sched.c 213 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  100. * Timeslices get refilled after they expire.
  101. */
  102. #define DEF_TIMESLICE (100 * HZ / 1000)
  103. /*
  104. * single value that denotes runtime == period, ie unlimited time.
  105. */
  106. #define RUNTIME_INF ((u64)~0ULL)
  107. #ifdef CONFIG_SMP
  108. /*
  109. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  110. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  111. */
  112. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  113. {
  114. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  115. }
  116. /*
  117. * Each time a sched group cpu_power is changed,
  118. * we must compute its reciprocal value
  119. */
  120. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  121. {
  122. sg->__cpu_power += val;
  123. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  124. }
  125. #endif
  126. static inline int rt_policy(int policy)
  127. {
  128. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  129. return 1;
  130. return 0;
  131. }
  132. static inline int task_has_rt_policy(struct task_struct *p)
  133. {
  134. return rt_policy(p->policy);
  135. }
  136. /*
  137. * This is the priority-queue data structure of the RT scheduling class:
  138. */
  139. struct rt_prio_array {
  140. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  141. struct list_head queue[MAX_RT_PRIO];
  142. };
  143. struct rt_bandwidth {
  144. /* nests inside the rq lock: */
  145. spinlock_t rt_runtime_lock;
  146. ktime_t rt_period;
  147. u64 rt_runtime;
  148. struct hrtimer rt_period_timer;
  149. };
  150. static struct rt_bandwidth def_rt_bandwidth;
  151. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  152. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  153. {
  154. struct rt_bandwidth *rt_b =
  155. container_of(timer, struct rt_bandwidth, rt_period_timer);
  156. ktime_t now;
  157. int overrun;
  158. int idle = 0;
  159. for (;;) {
  160. now = hrtimer_cb_get_time(timer);
  161. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  162. if (!overrun)
  163. break;
  164. idle = do_sched_rt_period_timer(rt_b, overrun);
  165. }
  166. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  167. }
  168. static
  169. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  170. {
  171. rt_b->rt_period = ns_to_ktime(period);
  172. rt_b->rt_runtime = runtime;
  173. spin_lock_init(&rt_b->rt_runtime_lock);
  174. hrtimer_init(&rt_b->rt_period_timer,
  175. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  176. rt_b->rt_period_timer.function = sched_rt_period_timer;
  177. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  178. }
  179. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  180. {
  181. ktime_t now;
  182. if (rt_b->rt_runtime == RUNTIME_INF)
  183. return;
  184. if (hrtimer_active(&rt_b->rt_period_timer))
  185. return;
  186. spin_lock(&rt_b->rt_runtime_lock);
  187. for (;;) {
  188. if (hrtimer_active(&rt_b->rt_period_timer))
  189. break;
  190. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  191. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  192. hrtimer_start(&rt_b->rt_period_timer,
  193. rt_b->rt_period_timer.expires,
  194. HRTIMER_MODE_ABS);
  195. }
  196. spin_unlock(&rt_b->rt_runtime_lock);
  197. }
  198. #ifdef CONFIG_RT_GROUP_SCHED
  199. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  200. {
  201. hrtimer_cancel(&rt_b->rt_period_timer);
  202. }
  203. #endif
  204. /*
  205. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  206. * detach_destroy_domains and partition_sched_domains.
  207. */
  208. static DEFINE_MUTEX(sched_domains_mutex);
  209. #ifdef CONFIG_GROUP_SCHED
  210. #include <linux/cgroup.h>
  211. struct cfs_rq;
  212. static LIST_HEAD(task_groups);
  213. /* task group related information */
  214. struct task_group {
  215. #ifdef CONFIG_CGROUP_SCHED
  216. struct cgroup_subsys_state css;
  217. #endif
  218. #ifdef CONFIG_FAIR_GROUP_SCHED
  219. /* schedulable entities of this group on each cpu */
  220. struct sched_entity **se;
  221. /* runqueue "owned" by this group on each cpu */
  222. struct cfs_rq **cfs_rq;
  223. unsigned long shares;
  224. #endif
  225. #ifdef CONFIG_RT_GROUP_SCHED
  226. struct sched_rt_entity **rt_se;
  227. struct rt_rq **rt_rq;
  228. struct rt_bandwidth rt_bandwidth;
  229. #endif
  230. struct rcu_head rcu;
  231. struct list_head list;
  232. struct task_group *parent;
  233. struct list_head siblings;
  234. struct list_head children;
  235. };
  236. #ifdef CONFIG_USER_SCHED
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  248. #endif
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  252. #endif
  253. #else
  254. #define root_task_group init_task_group
  255. #endif
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. #ifdef CONFIG_USER_SCHED
  262. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  263. #else
  264. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  265. #endif
  266. /*
  267. * A weight of 0 or 1 can cause arithmetics problems.
  268. * A weight of a cfs_rq is the sum of weights of which entities
  269. * are queued on this cfs_rq, so a weight of a entity should not be
  270. * too large, so as the shares value of a task group.
  271. * (The default weight is 1024 - so there's no practical
  272. * limitation from this.)
  273. */
  274. #define MIN_SHARES 2
  275. #define MAX_SHARES (1UL << 18)
  276. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  277. #endif
  278. /* Default task group.
  279. * Every task in system belong to this group at bootup.
  280. */
  281. struct task_group init_task_group;
  282. /* return group to which a task belongs */
  283. static inline struct task_group *task_group(struct task_struct *p)
  284. {
  285. struct task_group *tg;
  286. #ifdef CONFIG_USER_SCHED
  287. tg = p->user->tg;
  288. #elif defined(CONFIG_CGROUP_SCHED)
  289. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  290. struct task_group, css);
  291. #else
  292. tg = &init_task_group;
  293. #endif
  294. return tg;
  295. }
  296. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  297. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  298. {
  299. #ifdef CONFIG_FAIR_GROUP_SCHED
  300. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  301. p->se.parent = task_group(p)->se[cpu];
  302. #endif
  303. #ifdef CONFIG_RT_GROUP_SCHED
  304. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  305. p->rt.parent = task_group(p)->rt_se[cpu];
  306. #endif
  307. }
  308. #else
  309. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  310. #endif /* CONFIG_GROUP_SCHED */
  311. /* CFS-related fields in a runqueue */
  312. struct cfs_rq {
  313. struct load_weight load;
  314. unsigned long nr_running;
  315. u64 exec_clock;
  316. u64 min_vruntime;
  317. struct rb_root tasks_timeline;
  318. struct rb_node *rb_leftmost;
  319. struct list_head tasks;
  320. struct list_head *balance_iterator;
  321. /*
  322. * 'curr' points to currently running entity on this cfs_rq.
  323. * It is set to NULL otherwise (i.e when none are currently running).
  324. */
  325. struct sched_entity *curr, *next;
  326. unsigned long nr_spread_over;
  327. #ifdef CONFIG_FAIR_GROUP_SCHED
  328. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  329. /*
  330. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  331. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  332. * (like users, containers etc.)
  333. *
  334. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  335. * list is used during load balance.
  336. */
  337. struct list_head leaf_cfs_rq_list;
  338. struct task_group *tg; /* group that "owns" this runqueue */
  339. #endif
  340. };
  341. /* Real-Time classes' related field in a runqueue: */
  342. struct rt_rq {
  343. struct rt_prio_array active;
  344. unsigned long rt_nr_running;
  345. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  346. int highest_prio; /* highest queued rt task prio */
  347. #endif
  348. #ifdef CONFIG_SMP
  349. unsigned long rt_nr_migratory;
  350. int overloaded;
  351. #endif
  352. int rt_throttled;
  353. u64 rt_time;
  354. u64 rt_runtime;
  355. /* Nests inside the rq lock: */
  356. spinlock_t rt_runtime_lock;
  357. #ifdef CONFIG_RT_GROUP_SCHED
  358. unsigned long rt_nr_boosted;
  359. struct rq *rq;
  360. struct list_head leaf_rt_rq_list;
  361. struct task_group *tg;
  362. struct sched_rt_entity *rt_se;
  363. #endif
  364. };
  365. #ifdef CONFIG_SMP
  366. /*
  367. * We add the notion of a root-domain which will be used to define per-domain
  368. * variables. Each exclusive cpuset essentially defines an island domain by
  369. * fully partitioning the member cpus from any other cpuset. Whenever a new
  370. * exclusive cpuset is created, we also create and attach a new root-domain
  371. * object.
  372. *
  373. */
  374. struct root_domain {
  375. atomic_t refcount;
  376. cpumask_t span;
  377. cpumask_t online;
  378. /*
  379. * The "RT overload" flag: it gets set if a CPU has more than
  380. * one runnable RT task.
  381. */
  382. cpumask_t rto_mask;
  383. atomic_t rto_count;
  384. };
  385. /*
  386. * By default the system creates a single root-domain with all cpus as
  387. * members (mimicking the global state we have today).
  388. */
  389. static struct root_domain def_root_domain;
  390. #endif
  391. /*
  392. * This is the main, per-CPU runqueue data structure.
  393. *
  394. * Locking rule: those places that want to lock multiple runqueues
  395. * (such as the load balancing or the thread migration code), lock
  396. * acquire operations must be ordered by ascending &runqueue.
  397. */
  398. struct rq {
  399. /* runqueue lock: */
  400. spinlock_t lock;
  401. /*
  402. * nr_running and cpu_load should be in the same cacheline because
  403. * remote CPUs use both these fields when doing load calculation.
  404. */
  405. unsigned long nr_running;
  406. #define CPU_LOAD_IDX_MAX 5
  407. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  408. unsigned char idle_at_tick;
  409. #ifdef CONFIG_NO_HZ
  410. unsigned long last_tick_seen;
  411. unsigned char in_nohz_recently;
  412. #endif
  413. /* capture load from *all* tasks on this cpu: */
  414. struct load_weight load;
  415. unsigned long nr_load_updates;
  416. u64 nr_switches;
  417. struct cfs_rq cfs;
  418. struct rt_rq rt;
  419. #ifdef CONFIG_FAIR_GROUP_SCHED
  420. /* list of leaf cfs_rq on this cpu: */
  421. struct list_head leaf_cfs_rq_list;
  422. #endif
  423. #ifdef CONFIG_RT_GROUP_SCHED
  424. struct list_head leaf_rt_rq_list;
  425. #endif
  426. /*
  427. * This is part of a global counter where only the total sum
  428. * over all CPUs matters. A task can increase this counter on
  429. * one CPU and if it got migrated afterwards it may decrease
  430. * it on another CPU. Always updated under the runqueue lock:
  431. */
  432. unsigned long nr_uninterruptible;
  433. struct task_struct *curr, *idle;
  434. unsigned long next_balance;
  435. struct mm_struct *prev_mm;
  436. u64 clock;
  437. atomic_t nr_iowait;
  438. #ifdef CONFIG_SMP
  439. struct root_domain *rd;
  440. struct sched_domain *sd;
  441. /* For active balancing */
  442. int active_balance;
  443. int push_cpu;
  444. /* cpu of this runqueue: */
  445. int cpu;
  446. struct task_struct *migration_thread;
  447. struct list_head migration_queue;
  448. #endif
  449. #ifdef CONFIG_SCHED_HRTICK
  450. unsigned long hrtick_flags;
  451. ktime_t hrtick_expire;
  452. struct hrtimer hrtick_timer;
  453. #endif
  454. #ifdef CONFIG_SCHEDSTATS
  455. /* latency stats */
  456. struct sched_info rq_sched_info;
  457. /* sys_sched_yield() stats */
  458. unsigned int yld_exp_empty;
  459. unsigned int yld_act_empty;
  460. unsigned int yld_both_empty;
  461. unsigned int yld_count;
  462. /* schedule() stats */
  463. unsigned int sched_switch;
  464. unsigned int sched_count;
  465. unsigned int sched_goidle;
  466. /* try_to_wake_up() stats */
  467. unsigned int ttwu_count;
  468. unsigned int ttwu_local;
  469. /* BKL stats */
  470. unsigned int bkl_count;
  471. #endif
  472. struct lock_class_key rq_lock_key;
  473. };
  474. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  475. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  476. {
  477. rq->curr->sched_class->check_preempt_curr(rq, p);
  478. }
  479. static inline int cpu_of(struct rq *rq)
  480. {
  481. #ifdef CONFIG_SMP
  482. return rq->cpu;
  483. #else
  484. return 0;
  485. #endif
  486. }
  487. /*
  488. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  489. * See detach_destroy_domains: synchronize_sched for details.
