. sta->last_signal = bss->signal;
  1576. sta->last_noise = bss->noise;
  1577. ieee80211_rx_bss_put(dev, bss);
  1578. }
  1579. err = sta_info_insert(sta);
  1580. if (err) {
  1581. printk(KERN_DEBUG "%s: failed to insert STA entry for"
  1582. " the AP (error %d)\n", dev->name, err);
  1583. sta_info_destroy(sta);
  1584. rcu_read_unlock();
  1585. return;
  1586. }
  1587. }
  1588. /*
  1589. * FIXME: Do we really need to update the sta_info's information here?
  1590. * We already know about the AP (we found it in our list) so it
  1591. * should already be filled with the right info, no?
  1592. * As is stands, all this is racy because typically we assume
  1593. * the information that is filled in here (except flags) doesn't
  1594. * change while a STA structure is alive. As such, it should move
  1595. * to between the sta_info_alloc() and sta_info_insert() above.
  1596. */
  1597. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
  1598. WLAN_STA_AUTHORIZED;
  1599. rates = 0;
  1600. basic_rates = 0;
  1601. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1602. for (i = 0; i < elems.supp_rates_len; i++) {
  1603. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1604. if (rate > 110)
  1605. have_higher_than_11mbit = true;
  1606. for (j = 0; j < sband->n_bitrates; j++) {
  1607. if (sband->bitrates[j].bitrate == rate)
  1608. rates |= BIT(j);
  1609. if (elems.supp_rates[i] & 0x80)
  1610. basic_rates |= BIT(j);
  1611. }
  1612. }
  1613. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1614. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1615. if (rate > 110)
  1616. have_higher_than_11mbit = true;
  1617. for (j = 0; j < sband->n_bitrates; j++) {
  1618. if (sband->bitrates[j].bitrate == rate)
  1619. rates |= BIT(j);
  1620. if (elems.ext_supp_rates[i] & 0x80)
  1621. basic_rates |= BIT(j);
  1622. }
  1623. }
  1624. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1625. sdata->basic_rates = basic_rates;
  1626. /* cf. IEEE 802.11 9.2.12 */
  1627. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1628. have_higher_than_11mbit)
  1629. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1630. else
  1631. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1632. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
  1633. local->ops->conf_ht) {
  1634. struct ieee80211_ht_bss_info bss_info;
  1635. ieee80211_ht_cap_ie_to_ht_info(
  1636. (struct ieee80211_ht_cap *)
  1637. elems.ht_cap_elem, &sta->ht_info);
  1638. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1639. (struct ieee80211_ht_addt_info *)
  1640. elems.ht_info_elem, &bss_info);
  1641. ieee80211_hw_config_ht(local, 1, &sta->ht_info, &bss_info);
  1642. }
  1643. rate_control_rate_init(sta, local);
  1644. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1645. sta->flags |= WLAN_STA_WME;
  1646. rcu_read_unlock();
  1647. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1648. elems.wmm_param_len);
  1649. } else
  1650. rcu_read_unlock();
  1651. /* set AID, ieee80211_set_associated() will tell the driver */
  1652. bss_conf->aid = aid;
  1653. ieee80211_set_associated(dev, ifsta, 1);
  1654. ieee80211_associated(dev, ifsta);
  1655. }
  1656. /* Caller must hold local->sta_bss_lock */
  1657. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1658. struct ieee80211_sta_bss *bss)
  1659. {
  1660. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1661. u8 hash_idx;
  1662. if (bss_mesh_cfg(bss))
  1663. hash_idx = mesh_id_hash(bss_mesh_id(bss),
  1664. bss_mesh_id_len(bss));
  1665. else
  1666. hash_idx = STA_HASH(bss->bssid);
  1667. bss->hnext = local->sta_bss_hash[hash_idx];
  1668. local->sta_bss_hash[hash_idx] = bss;
  1669. }
  1670. /* Caller must hold local->sta_bss_lock */
  1671. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1672. struct ieee80211_sta_bss *bss)
  1673. {
  1674. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1675. struct ieee80211_sta_bss *b, *prev = NULL;
  1676. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1677. while (b) {
  1678. if (b == bss) {
  1679. if (!prev)
  1680. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1681. bss->hnext;
  1682. else
  1683. prev->hnext = bss->hnext;
  1684. break;
  1685. }
  1686. prev = b;
  1687. b = b->hnext;
  1688. }
  1689. }
  1690. static struct ieee80211_sta_bss *
  1691. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1692. u8 *ssid, u8 ssid_len)
  1693. {
  1694. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1695. struct ieee80211_sta_bss *bss;
  1696. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1697. if (!bss)
  1698. return NULL;
  1699. atomic_inc(&bss->users);
  1700. atomic_inc(&bss->users);
  1701. memcpy(bss->bssid, bssid, ETH_ALEN);
  1702. bss->freq = freq;
  1703. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1704. memcpy(bss->ssid, ssid, ssid_len);
  1705. bss->ssid_len = ssid_len;
  1706. }
  1707. spin_lock_bh(&local->sta_bss_lock);
  1708. /* TODO: order by RSSI? */
  1709. list_add_tail(&bss->list, &local->sta_bss_list);
  1710. __ieee80211_rx_bss_hash_add(dev, bss);
  1711. spin_unlock_bh(&local->sta_bss_lock);
  1712. return bss;
  1713. }
  1714. static struct ieee80211_sta_bss *
  1715. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1716. u8 *ssid, u8 ssid_len)
  1717. {
  1718. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1719. struct ieee80211_sta_bss *bss;
  1720. spin_lock_bh(&local->sta_bss_lock);
  1721. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1722. while (bss) {
  1723. if (!bss_mesh_cfg(bss) &&
  1724. !memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1725. bss->freq == freq &&
  1726. bss->ssid_len == ssid_len &&
  1727. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1728. atomic_inc(&bss->users);
  1729. break;
  1730. }
  1731. bss = bss->hnext;
  1732. }
  1733. spin_unlock_bh(&local->sta_bss_lock);
  1734. return bss;
  1735. }
  1736. #ifdef CONFIG_MAC80211_MESH
  1737. static struct ieee80211_sta_bss *
  1738. ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1739. u8 *mesh_cfg, int freq)
  1740. {
  1741. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1742. struct ieee80211_sta_bss *bss;
  1743. spin_lock_bh(&local->sta_bss_lock);
  1744. bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
  1745. while (bss) {
  1746. if (bss_mesh_cfg(bss) &&
  1747. !memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
  1748. bss->freq == freq &&
  1749. mesh_id_len == bss->mesh_id_len &&
  1750. (mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
  1751. mesh_id_len))) {
  1752. atomic_inc(&bss->users);
  1753. break;
  1754. }
  1755. bss = bss->hnext;
  1756. }
  1757. spin_unlock_bh(&local->sta_bss_lock);
  1758. return bss;
  1759. }
  1760. static struct ieee80211_sta_bss *
  1761. ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1762. u8 *mesh_cfg, int freq)
  1763. {
  1764. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1765. struct ieee80211_sta_bss *bss;
  1766. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1767. if (!bss)
  1768. return NULL;
  1769. bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
  1770. if (!bss->mesh_cfg) {
  1771. kfree(bss);
  1772. return NULL;
  1773. }
  1774. if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
  1775. bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
  1776. if (!bss->mesh_id) {
  1777. kfree(bss->mesh_cfg);
  1778. kfree(bss);
  1779. return NULL;
  1780. }
  1781. memcpy(bss->mesh_id, mesh_id, mesh_id_len);
  1782. }
  1783. atomic_inc(&bss->users);
  1784. atomic_inc(&bss->users);
  1785. memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
  1786. bss->mesh_id_len = mesh_id_len;
  1787. bss->freq = freq;
  1788. spin_lock_bh(&local->sta_bss_lock);
  1789. /* TODO: order by RSSI? */
  1790. list_add_tail(&bss->list, &local->sta_bss_list);
  1791. __ieee80211_rx_bss_hash_add(dev, bss);
  1792. spin_unlock_bh(&local->sta_bss_lock);
  1793. return bss;
  1794. }
  1795. #endif
  1796. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1797. {
  1798. kfree(bss->wpa_ie);
  1799. kfree(bss->rsn_ie);
  1800. kfree(bss->wmm_ie);
  1801. kfree(bss->ht_ie);
  1802. kfree(bss_mesh_id(bss));
  1803. kfree(bss_mesh_cfg(bss));
  1804. kfree(bss);
  1805. }
  1806. static void ieee80211_rx_bss_put(struct net_device *dev,
  1807. struct ieee80211_sta_bss *bss)
  1808. {
  1809. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1810. if (!atomic_dec_and_test(&bss->users))
  1811. return;
  1812. spin_lock_bh(&local->sta_bss_lock);
  1813. __ieee80211_rx_bss_hash_del(dev, bss);
  1814. list_del(&bss->list);
  1815. spin_unlock_bh(&local->sta_bss_lock);
  1816. ieee80211_rx_bss_free(bss);
  1817. }
  1818. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1819. {
