input.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/random.h>
  16. #include <linux/major.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/sched.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/poll.h>
  21. #include <linux/device.h>
  22. #include <linux/mutex.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/smp_lock.h>
  25. #include "input-compat.h"
  26. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  27. MODULE_DESCRIPTION("Input core");
  28. MODULE_LICENSE("GPL");
  29. #define INPUT_DEVICES 256
  30. /*
  31. * EV_ABS events which should not be cached are listed here.
  32. */
  33. static unsigned int input_abs_bypass_init_data[] __initdata = {
  34. ABS_MT_TOUCH_MAJOR,
  35. ABS_MT_TOUCH_MINOR,
  36. ABS_MT_WIDTH_MAJOR,
  37. ABS_MT_WIDTH_MINOR,
  38. ABS_MT_ORIENTATION,
  39. ABS_MT_POSITION_X,
  40. ABS_MT_POSITION_Y,
  41. ABS_MT_TOOL_TYPE,
  42. ABS_MT_BLOB_ID,
  43. ABS_MT_TRACKING_ID,
  44. ABS_MT_PRESSURE,
  45. 0
  46. };
  47. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  48. static LIST_HEAD(input_dev_list);
  49. static LIST_HEAD(input_handler_list);
  50. /*
  51. * input_mutex protects access to both input_dev_list and input_handler_list.
  52. * This also causes input_[un]register_device and input_[un]register_handler
  53. * be mutually exclusive which simplifies locking in drivers implementing
  54. * input handlers.
  55. */
  56. static DEFINE_MUTEX(input_mutex);
  57. static struct input_handler *input_table[8];
  58. static inline int is_event_supported(unsigned int code,
  59. unsigned long *bm, unsigned int max)
  60. {
  61. return code <= max && test_bit(code, bm);
  62. }
  63. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  64. {
  65. if (fuzz) {
  66. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  67. return old_val;
  68. if (value > old_val - fuzz && value < old_val + fuzz)
  69. return (old_val * 3 + value) / 4;
  70. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  71. return (old_val + value) / 2;
  72. }
  73. return value;
  74. }
  75. /*
  76. * Pass event first through all filters and then, if event has not been
  77. * filtered out, through all open handles. This function is called with
  78. * dev->event_lock held and interrupts disabled.
  79. */
  80. static void input_pass_event(struct input_dev *dev,
  81. unsigned int type, unsigned int code, int value)
  82. {
  83. struct input_handler *handler;
  84. struct input_handle *handle;
  85. rcu_read_lock();
  86. handle = rcu_dereference(dev->grab);
  87. if (handle)
  88. handle->handler->event(handle, type, code, value);
  89. else {
  90. bool filtered = false;
  91. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  92. if (!handle->open)
  93. continue;
  94. handler = handle->handler;
  95. if (!handler->filter) {
  96. if (filtered)
  97. break;
  98. handler->event(handle, type, code, value);
  99. } else if (handler->filter(handle, type, code, value))
  100. filtered = true;
  101. }
  102. }
  103. rcu_read_unlock();
  104. }
  105. /*
  106. * Generate software autorepeat event. Note that we take
  107. * dev->event_lock here to avoid racing with input_event
  108. * which may cause keys get "stuck".
  109. */
  110. static void input_repeat_key(unsigned long data)
  111. {
  112. struct input_dev *dev = (void *) data;
  113. unsigned long flags;
  114. spin_lock_irqsave(&dev->event_lock, flags);
  115. if (test_bit(dev->repeat_key, dev->key) &&
  116. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  117. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  118. if (dev->sync) {
  119. /*
  120. * Only send SYN_REPORT if we are not in a middle
  121. * of driver parsing a new hardware packet.
  122. * Otherwise assume that the driver will send
  123. * SYN_REPORT once it's done.
  124. */
  125. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  126. }
  127. if (dev->rep[REP_PERIOD])
  128. mod_timer(&dev->timer, jiffies +
  129. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  130. }
  131. spin_unlock_irqrestore(&dev->event_lock, flags);
  132. }
  133. static void input_start_autorepeat(struct input_dev *dev, int code)
  134. {
  135. if (test_bit(EV_REP, dev->evbit) &&
  136. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  137. dev->timer.data) {
  138. dev->repeat_key = code;
  139. mod_timer(&dev->timer,
  140. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  141. }
  142. }
  143. static void input_stop_autorepeat(struct input_dev *dev)
  144. {
  145. del_timer(&dev->timer);
  146. }
  147. #define INPUT_IGNORE_EVENT 0
  148. #define INPUT_PASS_TO_HANDLERS 1
  149. #define INPUT_PASS_TO_DEVICE 2
  150. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  151. static void input_handle_event(struct input_dev *dev,
  152. unsigned int type, unsigned int code, int value)
  153. {
  154. int disposition = INPUT_IGNORE_EVENT;
  155. switch (type) {
  156. case EV_SYN:
  157. switch (code) {
  158. case SYN_CONFIG:
  159. disposition = INPUT_PASS_TO_ALL;
  160. break;
  161. case SYN_REPORT:
  162. if (!dev->sync) {
  163. dev->sync = 1;
  164. disposition = INPUT_PASS_TO_HANDLERS;
  165. }
  166. break;
  167. case SYN_MT_REPORT:
  168. dev->sync = 0;
  169. disposition = INPUT_PASS_TO_HANDLERS;
  170. break;
  171. }
  172. break;
  173. case EV_KEY:
  174. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  175. !!test_bit(code, dev->key) != value) {
  176. if (value != 2) {
  177. __change_bit(code, dev->key);
  178. if (value)
  179. input_start_autorepeat(dev, code);
  180. else
  181. input_stop_autorepeat(dev);
  182. }
  183. disposition = INPUT_PASS_TO_HANDLERS;
  184. }
  185. break;
  186. case EV_SW:
  187. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  188. !!test_bit(code, dev->sw) != value) {
  189. __change_bit(code, dev->sw);
  190. disposition = INPUT_PASS_TO_HANDLERS;
  191. }
  192. break;
  193. case EV_ABS:
  194. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  195. if (test_bit(code, input_abs_bypass)) {
  196. disposition = INPUT_PASS_TO_HANDLERS;
  197. break;
  198. }
  199. value = input_defuzz_abs_event(value,
  200. dev->abs[code], dev->absfuzz[code]);
  201. if (dev->abs[code] != value) {
  202. dev->abs[code] = value;
  203. disposition = INPUT_PASS_TO_HANDLERS;
  204. }
  205. }
  206. break;
  207. case EV_REL:
  208. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  209. disposition = INPUT_PASS_TO_HANDLERS;
  210. break;
  211. case EV_MSC:
  212. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  213. disposition = INPUT_PASS_TO_ALL;
  214. break;
  215. case EV_LED:
  216. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  217. !!test_bit(code, dev->led) != value) {
  218. __change_bit(code, dev->led);
  219. disposition = INPUT_PASS_TO_ALL;
  220. }
  221. break;
  222. case EV_SND:
  223. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  224. if (!!test_bit(code, dev->snd) != !!value)
  225. __change_bit(code, dev->snd);
  226. disposition = INPUT_PASS_TO_ALL;
  227. }
  228. break;
  229. case EV_REP:
  230. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  231. dev->rep[code] = value;
  232. disposition = INPUT_PASS_TO_ALL;
  233. }
  234. break;
  235. case EV_FF:
  236. if (value >= 0)
  237. disposition = INPUT_PASS_TO_ALL;
  238. break;
  239. case EV_PWR:
  240. disposition = INPUT_PASS_TO_ALL;
  241. break;
  242. }
  243. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  244. dev->sync = 0;
  245. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  246. dev->event(dev, type, code, value);
  247. if (disposition & INPUT_PASS_TO_HANDLERS)
  248. input_pass_event(dev, type, code, value);
  249. }
  250. /**
  251. * input_event() - report new input event
  252. * @dev: device that generated the event
  253. * @type: type of the event
  254. * @code: event code
  255. * @value: value of the event
  256. *
  257. * This function should be used by drivers implementing various input
  258. * devices to report input events. See also input_inject_event().