  490. *
  491. * The domain tree of any CPU may only be accessed from within
  492. * preempt-disabled sections.
  493. */
  494. #define for_each_domain(cpu, __sd) \
  495. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  496. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  497. #define this_rq() (&__get_cpu_var(runqueues))
  498. #define task_rq(p) cpu_rq(task_cpu(p))
  499. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  500. static inline void update_rq_clock(struct rq *rq)
  501. {
  502. rq->clock = sched_clock_cpu(cpu_of(rq));
  503. }
  504. /*
  505. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  506. */
  507. #ifdef CONFIG_SCHED_DEBUG
  508. # define const_debug __read_mostly
  509. #else
  510. # define const_debug static const
  511. #endif
  512. /*
  513. * Debugging: various feature bits
  514. */
  515. #define SCHED_FEAT(name, enabled) \
  516. __SCHED_FEAT_##name ,
  517. enum {
  518. #include "sched_features.h"
  519. };
  520. #undef SCHED_FEAT
  521. #define SCHED_FEAT(name, enabled) \
  522. (1UL << __SCHED_FEAT_##name) * enabled |
  523. const_debug unsigned int sysctl_sched_features =
  524. #include "sched_features.h"
  525. 0;
  526. #undef SCHED_FEAT
  527. #ifdef CONFIG_SCHED_DEBUG
  528. #define SCHED_FEAT(name, enabled) \
  529. #name ,
  530. static __read_mostly char *sched_feat_names[] = {
  531. #include "sched_features.h"
  532. NULL
  533. };
  534. #undef SCHED_FEAT
  535. static int sched_feat_open(struct inode *inode, struct file *filp)
  536. {
  537. filp->private_data = inode->i_private;
  538. return 0;
  539. }
  540. static ssize_t
  541. sched_feat_read(struct file *filp, char __user *ubuf,
  542. size_t cnt, loff_t *ppos)
  543. {
  544. char *buf;
  545. int r = 0;
  546. int len = 0;
  547. int i;
  548. for (i = 0; sched_feat_names[i]; i++) {
  549. len += strlen(sched_feat_names[i]);
  550. len += 4;
  551. }
  552. buf = kmalloc(len + 2, GFP_KERNEL);
  553. if (!buf)
  554. return -ENOMEM;
  555. for (i = 0; sched_feat_names[i]; i++) {
  556. if (sysctl_sched_features & (1UL << i))
  557. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  558. else
  559. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  560. }
  561. r += sprintf(buf + r, "\n");
  562. WARN_ON(r >= len + 2);
  563. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  564. kfree(buf);
  565. return r;
  566. }
  567. static ssize_t
  568. sched_feat_write(struct file *filp, const char __user *ubuf,
  569. size_t cnt, loff_t *ppos)
  570. {
  571. char buf[64];
  572. char *cmp = buf;
  573. int neg = 0;
  574. int i;
  575. if (cnt > 63)
  576. cnt = 63;
  577. if (copy_from_user(&buf, ubuf, cnt))
  578. return -EFAULT;
  579. buf[cnt] = 0;
  580. if (strncmp(buf, "NO_", 3) == 0) {
  581. neg = 1;
  582. cmp += 3;
  583. }
  584. for (i = 0; sched_feat_names[i]; i++) {
  585. int len = strlen(sched_feat_names[i]);
  586. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  587. if (neg)
  588. sysctl_sched_features &= ~(1UL << i);
  589. else
  590. sysctl_sched_features |= (1UL << i);
  591. break;
  592. }
  593. }
  594. if (!sched_feat_names[i])
  595. return -EINVAL;
  596. filp->f_pos += cnt;
  597. return cnt;
  598. }
  599. static struct file_operations sched_feat_fops = {
  600. .open = sched_feat_open,
  601. .read = sched_feat_read,
  602. .write = sched_feat_write,
  603. };
  604. static __init int sched_init_debug(void)
  605. {
  606. debugfs_create_file("sched_features", 0644, NULL, NULL,
  607. &sched_feat_fops);
  608. return 0;
  609. }
  610. late_initcall(sched_init_debug);
  611. #endif
  612. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  613. /*
  614. * Number of tasks to iterate in a single balance run.
  615. * Limited because this is done with IRQs disabled.
  616. */
  617. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  618. /*
  619. * period over which we measure -rt task cpu usage in us.
  620. * default: 1s
  621. */
  622. unsigned int sysctl_sched_rt_period = 1000000;
  623. static __read_mostly int scheduler_running;
  624. /*
  625. * part of the period that we allow rt tasks to run in us.
  626. * default: 0.95s
  627. */
  628. int sysctl_sched_rt_runtime = 950000;
  629. static inline u64 global_rt_period(void)
  630. {
  631. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  632. }
  633. static inline u64 global_rt_runtime(void)
  634. {
  635. if (sysctl_sched_rt_period < 0)
  636. return RUNTIME_INF;
  637. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  638. }
  639. unsigned long long time_sync_thresh = 100000;
  640. static DEFINE_PER_CPU(unsigned long long, time_offset);
  641. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  642. /*
  643. * Global lock which we take every now and then to synchronize
  644. * the CPUs time. This method is not warp-safe, but it's good
  645. * enough to synchronize slowly diverging time sources and thus
  646. * it's good enough for tracing:
  647. */
  648. static DEFINE_SPINLOCK(time_sync_lock);
  649. static unsigned long long prev_global_time;
  650. static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
  651. {
  652. /*
  653. * We want this inlined, to not get tracer function calls
  654. * in this critical section:
  655. */
  656. spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
  657. __raw_spin_lock(&time_sync_lock.raw_lock);
  658. if (time < prev_global_time) {
  659. per_cpu(time_offset, cpu) += prev_global_time - time;
  660. time = prev_global_time;
  661. } else {
  662. prev_global_time = time;
  663. }
  664. __raw_spin_unlock(&time_sync_lock.raw_lock);
  665. spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
  666. return time;
  667. }
  668. static unsigned long long __cpu_clock(int cpu)
  669. {
  670. unsigned long long now;
  671. /*
  672. * Only call sched_clock() if the scheduler has already been
  673. * initialized (some code might call cpu_clock() very early):
  674. */
  675. if (unlikely(!scheduler_running))
  676. return 0;
  677. now = sched_clock_cpu(cpu);
  678. return now;
  679. }
  680. /*
  681. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  682. * clock constructed from sched_clock():
  683. */
  684. unsigned long long cpu_clock(int cpu)
  685. {
  686. unsigned long long prev_cpu_time, time, delta_time;
  687. unsigned long flags;
  688. local_irq_save(flags);
  689. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  690. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  691. delta_time = time-prev_cpu_time;
  692. if (unlikely(delta_time > time_sync_thresh)) {
  693. time = __sync_cpu_clock(time, cpu);
  694. per_cpu(prev_cpu_time, cpu) = time;
  695. }
  696. local_irq_restore(flags);
  697. return time;
  698. }
  699. EXPORT_SYMBOL_GPL(cpu_clock);
  700. #ifndef prepare_arch_switch
  701. # define prepare_arch_switch(next) do { } while (0)
  702. #endif
  703. #ifndef finish_arch_switch
  704. # define finish_arch_switch(prev) do { } while (0)
  705. #endif
  706. static inline int task_current(struct rq *rq, struct task_struct *p)
  707. {
  708. return rq->curr == p;
  709. }
  710. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  711. static inline int task_running(struct rq *rq, struct task_struct *p)
  712. {
  713. return task_current(rq, p);
  714. }
  715. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  716. {
  717. }
  718. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  719. {
  720. #ifdef CONFIG_DEBUG_SPINLOCK
  721. /* this is a valid case when another task releases the spinlock */
  722. rq->lock.owner = current;
  723. #endif
  724. /*
  725. * If we are tracking spinlock dependencies then we have to
  726. * fix up the runqueue lock - which gets 'carried over' from
  727. * prev into current:
  728. */
  729. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  730. spin_unlock_irq(&rq->lock);
  731. }
  732. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  733. static inline int task_running(struct rq *rq, struct task_struct *p)
  734. {
  735. #ifdef CONFIG_SMP
  736. return p->oncpu;
  737. #else
  738. return task_current(rq, p);
  739. #endif
  740. }
  741. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  742. {
  743. #ifdef CONFIG_SMP
  744. /*
  745. * We can optimise this out completely for !SMP, because the
  746. * SMP rebalancing from interrupt is the only thing that cares
  747. * here.
  748. */
  749. next->oncpu = 1;
  750. #endif
  751. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  752. spin_unlock_irq(&rq->lock);
  753. #else
  754. spin_unlock(&rq->lock);
  755. #endif
  756. }
  757. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  758. {
  759. #ifdef CONFIG_SMP
  760. /*
  761. * After ->oncpu is cleared, the task can be moved to a different CPU.
  762. * We must ensure this doesn't happen until the switch is completely
  763. * finished.
  764. */
  765. smp_wmb();
  766. prev->oncpu = 0;
  767. #endif
  768. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  769. local_irq_enable();
  770. #endif
  771. }
  772. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  773. /*
  774. * __task_rq_lock - lock the runqueue a given task resides on.
  775. * Must be called interrupts disabled.
  776. */
  777. static inline struct rq *__task_rq_lock(struct task_struct *p)
  778. __acquires(rq->lock)
  779. {
  780. for (;;) {
  781. struct rq *rq = task_rq(p);
  782. spin_lock(&rq->lock);
  783. if (likely(rq == task_rq(p)))
  784. return rq;
  785. spin_unlock(&rq->lock);
  786. }
  787. }
  788. /*
  789. * task_rq_lock - lock the runqueue a given task resides on and disable
  790. * interrupts. Note the ordering: we can safely lookup the task_rq without
  791. * explicitly disabling preemption.