  1820. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1821. spin_lock_init(&local->sta_bss_lock);
  1822. INIT_LIST_HEAD(&local->sta_bss_list);
  1823. }
  1824. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1825. {
  1826. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1827. struct ieee80211_sta_bss *bss, *tmp;
  1828. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1829. ieee80211_rx_bss_put(dev, bss);
  1830. }
  1831. static int ieee80211_sta_join_ibss(struct net_device *dev,
  1832. struct ieee80211_if_sta *ifsta,
  1833. struct ieee80211_sta_bss *bss)
  1834. {
  1835. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1836. int res, rates, i, j;
  1837. struct sk_buff *skb;
  1838. struct ieee80211_mgmt *mgmt;
  1839. struct ieee80211_tx_control control;
  1840. struct rate_selection ratesel;
  1841. u8 *pos;
  1842. struct ieee80211_sub_if_data *sdata;
  1843. struct ieee80211_supported_band *sband;
  1844. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1845. /* Remove possible STA entries from other IBSS networks. */
  1846. sta_info_flush(local, NULL);
  1847. if (local->ops->reset_tsf) {
  1848. /* Reset own TSF to allow time synchronization work. */
  1849. local->ops->reset_tsf(local_to_hw(local));
  1850. }
  1851. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  1852. res = ieee80211_if_config(dev);
  1853. if (res)
  1854. return res;
  1855. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  1856. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1857. sdata->drop_unencrypted = bss->capability &
  1858. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  1859. res = ieee80211_set_freq(local, bss->freq);
  1860. if (local->oper_channel->flags & IEEE80211_CHAN_NO_IBSS) {
  1861. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  1862. "%d MHz\n", dev->name, local->oper_channel->center_freq);
  1863. return -1;
  1864. }
  1865. /* Set beacon template */
  1866. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  1867. do {
  1868. if (!skb)
  1869. break;
  1870. skb_reserve(skb, local->hw.extra_tx_headroom);
  1871. mgmt = (struct ieee80211_mgmt *)
  1872. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  1873. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  1874. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1875. IEEE80211_STYPE_BEACON);
  1876. memset(mgmt->da, 0xff, ETH_ALEN);
  1877. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1878. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1879. mgmt->u.beacon.beacon_int =
  1880. cpu_to_le16(local->hw.conf.beacon_int);
  1881. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  1882. pos = skb_put(skb, 2 + ifsta->ssid_len);
  1883. *pos++ = WLAN_EID_SSID;
  1884. *pos++ = ifsta->ssid_len;
  1885. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  1886. rates = bss->supp_rates_len;
  1887. if (rates > 8)
  1888. rates = 8;
  1889. pos = skb_put(skb, 2 + rates);
  1890. *pos++ = WLAN_EID_SUPP_RATES;
  1891. *pos++ = rates;
  1892. memcpy(pos, bss->supp_rates, rates);
  1893. if (bss->band == IEEE80211_BAND_2GHZ) {
  1894. pos = skb_put(skb, 2 + 1);
  1895. *pos++ = WLAN_EID_DS_PARAMS;
  1896. *pos++ = 1;
  1897. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  1898. }
  1899. pos = skb_put(skb, 2 + 2);
  1900. *pos++ = WLAN_EID_IBSS_PARAMS;
  1901. *pos++ = 2;
  1902. /* FIX: set ATIM window based on scan results */
  1903. *pos++ = 0;
  1904. *pos++ = 0;
  1905. if (bss->supp_rates_len > 8) {
  1906. rates = bss->supp_rates_len - 8;
  1907. pos = skb_put(skb, 2 + rates);
  1908. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  1909. *pos++ = rates;
  1910. memcpy(pos, &bss->supp_rates[8], rates);
  1911. }
  1912. memset(&control, 0, sizeof(control));
  1913. rate_control_get_rate(dev, sband, skb, &ratesel);
  1914. if (!ratesel.rate) {
  1915. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  1916. "for IBSS beacon\n", dev->name);
  1917. break;
  1918. }
  1919. control.vif = &sdata->vif;
  1920. control.tx_rate = ratesel.rate;
  1921. if (sdata->bss_conf.use_short_preamble &&
  1922. ratesel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
  1923. control.flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
  1924. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  1925. control.flags |= IEEE80211_TXCTL_NO_ACK;
  1926. control.retry_limit = 1;
  1927. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  1928. if (ifsta->probe_resp) {
  1929. mgmt = (struct ieee80211_mgmt *)
  1930. ifsta->probe_resp->data;
  1931. mgmt->frame_control =
  1932. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1933. IEEE80211_STYPE_PROBE_RESP);
  1934. } else {
  1935. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  1936. "template for IBSS\n", dev->name);
  1937. }
  1938. if (local->ops->beacon_update &&
  1939. local->ops->beacon_update(local_to_hw(local),
  1940. skb, &control) == 0) {
  1941. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  1942. "template\n", dev->name);
  1943. skb = NULL;
  1944. }
  1945. rates = 0;
  1946. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1947. for (i = 0; i < bss->supp_rates_len; i++) {
  1948. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  1949. for (j = 0; j < sband->n_bitrates; j++)
  1950. if (sband->bitrates[j].bitrate == bitrate)
  1951. rates |= BIT(j);
  1952. }
  1953. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  1954. } while (0);
  1955. if (skb) {
  1956. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  1957. "template\n", dev->name);
  1958. dev_kfree_skb(skb);
  1959. }
  1960. ifsta->state = IEEE80211_IBSS_JOINED;
  1961. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  1962. ieee80211_rx_bss_put(dev, bss);
  1963. return res;
  1964. }
  1965. u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
  1966. struct ieee802_11_elems *elems,
  1967. enum ieee80211_band band)
  1968. {
  1969. struct ieee80211_supported_band *sband;
  1970. struct ieee80211_rate *bitrates;
  1971. size_t num_rates;
  1972. u64 supp_rates;
  1973. int i, j;
  1974. sband = local->hw.wiphy->bands[band];
  1975. if (!sband) {
  1976. WARN_ON(1);
  1977. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1978. }
  1979. bitrates = sband->bitrates;
  1980. num_rates = sband->n_bitrates;
  1981. supp_rates = 0;
  1982. for (i = 0; i < elems->supp_rates_len +
  1983. elems->ext_supp_rates_len; i++) {
  1984. u8 rate = 0;
  1985. int own_rate;
  1986. if (i < elems->supp_rates_len)
  1987. rate = elems->supp_rates[i];
  1988. else if (elems->ext_supp_rates)
  1989. rate = elems->ext_supp_rates
  1990. [i - elems->supp_rates_len];
  1991. own_rate = 5 * (rate & 0x7f);
  1992. for (j = 0; j < num_rates; j++)
  1993. if (bitrates[j].bitrate == own_rate)
  1994. supp_rates |= BIT(j);
  1995. }
  1996. return supp_rates;
  1997. }
  1998. static void ieee80211_rx_bss_info(struct net_device *dev,
  1999. struct ieee80211_mgmt *mgmt,
  2000. size_t len,
  2001. struct ieee80211_rx_status *rx_status,
  2002. int beacon)
  2003. {
  2004. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2005. struct ieee802_11_elems elems;
  2006. size_t baselen;
  2007. int freq, clen;
  2008. struct ieee80211_sta_bss *bss;
  2009. struct sta_info *sta;
  2010. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2011. u64 beacon_timestamp, rx_timestamp;
  2012. struct ieee80211_channel *channel;
  2013. DECLARE_MAC_BUF(mac);
  2014. DECLARE_MAC_BUF(mac2);
  2015. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  2016. return; /* ignore ProbeResp to foreign address */
  2017. #if 0
  2018. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  2019. dev->name, beacon ? "Beacon" : "Probe Response",
  2020. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  2021. #endif
  2022. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2023. if (baselen > len)
  2024. return;
  2025. beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  2026. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2027. if (ieee80211_vif_is_mesh(&sdata->vif) && elems.mesh_id &&
  2028. elems.mesh_config && mesh_matches_local(&elems, dev)) {
  2029. u64 rates = ieee80211_sta_get_rates(local, &elems,
  2030. rx_status->band);
  2031. mesh_neighbour_update(mgmt->sa, rates, dev,
  2032. mesh_peer_accepts_plinks(&elems, dev));
  2033. }
  2034. rcu_read_lock();
  2035. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  2036. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  2037. (sta = sta_info_get(local, mgmt->sa))) {
  2038. u64 prev_rates;
  2039. u64 supp_rates = ieee80211_sta_get_rates(local, &elems,
  2040. rx_status->band);
  2041. prev_rates = sta->supp_rates[rx_status->band];
  2042. sta->supp_rates[rx_status->band] &= supp_rates;
  2043. if (sta->supp_rates[rx_status->band] == 0) {
  2044. /* No matching rates - this should not really happen.