  259. *
  260. * NOTE: input_event() may be safely used right after input device was
  261. * allocated with input_allocate_device(), even before it is registered
  262. * with input_register_device(), but the event will not reach any of the
  263. * input handlers. Such early invocation of input_event() may be used
  264. * to 'seed' initial state of a switch or initial position of absolute
  265. * axis, etc.
  266. */
  267. void input_event(struct input_dev *dev,
  268. unsigned int type, unsigned int code, int value)
  269. {
  270. unsigned long flags;
  271. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  272. spin_lock_irqsave(&dev->event_lock, flags);
  273. add_input_randomness(type, code, value);
  274. input_handle_event(dev, type, code, value);
  275. spin_unlock_irqrestore(&dev->event_lock, flags);
  276. }
  277. }
  278. EXPORT_SYMBOL(input_event);
  279. /**
  280. * input_inject_event() - send input event from input handler
  281. * @handle: input handle to send event through
  282. * @type: type of the event
  283. * @code: event code
  284. * @value: value of the event
  285. *
  286. * Similar to input_event() but will ignore event if device is
  287. * "grabbed" and handle injecting event is not the one that owns
  288. * the device.
  289. */
  290. void input_inject_event(struct input_handle *handle,
  291. unsigned int type, unsigned int code, int value)
  292. {
  293. struct input_dev *dev = handle->dev;
  294. struct input_handle *grab;
  295. unsigned long flags;
  296. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  297. spin_lock_irqsave(&dev->event_lock, flags);
  298. rcu_read_lock();
  299. grab = rcu_dereference(dev->grab);
  300. if (!grab || grab == handle)
  301. input_handle_event(dev, type, code, value);
  302. rcu_read_unlock();
  303. spin_unlock_irqrestore(&dev->event_lock, flags);
  304. }
  305. }
  306. EXPORT_SYMBOL(input_inject_event);
  307. /**
  308. * input_grab_device - grabs device for exclusive use
  309. * @handle: input handle that wants to own the device
  310. *
  311. * When a device is grabbed by an input handle all events generated by
  312. * the device are delivered only to this handle. Also events injected
  313. * by other input handles are ignored while device is grabbed.
  314. */
  315. int input_grab_device(struct input_handle *handle)
  316. {
  317. struct input_dev *dev = handle->dev;
  318. int retval;
  319. retval = mutex_lock_interruptible(&dev->mutex);
  320. if (retval)
  321. return retval;
  322. if (dev->grab) {
  323. retval = -EBUSY;
  324. goto out;
  325. }
  326. rcu_assign_pointer(dev->grab, handle);
  327. synchronize_rcu();
  328. out:
  329. mutex_unlock(&dev->mutex);
  330. return retval;
  331. }
  332. EXPORT_SYMBOL(input_grab_device);
  333. static void __input_release_device(struct input_handle *handle)
  334. {
  335. struct input_dev *dev = handle->dev;
  336. if (dev->grab == handle) {
  337. rcu_assign_pointer(dev->grab, NULL);
  338. /* Make sure input_pass_event() notices that grab is gone */
  339. synchronize_rcu();
  340. list_for_each_entry(handle, &dev->h_list, d_node)
  341. if (handle->open && handle->handler->start)
  342. handle->handler->start(handle);
  343. }
  344. }
  345. /**
  346. * input_release_device - release previously grabbed device
  347. * @handle: input handle that owns the device
  348. *
  349. * Releases previously grabbed device so that other input handles can
  350. * start receiving input events. Upon release all handlers attached
  351. * to the device have their start() method called so they have a change
  352. * to synchronize device state with the rest of the system.
  353. */
  354. void input_release_device(struct input_handle *handle)
  355. {
  356. struct input_dev *dev = handle->dev;
  357. mutex_lock(&dev->mutex);
  358. __input_release_device(handle);
  359. mutex_unlock(&dev->mutex);
  360. }
  361. EXPORT_SYMBOL(input_release_device);
  362. /**
  363. * input_open_device - open input device
  364. * @handle: handle through which device is being accessed
  365. *
  366. * This function should be called by input handlers when they
  367. * want to start receive events from given input device.
  368. */
  369. int input_open_device(struct input_handle *handle)
  370. {
  371. struct input_dev *dev = handle->dev;
  372. int retval;
  373. retval = mutex_lock_interruptible(&dev->mutex);
  374. if (retval)
  375. return retval;
  376. if (dev->going_away) {
  377. retval = -ENODEV;
  378. goto out;
  379. }
  380. handle->open++;
  381. if (!dev->users++ && dev->open)
  382. retval = dev->open(dev);
  383. if (retval) {
  384. dev->users--;
  385. if (!--handle->open) {
  386. /*
  387. * Make sure we are not delivering any more events
  388. * through this handle
  389. */
  390. synchronize_rcu();
  391. }
  392. }
  393. out:
  394. mutex_unlock(&dev->mutex);
  395. return retval;
  396. }
  397. EXPORT_SYMBOL(input_open_device);
  398. int input_flush_device(struct input_handle *handle, struct file *file)
  399. {
  400. struct input_dev *dev = handle->dev;
  401. int retval;
  402. retval = mutex_lock_interruptible(&dev->mutex);
  403. if (retval)
  404. return retval;
  405. if (dev->flush)
  406. retval = dev->flush(dev, file);
  407. mutex_unlock(&dev->mutex);
  408. return retval;
  409. }
  410. EXPORT_SYMBOL(input_flush_device);
  411. /**
  412. * input_close_device - close input device
  413. * @handle: handle through which device is being accessed
  414. *
  415. * This function should be called by input handlers when they
  416. * want to stop receive events from given input device.