  792. */
  793. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  794. __acquires(rq->lock)
  795. {
  796. struct rq *rq;
  797. for (;;) {
  798. local_irq_save(*flags);
  799. rq = task_rq(p);
  800. spin_lock(&rq->lock);
  801. if (likely(rq == task_rq(p)))
  802. return rq;
  803. spin_unlock_irqrestore(&rq->lock, *flags);
  804. }
  805. }
  806. static void __task_rq_unlock(struct rq *rq)
  807. __releases(rq->lock)
  808. {
  809. spin_unlock(&rq->lock);
  810. }
  811. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  812. __releases(rq->lock)
  813. {
  814. spin_unlock_irqrestore(&rq->lock, *flags);
  815. }
  816. /*
  817. * this_rq_lock - lock this runqueue and disable interrupts.
  818. */
  819. static struct rq *this_rq_lock(void)
  820. __acquires(rq->lock)
  821. {
  822. struct rq *rq;
  823. local_irq_disable();
  824. rq = this_rq();
  825. spin_lock(&rq->lock);
  826. return rq;
  827. }
  828. static void __resched_task(struct task_struct *p, int tif_bit);
  829. static inline void resched_task(struct task_struct *p)
  830. {
  831. __resched_task(p, TIF_NEED_RESCHED);
  832. }
  833. #ifdef CONFIG_SCHED_HRTICK
  834. /*
  835. * Use HR-timers to deliver accurate preemption points.
  836. *
  837. * Its all a bit involved since we cannot program an hrt while holding the
  838. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  839. * reschedule event.
  840. *
  841. * When we get rescheduled we reprogram the hrtick_timer outside of the
  842. * rq->lock.
  843. */
  844. static inline void resched_hrt(struct task_struct *p)
  845. {
  846. __resched_task(p, TIF_HRTICK_RESCHED);
  847. }
  848. static inline void resched_rq(struct rq *rq)
  849. {
  850. unsigned long flags;
  851. spin_lock_irqsave(&rq->lock, flags);
  852. resched_task(rq->curr);
  853. spin_unlock_irqrestore(&rq->lock, flags);
  854. }
  855. enum {
  856. HRTICK_SET, /* re-programm hrtick_timer */
  857. HRTICK_RESET, /* not a new slice */
  858. HRTICK_BLOCK, /* stop hrtick operations */
  859. };
  860. /*
  861. * Use hrtick when:
  862. * - enabled by features
  863. * - hrtimer is actually high res
  864. */
  865. static inline int hrtick_enabled(struct rq *rq)
  866. {
  867. if (!sched_feat(HRTICK))
  868. return 0;
  869. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  870. return 0;
  871. return hrtimer_is_hres_active(&rq->hrtick_timer);
  872. }
  873. /*
  874. * Called to set the hrtick timer state.
  875. *
  876. * called with rq->lock held and irqs disabled
  877. */
  878. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  879. {
  880. assert_spin_locked(&rq->lock);
  881. /*
  882. * preempt at: now + delay
  883. */
  884. rq->hrtick_expire =
  885. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  886. /*
  887. * indicate we need to program the timer
  888. */
  889. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  890. if (reset)
  891. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  892. /*
  893. * New slices are called from the schedule path and don't need a
  894. * forced reschedule.
  895. */
  896. if (reset)
  897. resched_hrt(rq->curr);
  898. }
  899. static void hrtick_clear(struct rq *rq)
  900. {
  901. if (hrtimer_active(&rq->hrtick_timer))
  902. hrtimer_cancel(&rq->hrtick_timer);
  903. }
  904. /*
  905. * Update the timer from the possible pending state.
  906. */
  907. static void hrtick_set(struct rq *rq)
  908. {
  909. ktime_t time;
  910. int set, reset;
  911. unsigned long flags;
  912. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  913. spin_lock_irqsave(&rq->lock, flags);
  914. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  915. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  916. time = rq->hrtick_expire;
  917. clear_thread_flag(TIF_HRTICK_RESCHED);
  918. spin_unlock_irqrestore(&rq->lock, flags);
  919. if (set) {
  920. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  921. if (reset && !hrtimer_active(&rq->hrtick_timer))
  922. resched_rq(rq);
  923. } else
  924. hrtick_clear(rq);
  925. }
  926. /*
  927. * High-resolution timer tick.
  928. * Runs from hardirq context with interrupts disabled.
  929. */
  930. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  931. {
  932. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  933. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  934. spin_lock(&rq->lock);
  935. update_rq_clock(rq);
  936. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  937. spin_unlock(&rq->lock);
  938. return HRTIMER_NORESTART;
  939. }
  940. static void hotplug_hrtick_disable(int cpu)
  941. {
  942. struct rq *rq = cpu_rq(cpu);
  943. unsigned long flags;
  944. spin_lock_irqsave(&rq->lock, flags);
  945. rq->hrtick_flags = 0;
  946. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  947. spin_unlock_irqrestore(&rq->lock, flags);
  948. hrtick_clear(rq);
  949. }
  950. static void hotplug_hrtick_enable(int cpu)
  951. {
  952. struct rq *rq = cpu_rq(cpu);
  953. unsigned long flags;
  954. spin_lock_irqsave(&rq->lock, flags);
  955. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  956. spin_unlock_irqrestore(&rq->lock, flags);
  957. }
  958. static int
  959. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  960. {
  961. int cpu = (int)(long)hcpu;
  962. switch (action) {
  963. case CPU_UP_CANCELED:
  964. case CPU_UP_CANCELED_FROZEN:
  965. case CPU_DOWN_PREPARE:
  966. case CPU_DOWN_PREPARE_FROZEN:
  967. case CPU_DEAD:
  968. case CPU_DEAD_FROZEN:
  969. hotplug_hrtick_disable(cpu);
  970. return NOTIFY_OK;
  971. case CPU_UP_PREPARE:
  972. case CPU_UP_PREPARE_FROZEN:
  973. case CPU_DOWN_FAILED:
  974. case CPU_DOWN_FAILED_FROZEN:
  975. case CPU_ONLINE:
  976. case CPU_ONLINE_FROZEN:
  977. hotplug_hrtick_enable(cpu);
  978. return NOTIFY_OK;
  979. }
  980. return NOTIFY_DONE;
  981. }
  982. static void init_hrtick(void)
  983. {
  984. hotcpu_notifier(hotplug_hrtick, 0);
  985. }
  986. static void init_rq_hrtick(struct rq *rq)
  987. {
  988. rq->hrtick_flags = 0;
  989. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  990. rq->hrtick_timer.function = hrtick;
  991. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  992. }
  993. void hrtick_resched(void)
  994. {
  995. struct rq *rq;
  996. unsigned long flags;
  997. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  998. return;
  999. local_irq_save(flags);
  1000. rq = cpu_rq(smp_processor_id());
  1001. hrtick_set(rq);
  1002. local_irq_restore(flags);
  1003. }
  1004. #else
  1005. static inline void hrtick_clear(struct rq *rq)
  1006. {
  1007. }
  1008. static inline void hrtick_set(struct rq *rq)
  1009. {
  1010. }
  1011. static inline void init_rq_hrtick(struct rq *rq)
  1012. {
  1013. }
  1014. void hrtick_resched(void)
  1015. {
  1016. }
  1017. static inline void init_hrtick(void)
  1018. {
  1019. }
  1020. #endif
  1021. /*
  1022. * resched_task - mark a task 'to be rescheduled now'.
  1023. *
  1024. * On UP this means the setting of the need_resched flag, on SMP it
  1025. * might also involve a cross-CPU call to trigger the scheduler on
  1026. * the target CPU.
  1027. */
  1028. #ifdef CONFIG_SMP
  1029. #ifndef tsk_is_polling
  1030. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1031. #endif
  1032. static void __resched_task(struct task_struct *p, int tif_bit)
  1033. {
  1034. int cpu;
  1035. assert_spin_locked(&task_rq(p)->lock);
  1036. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1037. return;
  1038. set_tsk_thread_flag(p, tif_bit);
  1039. cpu = task_cpu(p);
  1040. if (cpu == smp_processor_id())
  1041. return;
  1042. /* NEED_RESCHED must be visible before we test polling */
  1043. smp_mb();
  1044. if (!tsk_is_polling(p))
  1045. smp_send_reschedule(cpu);
  1046. }
  1047. static void resched_cpu(int cpu)
  1048. {
  1049. struct rq *rq = cpu_rq(cpu);
  1050. unsigned long flags;
  1051. if (!spin_trylock_irqsave(&rq->lock, flags))
  1052. return;
  1053. resched_task(cpu_curr(cpu));
  1054. spin_unlock_irqrestore(&rq->lock, flags);
  1055. }
  1056. #ifdef CONFIG_NO_HZ
  1057. /*
  1058. * When add_timer_on() enqueues a timer into the timer wheel of an
  1059. * idle CPU then this timer might expire before the next timer event
  1060. * which is scheduled to wake up that CPU. In case of a completely
  1061. * idle system the next event might even be infinite time into the
  1062. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1063. * leaves the inner idle loop so the newly added timer is taken into
  1064. * account when the CPU goes back to idle and evaluates the timer
  1065. * wheel for the next timer event.
  1066. */
  1067. void wake_up_idle_cpu(int cpu)
  1068. {
  1069. struct rq *rq = cpu_rq(cpu);
  1070. if (cpu == smp_processor_id())
  1071. return;
  1072. /*
  1073. * This is safe, as this function is called with the timer
  1074. * wheel base lock of (cpu) held. When the CPU is on the way
  1075. * to idle and has not yet set rq->curr to idle then it will
  1076. * be serialized on the timer wheel base lock and take the new
  1077. * timer into account automatically.
  1078. */
  1079. if (rq->curr != rq->idle)
  1080. return;
  1081. /*
  1082. * We can set TIF_RESCHED on the idle task of the other CPU
  1083. * lockless. The worst case is that the other CPU runs the
  1084. * idle task through an additional NOOP schedule()
  1085. */
  1086. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1087. /* NEED_RESCHED must be visible before we test polling */
  1088. smp_mb();
  1089. if (!tsk_is_polling(rq->idle))
  1090. smp_send_reschedule(cpu);
  1091. }
  1092. #endif
  1093. #else
  1094. static void __resched_task(struct task_struct *p, int tif_bit)
  1095. {
  1096. assert_spin_locked(&task_rq(p)->lock);
  1097. set_tsk_thread_flag(p, tif_bit);
  1098. }
  1099. #endif
  1100. #if BITS_PER_LONG == 32
  1101. # define WMULT_CONST (~0UL)
  1102. #else
  1103. # define WMULT_CONST (1UL << 32)
  1104. #endif
  1105. #define WMULT_SHIFT 32
  1106. /*
  1107. * Shift right and round:
  1108. */
  1109. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1110. static unsigned long
  1111. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1112. struct load_weight *lw)
  1113. {
  1114. u64 tmp;
  1115. if (!lw->inv_weight)
  1116. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
  1117. tmp = (u64)delta_exec * weight;
  1118. /*
  1119. * Check whether we'd overflow the 64-bit multiplication:
  1120. */
  1121. if (unlikely(tmp > WMULT_CONST))
  1122. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1123. WMULT_SHIFT/2);
  1124. else
  1125. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1126. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1127. }
  1128. static inline unsigned long
  1129. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1130. {
  1131. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1132. }
  1133. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1134. {
  1135. lw->weight += inc;
  1136. lw->inv_weight = 0;
  1137. }
  1138. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1139. {
  1140. lw->weight -= dec;
  1141. lw->inv_weight = 0;
  1142. }
  1143. /*
  1144. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1145. * of tasks with abnormal "nice" values across CPUs the contribution that
  1146. * each task makes to its run queue's load is weighted according to its
  1147. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1148. * scaled version of the new time slice allocation that they receive on time
  1149. * slice expiry etc.