  2045. * Make sure that at least one rate is marked
  2046. * supported to avoid issues with TX rate ctrl. */
  2047. sta->supp_rates[rx_status->band] =
  2048. sdata->u.sta.supp_rates_bits[rx_status->band];
  2049. }
  2050. if (sta->supp_rates[rx_status->band] != prev_rates) {
  2051. printk(KERN_DEBUG "%s: updated supp_rates set for "
  2052. "%s based on beacon info (0x%llx & 0x%llx -> "
  2053. "0x%llx)\n",
  2054. dev->name, print_mac(mac, sta->addr),
  2055. (unsigned long long) prev_rates,
  2056. (unsigned long long) supp_rates,
  2057. (unsigned long long) sta->supp_rates[rx_status->band]);
  2058. }
  2059. }
  2060. rcu_read_unlock();
  2061. if (elems.ds_params && elems.ds_params_len == 1)
  2062. freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
  2063. else
  2064. freq = rx_status->freq;
  2065. channel = ieee80211_get_channel(local->hw.wiphy, freq);
  2066. if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
  2067. return;
  2068. #ifdef CONFIG_MAC80211_MESH
  2069. if (elems.mesh_config)
  2070. bss = ieee80211_rx_mesh_bss_get(dev, elems.mesh_id,
  2071. elems.mesh_id_len, elems.mesh_config, freq);
  2072. else
  2073. #endif
  2074. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  2075. elems.ssid, elems.ssid_len);
  2076. if (!bss) {
  2077. #ifdef CONFIG_MAC80211_MESH
  2078. if (elems.mesh_config)
  2079. bss = ieee80211_rx_mesh_bss_add(dev, elems.mesh_id,
  2080. elems.mesh_id_len, elems.mesh_config, freq);
  2081. else
  2082. #endif
  2083. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  2084. elems.ssid, elems.ssid_len);
  2085. if (!bss)
  2086. return;
  2087. } else {
  2088. #if 0
  2089. /* TODO: order by RSSI? */
  2090. spin_lock_bh(&local->sta_bss_lock);
  2091. list_move_tail(&bss->list, &local->sta_bss_list);
  2092. spin_unlock_bh(&local->sta_bss_lock);
  2093. #endif
  2094. }
  2095. bss->band = rx_status->band;
  2096. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2097. bss->probe_resp && beacon) {
  2098. /* STA mode:
  2099. * Do not allow beacon to override data from Probe Response. */
  2100. ieee80211_rx_bss_put(dev, bss);
  2101. return;
  2102. }
  2103. /* save the ERP value so that it is available at association time */
  2104. if (elems.erp_info && elems.erp_info_len >= 1) {
  2105. bss->erp_value = elems.erp_info[0];
  2106. bss->has_erp_value = 1;
  2107. }
  2108. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  2109. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  2110. bss->supp_rates_len = 0;
  2111. if (elems.supp_rates) {
  2112. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2113. if (clen > elems.supp_rates_len)
  2114. clen = elems.supp_rates_len;
  2115. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  2116. clen);
  2117. bss->supp_rates_len += clen;
  2118. }
  2119. if (elems.ext_supp_rates) {
  2120. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2121. if (clen > elems.ext_supp_rates_len)
  2122. clen = elems.ext_supp_rates_len;
  2123. memcpy(&bss->supp_rates[bss->supp_rates_len],
  2124. elems.ext_supp_rates, clen);
  2125. bss->supp_rates_len += clen;
  2126. }
  2127. if (elems.wpa &&
  2128. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  2129. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  2130. kfree(bss->wpa_ie);
  2131. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  2132. if (bss->wpa_ie) {
  2133. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  2134. bss->wpa_ie_len = elems.wpa_len + 2;
  2135. } else
  2136. bss->wpa_ie_len = 0;
  2137. } else if (!elems.wpa && bss->wpa_ie) {
  2138. kfree(bss->wpa_ie);
  2139. bss->wpa_ie = NULL;
  2140. bss->wpa_ie_len = 0;
  2141. }
  2142. if (elems.rsn &&
  2143. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  2144. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  2145. kfree(bss->rsn_ie);
  2146. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  2147. if (bss->rsn_ie) {
  2148. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  2149. bss->rsn_ie_len = elems.rsn_len + 2;
  2150. } else
  2151. bss->rsn_ie_len = 0;
  2152. } else if (!elems.rsn && bss->rsn_ie) {
  2153. kfree(bss->rsn_ie);
  2154. bss->rsn_ie = NULL;
  2155. bss->rsn_ie_len = 0;
  2156. }
  2157. if (elems.wmm_param &&
  2158. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  2159. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  2160. kfree(bss->wmm_ie);
  2161. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  2162. if (bss->wmm_ie) {
  2163. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  2164. elems.wmm_param_len + 2);
  2165. bss->wmm_ie_len = elems.wmm_param_len + 2;
  2166. } else
  2167. bss->wmm_ie_len = 0;
  2168. } else if (!elems.wmm_param && bss->wmm_ie) {
  2169. kfree(bss->wmm_ie);
  2170. bss->wmm_ie = NULL;
  2171. bss->wmm_ie_len = 0;
  2172. }
  2173. if (elems.ht_cap_elem &&
  2174. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  2175. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  2176. kfree(bss->ht_ie);
  2177. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  2178. if (bss->ht_ie) {
  2179. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  2180. elems.ht_cap_elem_len + 2);
  2181. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  2182. } else
  2183. bss->ht_ie_len = 0;
  2184. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  2185. kfree(bss->ht_ie);
  2186. bss->ht_ie = NULL;
  2187. bss->ht_ie_len = 0;
  2188. }
  2189. bss->timestamp = beacon_timestamp;
  2190. bss->last_update = jiffies;
  2191. bss->rssi = rx_status->ssi;
  2192. bss->signal = rx_status->signal;
  2193. bss->noise = rx_status->noise;
  2194. if (!beacon)
  2195. bss->probe_resp++;
  2196. /* check if we need to merge IBSS */
  2197. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  2198. !local->sta_sw_scanning && !local->sta_hw_scanning &&
  2199. bss->capability & WLAN_CAPABILITY_IBSS &&
  2200. bss->freq == local->oper_channel->center_freq &&
  2201. elems.ssid_len == sdata->u.sta.ssid_len &&
  2202. memcmp(elems.ssid, sdata->u.sta.ssid, sdata->u.sta.ssid_len) == 0) {
  2203. if (rx_status->flag & RX_FLAG_TSFT) {
  2204. /* in order for correct IBSS merging we need mactime
  2205. *
  2206. * since mactime is defined as the time the first data
  2207. * symbol of the frame hits the PHY, and the timestamp
  2208. * of the beacon is defined as "the time that the data
  2209. * symbol containing the first bit of the timestamp is
  2210. * transmitted to the PHY plus the transmitting STA’s
  2211. * delays through its local PHY from the MAC-PHY
  2212. * interface to its interface with the WM"
  2213. * (802.11 11.1.2) - equals the time this bit arrives at
  2214. * the receiver - we have to take into account the
  2215. * offset between the two.
  2216. * e.g: at 1 MBit that means mactime is 192 usec earlier
  2217. * (=24 bytes * 8 usecs/byte) than the beacon timestamp.