  417. */
  418. void input_close_device(struct input_handle *handle)
  419. {
  420. struct input_dev *dev = handle->dev;
  421. mutex_lock(&dev->mutex);
  422. __input_release_device(handle);
  423. if (!--dev->users && dev->close)
  424. dev->close(dev);
  425. if (!--handle->open) {
  426. /*
  427. * synchronize_rcu() makes sure that input_pass_event()
  428. * completed and that no more input events are delivered
  429. * through this handle
  430. */
  431. synchronize_rcu();
  432. }
  433. mutex_unlock(&dev->mutex);
  434. }
  435. EXPORT_SYMBOL(input_close_device);
  436. /*
  437. * Prepare device for unregistering
  438. */
  439. static void input_disconnect_device(struct input_dev *dev)
  440. {
  441. struct input_handle *handle;
  442. int code;
  443. /*
  444. * Mark device as going away. Note that we take dev->mutex here
  445. * not to protect access to dev->going_away but rather to ensure
  446. * that there are no threads in the middle of input_open_device()
  447. */
  448. mutex_lock(&dev->mutex);
  449. dev->going_away = true;
  450. mutex_unlock(&dev->mutex);
  451. spin_lock_irq(&dev->event_lock);
  452. /*
  453. * Simulate keyup events for all pressed keys so that handlers
  454. * are not left with "stuck" keys. The driver may continue
  455. * generate events even after we done here but they will not
  456. * reach any handlers.
  457. */
  458. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  459. for (code = 0; code <= KEY_MAX; code++) {
  460. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  461. __test_and_clear_bit(code, dev->key)) {
  462. input_pass_event(dev, EV_KEY, code, 0);
  463. }
  464. }
  465. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  466. }
  467. list_for_each_entry(handle, &dev->h_list, d_node)
  468. handle->open = 0;
  469. spin_unlock_irq(&dev->event_lock);
  470. }
  471. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  472. {
  473. switch (dev->keycodesize) {
  474. case 1:
  475. return ((u8 *)dev->keycode)[scancode];
  476. case 2:
  477. return ((u16 *)dev->keycode)[scancode];
  478. default:
  479. return ((u32 *)dev->keycode)[scancode];
  480. }
  481. }
  482. static int input_default_getkeycode(struct input_dev *dev,
  483. unsigned int scancode,
  484. unsigned int *keycode)
  485. {
  486. if (!dev->keycodesize)
  487. return -EINVAL;
  488. if (scancode >= dev->keycodemax)
  489. return -EINVAL;
  490. *keycode = input_fetch_keycode(dev, scancode);
  491. return 0;
  492. }
  493. static int input_default_setkeycode(struct input_dev *dev,
  494. unsigned int scancode,
  495. unsigned int keycode)
  496. {
  497. int old_keycode;
  498. int i;
  499. if (scancode >= dev->keycodemax)
  500. return -EINVAL;
  501. if (!dev->keycodesize)
  502. return -EINVAL;
  503. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  504. return -EINVAL;
  505. switch (dev->keycodesize) {
  506. case 1: {
  507. u8 *k = (u8 *)dev->keycode;
  508. old_keycode = k[scancode];
  509. k[scancode] = keycode;
  510. break;
  511. }
  512. case 2: {
  513. u16 *k = (u16 *)dev->keycode;
  514. old_keycode = k[scancode];
  515. k[scancode] = keycode;
  516. break;
  517. }
  518. default: {
  519. u32 *k = (u32 *)dev->keycode;
  520. old_keycode = k[scancode];
  521. k[scancode] = keycode;
  522. break;
  523. }
  524. }
  525. __clear_bit(old_keycode, dev->keybit);
  526. __set_bit(keycode, dev->keybit);
  527. for (i = 0; i < dev->keycodemax; i++) {
  528. if (input_fetch_keycode(dev, i) == old_keycode) {
  529. __set_bit(old_keycode, dev->keybit);
  530. break; /* Setting the bit twice is useless, so break */
  531. }
  532. }
  533. return 0;
  534. }
  535. /**
  536. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  537. * @dev: input device which keymap is being queried
  538. * @scancode: scancode (or its equivalent for device in question) for which
  539. * keycode is needed
  540. * @keycode: result
  541. *
  542. * This function should be called by anyone interested in retrieving current
  543. * keymap. Presently keyboard and evdev handlers use it.
  544. */
  545. int input_get_keycode(struct input_dev *dev,
  546. unsigned int scancode, unsigned int *keycode)
  547. {
  548. unsigned long flags;
  549. int retval;
  550. spin_lock_irqsave(&dev->event_lock, flags);
  551. retval = dev->getkeycode(dev, scancode, keycode);
  552. spin_unlock_irqrestore(&dev->event_lock, flags);
  553. return retval;
  554. }
  555. EXPORT_SYMBOL(input_get_keycode);
  556. /**
  557. * input_get_keycode - assign new keycode to a given scancode
  558. * @dev: input device which keymap is being updated
  559. * @scancode: scancode (or its equivalent for device in question)
  560. * @keycode: new keycode to be assigned to the scancode
  561. *
  562. * This function should be called by anyone needing to update current
  563. * keymap. Presently keyboard and evdev handlers use it.
  564. */
  565. int input_set_keycode(struct input_dev *dev,
  566. unsigned int scancode, unsigned int keycode)
  567. {
  568. unsigned long flags;
  569. int old_keycode;
  570. int retval;
  571. if (keycode > KEY_MAX)
  572. return -EINVAL;
  573. spin_lock_irqsave(&dev->event_lock, flags);
  574. retval = dev->getkeycode(dev, scancode, &old_keycode);
  575. if (retval)
  576. goto out;
  577. retval = dev->setkeycode(dev, scancode, keycode);
  578. if (retval)
  579. goto out;
  580. /* Make sure KEY_RESERVED did not get enabled. */
  581. __clear_bit(KEY_RESERVED, dev->keybit);
  582. /*
  583. * Simulate keyup event if keycode is not present
  584. * in the keymap anymore
  585. */
  586. if (test_bit(EV_KEY, dev->evbit) &&
  587. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  588. __test_and_clear_bit(old_keycode, dev->key)) {
  589. input_pass_event(dev, EV_KEY, old_keycode, 0);
  590. if (dev->sync)
  591. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  592. }
  593. out:
  594. spin_unlock_irqrestore(&dev->event_lock, flags);
  595. return retval;
  596. }
  597. EXPORT_SYMBOL(input_set_keycode);
  598. #define MATCH_BIT(bit, max) \
  599. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  600. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  601. break; \
  602. if (i != BITS_TO_LONGS(max)) \
  603. continue;
  604. static const struct input_device_id *input_match_device(struct input_handler *handler,
  605. struct input_dev *dev)
  606. {
  607. const struct input_device_id *id;
  608. int i;
  609. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  610. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  611. if (id->bustype != dev->id.bustype)
  612. continue;
  613. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  614. if (id->vendor != dev->id.vendor)
  615. continue;
  616. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  617. if (id->product != dev->id.product)
  618. continue;
  619. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  620. if (id->version != dev->id.version)
  621. continue;
  622. MATCH_BIT(evbit, EV_MAX);
  623. MATCH_BIT(keybit, KEY_MAX);
  624. MATCH_BIT(relbit, REL_MAX);
  625. MATCH_BIT(absbit, ABS_MAX);
  626. MATCH_BIT(mscbit, MSC_MAX);
  627. MATCH_BIT(ledbit, LED_MAX);
  628. MATCH_BIT(sndbit, SND_MAX);
  629. MATCH_BIT(ffbit, FF_MAX);
  630. MATCH_BIT(swbit, SW_MAX);
  631. if (!handler->match || handler->match(handler, dev))
  632. return id;
  633. }
  634. return NULL;
  635. }
  636. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  637. {
  638. const struct input_device_id *id;
  639. int error;
  640. id = input_match_device(handler, dev);
  641. if (!id)
  642. return -ENODEV;
  643. error = handler->connect(handler, dev, id);
  644. if (error && error != -ENODEV)
  645. printk(KERN_ERR
  646. "input: failed to attach handler %s to device %s, "
  647. "error: %d\n",
  648. handler->name, kobject_name(&dev->dev.kobj), error);
  649. return error;
  650. }
  651. #ifdef CONFIG_COMPAT
  652. static int input_bits_to_string(char *buf, int buf_size,
  653. unsigned long bits, bool skip_empty)
  654. {
  655. int len = 0;
  656. if (INPUT_COMPAT_TEST) {
  657. u32 dword = bits >> 32;
  658. if (dword || !skip_empty)
  659. len += snprintf(buf, buf_size, "%x ", dword);
  660. dword = bits & 0xffffffffUL;
  661. if (dword || !skip_empty || len)
  662. len += snprintf(buf + len, max(buf_size - len, 0),
  663. "%x", dword);
  664. } else {
  665. if (bits || !skip_empty)
  666. len += snprintf(buf, buf_size, "%lx", bits);
  667. }
  668. return len;
  669. }
  670. #else /* !CONFIG_COMPAT */
  671. static int input_bits_to_string(char *buf, int buf_size,
  672. unsigned long bits, bool skip_empty)
  673. {
  674. return bits || !skip_empty ?
