book3s_mmu_hpte.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. /*
  2. * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved.
  3. *
  4. * Authors:
  5. * Alexander Graf <agraf@suse.de>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License, version 2, as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  19. */
  20. #include <linux/kvm_host.h>
  21. #include <linux/hash.h>
  22. #include <linux/slab.h>
  23. #include <asm/kvm_ppc.h>
  24. #include <asm/kvm_book3s.h>
  25. #include <asm/machdep.h>
  26. #include <asm/mmu_context.h>
  27. #include <asm/hw_irq.h>
  28. #define PTE_SIZE 12
  29. /* #define DEBUG_MMU */
  30. #ifdef DEBUG_MMU
  31. #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
  32. #else
  33. #define dprintk_mmu(a, ...) do { } while(0)
  34. #endif
  35. static struct kmem_cache *hpte_cache;
  36. static inline u64 kvmppc_mmu_hash_pte(u64 eaddr)
  37. {
  38. return hash_64(eaddr >> PTE_SIZE, HPTEG_HASH_BITS_PTE);
  39. }
  40. static inline u64 kvmppc_mmu_hash_vpte(u64 vpage)
  41. {
  42. return hash_64(vpage & 0xfffffffffULL, HPTEG_HASH_BITS_VPTE);
  43. }
  44. static inline u64 kvmppc_mmu_hash_vpte_long(u64 vpage)
  45. {
  46. return hash_64((vpage & 0xffffff000ULL) >> 12,
  47. HPTEG_HASH_BITS_VPTE_LONG);
  48. }
  49. void kvmppc_mmu_hpte_cache_map(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
  50. {
  51. u64 index;
  52. spin_lock(&vcpu->arch.mmu_lock);
  53. /* Add to ePTE list */
  54. index = kvmppc_mmu_hash_pte(pte->pte.eaddr);
  55. hlist_add_head_rcu(&pte->list_pte, &vcpu->arch.hpte_hash_pte[index]);
  56. /* Add to vPTE list */
  57. index = kvmppc_mmu_hash_vpte(pte->pte.vpage);
  58. hlist_add_head_rcu(&pte->list_vpte, &vcpu->arch.hpte_hash_vpte[index]);
  59. /* Add to vPTE_long list */
  60. index = kvmppc_mmu_hash_vpte_long(pte->pte.vpage);
  61. hlist_add_head_rcu(&pte->list_vpte_long,
  62. &vcpu->arch.hpte_hash_vpte_long[index]);
  63. spin_unlock(&vcpu->arch.mmu_lock);
  64. }
  65. static void free_pte_rcu(struct rcu_head *head)
  66. {
  67. struct hpte_cache *pte = container_of(head, struct hpte_cache, rcu_head);
  68. kmem_cache_free(hpte_cache, pte);
  69. }
  70. static void invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
  71. {
  72. /* pte already invalidated? */
  73. if (hlist_unhashed(&pte->list_pte))
  74. return;
  75. dprintk_mmu("KVM: Flushing SPT: 0x%lx (0x%llx) -> 0x%llx\n",
  76. pte->pte.eaddr, pte->pte.vpage, pte->host_va);
  77. /* Different for 32 and 64 bit */
  78. kvmppc_mmu_invalidate_pte(vcpu, pte);
  79. spin_lock(&vcpu->arch.mmu_lock);
  80. hlist_del_init_rcu(&pte->list_pte);
  81. hlist_del_init_rcu(&pte->list_vpte);
  82. hlist_del_init_rcu(&pte->list_vpte_long);
  83. spin_unlock(&vcpu->arch.mmu_lock);
  84. if (pte->pte.may_write)
  85. kvm_release_pfn_dirty(pte->pfn);
  86. else
  87. kvm_release_pfn_clean(pte->pfn);
  88. vcpu->arch.hpte_cache_count--;
  89. call_rcu(&pte->rcu_head, free_pte_rcu);
  90. }
  91. static void kvmppc_mmu_pte_flush_all(struct kvm_vcpu *vcpu)
  92. {
  93. struct hpte_cache *pte;
  94. struct hlist_node *node;
  95. int i;
  96. rcu_read_lock();
  97. for (i = 0; i < HPTEG_HASH_NUM_VPTE_LONG; i++) {
  98. struct hlist_head *list = &vcpu->arch.hpte_hash_vpte_long[i];
  99. hlist_for_each_entry_rcu(pte, node, list, list_vpte_long)
  100. invalidate_pte(vcpu, pte);
  101. }
  102. rcu_read_unlock();
  103. }
  104. static void kvmppc_mmu_pte_flush_page(struct kvm_vcpu *vcpu, ulong guest_ea)
  105. {
  106. struct hlist_head *list;
  107. struct hlist_node *node;
  108. struct hpte_cache *pte;
  109. /* Find the list of entries in the map */
  110. list = &vcpu->arch.hpte_hash_pte[kvmppc_mmu_hash_pte(guest_ea)];
  111. rcu_read_lock();
  112. /* Check the list for matching entries and invalidate */
  113. hlist_for_each_entry_rcu(pte, node, list, list_pte)
  114. if ((pte->pte.eaddr & ~0xfffUL) == guest_ea)
  115. invalidate_pte(vcpu, pte);
  116. rcu_read_unlock();
  117. }
  118. void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask)
  119. {
  120. u64 i;
  121. dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%lx & 0x%lx\n",
  122. vcpu->arch.hpte_cache_count, guest_ea, ea_mask);
  123. guest_ea &= ea_mask;
  124. switch (ea_mask) {
  125. case ~0xfffUL:
  126. kvmppc_mmu_pte_flush_page(vcpu, guest_ea);