  2218. */
  2219. int rate = local->hw.wiphy->bands[rx_status->band]->
  2220. bitrates[rx_status->rate_idx].bitrate;
  2221. rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
  2222. } else if (local && local->ops && local->ops->get_tsf)
  2223. /* second best option: get current TSF */
  2224. rx_timestamp = local->ops->get_tsf(local_to_hw(local));
  2225. else
  2226. /* can't merge without knowing the TSF */
  2227. rx_timestamp = -1LLU;
  2228. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2229. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  2230. "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
  2231. print_mac(mac, mgmt->sa),
  2232. print_mac(mac2, mgmt->bssid),
  2233. (unsigned long long)rx_timestamp,
  2234. (unsigned long long)beacon_timestamp,
  2235. (unsigned long long)(rx_timestamp - beacon_timestamp),
  2236. jiffies);
  2237. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2238. if (beacon_timestamp > rx_timestamp) {
  2239. #ifndef CONFIG_MAC80211_IBSS_DEBUG
  2240. if (net_ratelimit())
  2241. #endif
  2242. printk(KERN_DEBUG "%s: beacon TSF higher than "
  2243. "local TSF - IBSS merge with BSSID %s\n",
  2244. dev->name, print_mac(mac, mgmt->bssid));
  2245. ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
  2246. ieee80211_ibss_add_sta(dev, NULL,
  2247. mgmt->bssid, mgmt->sa);
  2248. }
  2249. }
  2250. ieee80211_rx_bss_put(dev, bss);
  2251. }
  2252. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  2253. struct ieee80211_mgmt *mgmt,
  2254. size_t len,
  2255. struct ieee80211_rx_status *rx_status)
  2256. {
  2257. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  2258. }
  2259. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  2260. struct ieee80211_mgmt *mgmt,
  2261. size_t len,
  2262. struct ieee80211_rx_status *rx_status)
  2263. {
  2264. struct ieee80211_sub_if_data *sdata;
  2265. struct ieee80211_if_sta *ifsta;
  2266. size_t baselen;
  2267. struct ieee802_11_elems elems;
  2268. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2269. struct ieee80211_conf *conf = &local->hw.conf;
  2270. u32 changed = 0;
  2271. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  2272. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2273. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2274. return;
  2275. ifsta = &sdata->u.sta;
  2276. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  2277. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  2278. return;
  2279. /* Process beacon from the current BSS */
  2280. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2281. if (baselen > len)
  2282. return;
  2283. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2284. if (elems.erp_info && elems.erp_info_len >= 1)
  2285. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  2286. if (elems.ht_cap_elem && elems.ht_info_elem &&
  2287. elems.wmm_param && local->ops->conf_ht &&
  2288. conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  2289. struct ieee80211_ht_bss_info bss_info;
  2290. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  2291. (struct ieee80211_ht_addt_info *)
  2292. elems.ht_info_elem, &bss_info);
  2293. /* check if AP changed bss inforamation */
  2294. if ((conf->ht_bss_conf.primary_channel !=
  2295. bss_info.primary_channel) ||
  2296. (conf->ht_bss_conf.bss_cap != bss_info.bss_cap) ||
  2297. (conf->ht_bss_conf.bss_op_mode != bss_info.bss_op_mode))
  2298. ieee80211_hw_config_ht(local, 1, &conf->ht_conf,
  2299. &bss_info);
  2300. }
  2301. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  2302. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2303. elems.wmm_param_len);
  2304. }
  2305. ieee80211_bss_info_change_notify(sdata, changed);
  2306. }
  2307. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2308. struct ieee80211_if_sta *ifsta,
  2309. struct ieee80211_mgmt *mgmt,
  2310. size_t len,
  2311. struct ieee80211_rx_status *rx_status)
  2312. {
  2313. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2314. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2315. int tx_last_beacon;
  2316. struct sk_buff *skb;
  2317. struct ieee80211_mgmt *resp;
  2318. u8 *pos, *end;
  2319. DECLARE_MAC_BUF(mac);
  2320. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2321. DECLARE_MAC_BUF(mac2);
  2322. DECLARE_MAC_BUF(mac3);
  2323. #endif
  2324. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2325. ifsta->state != IEEE80211_IBSS_JOINED ||
  2326. len < 24 + 2 || !ifsta->probe_resp)
  2327. return;
  2328. if (local->ops->tx_last_beacon)
  2329. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2330. else
  2331. tx_last_beacon = 1;
  2332. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2333. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2334. "%s (tx_last_beacon=%d)\n",
  2335. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2336. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2337. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2338. if (!tx_last_beacon)
  2339. return;
  2340. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2341. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2342. return;
  2343. end = ((u8 *) mgmt) + len;
  2344. pos = mgmt->u.probe_req.variable;
  2345. if (pos[0] != WLAN_EID_SSID ||
  2346. pos + 2 + pos[1] > end) {
  2347. if (net_ratelimit()) {
  2348. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2349. "from %s\n",
  2350. dev->name, print_mac(mac, mgmt->sa));
  2351. }
  2352. return;
  2353. }
  2354. if (pos[1] != 0 &&
  2355. (pos[1] != ifsta->ssid_len ||
  2356. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2357. /* Ignore ProbeReq for foreign SSID */
  2358. return;
  2359. }
  2360. /* Reply with ProbeResp */
  2361. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2362. if (!skb)
  2363. return;
  2364. resp = (struct ieee80211_mgmt *) skb->data;
  2365. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2366. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2367. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2368. dev->name, print_mac(mac, resp->da));
  2369. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2370. ieee80211_sta_tx(dev, skb, 0);
  2371. }
  2372. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2373. struct ieee80211_if_sta *ifsta,
  2374. struct ieee80211_mgmt *mgmt,
  2375. size_t len,
  2376. struct ieee80211_rx_status *rx_status)
  2377. {
  2378. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2379. if (len < IEEE80211_MIN_ACTION_SIZE)
  2380. return;
  2381. switch (mgmt->u.action.category) {
  2382. case WLAN_CATEGORY_BACK:
  2383. switch (mgmt->u.action.u.addba_req.action_code) {
  2384. case WLAN_ACTION_ADDBA_REQ:
  2385. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2386. sizeof(mgmt->u.action.u.addba_req)))
  2387. break;
  2388. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2389. break;
  2390. case WLAN_ACTION_ADDBA_RESP:
  2391. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2392. sizeof(mgmt->u.action.u.addba_resp)))
  2393. break;
  2394. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2395. break;
  2396. case WLAN_ACTION_DELBA:
  2397. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2398. sizeof(mgmt->u.action.u.delba)))
  2399. break;
  2400. ieee80211_sta_process_delba(dev, mgmt, len);
  2401. break;
  2402. default:
  2403. if (net_ratelimit())
  2404. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  2405. dev->name);
  2406. break;
  2407. }
  2408. break;
  2409. case PLINK_CATEGORY:
  2410. if (ieee80211_vif_is_mesh(&sdata->vif))
  2411. mesh_rx_plink_frame(dev, mgmt, len, rx_status);
  2412. break;
  2413. case MESH_PATH_SEL_CATEGORY:
  2414. if (ieee80211_vif_is_mesh(&sdata->vif))
  2415. mesh_rx_path_sel_frame(dev, mgmt, len);
  2416. break;
  2417. default:
  2418. if (net_ratelimit())
  2419. printk(KERN_DEBUG "%s: Rx unknown action frame - "
  2420. "category=%d\n", dev->name, mgmt->u.action.category);
  2421. break;
  2422. }
  2423. }
  2424. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2425. struct ieee80211_rx_status *rx_status)
  2426. {
  2427. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2428. struct ieee80211_sub_if_data *sdata;
  2429. struct ieee80211_if_sta *ifsta;
  2430. struct ieee80211_mgmt *mgmt;
  2431. u16 fc;
  2432. if (skb->len < 24)
  2433. goto fail;
  2434. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2435. ifsta = &sdata->u.sta;
  2436. mgmt = (struct ieee80211_mgmt *) skb->data;
  2437. fc = le16_to_cpu(mgmt->frame_control);
  2438. switch (fc & IEEE80211_FCTL_STYPE) {
  2439. case IEEE80211_STYPE_PROBE_REQ:
  2440. case IEEE80211_STYPE_PROBE_RESP:
  2441. case IEEE80211_STYPE_BEACON:
  2442. case IEEE80211_STYPE_ACTION:
  2443. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2444. case IEEE80211_STYPE_AUTH:
  2445. case IEEE80211_STYPE_ASSOC_RESP:
  2446. case IEEE80211_STYPE_REASSOC_RESP:
  2447. case IEEE80211_STYPE_DEAUTH:
  2448. case IEEE80211_STYPE_DISASSOC:
  2449. skb_queue_tail(&ifsta->skb_queue, skb);
  2450. queue_work(local->hw.workqueue, &ifsta->work);
  2451. return;
  2452. default:
  2453. printk(KERN_DEBUG "%s: received unknown management frame - "
  2454. "stype=%d\n", dev->name,
  2455. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2456. break;
  2457. }
  2458. fail:
  2459. kfree_skb(skb);
  2460. }
  2461. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2462. struct sk_buff *skb)
  2463. {
  2464. struct ieee80211_rx_status *rx_status;
  2465. struct ieee80211_sub_if_data *sdata;
  2466. struct ieee80211_if_sta *ifsta;
  2467. struct ieee80211_mgmt *mgmt;
  2468. u16 fc;
  2469. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2470. ifsta = &sdata->u.sta;
  2471. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2472. mgmt = (struct ieee80211_mgmt *) skb->data;
  2473. fc = le16_to_cpu(mgmt->frame_control);
  2474. switch (fc & IEEE80211_FCTL_STYPE) {
  2475. case IEEE80211_STYPE_PROBE_REQ:
  2476. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2477. rx_status);
  2478. break;