  675. snprintf(buf, buf_size, "%lx", bits) : 0;
  676. }
  677. #endif
  678. #ifdef CONFIG_PROC_FS
  679. static struct proc_dir_entry *proc_bus_input_dir;
  680. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  681. static int input_devices_state;
  682. static inline void input_wakeup_procfs_readers(void)
  683. {
  684. input_devices_state++;
  685. wake_up(&input_devices_poll_wait);
  686. }
  687. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  688. {
  689. poll_wait(file, &input_devices_poll_wait, wait);
  690. if (file->f_version != input_devices_state) {
  691. file->f_version = input_devices_state;
  692. return POLLIN | POLLRDNORM;
  693. }
  694. return 0;
  695. }
  696. union input_seq_state {
  697. struct {
  698. unsigned short pos;
  699. bool mutex_acquired;
  700. };
  701. void *p;
  702. };
  703. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  704. {
  705. union input_seq_state *state = (union input_seq_state *)&seq->private;
  706. int error;
  707. /* We need to fit into seq->private pointer */
  708. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  709. error = mutex_lock_interruptible(&input_mutex);
  710. if (error) {
  711. state->mutex_acquired = false;
  712. return ERR_PTR(error);
  713. }
  714. state->mutex_acquired = true;
  715. return seq_list_start(&input_dev_list, *pos);
  716. }
  717. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  718. {
  719. return seq_list_next(v, &input_dev_list, pos);
  720. }
  721. static void input_seq_stop(struct seq_file *seq, void *v)
  722. {
  723. union input_seq_state *state = (union input_seq_state *)&seq->private;
  724. if (state->mutex_acquired)
  725. mutex_unlock(&input_mutex);
  726. }
  727. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  728. unsigned long *bitmap, int max)
  729. {
  730. int i;
  731. bool skip_empty = true;
  732. char buf[18];
  733. seq_printf(seq, "B: %s=", name);
  734. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  735. if (input_bits_to_string(buf, sizeof(buf),
  736. bitmap[i], skip_empty)) {
  737. skip_empty = false;
  738. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  739. }
  740. }
  741. /*
  742. * If no output was produced print a single 0.
  743. */
  744. if (skip_empty)
  745. seq_puts(seq, "0");
  746. seq_putc(seq, '\n');
  747. }
  748. static int input_devices_seq_show(struct seq_file *seq, void *v)
  749. {
  750. struct input_dev *dev = container_of(v, struct input_dev, node);
  751. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  752. struct input_handle *handle;
  753. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  754. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  755. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  756. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  757. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  758. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  759. seq_printf(seq, "H: Handlers=");
  760. list_for_each_entry(handle, &dev->h_list, d_node)
  761. seq_printf(seq, "%s ", handle->name);
  762. seq_putc(seq, '\n');
  763. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  764. if (test_bit(EV_KEY, dev->evbit))
  765. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  766. if (test_bit(EV_REL, dev->evbit))
  767. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  768. if (test_bit(EV_ABS, dev->evbit))
  769. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  770. if (test_bit(EV_MSC, dev->evbit))
  771. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  772. if (test_bit(EV_LED, dev->evbit))
  773. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  774. if (test_bit(EV_SND, dev->evbit))
  775. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  776. if (test_bit(EV_FF, dev->evbit))
  777. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  778. if (test_bit(EV_SW, dev->evbit))
  779. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  780. seq_putc(seq, '\n');
  781. kfree(path);
  782. return 0;
  783. }
  784. static const struct seq_operations input_devices_seq_ops = {
  785. .start = input_devices_seq_start,
  786. .next = input_devices_seq_next,
  787. .stop = input_seq_stop,
  788. .show = input_devices_seq_show,
  789. };
  790. static int input_proc_devices_open(struct inode *inode, struct file *file)
  791. {
  792. return seq_open(file, &input_devices_seq_ops);
  793. }
  794. static const struct file_operations input_devices_fileops = {
  795. .owner = THIS_MODULE,
  796. .open = input_proc_devices_open,
  797. .poll = input_proc_devices_poll,
  798. .read = seq_read,
  799. .llseek = seq_lseek,
  800. .release = seq_release,
  801. };
  802. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  803. {
  804. union input_seq_state *state = (union input_seq_state *)&seq->private;
  805. int error;
  806. /* We need to fit into seq->private pointer */
  807. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  808. error = mutex_lock_interruptible(&input_mutex);
  809. if (error) {
  810. state->mutex_acquired = false;
  811. return ERR_PTR(error);
  812. }
  813. state->mutex_acquired = true;
  814. state->pos = *pos;
  815. return seq_list_start(&input_handler_list, *pos);
  816. }
  817. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  818. {
  819. union input_seq_state *state = (union input_seq_state *)&seq->private;
  820. state->pos = *pos + 1;
  821. return seq_list_next(v, &input_handler_list, pos);
  822. }
  823. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  824. {
  825. struct input_handler *handler = container_of(v, struct input_handler, node);
  826. union input_seq_state *state = (union input_seq_state *)&seq->private;
  827. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  828. if (handler->filter)
  829. seq_puts(seq, " (filter)");
  830. if (handler->fops)
  831. seq_printf(seq, " Minor=%d", handler->minor);
  832. seq_putc(seq, '\n');
  833. return 0;
  834. }