  1150. */
  1151. #define WEIGHT_IDLEPRIO 2
  1152. #define WMULT_IDLEPRIO (1 << 31)
  1153. /*
  1154. * Nice levels are multiplicative, with a gentle 10% change for every
  1155. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1156. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1157. * that remained on nice 0.
  1158. *
  1159. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1160. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1161. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1162. * If a task goes up by ~10% and another task goes down by ~10% then
  1163. * the relative distance between them is ~25%.)
  1164. */
  1165. static const int prio_to_weight[40] = {
  1166. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1167. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1168. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1169. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1170. /* 0 */ 1024, 820, 655, 526, 423,
  1171. /* 5 */ 335, 272, 215, 172, 137,
  1172. /* 10 */ 110, 87, 70, 56, 45,
  1173. /* 15 */ 36, 29, 23, 18, 15,
  1174. };
  1175. /*
  1176. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1177. *
  1178. * In cases where the weight does not change often, we can use the
  1179. * precalculated inverse to speed up arithmetics by turning divisions
  1180. * into multiplications:
  1181. */
  1182. static const u32 prio_to_wmult[40] = {
  1183. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1184. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1185. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1186. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1187. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1188. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1189. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1190. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1191. };
  1192. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1193. /*
  1194. * runqueue iterator, to support SMP load-balancing between different
  1195. * scheduling classes, without having to expose their internal data
  1196. * structures to the load-balancing proper:
  1197. */
  1198. struct rq_iterator {
  1199. void *arg;
  1200. struct task_struct *(*start)(void *);
  1201. struct task_struct *(*next)(void *);
  1202. };
  1203. #ifdef CONFIG_SMP
  1204. static unsigned long
  1205. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1206. unsigned long max_load_move, struct sched_domain *sd,
  1207. enum cpu_idle_type idle, int *all_pinned,
  1208. int *this_best_prio, struct rq_iterator *iterator);
  1209. static int
  1210. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1211. struct sched_domain *sd, enum cpu_idle_type idle,
  1212. struct rq_iterator *iterator);
  1213. #endif
  1214. #ifdef CONFIG_CGROUP_CPUACCT
  1215. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1216. #else
  1217. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1218. #endif
  1219. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1220. {
  1221. update_load_add(&rq->load, load);
  1222. }
  1223. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1224. {
  1225. update_load_sub(&rq->load, load);
  1226. }
  1227. #ifdef CONFIG_SMP
  1228. static unsigned long source_load(int cpu, int type);
  1229. static unsigned long target_load(int cpu, int type);
  1230. static unsigned long cpu_avg_load_per_task(int cpu);
  1231. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1232. #else /* CONFIG_SMP */
  1233. #ifdef CONFIG_FAIR_GROUP_SCHED
  1234. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1235. {
  1236. }
  1237. #endif
  1238. #endif /* CONFIG_SMP */
  1239. #include "sched_stats.h"
  1240. #include "sched_idletask.c"
  1241. #include "sched_fair.c"
  1242. #include "sched_rt.c"
  1243. #ifdef CONFIG_SCHED_DEBUG
  1244. # include "sched_debug.c"
  1245. #endif
  1246. #define sched_class_highest (&rt_sched_class)
  1247. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1248. {
  1249. update_load_add(&rq->load, p->se.load.weight);
  1250. }
  1251. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1252. {
  1253. update_load_sub(&rq->load, p->se.load.weight);
  1254. }
  1255. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1256. {
  1257. rq->nr_running++;
  1258. inc_load(rq, p);
  1259. }
  1260. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1261. {
  1262. rq->nr_running--;
  1263. dec_load(rq, p);
  1264. }
  1265. static void set_load_weight(struct task_struct *p)
  1266. {
  1267. if (task_has_rt_policy(p)) {
  1268. p->se.load.weight = prio_to_weight[0] * 2;
  1269. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1270. return;
  1271. }
  1272. /*
  1273. * SCHED_IDLE tasks get minimal weight:
  1274. */
  1275. if (p->policy == SCHED_IDLE) {
  1276. p->se.load.weight = WEIGHT_IDLEPRIO;
  1277. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1278. return;
  1279. }
  1280. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1281. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1282. }
  1283. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1284. {
  1285. sched_info_queued(p);
  1286. p->sched_class->enqueue_task(rq, p, wakeup);
  1287. p->se.on_rq = 1;
  1288. }
  1289. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1290. {
  1291. p->sched_class->dequeue_task(rq, p, sleep);
  1292. p->se.on_rq = 0;
  1293. }
  1294. /*
  1295. * __normal_prio - return the priority that is based on the static prio
  1296. */
  1297. static inline int __normal_prio(struct task_struct *p)
  1298. {
  1299. return p->static_prio;
  1300. }
  1301. /*
  1302. * Calculate the expected normal priority: i.e. priority
  1303. * without taking RT-inheritance into account. Might be
  1304. * boosted by interactivity modifiers. Changes upon fork,
  1305. * setprio syscalls, and whenever the interactivity
  1306. * estimator recalculates.
  1307. */
  1308. static inline int normal_prio(struct task_struct *p)
  1309. {
  1310. int prio;
  1311. if (task_has_rt_policy(p))
  1312. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1313. else
  1314. prio = __normal_prio(p);
  1315. return prio;
  1316. }
  1317. /*
  1318. * Calculate the current priority, i.e. the priority
  1319. * taken into account by the scheduler. This value might
  1320. * be boosted by RT tasks, or might be boosted by
  1321. * interactivity modifiers. Will be RT if the task got
  1322. * RT-boosted. If not then it returns p->normal_prio.
  1323. */
  1324. static int effective_prio(struct task_struct *p)
  1325. {
  1326. p->normal_prio = normal_prio(p);
  1327. /*
  1328. * If we are RT tasks or we were boosted to RT priority,
  1329. * keep the priority unchanged. Otherwise, update priority
  1330. * to the normal priority:
  1331. */
  1332. if (!rt_prio(p->prio))
  1333. return p->normal_prio;
  1334. return p->prio;
  1335. }
  1336. /*
  1337. * activate_task - move a task to the runqueue.
  1338. */
  1339. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1340. {
  1341. if (task_contributes_to_load(p))
  1342. rq->nr_uninterruptible--;
  1343. enqueue_task(rq, p, wakeup);
  1344. inc_nr_running(p, rq);
  1345. }
  1346. /*
  1347. * deactivate_task - remove a task from the runqueue.
  1348. */
  1349. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1350. {
  1351. if (task_contributes_to_load(p))
  1352. rq->nr_uninterruptible++;
  1353. dequeue_task(rq, p, sleep);
  1354. dec_nr_running(p, rq);
  1355. }
  1356. /**
  1357. * task_curr - is this task currently executing on a CPU?
  1358. * @p: the task in question.
  1359. */
  1360. inline int task_curr(const struct task_struct *p)
  1361. {
  1362. return cpu_curr(task_cpu(p)) == p;
  1363. }
  1364. /* Used instead of source_load when we know the type == 0 */
  1365. unsigned long weighted_cpuload(const int cpu)
  1366. {
  1367. return cpu_rq(cpu)->load.weight;
  1368. }
  1369. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1370. {
  1371. set_task_rq(p, cpu);
  1372. #ifdef CONFIG_SMP
  1373. /*
  1374. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1375. * successfuly executed on another CPU. We must ensure that updates of
  1376. * per-task data have been completed by this moment.
  1377. */
  1378. smp_wmb();
  1379. task_thread_info(p)->cpu = cpu;
  1380. #endif
  1381. }
  1382. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1383. const struct sched_class *prev_class,
  1384. int oldprio, int running)
  1385. {
  1386. if (prev_class != p->sched_class) {
  1387. if (prev_class->switched_from)
  1388. prev_class->switched_from(rq, p, running);
  1389. p->sched_class->switched_to(rq, p, running);
  1390. } else
  1391. p->sched_class->prio_changed(rq, p, oldprio, running);
  1392. }
  1393. #ifdef CONFIG_SMP
  1394. /*
  1395. * Is this task likely cache-hot:
  1396. */
  1397. static int
  1398. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1399. {
  1400. s64 delta;
  1401. /*
  1402. * Buddy candidates are cache hot:
  1403. */
  1404. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1405. return 1;
  1406. if (p->sched_class != &fair_sched_class)
  1407. return 0;
  1408. if (sysctl_sched_migration_cost == -1)
  1409. return 1;
  1410. if (sysctl_sched_migration_cost == 0)
  1411. return 0;
  1412. delta = now - p->se.exec_start;
  1413. return delta < (s64)sysctl_sched_migration_cost;
  1414. }
  1415. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1416. {
  1417. int old_cpu = task_cpu(p);
  1418. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1419. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1420. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1421. u64 clock_offset;
  1422. clock_offset = old_rq->clock - new_rq->clock;
  1423. #ifdef CONFIG_SCHEDSTATS
  1424. if (p->se.wait_start)
  1425. p->se.wait_start -= clock_offset;
  1426. if (p->se.sleep_start)
  1427. p->se.sleep_start -= clock_offset;
  1428. if (p->se.block_start)
  1429. p->se.block_start -= clock_offset;
  1430. if (old_cpu != new_cpu) {
  1431. schedstat_inc(p, se.nr_migrations);
  1432. if (task_hot(p, old_rq->clock, NULL))
  1433. schedstat_inc(p, se.nr_forced2_migrations);
  1434. }
  1435. #endif
  1436. p->se.vruntime -= old_cfsrq->min_vruntime -
  1437. new_cfsrq->min_vruntime;
  1438. __set_task_cpu(p, new_cpu);
  1439. }
  1440. struct migration_req {
  1441. struct list_head list;
  1442. struct task_struct *task;
  1443. int dest_cpu;
  1444. struct completion done;
  1445. };
  1446. /*
  1447. * The task's runqueue lock must be held.
  1448. * Returns true if you have to wait for migration thread.
  1449. */
  1450. static int
  1451. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1452. {
  1453. struct rq *rq = task_rq(p);
  1454. /*
  1455. * If the task is not on a runqueue (and not running), then
  1456. * it is sufficient to simply update the task's cpu field.
  1457. */
  1458. if (!p->se.on_rq && !task_running(rq, p)) {
  1459. set_task_cpu(p, dest_cpu);
  1460. return 0;
  1461. }
  1462. init_completion(&req->done);
  1463. req->task = p;
  1464. req->dest_cpu = dest_cpu;
  1465. list_add(&req->list, &rq->migration_queue);
  1466. return 1;
  1467. }
  1468. /*
  1469. * wait_task_inactive - wait for a thread to unschedule.
  1470. *
  1471. * The caller must ensure that the task *will* unschedule sometime soon,
  1472. * else this function might spin for a *long* time. This function can't
  1473. * be called with interrupts off, or it may introduce deadlock with
  1474. * smp_call_function() if an IPI is sent by the same process we are
  1475. * waiting to become inactive.