  2479. case IEEE80211_STYPE_PROBE_RESP:
  2480. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2481. break;
  2482. case IEEE80211_STYPE_BEACON:
  2483. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2484. break;
  2485. case IEEE80211_STYPE_AUTH:
  2486. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2487. break;
  2488. case IEEE80211_STYPE_ASSOC_RESP:
  2489. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2490. break;
  2491. case IEEE80211_STYPE_REASSOC_RESP:
  2492. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2493. break;
  2494. case IEEE80211_STYPE_DEAUTH:
  2495. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2496. break;
  2497. case IEEE80211_STYPE_DISASSOC:
  2498. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2499. break;
  2500. case IEEE80211_STYPE_ACTION:
  2501. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
  2502. break;
  2503. }
  2504. kfree_skb(skb);
  2505. }
  2506. ieee80211_rx_result
  2507. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2508. struct ieee80211_rx_status *rx_status)
  2509. {
  2510. struct ieee80211_mgmt *mgmt;
  2511. u16 fc;
  2512. if (skb->len < 2)
  2513. return RX_DROP_UNUSABLE;
  2514. mgmt = (struct ieee80211_mgmt *) skb->data;
  2515. fc = le16_to_cpu(mgmt->frame_control);
  2516. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2517. return RX_CONTINUE;
  2518. if (skb->len < 24)
  2519. return RX_DROP_MONITOR;
  2520. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2521. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2522. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2523. skb->len, rx_status);
  2524. dev_kfree_skb(skb);
  2525. return RX_QUEUED;
  2526. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2527. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2528. rx_status);
  2529. dev_kfree_skb(skb);
  2530. return RX_QUEUED;
  2531. }
  2532. }
  2533. return RX_CONTINUE;
  2534. }
  2535. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2536. {
  2537. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2538. int active = 0;
  2539. struct sta_info *sta;
  2540. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2541. rcu_read_lock();
  2542. list_for_each_entry_rcu(sta, &local->sta_list, list) {
  2543. if (sta->sdata == sdata &&
  2544. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2545. jiffies)) {
  2546. active++;
  2547. break;
  2548. }
  2549. }
  2550. rcu_read_unlock();
  2551. return active;
  2552. }
  2553. static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
  2554. {
  2555. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2556. struct sta_info *sta, *tmp;
  2557. LIST_HEAD(tmp_list);
  2558. DECLARE_MAC_BUF(mac);
  2559. unsigned long flags;
  2560. spin_lock_irqsave(&local->sta_lock, flags);
  2561. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2562. if (time_after(jiffies, sta->last_rx + exp_time)) {
  2563. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2564. dev->name, print_mac(mac, sta->addr));
  2565. sta_info_unlink(&sta);
  2566. if (sta)
  2567. list_add(&sta->list, &tmp_list);
  2568. }
  2569. spin_unlock_irqrestore(&local->sta_lock, flags);
  2570. synchronize_rcu();
  2571. rtnl_lock();
  2572. list_for_each_entry_safe(sta, tmp, &tmp_list, list)
  2573. sta_info_destroy(sta);
  2574. rtnl_unlock();
  2575. }
  2576. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2577. struct ieee80211_if_sta *ifsta)
  2578. {
  2579. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2580. ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
  2581. if (ieee80211_sta_active_ibss(dev))
  2582. return;
  2583. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2584. "IBSS networks with same SSID (merge)\n", dev->name);
  2585. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2586. }
  2587. #ifdef CONFIG_MAC80211_MESH
  2588. static void ieee80211_mesh_housekeeping(struct net_device *dev,
  2589. struct ieee80211_if_sta *ifsta)
  2590. {
  2591. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2592. bool free_plinks;
  2593. ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
  2594. mesh_path_expire(dev);
  2595. free_plinks = mesh_plink_availables(sdata);
  2596. if (free_plinks != sdata->u.sta.accepting_plinks)
  2597. ieee80211_if_config_beacon(dev);
  2598. mod_timer(&ifsta->timer, jiffies +
  2599. IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
  2600. }
  2601. void ieee80211_start_mesh(struct net_device *dev)
  2602. {
  2603. struct ieee80211_if_sta *ifsta;
  2604. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2605. ifsta = &sdata->u.sta;
  2606. ifsta->state = IEEE80211_MESH_UP;
  2607. ieee80211_sta_timer((unsigned long)sdata);
  2608. }
  2609. #endif
  2610. void ieee80211_sta_timer(unsigned long data)
  2611. {
  2612. struct ieee80211_sub_if_data *sdata =
  2613. (struct ieee80211_sub_if_data *) data;
  2614. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2615. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2616. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2617. queue_work(local->hw.workqueue, &ifsta->work);
  2618. }
  2619. void ieee80211_sta_work(struct work_struct *work)
  2620. {
  2621. struct ieee80211_sub_if_data *sdata =
  2622. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2623. struct net_device *dev = sdata->dev;
  2624. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2625. struct ieee80211_if_sta *ifsta;
  2626. struct sk_buff *skb;
  2627. if (!netif_running(dev))
  2628. return;
  2629. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2630. return;
  2631. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2632. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2633. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT) {
  2634. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2635. "(type=%d)\n", dev->name, sdata->vif.type);
  2636. return;
  2637. }
  2638. ifsta = &sdata->u.sta;
  2639. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2640. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2641. #ifdef CONFIG_MAC80211_MESH
  2642. if (ifsta->preq_queue_len &&
  2643. time_after(jiffies,
  2644. ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
  2645. mesh_path_start_discovery(dev);
  2646. #endif
  2647. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2648. ifsta->state != IEEE80211_ASSOCIATE &&
  2649. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2650. if (ifsta->scan_ssid_len)
  2651. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2652. else
  2653. ieee80211_sta_start_scan(dev, NULL, 0);
  2654. return;
  2655. }
  2656. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2657. if (ieee80211_sta_config_auth(dev, ifsta))
  2658. return;
  2659. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2660. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2661. return;
  2662. switch (ifsta->state) {
  2663. case IEEE80211_DISABLED:
  2664. break;
  2665. case IEEE80211_AUTHENTICATE:
  2666. ieee80211_authenticate(dev, ifsta);
  2667. break;
  2668. case IEEE80211_ASSOCIATE:
  2669. ieee80211_associate(dev, ifsta);
  2670. break;
  2671. case IEEE80211_ASSOCIATED:
  2672. ieee80211_associated(dev, ifsta);
  2673. break;
  2674. case IEEE80211_IBSS_SEARCH:
  2675. ieee80211_sta_find_ibss(dev, ifsta);
  2676. break;
  2677. case IEEE80211_IBSS_JOINED:
  2678. ieee80211_sta_merge_ibss(dev, ifsta);
  2679. break;
  2680. #ifdef CONFIG_MAC80211_MESH
  2681. case IEEE80211_MESH_UP:
  2682. ieee80211_mesh_housekeeping(dev, ifsta);
  2683. break;
  2684. #endif
  2685. default:
  2686. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2687. ifsta->state);
  2688. break;
  2689. }
  2690. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2691. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2692. "mixed-cell disabled - disassociate\n", dev->name);
  2693. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2694. ieee80211_set_disassoc(dev, ifsta, 0);
  2695. }
  2696. }
  2697. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2698. struct ieee80211_if_sta *ifsta)
  2699. {
  2700. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2701. if (local->ops->reset_tsf) {
  2702. /* Reset own TSF to allow time synchronization work. */
  2703. local->ops->reset_tsf(local_to_hw(local));
  2704. }
  2705. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2706. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2707. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2708. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2709. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2710. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2711. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2712. else
  2713. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2714. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2715. ifsta->auth_alg);
  2716. ifsta->auth_transaction = -1;
  2717. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2718. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2719. netif_carrier_off(dev);
  2720. }
  2721. void ieee80211_sta_req_auth(struct net_device *dev,
  2722. struct ieee80211_if_sta *ifsta)
  2723. {
  2724. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2725. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2726. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2727. return;
  2728. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2729. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2730. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2731. IEEE80211_STA_AUTO_SSID_SEL))) {
  2732. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2733. queue_work(local->hw.workqueue, &ifsta->work);
  2734. }
  2735. }
  2736. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2737. const char *ssid, int ssid_len)
  2738. {
  2739. int tmp, hidden_ssid;
  2740. if (ssid_len == ifsta->ssid_len &&
  2741. !memcmp(ifsta->ssid, ssid, ssid_len))
  2742. return 1;
  2743. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2744. return 0;
  2745. hidden_ssid = 1;