  835. static const struct seq_operations input_handlers_seq_ops = {
  836. .start = input_handlers_seq_start,
  837. .next = input_handlers_seq_next,
  838. .stop = input_seq_stop,
  839. .show = input_handlers_seq_show,
  840. };
  841. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  842. {
  843. return seq_open(file, &input_handlers_seq_ops);
  844. }
  845. static const struct file_operations input_handlers_fileops = {
  846. .owner = THIS_MODULE,
  847. .open = input_proc_handlers_open,
  848. .read = seq_read,
  849. .llseek = seq_lseek,
  850. .release = seq_release,
  851. };
  852. static int __init input_proc_init(void)
  853. {
  854. struct proc_dir_entry *entry;
  855. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  856. if (!proc_bus_input_dir)
  857. return -ENOMEM;
  858. entry = proc_create("devices", 0, proc_bus_input_dir,
  859. &input_devices_fileops);
  860. if (!entry)
  861. goto fail1;
  862. entry = proc_create("handlers", 0, proc_bus_input_dir,
  863. &input_handlers_fileops);
  864. if (!entry)
  865. goto fail2;
  866. return 0;
  867. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  868. fail1: remove_proc_entry("bus/input", NULL);
  869. return -ENOMEM;
  870. }
  871. static void input_proc_exit(void)
  872. {
  873. remove_proc_entry("devices", proc_bus_input_dir);
  874. remove_proc_entry("handlers", proc_bus_input_dir);
  875. remove_proc_entry("bus/input", NULL);
  876. }
  877. #else /* !CONFIG_PROC_FS */
  878. static inline void input_wakeup_procfs_readers(void) { }
  879. static inline int input_proc_init(void) { return 0; }
  880. static inline void input_proc_exit(void) { }
  881. #endif
  882. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  883. static ssize_t input_dev_show_##name(struct device *dev, \
  884. struct device_attribute *attr, \
  885. char *buf) \
  886. { \
  887. struct input_dev *input_dev = to_input_dev(dev); \
  888. \
  889. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  890. input_dev->name ? input_dev->name : ""); \
  891. } \
  892. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  893. INPUT_DEV_STRING_ATTR_SHOW(name);
  894. INPUT_DEV_STRING_ATTR_SHOW(phys);
  895. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  896. static int input_print_modalias_bits(char *buf, int size,
  897. char name, unsigned long *bm,
  898. unsigned int min_bit, unsigned int max_bit)
  899. {
  900. int len = 0, i;
  901. len += snprintf(buf, max(size, 0), "%c", name);
  902. for (i = min_bit; i < max_bit; i++)
  903. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  904. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  905. return len;
  906. }
  907. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  908. int add_cr)
  909. {
  910. int len;
  911. len = snprintf(buf, max(size, 0),
  912. "input:b%04Xv%04Xp%04Xe%04X-",
  913. id->id.bustype, id->id.vendor,
  914. id->id.product, id->id.version);
  915. len += input_print_modalias_bits(buf + len, size - len,
  916. 'e', id->evbit, 0, EV_MAX);
  917. len += input_print_modalias_bits(buf + len, size - len,
  918. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  919. len += input_print_modalias_bits(buf + len, size - len,
  920. 'r', id->relbit, 0, REL_MAX);
  921. len += input_print_modalias_bits(buf + len, size - len,
  922. 'a', id->absbit, 0, ABS_MAX);
  923. len += input_print_modalias_bits(buf + len, size - len,
  924. 'm', id->mscbit, 0, MSC_MAX);
  925. len += input_print_modalias_bits(buf + len, size - len,
  926. 'l', id->ledbit, 0, LED_MAX);
  927. len += input_print_modalias_bits(buf + len, size - len,
  928. 's', id->sndbit, 0, SND_MAX);
  929. len += input_print_modalias_bits(buf + len, size - len,
  930. 'f', id->ffbit, 0, FF_MAX);
  931. len += input_print_modalias_bits(buf + len, size - len,
  932. 'w', id->swbit, 0, SW_MAX);
  933. if (add_cr)
  934. len += snprintf(buf + len, max(size - len, 0), "\n");
  935. return len;
  936. }
  937. static ssize_t input_dev_show_modalias(struct device *dev,
  938. struct device_attribute *attr,
  939. char *buf)
  940. {
  941. struct input_dev *id = to_input_dev(dev);
  942. ssize_t len;
  943. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  944. return min_t(int, len, PAGE_SIZE);
  945. }
  946. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  947. static struct attribute *input_dev_attrs[] = {
  948. &dev_attr_name.attr,
  949. &dev_attr_phys.attr,
  950. &dev_attr_uniq.attr,
  951. &dev_attr_modalias.attr,
  952. NULL
  953. };
  954. static struct attribute_group input_dev_attr_group = {
  955. .attrs = input_dev_attrs,
  956. };
  957. #define INPUT_DEV_ID_ATTR(name) \
  958. static ssize_t input_dev_show_id_##name(struct device *dev, \
  959. struct device_attribute *attr, \
  960. char *buf) \
  961. { \
  962. struct input_dev *input_dev = to_input_dev(dev); \
  963. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  964. } \
  965. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  966. INPUT_DEV_ID_ATTR(bustype);
  967. INPUT_DEV_ID_ATTR(vendor);
  968. INPUT_DEV_ID_ATTR(product);
  969. INPUT_DEV_ID_ATTR(version);
  970. static struct attribute *input_dev_id_attrs[] = {
  971. &dev_attr_bustype.attr,
  972. &dev_attr_vendor.attr,
  973. &dev_attr_product.attr,
  974. &dev_attr_version.attr,
  975. NULL
  976. };
  977. static struct attribute_group input_dev_id_attr_group = {
  978. .name = "id",
  979. .attrs = input_dev_id_attrs,
  980. };
  981. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  982. int max, int add_cr)
  983. {
  984. int i;
  985. int len = 0;
  986. bool skip_empty = true;
  987. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  988. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  989. bitmap[i], skip_empty);
  990. if (len) {
  991. skip_empty = false;
  992. if (i > 0)
  993. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  994. }
  995. }
  996. /*
  997. * If no output was produced print a single 0.