  1476. */
  1477. void wait_task_inactive(struct task_struct *p)
  1478. {
  1479. unsigned long flags;
  1480. int running, on_rq;
  1481. struct rq *rq;
  1482. for (;;) {
  1483. /*
  1484. * We do the initial early heuristics without holding
  1485. * any task-queue locks at all. We'll only try to get
  1486. * the runqueue lock when things look like they will
  1487. * work out!
  1488. */
  1489. rq = task_rq(p);
  1490. /*
  1491. * If the task is actively running on another CPU
  1492. * still, just relax and busy-wait without holding
  1493. * any locks.
  1494. *
  1495. * NOTE! Since we don't hold any locks, it's not
  1496. * even sure that "rq" stays as the right runqueue!
  1497. * But we don't care, since "task_running()" will
  1498. * return false if the runqueue has changed and p
  1499. * is actually now running somewhere else!
  1500. */
  1501. while (task_running(rq, p))
  1502. cpu_relax();
  1503. /*
  1504. * Ok, time to look more closely! We need the rq
  1505. * lock now, to be *sure*. If we're wrong, we'll
  1506. * just go back and repeat.
  1507. */
  1508. rq = task_rq_lock(p, &flags);
  1509. running = task_running(rq, p);
  1510. on_rq = p->se.on_rq;
  1511. task_rq_unlock(rq, &flags);
  1512. /*
  1513. * Was it really running after all now that we
  1514. * checked with the proper locks actually held?
  1515. *
  1516. * Oops. Go back and try again..
  1517. */
  1518. if (unlikely(running)) {
  1519. cpu_relax();
  1520. continue;
  1521. }
  1522. /*
  1523. * It's not enough that it's not actively running,
  1524. * it must be off the runqueue _entirely_, and not
  1525. * preempted!
  1526. *
  1527. * So if it wa still runnable (but just not actively
  1528. * running right now), it's preempted, and we should
  1529. * yield - it could be a while.
  1530. */
  1531. if (unlikely(on_rq)) {
  1532. schedule_timeout_uninterruptible(1);
  1533. continue;
  1534. }
  1535. /*
  1536. * Ahh, all good. It wasn't running, and it wasn't
  1537. * runnable, which means that it will never become
  1538. * running in the future either. We're all done!
  1539. */
  1540. break;
  1541. }
  1542. }
  1543. /***
  1544. * kick_process - kick a running thread to enter/exit the kernel
  1545. * @p: the to-be-kicked thread
  1546. *
  1547. * Cause a process which is running on another CPU to enter
  1548. * kernel-mode, without any delay. (to get signals handled.)
  1549. *
  1550. * NOTE: this function doesnt have to take the runqueue lock,
  1551. * because all it wants to ensure is that the remote task enters
  1552. * the kernel. If the IPI races and the task has been migrated
  1553. * to another CPU then no harm is done and the purpose has been
  1554. * achieved as well.
  1555. */
  1556. void kick_process(struct task_struct *p)
  1557. {
  1558. int cpu;
  1559. preempt_disable();
  1560. cpu = task_cpu(p);
  1561. if ((cpu != smp_processor_id()) && task_curr(p))
  1562. smp_send_reschedule(cpu);
  1563. preempt_enable();
  1564. }
  1565. /*
  1566. * Return a low guess at the load of a migration-source cpu weighted
  1567. * according to the scheduling class and "nice" value.
  1568. *
  1569. * We want to under-estimate the load of migration sources, to
  1570. * balance conservatively.
  1571. */
  1572. static unsigned long source_load(int cpu, int type)
  1573. {
  1574. struct rq *rq = cpu_rq(cpu);
  1575. unsigned long total = weighted_cpuload(cpu);
  1576. if (type == 0)
  1577. return total;
  1578. return min(rq->cpu_load[type-1], total);
  1579. }
  1580. /*
  1581. * Return a high guess at the load of a migration-target cpu weighted
  1582. * according to the scheduling class and "nice" value.
  1583. */
  1584. static unsigned long target_load(int cpu, int type)
  1585. {
  1586. struct rq *rq = cpu_rq(cpu);
  1587. unsigned long total = weighted_cpuload(cpu);
  1588. if (type == 0)
  1589. return total;
  1590. return max(rq->cpu_load[type-1], total);
  1591. }
  1592. /*
  1593. * Return the average load per task on the cpu's run queue
  1594. */
  1595. static unsigned long cpu_avg_load_per_task(int cpu)
  1596. {
  1597. struct rq *rq = cpu_rq(cpu);
  1598. unsigned long total = weighted_cpuload(cpu);
  1599. unsigned long n = rq->nr_running;
  1600. return n ? total / n : SCHED_LOAD_SCALE;
  1601. }
  1602. /*
  1603. * find_idlest_group finds and returns the least busy CPU group within the
  1604. * domain.
  1605. */
  1606. static struct sched_group *
  1607. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1608. {
  1609. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1610. unsigned long min_load = ULONG_MAX, this_load = 0;
  1611. int load_idx = sd->forkexec_idx;
  1612. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1613. do {
  1614. unsigned long load, avg_load;
  1615. int local_group;
  1616. int i;
  1617. /* Skip over this group if it has no CPUs allowed */
  1618. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1619. continue;
  1620. local_group = cpu_isset(this_cpu, group->cpumask);
  1621. /* Tally up the load of all CPUs in the group */
  1622. avg_load = 0;
  1623. for_each_cpu_mask(i, group->cpumask) {
  1624. /* Bias balancing toward cpus of our domain */
  1625. if (local_group)
  1626. load = source_load(i, load_idx);
  1627. else
  1628. load = target_load(i, load_idx);
  1629. avg_load += load;
  1630. }
  1631. /* Adjust by relative CPU power of the group */
  1632. avg_load = sg_div_cpu_power(group,
  1633. avg_load * SCHED_LOAD_SCALE);
  1634. if (local_group) {
  1635. this_load = avg_load;
  1636. this = group;
  1637. } else if (avg_load < min_load) {
  1638. min_load = avg_load;
  1639. idlest = group;
  1640. }
  1641. } while (group = group->next, group != sd->groups);
  1642. if (!idlest || 100*this_load < imbalance*min_load)
  1643. return NULL;
  1644. return idlest;
  1645. }
  1646. /*
  1647. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1648. */
  1649. static int
  1650. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1651. cpumask_t *tmp)
  1652. {
  1653. unsigned long load, min_load = ULONG_MAX;
  1654. int idlest = -1;
  1655. int i;
  1656. /* Traverse only the allowed CPUs */
  1657. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1658. for_each_cpu_mask(i, *tmp) {
  1659. load = weighted_cpuload(i);
  1660. if (load < min_load || (load == min_load && i == this_cpu)) {
  1661. min_load = load;
  1662. idlest = i;
  1663. }
  1664. }
  1665. return idlest;
  1666. }
  1667. /*
  1668. * sched_balance_self: balance the current task (running on cpu) in domains
  1669. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1670. * SD_BALANCE_EXEC.
  1671. *
  1672. * Balance, ie. select the least loaded group.
  1673. *
  1674. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1675. *
  1676. * preempt must be disabled.
  1677. */
  1678. static int sched_balance_self(int cpu, int flag)
  1679. {
  1680. struct task_struct *t = current;
  1681. struct sched_domain *tmp, *sd = NULL;
  1682. for_each_domain(cpu, tmp) {
  1683. /*
  1684. * If power savings logic is enabled for a domain, stop there.
  1685. */
  1686. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1687. break;
  1688. if (tmp->flags & flag)
  1689. sd = tmp;
  1690. }
  1691. while (sd) {
  1692. cpumask_t span, tmpmask;
  1693. struct sched_group *group;
  1694. int new_cpu, weight;
  1695. if (!(sd->flags & flag)) {
  1696. sd = sd->child;
  1697. continue;
  1698. }
  1699. span = sd->span;
  1700. group = find_idlest_group(sd, t, cpu);
  1701. if (!group) {
  1702. sd = sd->child;
  1703. continue;
  1704. }
  1705. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1706. if (new_cpu == -1 || new_cpu == cpu) {
  1707. /* Now try balancing at a lower domain level of cpu */
  1708. sd = sd->child;
  1709. continue;
  1710. }
  1711. /* Now try balancing at a lower domain level of new_cpu */
  1712. cpu = new_cpu;
  1713. sd = NULL;
  1714. weight = cpus_weight(span);
  1715. for_each_domain(cpu, tmp) {
  1716. if (weight <= cpus_weight(tmp->span))
  1717. break;
  1718. if (tmp->flags & flag)
  1719. sd = tmp;
  1720. }
  1721. /* while loop will break here if sd == NULL */
  1722. }
  1723. return cpu;
  1724. }
  1725. #endif /* CONFIG_SMP */
  1726. /***
  1727. * try_to_wake_up - wake up a thread
  1728. * @p: the to-be-woken-up thread
  1729. * @state: the mask of task states that can be woken
  1730. * @sync: do a synchronous wakeup?
  1731. *
  1732. * Put it on the run-queue if it's not already there. The "current"
  1733. * thread is always on the run-queue (except when the actual
  1734. * re-schedule is in progress), and as such you're allowed to do
  1735. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1736. * runnable without the overhead of this.
  1737. *
  1738. * returns failure only if the task is already active.
  1739. */
  1740. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1741. {
  1742. int cpu, orig_cpu, this_cpu, success = 0;
  1743. unsigned long flags;
  1744. long old_state;
  1745. struct rq *rq;
  1746. if (!sched_feat(SYNC_WAKEUPS))
  1747. sync = 0;
  1748. smp_wmb();
  1749. rq = task_rq_lock(p, &flags);
  1750. old_state = p->state;
  1751. if (!(old_state & state))
  1752. goto out;
  1753. if (p->se.on_rq)
  1754. goto out_running;
  1755. cpu = task_cpu(p);
  1756. orig_cpu = cpu;
  1757. this_cpu = smp_processor_id();
  1758. #ifdef CONFIG_SMP
  1759. if (unlikely(task_running(rq, p)))
  1760. goto out_activate;
  1761. cpu = p->sched_class->select_task_rq(p, sync);
  1762. if (cpu != orig_cpu) {
  1763. set_task_cpu(p, cpu);
  1764. task_rq_unlock(rq, &flags);
  1765. /* might preempt at this point */
  1766. rq = task_rq_lock(p, &flags);
  1767. old_state = p->state;
  1768. if (!(old_state & state))
  1769. goto out;
  1770. if (p->se.on_rq)
  1771. goto out_running;
  1772. this_cpu = smp_processor_id();
  1773. cpu = task_cpu(p);
  1774. }
  1775. #ifdef CONFIG_SCHEDSTATS
  1776. schedstat_inc(rq, ttwu_count);
  1777. if (cpu == this_cpu)
  1778. schedstat_inc(rq, ttwu_local);
  1779. else {
  1780. struct sched_domain *sd;
  1781. for_each_domain(this_cpu, sd) {
  1782. if (cpu_isset(cpu, sd->span)) {
  1783. schedstat_inc(sd, ttwu_wake_remote);
  1784. break;
  1785. }
  1786. }
  1787. }
  1788. #endif
  1789. out_activate:
  1790. #endif /* CONFIG_SMP */
  1791. schedstat_inc(p, se.nr_wakeups);
  1792. if (sync)
  1793. schedstat_inc(p, se.nr_wakeups_sync);
  1794. if (orig_cpu != cpu)
  1795. schedstat_inc(p, se.nr_wakeups_migrate);
  1796. if (cpu == this_cpu)
  1797. schedstat_inc(p, se.nr_wakeups_local);
  1798. else
  1799. schedstat_inc(p, se.nr_wakeups_remote);
  1800. update_rq_clock(rq);
  1801. activate_task(rq, p, 1);
  1802. success = 1;
  1803. out_running:
  1804. check_preempt_curr(rq, p);
  1805. p->state = TASK_RUNNING;
  1806. #ifdef CONFIG_SMP
  1807. if (p->sched_class->task_wake_up)
  1808. p->sched_class->task_wake_up(rq, p);
  1809. #endif
  1810. out:
  1811. task_rq_unlock(rq, &flags);
  1812. return success;
  1813. }
  1814. int wake_up_process(struct task_struct *p)
  1815. {
  1816. return try_to_wake_up(p, TASK_ALL, 0);
  1817. }
  1818. EXPORT_SYMBOL(wake_up_process);
  1819. int wake_up_state(struct task_struct *p, unsigned int state)
  1820. {
  1821. return try_to_wake_up(p, state, 0);
  1822. }
  1823. /*
  1824. * Perform scheduler related setup for a newly forked process p.