  2746. tmp = ssid_len;
  2747. while (tmp--) {
  2748. if (ssid[tmp] != '\0') {
  2749. hidden_ssid = 0;
  2750. break;
  2751. }
  2752. }
  2753. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2754. return 1;
  2755. if (ssid_len == 1 && ssid[0] == ' ')
  2756. return 1;
  2757. return 0;
  2758. }
  2759. static int ieee80211_sta_config_auth(struct net_device *dev,
  2760. struct ieee80211_if_sta *ifsta)
  2761. {
  2762. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2763. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2764. struct ieee80211_sta_bss *bss, *selected = NULL;
  2765. int top_rssi = 0, freq;
  2766. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2767. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2768. ifsta->state = IEEE80211_AUTHENTICATE;
  2769. ieee80211_sta_reset_auth(dev, ifsta);
  2770. return 0;
  2771. }
  2772. spin_lock_bh(&local->sta_bss_lock);
  2773. freq = local->oper_channel->center_freq;
  2774. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2775. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2776. continue;
  2777. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2778. !!sdata->default_key)
  2779. continue;
  2780. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2781. bss->freq != freq)
  2782. continue;
  2783. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2784. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2785. continue;
  2786. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2787. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2788. continue;
  2789. if (!selected || top_rssi < bss->rssi) {
  2790. selected = bss;
  2791. top_rssi = bss->rssi;
  2792. }
  2793. }
  2794. if (selected)
  2795. atomic_inc(&selected->users);
  2796. spin_unlock_bh(&local->sta_bss_lock);
  2797. if (selected) {
  2798. ieee80211_set_freq(local, selected->freq);
  2799. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2800. ieee80211_sta_set_ssid(dev, selected->ssid,
  2801. selected->ssid_len);
  2802. ieee80211_sta_set_bssid(dev, selected->bssid);
  2803. ieee80211_rx_bss_put(dev, selected);
  2804. ifsta->state = IEEE80211_AUTHENTICATE;
  2805. ieee80211_sta_reset_auth(dev, ifsta);
  2806. return 0;
  2807. } else {
  2808. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2809. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2810. ieee80211_sta_start_scan(dev, NULL, 0);
  2811. else
  2812. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2813. ifsta->ssid_len);
  2814. ifsta->state = IEEE80211_AUTHENTICATE;
  2815. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2816. } else
  2817. ifsta->state = IEEE80211_DISABLED;
  2818. }
  2819. return -1;
  2820. }
  2821. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2822. struct ieee80211_if_sta *ifsta)
  2823. {
  2824. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2825. struct ieee80211_sta_bss *bss;
  2826. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2827. struct ieee80211_supported_band *sband;
  2828. u8 bssid[ETH_ALEN], *pos;
  2829. int i;
  2830. DECLARE_MAC_BUF(mac);
  2831. #if 0
  2832. /* Easier testing, use fixed BSSID. */
  2833. memset(bssid, 0xfe, ETH_ALEN);
  2834. #else
  2835. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2836. * own MAC address to make sure that devices that do not have proper
  2837. * random number generator get different BSSID. */
  2838. get_random_bytes(bssid, ETH_ALEN);
  2839. for (i = 0; i < ETH_ALEN; i++)
  2840. bssid[i] ^= dev->dev_addr[i];
  2841. bssid[0] &= ~0x01;
  2842. bssid[0] |= 0x02;
  2843. #endif
  2844. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2845. dev->name, print_mac(mac, bssid));
  2846. bss = ieee80211_rx_bss_add(dev, bssid,
  2847. local->hw.conf.channel->center_freq,
  2848. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2849. if (!bss)
  2850. return -ENOMEM;
  2851. bss->band = local->hw.conf.channel->band;
  2852. sband = local->hw.wiphy->bands[bss->band];
  2853. if (local->hw.conf.beacon_int == 0)
  2854. local->hw.conf.beacon_int = 10000;
  2855. bss->beacon_int = local->hw.conf.beacon_int;
  2856. bss->last_update = jiffies;
  2857. bss->capability = WLAN_CAPABILITY_IBSS;
  2858. if (sdata->default_key) {
  2859. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2860. } else
  2861. sdata->drop_unencrypted = 0;
  2862. bss->supp_rates_len = sband->n_bitrates;
  2863. pos = bss->supp_rates;
  2864. for (i = 0; i < sband->n_bitrates; i++) {
  2865. int rate = sband->bitrates[i].bitrate;
  2866. *pos++ = (u8) (rate / 5);
  2867. }
  2868. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2869. }
  2870. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2871. struct ieee80211_if_sta *ifsta)
  2872. {
  2873. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2874. struct ieee80211_sta_bss *bss;
  2875. int found = 0;
  2876. u8 bssid[ETH_ALEN];
  2877. int active_ibss;
  2878. DECLARE_MAC_BUF(mac);
  2879. DECLARE_MAC_BUF(mac2);
  2880. if (ifsta->ssid_len == 0)
  2881. return -EINVAL;
  2882. active_ibss = ieee80211_sta_active_ibss(dev);
  2883. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2884. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2885. dev->name, active_ibss);
  2886. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2887. spin_lock_bh(&local->sta_bss_lock);
  2888. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2889. if (ifsta->ssid_len != bss->ssid_len ||
  2890. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2891. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2892. continue;
  2893. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2894. printk(KERN_DEBUG " bssid=%s found\n",
  2895. print_mac(mac, bss->bssid));
  2896. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2897. memcpy(bssid, bss->bssid, ETH_ALEN);
  2898. found = 1;
  2899. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2900. break;
  2901. }
  2902. spin_unlock_bh(&local->sta_bss_lock);
  2903. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2904. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2905. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2906. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2907. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2908. (bss = ieee80211_rx_bss_get(dev, bssid,
  2909. local->hw.conf.channel->center_freq,
  2910. ifsta->ssid, ifsta->ssid_len))) {
  2911. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2912. " based on configured SSID\n",
  2913. dev->name, print_mac(mac, bssid));
  2914. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2915. }
  2916. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2917. printk(KERN_DEBUG " did not try to join ibss\n");
  2918. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2919. /* Selected IBSS not found in current scan results - try to scan */
  2920. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  2921. !ieee80211_sta_active_ibss(dev)) {
  2922. mod_timer(&ifsta->timer, jiffies +
  2923. IEEE80211_IBSS_MERGE_INTERVAL);
  2924. } else if (time_after(jiffies, local->last_scan_completed +
  2925. IEEE80211_SCAN_INTERVAL)) {
  2926. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  2927. "join\n", dev->name);
  2928. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  2929. ifsta->ssid_len);
  2930. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  2931. int interval = IEEE80211_SCAN_INTERVAL;
  2932. if (time_after(jiffies, ifsta->ibss_join_req +
  2933. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  2934. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  2935. (!(local->oper_channel->flags &
  2936. IEEE80211_CHAN_NO_IBSS)))
  2937. return ieee80211_sta_create_ibss(dev, ifsta);
  2938. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  2939. printk(KERN_DEBUG "%s: IBSS not allowed on"
  2940. " %d MHz\n", dev->name,
  2941. local->hw.conf.channel->center_freq);
  2942. }
  2943. /* No IBSS found - decrease scan interval and continue
  2944. * scanning. */
  2945. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  2946. }
  2947. ifsta->state = IEEE80211_IBSS_SEARCH;
  2948. mod_timer(&ifsta->timer, jiffies + interval);
  2949. return 0;
  2950. }
  2951. return 0;
  2952. }
  2953. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  2954. {
  2955. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2956. struct ieee80211_if_sta *ifsta;
  2957. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2958. if (len > IEEE80211_MAX_SSID_LEN)
  2959. return -EINVAL;
  2960. /* TODO: This should always be done for IBSS, even if IEEE80211_QOS is
  2961. * not defined. */
  2962. if (local->ops->conf_tx) {
  2963. struct ieee80211_tx_queue_params qparam;
  2964. int i;
  2965. memset(&qparam, 0, sizeof(qparam));
  2966. qparam.aifs = 2;
  2967. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  2968. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  2969. qparam.cw_min = 31;
  2970. else
  2971. qparam.cw_min = 15;
  2972. qparam.cw_max = 1023;
  2973. qparam.txop = 0;
  2974. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  2975. local->ops->conf_tx(local_to_hw(local),
  2976. i + IEEE80211_TX_QUEUE_DATA0,
  2977. &qparam);
  2978. /* IBSS uses different parameters for Beacon sending */
  2979. qparam.cw_min++;
  2980. qparam.cw_min *= 2;
  2981. qparam.cw_min--;
  2982. local->ops->conf_tx(local_to_hw(local),
  2983. IEEE80211_TX_QUEUE_BEACON, &qparam);
  2984. }
  2985. ifsta = &sdata->u.sta;
  2986. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  2987. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  2988. memcpy(ifsta->ssid, ssid, len);
  2989. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  2990. ifsta->ssid_len = len;
  2991. if (len)
  2992. ifsta->flags |= IEEE80211_STA_SSID_SET;
  2993. else
  2994. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  2995. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  2996. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  2997. ifsta->ibss_join_req = jiffies;
  2998. ifsta->state = IEEE80211_IBSS_SEARCH;