  998. */
  999. if (len == 0)
  1000. len = snprintf(buf, buf_size, "%d", 0);
  1001. if (add_cr)
  1002. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  1003. return len;
  1004. }
  1005. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1006. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1007. struct device_attribute *attr, \
  1008. char *buf) \
  1009. { \
  1010. struct input_dev *input_dev = to_input_dev(dev); \
  1011. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1012. input_dev->bm##bit, ev##_MAX, \
  1013. true); \
  1014. return min_t(int, len, PAGE_SIZE); \
  1015. } \
  1016. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1017. INPUT_DEV_CAP_ATTR(EV, ev);
  1018. INPUT_DEV_CAP_ATTR(KEY, key);
  1019. INPUT_DEV_CAP_ATTR(REL, rel);
  1020. INPUT_DEV_CAP_ATTR(ABS, abs);
  1021. INPUT_DEV_CAP_ATTR(MSC, msc);
  1022. INPUT_DEV_CAP_ATTR(LED, led);
  1023. INPUT_DEV_CAP_ATTR(SND, snd);
  1024. INPUT_DEV_CAP_ATTR(FF, ff);
  1025. INPUT_DEV_CAP_ATTR(SW, sw);
  1026. static struct attribute *input_dev_caps_attrs[] = {
  1027. &dev_attr_ev.attr,
  1028. &dev_attr_key.attr,
  1029. &dev_attr_rel.attr,
  1030. &dev_attr_abs.attr,
  1031. &dev_attr_msc.attr,
  1032. &dev_attr_led.attr,
  1033. &dev_attr_snd.attr,
  1034. &dev_attr_ff.attr,
  1035. &dev_attr_sw.attr,
  1036. NULL
  1037. };
  1038. static struct attribute_group input_dev_caps_attr_group = {
  1039. .name = "capabilities",
  1040. .attrs = input_dev_caps_attrs,
  1041. };
  1042. static const struct attribute_group *input_dev_attr_groups[] = {
  1043. &input_dev_attr_group,
  1044. &input_dev_id_attr_group,
  1045. &input_dev_caps_attr_group,
  1046. NULL
  1047. };
  1048. static void input_dev_release(struct device *device)
  1049. {
  1050. struct input_dev *dev = to_input_dev(device);
  1051. input_ff_destroy(dev);
  1052. kfree(dev);
  1053. module_put(THIS_MODULE);
  1054. }
  1055. /*
  1056. * Input uevent interface - loading event handlers based on
  1057. * device bitfields.
  1058. */
  1059. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1060. const char *name, unsigned long *bitmap, int max)
  1061. {
  1062. int len;
  1063. if (add_uevent_var(env, "%s=", name))
  1064. return -ENOMEM;
  1065. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1066. sizeof(env->buf) - env->buflen,
  1067. bitmap, max, false);
  1068. if (len >= (sizeof(env->buf) - env->buflen))
  1069. return -ENOMEM;
  1070. env->buflen += len;
  1071. return 0;
  1072. }
  1073. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1074. struct input_dev *dev)
  1075. {
  1076. int len;
  1077. if (add_uevent_var(env, "MODALIAS="))
  1078. return -ENOMEM;
  1079. len = input_print_modalias(&env->buf[env->buflen - 1],
  1080. sizeof(env->buf) - env->buflen,
  1081. dev, 0);
  1082. if (len >= (sizeof(env->buf) - env->buflen))
  1083. return -ENOMEM;
  1084. env->buflen += len;
  1085. return 0;
  1086. }
  1087. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1088. do { \
  1089. int err = add_uevent_var(env, fmt, val); \
  1090. if (err) \
  1091. return err; \
  1092. } while (0)
  1093. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1094. do { \
  1095. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1096. if (err) \
  1097. return err; \
  1098. } while (0)
  1099. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1100. do { \
  1101. int err = input_add_uevent_modalias_var(env, dev); \
  1102. if (err) \
  1103. return err; \
  1104. } while (0)
  1105. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1106. {
  1107. struct input_dev *dev = to_input_dev(device);
  1108. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1109. dev->id.bustype, dev->id.vendor,
  1110. dev->id.product, dev->id.version);
  1111. if (dev->name)
  1112. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1113. if (dev->phys)
  1114. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1115. if (dev->uniq)
  1116. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1117. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1118. if (test_bit(EV_KEY, dev->evbit))
  1119. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1120. if (test_bit(EV_REL, dev->evbit))
  1121. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1122. if (test_bit(EV_ABS, dev->evbit))
  1123. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1124. if (test_bit(EV_MSC, dev->evbit))
  1125. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1126. if (test_bit(EV_LED, dev->evbit))
  1127. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1128. if (test_bit(EV_SND, dev->evbit))
  1129. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1130. if (test_bit(EV_FF, dev->evbit))
  1131. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1132. if (test_bit(EV_SW, dev->evbit))
  1133. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1134. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1135. return 0;
  1136. }
  1137. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1138. do { \
  1139. int i; \
  1140. bool active; \
  1141. \
  1142. if (!test_bit(EV_##type, dev->evbit)) \
  1143. break; \
  1144. \
  1145. for (i = 0; i < type##_MAX; i++) { \
  1146. if (!test_bit(i, dev->bits##bit)) \
  1147. continue; \
  1148. \
  1149. active = test_bit(i, dev->bits); \
  1150. if (!active && !on) \
  1151. continue; \
  1152. \
  1153. dev->event(dev, EV_##type, i, on ? active : 0); \
  1154. } \
  1155. } while (0)
  1156. #ifdef CONFIG_PM
  1157. static void input_dev_reset(struct input_dev *dev, bool activate)
  1158. {
  1159. if (!dev->event)
  1160. return;
  1161. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1162. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1163. if (activate && test_bit(EV_REP, dev->evbit)) {
  1164. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1165. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1166. }
  1167. }
  1168. static int input_dev_suspend(struct device *dev)
  1169. {
  1170. struct input_dev *input_dev = to_input_dev(dev);
  1171. mutex_lock(&input_dev->mutex);
  1172. input_dev_reset(input_dev, false);
  1173. mutex_unlock(&input_dev->mutex);
  1174. return 0;
  1175. }
  1176. static int input_dev_resume(struct device *dev)
  1177. {
  1178. struct input_dev *input_dev = to_input_dev(dev);
  1179. mutex_lock(&input_dev->mutex);
  1180. input_dev_reset(input_dev, true);
  1181. mutex_unlock(&input_dev->mutex);
  1182. return 0;
  1183. }
  1184. static const struct dev_pm_ops input_dev_pm_ops = {
  1185. .suspend = input_dev_suspend,
  1186. .resume = input_dev_resume,
  1187. .poweroff = input_dev_suspend,
  1188. .restore = input_dev_resume,
  1189. };
  1190. #endif /* CONFIG_PM */
  1191. static struct device_type input_dev_type = {
  1192. .groups = input_dev_attr_groups,
  1193. .release = input_dev_release,
  1194. .uevent = input_dev_uevent,
  1195. #ifdef CONFIG_PM
  1196. .pm = &input_dev_pm_ops,
  1197. #endif
  1198. };
  1199. static char *input_devnode(struct device *dev, mode_t *mode)
  1200. {
  1201. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1202. }
  1203. struct class input_class = {
  1204. .name = "input",
  1205. .devnode = input_devnode,
  1206. };
  1207. EXPORT_SYMBOL_GPL(input_class);
  1208. /**
  1209. * input_allocate_device - allocate memory for new input device
  1210. *
  1211. * Returns prepared struct input_dev or NULL.
  1212. *
  1213. * NOTE: Use input_free_device() to free devices that have not been
  1214. * registered; input_unregister_device() should be used for already
  1215. * registered devices.