  1825. * p is forked by current.
  1826. *
  1827. * __sched_fork() is basic setup used by init_idle() too:
  1828. */
  1829. static void __sched_fork(struct task_struct *p)
  1830. {
  1831. p->se.exec_start = 0;
  1832. p->se.sum_exec_runtime = 0;
  1833. p->se.prev_sum_exec_runtime = 0;
  1834. p->se.last_wakeup = 0;
  1835. p->se.avg_overlap = 0;
  1836. #ifdef CONFIG_SCHEDSTATS
  1837. p->se.wait_start = 0;
  1838. p->se.sum_sleep_runtime = 0;
  1839. p->se.sleep_start = 0;
  1840. p->se.block_start = 0;
  1841. p->se.sleep_max = 0;
  1842. p->se.block_max = 0;
  1843. p->se.exec_max = 0;
  1844. p->se.slice_max = 0;
  1845. p->se.wait_max = 0;
  1846. #endif
  1847. INIT_LIST_HEAD(&p->rt.run_list);
  1848. p->se.on_rq = 0;
  1849. INIT_LIST_HEAD(&p->se.group_node);
  1850. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1851. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1852. #endif
  1853. /*
  1854. * We mark the process as running here, but have not actually
  1855. * inserted it onto the runqueue yet. This guarantees that
  1856. * nobody will actually run it, and a signal or other external
  1857. * event cannot wake it up and insert it on the runqueue either.
  1858. */
  1859. p->state = TASK_RUNNING;
  1860. }
  1861. /*
  1862. * fork()/clone()-time setup:
  1863. */
  1864. void sched_fork(struct task_struct *p, int clone_flags)
  1865. {
  1866. int cpu = get_cpu();
  1867. __sched_fork(p);
  1868. #ifdef CONFIG_SMP
  1869. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1870. #endif
  1871. set_task_cpu(p, cpu);
  1872. /*
  1873. * Make sure we do not leak PI boosting priority to the child:
  1874. */
  1875. p->prio = current->normal_prio;
  1876. if (!rt_prio(p->prio))
  1877. p->sched_class = &fair_sched_class;
  1878. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1879. if (likely(sched_info_on()))
  1880. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1881. #endif
  1882. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1883. p->oncpu = 0;
  1884. #endif
  1885. #ifdef CONFIG_PREEMPT
  1886. /* Want to start with kernel preemption disabled. */
  1887. task_thread_info(p)->preempt_count = 1;
  1888. #endif
  1889. put_cpu();
  1890. }
  1891. /*
  1892. * wake_up_new_task - wake up a newly created task for the first time.
  1893. *
  1894. * This function will do some initial scheduler statistics housekeeping
  1895. * that must be done for every newly created context, then puts the task
  1896. * on the runqueue and wakes it.
  1897. */
  1898. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1899. {
  1900. unsigned long flags;
  1901. struct rq *rq;
  1902. rq = task_rq_lock(p, &flags);
  1903. BUG_ON(p->state != TASK_RUNNING);
  1904. update_rq_clock(rq);
  1905. p->prio = effective_prio(p);
  1906. if (!p->sched_class->task_new || !current->se.on_rq) {
  1907. activate_task(rq, p, 0);
  1908. } else {
  1909. /*
  1910. * Let the scheduling class do new task startup
  1911. * management (if any):
  1912. */
  1913. p->sched_class->task_new(rq, p);
  1914. inc_nr_running(p, rq);
  1915. }
  1916. check_preempt_curr(rq, p);
  1917. #ifdef CONFIG_SMP
  1918. if (p->sched_class->task_wake_up)
  1919. p->sched_class->task_wake_up(rq, p);
  1920. #endif
  1921. task_rq_unlock(rq, &flags);
  1922. }
  1923. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1924. /**
  1925. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1926. * @notifier: notifier struct to register
  1927. */
  1928. void preempt_notifier_register(struct preempt_notifier *notifier)
  1929. {
  1930. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1931. }
  1932. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1933. /**
  1934. * preempt_notifier_unregister - no longer interested in preemption notifications
  1935. * @notifier: notifier struct to unregister
  1936. *
  1937. * This is safe to call from within a preemption notifier.
  1938. */
  1939. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1940. {
  1941. hlist_del(&notifier->link);
  1942. }
  1943. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1944. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1945. {
  1946. struct preempt_notifier *notifier;
  1947. struct hlist_node *node;
  1948. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1949. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1950. }
  1951. static void
  1952. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1953. struct task_struct *next)
  1954. {
  1955. struct preempt_notifier *notifier;
  1956. struct hlist_node *node;
  1957. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1958. notifier->ops->sched_out(notifier, next);
  1959. }
  1960. #else
  1961. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1962. {
  1963. }
  1964. static void
  1965. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1966. struct task_struct *next)
  1967. {
  1968. }
  1969. #endif
  1970. /**
  1971. * prepare_task_switch - prepare to switch tasks
  1972. * @rq: the runqueue preparing to switch
  1973. * @prev: the current task that is being switched out
  1974. * @next: the task we are going to switch to.
  1975. *
  1976. * This is called with the rq lock held and interrupts off. It must
  1977. * be paired with a subsequent finish_task_switch after the context
  1978. * switch.
  1979. *
  1980. * prepare_task_switch sets up locking and calls architecture specific
  1981. * hooks.
  1982. */
  1983. static inline void
  1984. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1985. struct task_struct *next)
  1986. {
  1987. fire_sched_out_preempt_notifiers(prev, next);
  1988. prepare_lock_switch(rq, next);
  1989. prepare_arch_switch(next);
  1990. }
  1991. /**
  1992. * finish_task_switch - clean up after a task-switch
  1993. * @rq: runqueue associated with task-switch
  1994. * @prev: the thread we just switched away from.
  1995. *
  1996. * finish_task_switch must be called after the context switch, paired
  1997. * with a prepare_task_switch call before the context switch.
  1998. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1999. * and do any other architecture-specific cleanup actions.
  2000. *
  2001. * Note that we may have delayed dropping an mm in context_switch(). If
  2002. * so, we finish that here outside of the runqueue lock. (Doing it
  2003. * with the lock held can cause deadlocks; see schedule() for
  2004. * details.)
  2005. */
  2006. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2007. __releases(rq->lock)
  2008. {
  2009. struct mm_struct *mm = rq->prev_mm;
  2010. long prev_state;
  2011. rq->prev_mm = NULL;
  2012. /*
  2013. * A task struct has one reference for the use as "current".
  2014. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2015. * schedule one last time. The schedule call will never return, and
  2016. * the scheduled task must drop that reference.
  2017. * The test for TASK_DEAD must occur while the runqueue locks are
  2018. * still held, otherwise prev could be scheduled on another cpu, die
  2019. * there before we look at prev->state, and then the reference would
  2020. * be dropped twice.
  2021. * Manfred Spraul <manfred@colorfullife.com>
  2022. */
  2023. prev_state = prev->state;
  2024. finish_arch_switch(prev);
  2025. finish_lock_switch(rq, prev);
  2026. #ifdef CONFIG_SMP
  2027. if (current->sched_class->post_schedule)
  2028. current->sched_class->post_schedule(rq);
  2029. #endif
  2030. fire_sched_in_preempt_notifiers(current);
  2031. if (mm)
  2032. mmdrop(mm);
  2033. if (unlikely(prev_state == TASK_DEAD)) {
  2034. /*
  2035. * Remove function-return probe instances associated with this
  2036. * task and put them back on the free list.
  2037. */
  2038. kprobe_flush_task(prev);
  2039. put_task_struct(prev);
  2040. }
  2041. }
  2042. /**
  2043. * schedule_tail - first thing a freshly forked thread must call.
  2044. * @prev: the thread we just switched away from.
  2045. */
  2046. asmlinkage void schedule_tail(struct task_struct *prev)
  2047. __releases(rq->lock)
  2048. {
  2049. struct rq *rq = this_rq();
  2050. finish_task_switch(rq, prev);
  2051. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2052. /* In this case, finish_task_switch does not reenable preemption */
  2053. preempt_enable();
  2054. #endif
  2055. if (current->set_child_tid)
  2056. put_user(task_pid_vnr(current), current->set_child_tid);
  2057. }
  2058. /*
  2059. * context_switch - switch to the new MM and the new
  2060. * thread's register state.
  2061. */
  2062. static inline void
  2063. context_switch(struct rq *rq, struct task_struct *prev,
  2064. struct task_struct *next)
  2065. {
  2066. struct mm_struct *mm, *oldmm;
  2067. prepare_task_switch(rq, prev, next);
  2068. mm = next->mm;
  2069. oldmm = prev->active_mm;
  2070. /*
  2071. * For paravirt, this is coupled with an exit in switch_to to
  2072. * combine the page table reload and the switch backend into
  2073. * one hypercall.
  2074. */
  2075. arch_enter_lazy_cpu_mode();
  2076. if (unlikely(!mm)) {
  2077. next->active_mm = oldmm;
  2078. atomic_inc(&oldmm->mm_count);
  2079. enter_lazy_tlb(oldmm, next);
  2080. } else
  2081. switch_mm(oldmm, mm, next);
  2082. if (unlikely(!prev->mm)) {
  2083. prev->active_mm = NULL;
  2084. rq->prev_mm = oldmm;
  2085. }
  2086. /*
  2087. * Since the runqueue lock will be released by the next
  2088. * task (which is an invalid locking op but in the case
  2089. * of the scheduler it's an obvious special-case), so we
  2090. * do an early lockdep release here:
  2091. */
  2092. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2093. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2094. #endif
  2095. /* Here we just switch the register state and the stack. */
  2096. switch_to(prev, next, prev);
  2097. barrier();
  2098. /*
  2099. * this_rq must be evaluated again because prev may have moved
  2100. * CPUs since it called schedule(), thus the 'rq' on its stack
  2101. * frame will be invalid.