  127. break;
  128. case 0x0ffff000:
  129. /* 32-bit flush w/o segment, go through all possible segments */
  130. for (i = 0; i < 0x100000000ULL; i += 0x10000000ULL)
  131. kvmppc_mmu_pte_flush(vcpu, guest_ea | i, ~0xfffUL);
  132. break;
  133. case 0:
  134. /* Doing a complete flush -> start from scratch */
  135. kvmppc_mmu_pte_flush_all(vcpu);
  136. break;
  137. default:
  138. WARN_ON(1);
  139. break;
  140. }
  141. }
  142. /* Flush with mask 0xfffffffff */
  143. static void kvmppc_mmu_pte_vflush_short(struct kvm_vcpu *vcpu, u64 guest_vp)
  144. {
  145. struct hlist_head *list;
  146. struct hlist_node *node;
  147. struct hpte_cache *pte;
  148. u64 vp_mask = 0xfffffffffULL;
  149. list = &vcpu->arch.hpte_hash_vpte[kvmppc_mmu_hash_vpte(guest_vp)];
  150. rcu_read_lock();
  151. /* Check the list for matching entries and invalidate */
  152. hlist_for_each_entry_rcu(pte, node, list, list_vpte)
  153. if ((pte->pte.vpage & vp_mask) == guest_vp)
  154. invalidate_pte(vcpu, pte);
  155. rcu_read_unlock();
  156. }
  157. /* Flush with mask 0xffffff000 */
  158. static void kvmppc_mmu_pte_vflush_long(struct kvm_vcpu *vcpu, u64 guest_vp)
  159. {
  160. struct hlist_head *list;
  161. struct hlist_node *node;
  162. struct hpte_cache *pte;
  163. u64 vp_mask = 0xffffff000ULL;
  164. list = &vcpu->arch.hpte_hash_vpte_long[
  165. kvmppc_mmu_hash_vpte_long(guest_vp)];
  166. rcu_read_lock();
  167. /* Check the list for matching entries and invalidate */
  168. hlist_for_each_entry_rcu(pte, node, list, list_vpte_long)
  169. if ((pte->pte.vpage & vp_mask) == guest_vp)
  170. invalidate_pte(vcpu, pte);
  171. rcu_read_unlock();
  172. }
  173. void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask)
  174. {
  175. dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n",
  176. vcpu->arch.hpte_cache_count, guest_vp, vp_mask);
  177. guest_vp &= vp_mask;
  178. switch(vp_mask) {
  179. case 0xfffffffffULL:
  180. kvmppc_mmu_pte_vflush_short(vcpu, guest_vp);
  181. break;
  182. case 0xffffff000ULL:
  183. kvmppc_mmu_pte_vflush_long(vcpu, guest_vp);
  184. break;
  185. default:
  186. WARN_ON(1);
  187. return;
  188. }
  189. }
  190. void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
  191. {
  192. struct hlist_node *node;
  193. struct hpte_cache *pte;
  194. int i;
  195. dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%lx - 0x%lx\n",
  196. vcpu->arch.hpte_cache_count, pa_start, pa_end);
  197. rcu_read_lock();
  198. for (i = 0; i < HPTEG_HASH_NUM_VPTE_LONG; i++) {
  199. struct hlist_head *list = &vcpu->arch.hpte_hash_vpte_long[i];
  200. hlist_for_each_entry_rcu(pte, node, list, list_vpte_long)
  201. if ((pte->pte.raddr >= pa_start) &&
  202. (pte->pte.raddr < pa_end))
  203. invalidate_pte(vcpu, pte);
  204. }
  205. rcu_read_unlock();
  206. }
  207. struct hpte_cache *kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu)
  208. {
  209. struct hpte_cache *pte;
  210. pte = kmem_cache_zalloc(hpte_cache, GFP_KERNEL);
  211. vcpu->arch.hpte_cache_count++;
  212. if (vcpu->arch.hpte_cache_count == HPTEG_CACHE_NUM)
  213. kvmppc_mmu_pte_flush_all(vcpu);
  214. return pte;
  215. }
  216. void kvmppc_mmu_hpte_destroy(struct kvm_vcpu *vcpu)
  217. {
  218. kvmppc_mmu_pte_flush(vcpu, 0, 0);
  219. }
  220. static void kvmppc_mmu_hpte_init_hash(struct hlist_head *hash_list, int len)
  221. {
  222. int i;
  223. for (i = 0; i < len; i++)
  224. INIT_HLIST_HEAD(&hash_list[i]);
  225. }
  226. int kvmppc_mmu_hpte_init(struct kvm_vcpu *vcpu)
  227. {
  228. /* init hpte lookup hashes */
  229. kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_pte,
  230. ARRAY_SIZE(vcpu->arch.hpte_hash_pte));
  231. kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_vpte,
  232. ARRAY_SIZE(vcpu->arch.hpte_hash_vpte));
  233. kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_vpte_long,
  234. ARRAY_SIZE(vcpu->arch.hpte_hash_vpte_long));
  235. spin_lock_init(&vcpu->arch.mmu_lock);
  236. return 0;
  237. }
  238. int kvmppc_mmu_hpte_sysinit(void)
  239. {
  240. /* init hpte slab cache */
  241. hpte_cache = kmem_cache_create("kvm-spt", sizeof(struct hpte_cache),
  242. sizeof(struct hpte_cache), 0, NULL);
  243. return 0;
  244. }
  245. void kvmppc_mmu_hpte_sysexit(void)
  246. {
  247. kmem_cache_destroy(hpte_cache);
  248. }