  1216. */
  1217. struct input_dev *input_allocate_device(void)
  1218. {
  1219. struct input_dev *dev;
  1220. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1221. if (dev) {
  1222. dev->dev.type = &input_dev_type;
  1223. dev->dev.class = &input_class;
  1224. device_initialize(&dev->dev);
  1225. mutex_init(&dev->mutex);
  1226. spin_lock_init(&dev->event_lock);
  1227. INIT_LIST_HEAD(&dev->h_list);
  1228. INIT_LIST_HEAD(&dev->node);
  1229. __module_get(THIS_MODULE);
  1230. }
  1231. return dev;
  1232. }
  1233. EXPORT_SYMBOL(input_allocate_device);
  1234. /**
  1235. * input_free_device - free memory occupied by input_dev structure
  1236. * @dev: input device to free
  1237. *
  1238. * This function should only be used if input_register_device()
  1239. * was not called yet or if it failed. Once device was registered
  1240. * use input_unregister_device() and memory will be freed once last
  1241. * reference to the device is dropped.
  1242. *
  1243. * Device should be allocated by input_allocate_device().
  1244. *
  1245. * NOTE: If there are references to the input device then memory
  1246. * will not be freed until last reference is dropped.
  1247. */
  1248. void input_free_device(struct input_dev *dev)
  1249. {
  1250. if (dev)
  1251. input_put_device(dev);
  1252. }
  1253. EXPORT_SYMBOL(input_free_device);
  1254. /**
  1255. * input_set_capability - mark device as capable of a certain event
  1256. * @dev: device that is capable of emitting or accepting event
  1257. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1258. * @code: event code
  1259. *
  1260. * In addition to setting up corresponding bit in appropriate capability
  1261. * bitmap the function also adjusts dev->evbit.
  1262. */
  1263. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1264. {
  1265. switch (type) {
  1266. case EV_KEY:
  1267. __set_bit(code, dev->keybit);
  1268. break;
  1269. case EV_REL:
  1270. __set_bit(code, dev->relbit);
  1271. break;
  1272. case EV_ABS:
  1273. __set_bit(code, dev->absbit);
  1274. break;
  1275. case EV_MSC:
  1276. __set_bit(code, dev->mscbit);
  1277. break;
  1278. case EV_SW:
  1279. __set_bit(code, dev->swbit);
  1280. break;
  1281. case EV_LED:
  1282. __set_bit(code, dev->ledbit);
  1283. break;
  1284. case EV_SND:
  1285. __set_bit(code, dev->sndbit);
  1286. break;
  1287. case EV_FF:
  1288. __set_bit(code, dev->ffbit);
  1289. break;
  1290. case EV_PWR:
  1291. /* do nothing */
  1292. break;
  1293. default:
  1294. printk(KERN_ERR
  1295. "input_set_capability: unknown type %u (code %u)\n",
  1296. type, code);
  1297. dump_stack();
  1298. return;
  1299. }
  1300. __set_bit(type, dev->evbit);
  1301. }
  1302. EXPORT_SYMBOL(input_set_capability);
  1303. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1304. do { \
  1305. if (!test_bit(EV_##type, dev->evbit)) \
  1306. memset(dev->bits##bit, 0, \
  1307. sizeof(dev->bits##bit)); \
  1308. } while (0)
  1309. static void input_cleanse_bitmasks(struct input_dev *dev)
  1310. {
  1311. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1312. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1313. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1314. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1315. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1316. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1317. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1318. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1319. }
  1320. /**
  1321. * input_register_device - register device with input core
  1322. * @dev: device to be registered
  1323. *
  1324. * This function registers device with input core. The device must be
  1325. * allocated with input_allocate_device() and all it's capabilities
  1326. * set up before registering.
  1327. * If function fails the device must be freed with input_free_device().
  1328. * Once device has been successfully registered it can be unregistered
  1329. * with input_unregister_device(); input_free_device() should not be
  1330. * called in this case.
  1331. */
  1332. int input_register_device(struct input_dev *dev)
  1333. {
  1334. static atomic_t input_no = ATOMIC_INIT(0);
  1335. struct input_handler *handler;
  1336. const char *path;
  1337. int error;
  1338. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1339. __set_bit(EV_SYN, dev->evbit);
  1340. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1341. __clear_bit(KEY_RESERVED, dev->keybit);
  1342. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1343. input_cleanse_bitmasks(dev);
  1344. /*
  1345. * If delay and period are pre-set by the driver, then autorepeating
  1346. * is handled by the driver itself and we don't do it in input.c.
  1347. */
  1348. init_timer(&dev->timer);
  1349. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1350. dev->timer.data = (long) dev;
  1351. dev->timer.function = input_repeat_key;
  1352. dev->rep[REP_DELAY] = 250;
  1353. dev->rep[REP_PERIOD] = 33;
  1354. }
  1355. if (!dev->getkeycode)
  1356. dev->getkeycode = input_default_getkeycode;
  1357. if (!dev->setkeycode)
  1358. dev->setkeycode = input_default_setkeycode;
  1359. dev_set_name(&dev->dev, "input%ld",
  1360. (unsigned long) atomic_inc_return(&input_no) - 1);
  1361. error = device_add(&dev->dev);
  1362. if (error)
  1363. return error;
  1364. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1365. printk(KERN_INFO "input: %s as %s\n",
  1366. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1367. kfree(path);
  1368. error = mutex_lock_interruptible(&input_mutex);
  1369. if (error) {
  1370. device_del(&dev->dev);
  1371. return error;
  1372. }
  1373. list_add_tail(&dev->node, &input_dev_list);
  1374. list_for_each_entry(handler, &input_handler_list, node)
  1375. input_attach_handler(dev, handler);
  1376. input_wakeup_procfs_readers();
  1377. mutex_unlock(&input_mutex);
  1378. return 0;
  1379. }
  1380. EXPORT_SYMBOL(input_register_device);
  1381. /**
  1382. * input_unregister_device - unregister previously registered device
  1383. * @dev: device to be unregistered
  1384. *
  1385. * This function unregisters an input device. Once device is unregistered
  1386. * the caller should not try to access it as it may get freed at any moment.
  1387. */
  1388. void input_unregister_device(struct input_dev *dev)
  1389. {
  1390. struct input_handle *handle, *next;
  1391. input_disconnect_device(dev);
  1392. mutex_lock(&input_mutex);
  1393. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1394. handle->handler->disconnect(handle);
  1395. WARN_ON(!list_empty(&dev->h_list));
  1396. del_timer_sync(&dev->timer);
  1397. list_del_init(&dev->node);
  1398. input_wakeup_procfs_readers();
  1399. mutex_unlock(&input_mutex);
  1400. device_unregister(&dev->dev);
  1401. }
  1402. EXPORT_SYMBOL(input_unregister_device);
  1403. /**
  1404. * input_register_handler - register a new input handler
  1405. * @handler: handler to be registered
  1406. *
  1407. * This function registers a new input handler (interface) for input
  1408. * devices in the system and attaches it to all input devices that
  1409. * are compatible with the handler.