  2102. */
  2103. finish_task_switch(this_rq(), prev);
  2104. }
  2105. /*
  2106. * nr_running, nr_uninterruptible and nr_context_switches:
  2107. *
  2108. * externally visible scheduler statistics: current number of runnable
  2109. * threads, current number of uninterruptible-sleeping threads, total
  2110. * number of context switches performed since bootup.
  2111. */
  2112. unsigned long nr_running(void)
  2113. {
  2114. unsigned long i, sum = 0;
  2115. for_each_online_cpu(i)
  2116. sum += cpu_rq(i)->nr_running;
  2117. return sum;
  2118. }
  2119. unsigned long nr_uninterruptible(void)
  2120. {
  2121. unsigned long i, sum = 0;
  2122. for_each_possible_cpu(i)
  2123. sum += cpu_rq(i)->nr_uninterruptible;
  2124. /*
  2125. * Since we read the counters lockless, it might be slightly
  2126. * inaccurate. Do not allow it to go below zero though:
  2127. */
  2128. if (unlikely((long)sum < 0))
  2129. sum = 0;
  2130. return sum;
  2131. }
  2132. unsigned long long nr_context_switches(void)
  2133. {
  2134. int i;
  2135. unsigned long long sum = 0;
  2136. for_each_possible_cpu(i)
  2137. sum += cpu_rq(i)->nr_switches;
  2138. return sum;
  2139. }
  2140. unsigned long nr_iowait(void)
  2141. {
  2142. unsigned long i, sum = 0;
  2143. for_each_possible_cpu(i)
  2144. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2145. return sum;
  2146. }
  2147. unsigned long nr_active(void)
  2148. {
  2149. unsigned long i, running = 0, uninterruptible = 0;
  2150. for_each_online_cpu(i) {
  2151. running += cpu_rq(i)->nr_running;
  2152. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2153. }
  2154. if (unlikely((long)uninterruptible < 0))
  2155. uninterruptible = 0;
  2156. return running + uninterruptible;
  2157. }
  2158. /*
  2159. * Update rq->cpu_load[] statistics. This function is usually called every
  2160. * scheduler tick (TICK_NSEC).
  2161. */
  2162. static void update_cpu_load(struct rq *this_rq)
  2163. {
  2164. unsigned long this_load = this_rq->load.weight;
  2165. int i, scale;
  2166. this_rq->nr_load_updates++;
  2167. /* Update our load: */
  2168. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2169. unsigned long old_load, new_load;
  2170. /* scale is effectively 1 << i now, and >> i divides by scale */
  2171. old_load = this_rq->cpu_load[i];
  2172. new_load = this_load;
  2173. /*
  2174. * Round up the averaging division if load is increasing. This
  2175. * prevents us from getting stuck on 9 if the load is 10, for
  2176. * example.
  2177. */
  2178. if (new_load > old_load)
  2179. new_load += scale-1;
  2180. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2181. }
  2182. }
  2183. #ifdef CONFIG_SMP
  2184. /*
  2185. * double_rq_lock - safely lock two runqueues
  2186. *
  2187. * Note this does not disable interrupts like task_rq_lock,
  2188. * you need to do so manually before calling.
  2189. */
  2190. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2191. __acquires(rq1->lock)
  2192. __acquires(rq2->lock)
  2193. {
  2194. BUG_ON(!irqs_disabled());
  2195. if (rq1 == rq2) {
  2196. spin_lock(&rq1->lock);
  2197. __acquire(rq2->lock); /* Fake it out ;) */
  2198. } else {
  2199. if (rq1 < rq2) {
  2200. spin_lock(&rq1->lock);
  2201. spin_lock(&rq2->lock);
  2202. } else {
  2203. spin_lock(&rq2->lock);
  2204. spin_lock(&rq1->lock);
  2205. }
  2206. }
  2207. update_rq_clock(rq1);
  2208. update_rq_clock(rq2);
  2209. }
  2210. /*
  2211. * double_rq_unlock - safely unlock two runqueues
  2212. *
  2213. * Note this does not restore interrupts like task_rq_unlock,
  2214. * you need to do so manually after calling.
  2215. */
  2216. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2217. __releases(rq1->lock)
  2218. __releases(rq2->lock)
  2219. {
  2220. spin_unlock(&rq1->lock);
  2221. if (rq1 != rq2)
  2222. spin_unlock(&rq2->lock);
  2223. else
  2224. __release(rq2->lock);
  2225. }
  2226. /*
  2227. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2228. */
  2229. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2230. __releases(this_rq->lock)
  2231. __acquires(busiest->lock)
  2232. __acquires(this_rq->lock)
  2233. {
  2234. int ret = 0;
  2235. if (unlikely(!irqs_disabled())) {
  2236. /* printk() doesn't work good under rq->lock */
  2237. spin_unlock(&this_rq->lock);
  2238. BUG_ON(1);
  2239. }
  2240. if (unlikely(!spin_trylock(&busiest->lock))) {
  2241. if (busiest < this_rq) {
  2242. spin_unlock(&this_rq->lock);
  2243. spin_lock(&busiest->lock);
  2244. spin_lock(&this_rq->lock);
  2245. ret = 1;
  2246. } else
  2247. spin_lock(&busiest->lock);
  2248. }
  2249. return ret;
  2250. }
  2251. /*
  2252. * If dest_cpu is allowed for this process, migrate the task to it.
  2253. * This is accomplished by forcing the cpu_allowed mask to only
  2254. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2255. * the cpu_allowed mask is restored.
  2256. */
  2257. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2258. {
  2259. struct migration_req req;
  2260. unsigned long flags;
  2261. struct rq *rq;
  2262. rq = task_rq_lock(p, &flags);
  2263. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2264. || unlikely(cpu_is_offline(dest_cpu)))
  2265. goto out;
  2266. /* force the process onto the specified CPU */
  2267. if (migrate_task(p, dest_cpu, &req)) {
  2268. /* Need to wait for migration thread (might exit: take ref). */
  2269. struct task_struct *mt = rq->migration_thread;
  2270. get_task_struct(mt);
  2271. task_rq_unlock(rq, &flags);
  2272. wake_up_process(mt);
  2273. put_task_struct(mt);
  2274. wait_for_completion(&req.done);
  2275. return;
  2276. }
  2277. out:
  2278. task_rq_unlock(rq, &flags);
  2279. }
  2280. /*
  2281. * sched_exec - execve() is a valuable balancing opportunity, because at
  2282. * this point the task has the smallest effective memory and cache footprint.
  2283. */
  2284. void sched_exec(void)
  2285. {
  2286. int new_cpu, this_cpu = get_cpu();
  2287. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2288. put_cpu();
  2289. if (new_cpu != this_cpu)
  2290. sched_migrate_task(current, new_cpu);
  2291. }
  2292. /*
  2293. * pull_task - move a task from a remote runqueue to the local runqueue.
  2294. * Both runqueues must be locked.
  2295. */
  2296. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2297. struct rq *this_rq, int this_cpu)
  2298. {
  2299. deactivate_task(src_rq, p, 0);
  2300. set_task_cpu(p, this_cpu);
  2301. activate_task(this_rq, p, 0);
  2302. /*
  2303. * Note that idle threads have a prio of MAX_PRIO, for this test
  2304. * to be always true for them.
  2305. */
  2306. check_preempt_curr(this_rq, p);
  2307. }
  2308. /*
  2309. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2310. */
  2311. static
  2312. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2313. struct sched_domain *sd, enum cpu_idle_type idle,
  2314. int *all_pinned)
  2315. {
  2316. /*
  2317. * We do not migrate tasks that are:
  2318. * 1) running (obviously), or
  2319. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2320. * 3) are cache-hot on their current CPU.
  2321. */
  2322. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2323. schedstat_inc(p, se.nr_failed_migrations_affine);
  2324. return 0;
  2325. }
  2326. *all_pinned = 0;
  2327. if (task_running(rq, p)) {
  2328. schedstat_inc(p, se.nr_failed_migrations_running);
  2329. return 0;
  2330. }
  2331. /*
  2332. * Aggressive migration if:
  2333. * 1) task is cache cold, or
  2334. * 2) too many balance attempts have failed.
  2335. */
  2336. if (!task_hot(p, rq->clock, sd) ||
  2337. sd->nr_balance_failed > sd->cache_nice_tries) {
  2338. #ifdef CONFIG_SCHEDSTATS
  2339. if (task_hot(p, rq->clock, sd)) {
  2340. schedstat_inc(sd, lb_hot_gained[idle]);
  2341. schedstat_inc(p, se.nr_forced_migrations);
  2342. }
  2343. #endif
  2344. return 1;
  2345. }
  2346. if (task_hot(p, rq->clock, sd)) {
  2347. schedstat_inc(p, se.nr_failed_migrations_hot);
  2348. return 0;
  2349. }
  2350. return 1;
  2351. }
  2352. static unsigned long
  2353. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2354. unsigned long max_load_move, struct sched_domain *sd,
  2355. enum cpu_idle_type idle, int *all_pinned,
  2356. int *this_best_prio, struct rq_iterator *iterator)
  2357. {
  2358. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2359. struct task_struct *p;
  2360. long rem_load_move = max_load_move;
  2361. if (max_load_move == 0)
  2362. goto out;
  2363. pinned = 1;
  2364. /*
  2365. * Start the load-balancing iterator:
  2366. */
  2367. p = iterator->start(iterator->arg);
  2368. next:
  2369. if (!p || loops++ > sysctl_sched_nr_migrate)
  2370. goto out;
  2371. /*
  2372. * To help distribute high priority tasks across CPUs we don't
  2373. * skip a task if it will be the highest priority task (i.e. smallest
  2374. * prio value) on its new queue regardless of its load weight
  2375. */
  2376. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2377. SCHED_LOAD_SCALE_FUZZ;
  2378. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2379. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2380. p = iterator->next(iterator->arg);
  2381. goto next;
  2382. }
  2383. pull_task(busiest, p, this_rq, this_cpu);
  2384. pulled++;
  2385. rem_load_move -= p->se.load.weight;
  2386. /*
  2387. * We only want to steal up to the prescribed amount of weighted load.
  2388. */
  2389. if (rem_load_move > 0) {
  2390. if (p->prio < *this_best_prio)
  2391. *this_best_prio = p->prio;
  2392. p = iterator->next(iterator->arg);
  2393. goto next;
  2394. }
  2395. out:
  2396. /*
  2397. * Right now, this is one of only two places pull_task() is called,
  2398. * so we can safely collect pull_task() stats here rather than
  2399. * inside pull_task().
  2400. */
  2401. schedstat_add(sd, lb_gained[idle], pulled);
  2402. if (all_pinned)
  2403. *all_pinned = pinned;
  2404. return max_load_move - rem_load_move;
  2405. }
  2406. /*
  2407. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2408. * this_rq, as part of a balancing operation within domain "sd".
  2409. * Returns 1 if successful and 0 otherwise.
  2410. *
  2411. * Called with both runqueues locked.