  2999. return ieee80211_sta_find_ibss(dev, ifsta);
  3000. }
  3001. return 0;
  3002. }
  3003. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  3004. {
  3005. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3006. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3007. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  3008. *len = ifsta->ssid_len;
  3009. return 0;
  3010. }
  3011. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  3012. {
  3013. struct ieee80211_sub_if_data *sdata;
  3014. struct ieee80211_if_sta *ifsta;
  3015. int res;
  3016. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3017. ifsta = &sdata->u.sta;
  3018. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  3019. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  3020. res = ieee80211_if_config(dev);
  3021. if (res) {
  3022. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  3023. "the low-level driver\n", dev->name);
  3024. return res;
  3025. }
  3026. }
  3027. if (is_valid_ether_addr(bssid))
  3028. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  3029. else
  3030. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  3031. return 0;
  3032. }
  3033. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  3034. struct ieee80211_sub_if_data *sdata,
  3035. int powersave)
  3036. {
  3037. struct sk_buff *skb;
  3038. struct ieee80211_hdr *nullfunc;
  3039. u16 fc;
  3040. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  3041. if (!skb) {
  3042. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  3043. "frame\n", sdata->dev->name);
  3044. return;
  3045. }
  3046. skb_reserve(skb, local->hw.extra_tx_headroom);
  3047. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  3048. memset(nullfunc, 0, 24);
  3049. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  3050. IEEE80211_FCTL_TODS;
  3051. if (powersave)
  3052. fc |= IEEE80211_FCTL_PM;
  3053. nullfunc->frame_control = cpu_to_le16(fc);
  3054. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  3055. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  3056. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  3057. ieee80211_sta_tx(sdata->dev, skb, 0);
  3058. }
  3059. static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
  3060. {
  3061. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  3062. ieee80211_vif_is_mesh(&sdata->vif))
  3063. ieee80211_sta_timer((unsigned long)sdata);
  3064. }
  3065. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  3066. {
  3067. struct ieee80211_local *local = hw_to_local(hw);
  3068. struct net_device *dev = local->scan_dev;
  3069. struct ieee80211_sub_if_data *sdata;
  3070. union iwreq_data wrqu;
  3071. local->last_scan_completed = jiffies;
  3072. memset(&wrqu, 0, sizeof(wrqu));
  3073. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  3074. if (local->sta_hw_scanning) {
  3075. local->sta_hw_scanning = 0;
  3076. /* Restart STA timer for HW scan case */
  3077. rcu_read_lock();
  3078. list_for_each_entry_rcu(sdata, &local->interfaces, list)
  3079. ieee80211_restart_sta_timer(sdata);
  3080. rcu_read_unlock();
  3081. goto done;
  3082. }
  3083. local->sta_sw_scanning = 0;
  3084. if (ieee80211_hw_config(local))
  3085. printk(KERN_DEBUG "%s: failed to restore operational "
  3086. "channel after scan\n", dev->name);
  3087. netif_tx_lock_bh(local->mdev);
  3088. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  3089. local->ops->configure_filter(local_to_hw(local),
  3090. FIF_BCN_PRBRESP_PROMISC,
  3091. &local->filter_flags,
  3092. local->mdev->mc_count,
  3093. local->mdev->mc_list);
  3094. netif_tx_unlock_bh(local->mdev);
  3095. rcu_read_lock();
  3096. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3097. /* No need to wake the master device. */
  3098. if (sdata->dev == local->mdev)
  3099. continue;
  3100. /* Tell AP we're back */
  3101. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3102. sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  3103. ieee80211_send_nullfunc(local, sdata, 0);
  3104. ieee80211_restart_sta_timer(sdata);
  3105. netif_wake_queue(sdata->dev);
  3106. }
  3107. rcu_read_unlock();
  3108. done:
  3109. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3110. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  3111. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3112. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  3113. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  3114. !ieee80211_sta_active_ibss(dev)))
  3115. ieee80211_sta_find_ibss(dev, ifsta);
  3116. }
  3117. }
  3118. EXPORT_SYMBOL(ieee80211_scan_completed);
  3119. void ieee80211_sta_scan_work(struct work_struct *work)
  3120. {
  3121. struct ieee80211_local *local =
  3122. container_of(work, struct ieee80211_local, scan_work.work);
  3123. struct net_device *dev = local->scan_dev;
  3124. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3125. struct ieee80211_supported_band *sband;
  3126. struct ieee80211_channel *chan;
  3127. int skip;
  3128. unsigned long next_delay = 0;
  3129. if (!local->sta_sw_scanning)
  3130. return;
  3131. switch (local->scan_state) {
  3132. case SCAN_SET_CHANNEL:
  3133. /*
  3134. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  3135. * after we successfully scanned the last channel of the last
  3136. * band (and the last band is supported by the hw)
  3137. */
  3138. if (local->scan_band < IEEE80211_NUM_BANDS)
  3139. sband = local->hw.wiphy->bands[local->scan_band];
  3140. else
  3141. sband = NULL;
  3142. /*
  3143. * If we are at an unsupported band and have more bands
  3144. * left to scan, advance to the next supported one.
  3145. */
  3146. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  3147. local->scan_band++;
  3148. sband = local->hw.wiphy->bands[local->scan_band];
  3149. local->scan_channel_idx = 0;
  3150. }
  3151. /* if no more bands/channels left, complete scan */
  3152. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  3153. ieee80211_scan_completed(local_to_hw(local));
  3154. return;
  3155. }
  3156. skip = 0;
  3157. chan = &sband->channels[local->scan_channel_idx];
  3158. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  3159. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3160. chan->flags & IEEE80211_CHAN_NO_IBSS))
  3161. skip = 1;
  3162. if (!skip) {
  3163. local->scan_channel = chan;
  3164. if (ieee80211_hw_config(local)) {
  3165. printk(KERN_DEBUG "%s: failed to set freq to "
  3166. "%d MHz for scan\n", dev->name,
  3167. chan->center_freq);
  3168. skip = 1;
  3169. }
  3170. }
  3171. /* advance state machine to next channel/band */
  3172. local->scan_channel_idx++;
  3173. if (local->scan_channel_idx >= sband->n_channels) {
  3174. /*
  3175. * scan_band may end up == IEEE80211_NUM_BANDS, but
  3176. * we'll catch that case above and complete the scan
  3177. * if that is the case.
  3178. */
  3179. local->scan_band++;
  3180. local->scan_channel_idx = 0;
  3181. }
  3182. if (skip)
  3183. break;
  3184. next_delay = IEEE80211_PROBE_DELAY +
  3185. usecs_to_jiffies(local->hw.channel_change_time);
  3186. local->scan_state = SCAN_SEND_PROBE;
  3187. break;
  3188. case SCAN_SEND_PROBE:
  3189. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  3190. local->scan_state = SCAN_SET_CHANNEL;
  3191. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  3192. break;
  3193. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  3194. local->scan_ssid_len);
  3195. next_delay = IEEE80211_CHANNEL_TIME;
  3196. break;
  3197. }
  3198. if (local->sta_sw_scanning)
  3199. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3200. next_delay);
  3201. }
  3202. static int ieee80211_sta_start_scan(struct net_device *dev,
  3203. u8 *ssid, size_t ssid_len)
  3204. {
  3205. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3206. struct ieee80211_sub_if_data *sdata;
  3207. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  3208. return -EINVAL;
  3209. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  3210. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  3211. * BSSID: MACAddress
  3212. * SSID
  3213. * ScanType: ACTIVE, PASSIVE
  3214. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  3215. * a Probe frame during active scanning
  3216. * ChannelList
  3217. * MinChannelTime (>= ProbeDelay), in TU
  3218. * MaxChannelTime: (>= MinChannelTime), in TU
  3219. */
  3220. /* MLME-SCAN.confirm
  3221. * BSSDescriptionSet
  3222. * ResultCode: SUCCESS, INVALID_PARAMETERS
  3223. */
  3224. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3225. if (local->scan_dev == dev)
  3226. return 0;
  3227. return -EBUSY;
  3228. }
  3229. if (local->ops->hw_scan) {
  3230. int rc = local->ops->hw_scan(local_to_hw(local),
  3231. ssid, ssid_len);
  3232. if (!rc) {
  3233. local->sta_hw_scanning = 1;
  3234. local->scan_dev = dev;
  3235. }
  3236. return rc;
  3237. }
  3238. local->sta_sw_scanning = 1;
  3239. rcu_read_lock();
  3240. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3241. /* Don't stop the master interface, otherwise we can't transmit
  3242. * probes! */
  3243. if (sdata->dev == local->mdev)
  3244. continue;
  3245. netif_stop_queue(sdata->dev);
  3246. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3247. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3248. ieee80211_send_nullfunc(local, sdata, 1);
  3249. }
  3250. rcu_read_unlock();
  3251. if (ssid) {
  3252. local->scan_ssid_len = ssid_len;
  3253. memcpy(local->scan_ssid, ssid, ssid_len);
  3254. } else
  3255. local->scan_ssid_len = 0;
  3256. local->scan_state = SCAN_SET_CHANNEL;
  3257. local->scan_channel_idx = 0;
  3258. local->scan_band = IEEE80211_BAND_2GHZ;
  3259. local->scan_dev = dev;
  3260. netif_tx_lock_bh(local->mdev);
  3261. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3262. local->ops->configure_filter(local_to_hw(local),
  3263. FIF_BCN_PRBRESP_PROMISC,
  3264. &local->filter_flags,
  3265. local->mdev->mc_count,
  3266. local->mdev->mc_list);
  3267. netif_tx_unlock_bh(local->mdev);