  1410. */
  1411. int input_register_handler(struct input_handler *handler)
  1412. {
  1413. struct input_dev *dev;
  1414. int retval;
  1415. retval = mutex_lock_interruptible(&input_mutex);
  1416. if (retval)
  1417. return retval;
  1418. INIT_LIST_HEAD(&handler->h_list);
  1419. if (handler->fops != NULL) {
  1420. if (input_table[handler->minor >> 5]) {
  1421. retval = -EBUSY;
  1422. goto out;
  1423. }
  1424. input_table[handler->minor >> 5] = handler;
  1425. }
  1426. list_add_tail(&handler->node, &input_handler_list);
  1427. list_for_each_entry(dev, &input_dev_list, node)
  1428. input_attach_handler(dev, handler);
  1429. input_wakeup_procfs_readers();
  1430. out:
  1431. mutex_unlock(&input_mutex);
  1432. return retval;
  1433. }
  1434. EXPORT_SYMBOL(input_register_handler);
  1435. /**
  1436. * input_unregister_handler - unregisters an input handler
  1437. * @handler: handler to be unregistered
  1438. *
  1439. * This function disconnects a handler from its input devices and
  1440. * removes it from lists of known handlers.
  1441. */
  1442. void input_unregister_handler(struct input_handler *handler)
  1443. {
  1444. struct input_handle *handle, *next;
  1445. mutex_lock(&input_mutex);
  1446. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1447. handler->disconnect(handle);
  1448. WARN_ON(!list_empty(&handler->h_list));
  1449. list_del_init(&handler->node);
  1450. if (handler->fops != NULL)
  1451. input_table[handler->minor >> 5] = NULL;
  1452. input_wakeup_procfs_readers();
  1453. mutex_unlock(&input_mutex);
  1454. }
  1455. EXPORT_SYMBOL(input_unregister_handler);
  1456. /**
  1457. * input_handler_for_each_handle - handle iterator
  1458. * @handler: input handler to iterate
  1459. * @data: data for the callback
  1460. * @fn: function to be called for each handle
  1461. *
  1462. * Iterate over @bus's list of devices, and call @fn for each, passing
  1463. * it @data and stop when @fn returns a non-zero value. The function is
  1464. * using RCU to traverse the list and therefore may be usind in atonic
  1465. * contexts. The @fn callback is invoked from RCU critical section and
  1466. * thus must not sleep.
  1467. */
  1468. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1469. int (*fn)(struct input_handle *, void *))
  1470. {
  1471. struct input_handle *handle;
  1472. int retval = 0;
  1473. rcu_read_lock();
  1474. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1475. retval = fn(handle, data);
  1476. if (retval)
  1477. break;
  1478. }
  1479. rcu_read_unlock();
  1480. return retval;
  1481. }
  1482. EXPORT_SYMBOL(input_handler_for_each_handle);
  1483. /**
  1484. * input_register_handle - register a new input handle
  1485. * @handle: handle to register
  1486. *
  1487. * This function puts a new input handle onto device's
  1488. * and handler's lists so that events can flow through
  1489. * it once it is opened using input_open_device().
  1490. *
  1491. * This function is supposed to be called from handler's
  1492. * connect() method.
  1493. */
  1494. int input_register_handle(struct input_handle *handle)
  1495. {
  1496. struct input_handler *handler = handle->handler;
  1497. struct input_dev *dev = handle->dev;
  1498. int error;
  1499. /*
  1500. * We take dev->mutex here to prevent race with
  1501. * input_release_device().
  1502. */
  1503. error = mutex_lock_interruptible(&dev->mutex);
  1504. if (error)
  1505. return error;
  1506. /*
  1507. * Filters go to the head of the list, normal handlers
  1508. * to the tail.
  1509. */
  1510. if (handler->filter)
  1511. list_add_rcu(&handle->d_node, &dev->h_list);
  1512. else
  1513. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1514. mutex_unlock(&dev->mutex);
  1515. /*
  1516. * Since we are supposed to be called from ->connect()
  1517. * which is mutually exclusive with ->disconnect()
  1518. * we can't be racing with input_unregister_handle()
  1519. * and so separate lock is not needed here.
  1520. */
  1521. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1522. if (handler->start)
  1523. handler->start(handle);
  1524. return 0;
  1525. }
  1526. EXPORT_SYMBOL(input_register_handle);
  1527. /**
  1528. * input_unregister_handle - unregister an input handle
  1529. * @handle: handle to unregister
  1530. *
  1531. * This function removes input handle from device's
  1532. * and handler's lists.
  1533. *
  1534. * This function is supposed to be called from handler's
  1535. * disconnect() method.
  1536. */
  1537. void input_unregister_handle(struct input_handle *handle)
  1538. {
  1539. struct input_dev *dev = handle->dev;
  1540. list_del_rcu(&handle->h_node);
  1541. /*
  1542. * Take dev->mutex to prevent race with input_release_device().
  1543. */
  1544. mutex_lock(&dev->mutex);
  1545. list_del_rcu(&handle->d_node);
  1546. mutex_unlock(&dev->mutex);
  1547. synchronize_rcu();
  1548. }
  1549. EXPORT_SYMBOL(input_unregister_handle);
  1550. static int input_open_file(struct inode *inode, struct file *file)
  1551. {
  1552. struct input_handler *handler;
  1553. const struct file_operations *old_fops, *new_fops = NULL;
  1554. int err;
  1555. err = mutex_lock_interruptible(&input_mutex);
  1556. if (err)
  1557. return err;
  1558. /* No load-on-demand here? */
  1559. handler = input_table[iminor(inode) >> 5];
  1560. if (handler)
  1561. new_fops = fops_get(handler->fops);
  1562. mutex_unlock(&input_mutex);
  1563. /*
  1564. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1565. * not "no device". Oh, well...
  1566. */
  1567. if (!new_fops || !new_fops->open) {
  1568. fops_put(new_fops);
  1569. err = -ENODEV;
  1570. goto out;
  1571. }
  1572. old_fops = file->f_op;
  1573. file->f_op = new_fops;
  1574. err = new_fops->open(inode, file);
  1575. if (err) {
  1576. fops_put(file->f_op);
  1577. file->f_op = fops_get(old_fops);
  1578. }
  1579. fops_put(old_fops);
  1580. out:
  1581. return err;
  1582. }
  1583. static const struct file_operations input_fops = {
  1584. .owner = THIS_MODULE,
  1585. .open = input_open_file,
  1586. };
  1587. static void __init input_init_abs_bypass(void)
  1588. {
  1589. const unsigned int *p;
  1590. for (p = input_abs_bypass_init_data; *p; p++)
  1591. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1592. }
  1593. static int __init input_init(void)
  1594. {
  1595. int err;
  1596. input_init_abs_bypass();
  1597. err = class_register(&input_class);
  1598. if (err) {
  1599. printk(KERN_ERR "input: unable to register input_dev class\n");
  1600. return err;
  1601. }
  1602. err = input_proc_init();
  1603. if (err)
  1604. goto fail1;
  1605. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1606. if (err) {
  1607. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1608. goto fail2;
  1609. }
  1610. return 0;
  1611. fail2: input_proc_exit();
  1612. fail1: class_unregister(&input_class);
  1613. return err;
  1614. }
  1615. static void __exit input_exit(void)
  1616. {
  1617. input_proc_exit();
  1618. unregister_chrdev(INPUT_MAJOR, "input");
  1619. class_unregister(&input_class);
  1620. }
  1621. subsys_initcall(input_init);
  1622. module_exit(input_exit);