  3268. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3269. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3270. IEEE80211_CHANNEL_TIME);
  3271. return 0;
  3272. }
  3273. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3274. {
  3275. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3276. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3277. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3278. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3279. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3280. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3281. if (local->scan_dev == dev)
  3282. return 0;
  3283. return -EBUSY;
  3284. }
  3285. ifsta->scan_ssid_len = ssid_len;
  3286. if (ssid_len)
  3287. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3288. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3289. queue_work(local->hw.workqueue, &ifsta->work);
  3290. return 0;
  3291. }
  3292. static char *
  3293. ieee80211_sta_scan_result(struct net_device *dev,
  3294. struct ieee80211_sta_bss *bss,
  3295. char *current_ev, char *end_buf)
  3296. {
  3297. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3298. struct iw_event iwe;
  3299. if (time_after(jiffies,
  3300. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3301. return current_ev;
  3302. memset(&iwe, 0, sizeof(iwe));
  3303. iwe.cmd = SIOCGIWAP;
  3304. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3305. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3306. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3307. IW_EV_ADDR_LEN);
  3308. memset(&iwe, 0, sizeof(iwe));
  3309. iwe.cmd = SIOCGIWESSID;
  3310. if (bss_mesh_cfg(bss)) {
  3311. iwe.u.data.length = bss_mesh_id_len(bss);
  3312. iwe.u.data.flags = 1;
  3313. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3314. bss_mesh_id(bss));
  3315. } else {
  3316. iwe.u.data.length = bss->ssid_len;
  3317. iwe.u.data.flags = 1;
  3318. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3319. bss->ssid);
  3320. }
  3321. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
  3322. || bss_mesh_cfg(bss)) {
  3323. memset(&iwe, 0, sizeof(iwe));
  3324. iwe.cmd = SIOCGIWMODE;
  3325. if (bss_mesh_cfg(bss))
  3326. iwe.u.mode = IW_MODE_MESH;
  3327. else if (bss->capability & WLAN_CAPABILITY_ESS)
  3328. iwe.u.mode = IW_MODE_MASTER;
  3329. else
  3330. iwe.u.mode = IW_MODE_ADHOC;
  3331. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3332. IW_EV_UINT_LEN);
  3333. }
  3334. memset(&iwe, 0, sizeof(iwe));
  3335. iwe.cmd = SIOCGIWFREQ;
  3336. iwe.u.freq.m = bss->freq;
  3337. iwe.u.freq.e = 6;
  3338. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3339. IW_EV_FREQ_LEN);
  3340. memset(&iwe, 0, sizeof(iwe));
  3341. iwe.cmd = SIOCGIWFREQ;
  3342. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3343. iwe.u.freq.e = 0;
  3344. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3345. IW_EV_FREQ_LEN);
  3346. memset(&iwe, 0, sizeof(iwe));
  3347. iwe.cmd = IWEVQUAL;
  3348. iwe.u.qual.qual = bss->signal;
  3349. iwe.u.qual.level = bss->rssi;
  3350. iwe.u.qual.noise = bss->noise;
  3351. iwe.u.qual.updated = local->wstats_flags;
  3352. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3353. IW_EV_QUAL_LEN);
  3354. memset(&iwe, 0, sizeof(iwe));
  3355. iwe.cmd = SIOCGIWENCODE;
  3356. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3357. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3358. else
  3359. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3360. iwe.u.data.length = 0;
  3361. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  3362. if (bss && bss->wpa_ie) {
  3363. memset(&iwe, 0, sizeof(iwe));
  3364. iwe.cmd = IWEVGENIE;
  3365. iwe.u.data.length = bss->wpa_ie_len;
  3366. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3367. bss->wpa_ie);
  3368. }
  3369. if (bss && bss->rsn_ie) {
  3370. memset(&iwe, 0, sizeof(iwe));
  3371. iwe.cmd = IWEVGENIE;
  3372. iwe.u.data.length = bss->rsn_ie_len;
  3373. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3374. bss->rsn_ie);
  3375. }
  3376. if (bss && bss->supp_rates_len > 0) {
  3377. /* display all supported rates in readable format */
  3378. char *p = current_ev + IW_EV_LCP_LEN;
  3379. int i;
  3380. memset(&iwe, 0, sizeof(iwe));
  3381. iwe.cmd = SIOCGIWRATE;
  3382. /* Those two flags are ignored... */
  3383. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3384. for (i = 0; i < bss->supp_rates_len; i++) {
  3385. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3386. 0x7f) * 500000);
  3387. p = iwe_stream_add_value(current_ev, p,
  3388. end_buf, &iwe, IW_EV_PARAM_LEN);
  3389. }
  3390. current_ev = p;
  3391. }
  3392. if (bss) {
  3393. char *buf;
  3394. buf = kmalloc(30, GFP_ATOMIC);
  3395. if (buf) {
  3396. memset(&iwe, 0, sizeof(iwe));
  3397. iwe.cmd = IWEVCUSTOM;
  3398. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3399. iwe.u.data.length = strlen(buf);
  3400. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3401. &iwe, buf);
  3402. kfree(buf);
  3403. }
  3404. }
  3405. if (bss_mesh_cfg(bss)) {
  3406. char *buf;
  3407. u8 *cfg = bss_mesh_cfg(bss);
  3408. buf = kmalloc(50, GFP_ATOMIC);
  3409. if (buf) {
  3410. memset(&iwe, 0, sizeof(iwe));
  3411. iwe.cmd = IWEVCUSTOM;
  3412. sprintf(buf, "Mesh network (version %d)", cfg[0]);
  3413. iwe.u.data.length = strlen(buf);
  3414. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3415. &iwe, buf);
  3416. sprintf(buf, "Path Selection Protocol ID: "
  3417. "0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
  3418. cfg[4]);
  3419. iwe.u.data.length = strlen(buf);
  3420. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3421. &iwe, buf);
  3422. sprintf(buf, "Path Selection Metric ID: "
  3423. "0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
  3424. cfg[8]);
  3425. iwe.u.data.length = strlen(buf);
  3426. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3427. &iwe, buf);
  3428. sprintf(buf, "Congestion Control Mode ID: "
  3429. "0x%02X%02X%02X%02X", cfg[9], cfg[10],
  3430. cfg[11], cfg[12]);
  3431. iwe.u.data.length = strlen(buf);
  3432. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3433. &iwe, buf);
  3434. sprintf(buf, "Channel Precedence: "
  3435. "0x%02X%02X%02X%02X", cfg[13], cfg[14],
  3436. cfg[15], cfg[16]);
  3437. iwe.u.data.length = strlen(buf);
  3438. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3439. &iwe, buf);
  3440. kfree(buf);
  3441. }
  3442. }
  3443. return current_ev;
  3444. }
  3445. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3446. {
  3447. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3448. char *current_ev = buf;
  3449. char *end_buf = buf + len;
  3450. struct ieee80211_sta_bss *bss;
  3451. spin_lock_bh(&local->sta_bss_lock);
  3452. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3453. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3454. spin_unlock_bh(&local->sta_bss_lock);
  3455. return -E2BIG;
  3456. }
  3457. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3458. end_buf);
  3459. }
  3460. spin_unlock_bh(&local->sta_bss_lock);
  3461. return current_ev - buf;
  3462. }
  3463. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3464. {
  3465. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3466. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3467. kfree(ifsta->extra_ie);
  3468. if (len == 0) {
  3469. ifsta->extra_ie = NULL;
  3470. ifsta->extra_ie_len = 0;
  3471. return 0;
  3472. }
  3473. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3474. if (!ifsta->extra_ie) {
  3475. ifsta->extra_ie_len = 0;
  3476. return -ENOMEM;
  3477. }
  3478. memcpy(ifsta->extra_ie, ie, len);
  3479. ifsta->extra_ie_len = len;
  3480. return 0;
  3481. }
  3482. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3483. struct sk_buff *skb, u8 *bssid,
  3484. u8 *addr)
  3485. {
  3486. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3487. struct sta_info *sta;
  3488. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3489. DECLARE_MAC_BUF(mac);
  3490. /* TODO: Could consider removing the least recently used entry and
  3491. * allow new one to be added. */
  3492. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3493. if (net_ratelimit()) {
  3494. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3495. "entry %s\n", dev->name, print_mac(mac, addr));
  3496. }
  3497. return NULL;
  3498. }
  3499. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3500. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3501. sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
  3502. if (!sta)
  3503. return NULL;
  3504. sta->flags |= WLAN_STA_AUTHORIZED;
  3505. sta->supp_rates[local->hw.conf.channel->band] =
  3506. sdata->u.sta.supp_rates_bits[local->hw.conf.channel->band];
  3507. rate_control_rate_init(sta, local);
  3508. if (sta_info_insert(sta)) {
  3509. sta_info_destroy(sta);
  3510. return NULL;
  3511. }
  3512. return sta;
  3513. }
  3514. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3515. {
  3516. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3517. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3518. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3519. dev->name, reason);
  3520. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3521. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3522. return -EINVAL;
  3523. ieee80211_send_deauth(dev, ifsta, reason);
  3524. ieee80211_set_disassoc(dev, ifsta, 1);
  3525. return 0;
  3526. }
  3527. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3528. {
  3529. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3530. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3531. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3532. dev->name, reason);
  3533. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3534. return -EINVAL;
  3535. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3536. return -1;
  3537. ieee80211_send_disassoc(dev, ifsta, reason);
  3538. ieee80211_set_disassoc(dev, ifsta, 0);
  3539. return 0;
  3540. }