  2412. */
  2413. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2414. unsigned long max_load_move,
  2415. struct sched_domain *sd, enum cpu_idle_type idle,
  2416. int *all_pinned)
  2417. {
  2418. const struct sched_class *class = sched_class_highest;
  2419. unsigned long total_load_moved = 0;
  2420. int this_best_prio = this_rq->curr->prio;
  2421. do {
  2422. total_load_moved +=
  2423. class->load_balance(this_rq, this_cpu, busiest,
  2424. max_load_move - total_load_moved,
  2425. sd, idle, all_pinned, &this_best_prio);
  2426. class = class->next;
  2427. } while (class && max_load_move > total_load_moved);
  2428. return total_load_moved > 0;
  2429. }
  2430. static int
  2431. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2432. struct sched_domain *sd, enum cpu_idle_type idle,
  2433. struct rq_iterator *iterator)
  2434. {
  2435. struct task_struct *p = iterator->start(iterator->arg);
  2436. int pinned = 0;
  2437. while (p) {
  2438. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2439. pull_task(busiest, p, this_rq, this_cpu);
  2440. /*
  2441. * Right now, this is only the second place pull_task()
  2442. * is called, so we can safely collect pull_task()
  2443. * stats here rather than inside pull_task().
  2444. */
  2445. schedstat_inc(sd, lb_gained[idle]);
  2446. return 1;
  2447. }
  2448. p = iterator->next(iterator->arg);
  2449. }
  2450. return 0;
  2451. }
  2452. /*
  2453. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2454. * part of active balancing operations within "domain".
  2455. * Returns 1 if successful and 0 otherwise.
  2456. *
  2457. * Called with both runqueues locked.
  2458. */
  2459. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2460. struct sched_domain *sd, enum cpu_idle_type idle)
  2461. {
  2462. const struct sched_class *class;
  2463. for (class = sched_class_highest; class; class = class->next)
  2464. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2465. return 1;
  2466. return 0;
  2467. }
  2468. /*
  2469. * find_busiest_group finds and returns the busiest CPU group within the
  2470. * domain. It calculates and returns the amount of weighted load which
  2471. * should be moved to restore balance via the imbalance parameter.
  2472. */
  2473. static struct sched_group *
  2474. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2475. unsigned long *imbalance, enum cpu_idle_type idle,
  2476. int *sd_idle, const cpumask_t *cpus, int *balance)
  2477. {
  2478. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2479. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2480. unsigned long max_pull;
  2481. unsigned long busiest_load_per_task, busiest_nr_running;
  2482. unsigned long this_load_per_task, this_nr_running;
  2483. int load_idx, group_imb = 0;
  2484. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2485. int power_savings_balance = 1;
  2486. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2487. unsigned long min_nr_running = ULONG_MAX;
  2488. struct sched_group *group_min = NULL, *group_leader = NULL;
  2489. #endif
  2490. max_load = this_load = total_load = total_pwr = 0;
  2491. busiest_load_per_task = busiest_nr_running = 0;
  2492. this_load_per_task = this_nr_running = 0;
  2493. if (idle == CPU_NOT_IDLE)
  2494. load_idx = sd->busy_idx;
  2495. else if (idle == CPU_NEWLY_IDLE)
  2496. load_idx = sd->newidle_idx;
  2497. else
  2498. load_idx = sd->idle_idx;
  2499. do {
  2500. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2501. int local_group;
  2502. int i;
  2503. int __group_imb = 0;
  2504. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2505. unsigned long sum_nr_running, sum_weighted_load;
  2506. local_group = cpu_isset(this_cpu, group->cpumask);
  2507. if (local_group)
  2508. balance_cpu = first_cpu(group->cpumask);
  2509. /* Tally up the load of all CPUs in the group */
  2510. sum_weighted_load = sum_nr_running = avg_load = 0;
  2511. max_cpu_load = 0;
  2512. min_cpu_load = ~0UL;
  2513. for_each_cpu_mask(i, group->cpumask) {
  2514. struct rq *rq;
  2515. if (!cpu_isset(i, *cpus))
  2516. continue;
  2517. rq = cpu_rq(i);
  2518. if (*sd_idle && rq->nr_running)
  2519. *sd_idle = 0;
  2520. /* Bias balancing toward cpus of our domain */
  2521. if (local_group) {
  2522. if (idle_cpu(i) && !first_idle_cpu) {
  2523. first_idle_cpu = 1;
  2524. balance_cpu = i;
  2525. }
  2526. load = target_load(i, load_idx);
  2527. } else {
  2528. load = source_load(i, load_idx);
  2529. if (load > max_cpu_load)
  2530. max_cpu_load = load;
  2531. if (min_cpu_load > load)
  2532. min_cpu_load = load;
  2533. }
  2534. avg_load += load;
  2535. sum_nr_running += rq->nr_running;
  2536. sum_weighted_load += weighted_cpuload(i);
  2537. }
  2538. /*
  2539. * First idle cpu or the first cpu(busiest) in this sched group
  2540. * is eligible for doing load balancing at this and above
  2541. * domains. In the newly idle case, we will allow all the cpu's
  2542. * to do the newly idle load balance.
  2543. */
  2544. if (idle != CPU_NEWLY_IDLE && local_group &&
  2545. balance_cpu != this_cpu && balance) {
  2546. *balance = 0;
  2547. goto ret;
  2548. }
  2549. total_load += avg_load;
  2550. total_pwr += group->__cpu_power;
  2551. /* Adjust by relative CPU power of the group */
  2552. avg_load = sg_div_cpu_power(group,
  2553. avg_load * SCHED_LOAD_SCALE);
  2554. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2555. __group_imb = 1;
  2556. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2557. if (local_group) {
  2558. this_load = avg_load;
  2559. this = group;
  2560. this_nr_running = sum_nr_running;
  2561. this_load_per_task = sum_weighted_load;
  2562. } else if (avg_load > max_load &&
  2563. (sum_nr_running > group_capacity || __group_imb)) {
  2564. max_load = avg_load;
  2565. busiest = group;
  2566. busiest_nr_running = sum_nr_running;
  2567. busiest_load_per_task = sum_weighted_load;
  2568. group_imb = __group_imb;
  2569. }
  2570. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2571. /*
  2572. * Busy processors will not participate in power savings
  2573. * balance.
  2574. */
  2575. if (idle == CPU_NOT_IDLE ||
  2576. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2577. goto group_next;
  2578. /*
  2579. * If the local group is idle or completely loaded
  2580. * no need to do power savings balance at this domain
  2581. */
  2582. if (local_group && (this_nr_running >= group_capacity ||
  2583. !this_nr_running))
  2584. power_savings_balance = 0;
  2585. /*
  2586. * If a group is already running at full capacity or idle,
  2587. * don't include that group in power savings calculations
  2588. */
  2589. if (!power_savings_balance || sum_nr_running >= group_capacity
  2590. || !sum_nr_running)
  2591. goto group_next;
  2592. /*
  2593. * Calculate the group which has the least non-idle load.
  2594. * This is the group from where we need to pick up the load
  2595. * for saving power
  2596. */
  2597. if ((sum_nr_running < min_nr_running) ||
  2598. (sum_nr_running == min_nr_running &&
  2599. first_cpu(group->cpumask) <
  2600. first_cpu(group_min->cpumask))) {
  2601. group_min = group;
  2602. min_nr_running = sum_nr_running;
  2603. min_load_per_task = sum_weighted_load /
  2604. sum_nr_running;
  2605. }
  2606. /*
  2607. * Calculate the group which is almost near its
  2608. * capacity but still has some space to pick up some load
  2609. * from other group and save more power
  2610. */
  2611. if (sum_nr_running <= group_capacity - 1) {
  2612. if (sum_nr_running > leader_nr_running ||
  2613. (sum_nr_running == leader_nr_running &&
  2614. first_cpu(group->cpumask) >
  2615. first_cpu(group_leader->cpumask))) {
  2616. group_leader = group;
  2617. leader_nr_running = sum_nr_running;
  2618. }
  2619. }
  2620. group_next:
  2621. #endif
  2622. group = group->next;
  2623. } while (group != sd->groups);
  2624. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2625. goto out_balanced;
  2626. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2627. if (this_load >= avg_load ||
  2628. 100*max_load <= sd->imbalance_pct*this_load)
  2629. goto out_balanced;
  2630. busiest_load_per_task /= busiest_nr_running;
  2631. if (group_imb)
  2632. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2633. /*
  2634. * We're trying to get all the cpus to the average_load, so we don't
  2635. * want to push ourselves above the average load, nor do we wish to
  2636. * reduce the max loaded cpu below the average load, as either of these
  2637. * actions would just result in more rebalancing later, and ping-pong
  2638. * tasks around. Thus we look for the minimum possible imbalance.
  2639. * Negative imbalances (*we* are more loaded than anyone else) will
  2640. * be counted as no imbalance for these purposes -- we can't fix that
  2641. * by pulling tasks to us. Be careful of negative numbers as they'll
  2642. * appear as very large values with unsigned longs.
  2643. */
  2644. if (max_load <= busiest_load_per_task)
  2645. goto out_balanced;
  2646. /*
  2647. * In the presence of smp nice balancing, certain scenarios can have
  2648. * max load less than avg load(as we skip the groups at or below
  2649. * its cpu_power, while calculating max_load..)
  2650. */
  2651. if (max_load < avg_load) {
  2652. *imbalance = 0;
  2653. goto small_imbalance;
  2654. }
  2655. /* Don't want to pull so many tasks that a group would go idle */
  2656. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2657. /* How much load to actually move to equalise the imbalance */
  2658. *imbalance = min(max_pull * busiest->__cpu_power,
  2659. (avg_load - this_load) * this->__cpu_power)
  2660. / SCHED_LOAD_SCALE;
  2661. /*
  2662. * if *imbalance is less than the average load per runnable task
  2663. * there is no gaurantee that any tasks will be moved so we'll have
  2664. * a think about bumping its value to force at least one task to be
  2665. * moved
  2666. */
  2667. if (*imbalance < busiest_load_per_task) {
  2668. unsigned long tmp, pwr_now, pwr_move;
  2669. unsigned int imbn;
  2670. small_imbalance:
  2671. pwr_move = pwr_now = 0;
  2672. imbn = 2;
  2673. if (this_nr_running) {
  2674. this_load_per_task /= this_nr_running;
  2675. if (busiest_load_per_task > this_load_per_task)
  2676. imbn = 1;
  2677. } else
  2678. this_load_per_task = SCHED_LOAD_SCALE;
  2679. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2680. busiest_load_per_task * imbn) {
  2681. *imbalance = busiest_load_per_task;
  2682. return busiest;
  2683. }
  2684. /*
  2685. * OK, we don't have enough imbalance to justify moving tasks,
  2686. * however we may be able to increase total CPU power used by
  2687. * moving them.
  2688. */
  2689. pwr_now += busiest->__cpu_power *
  2690. min(busiest_load_per_task, max_load);
  2691. pwr_now += this->__cpu_power *
  2692. min(this_load_per_task, this_load);
  2693. pwr_now /= SCHED_LOAD_SCALE;
  2694. /* Amount of load we'd subtract */
  2695. tmp = sg_div_cpu_power(busiest,
  2696. busiest_load_per_task * SCHED_LOAD_SCALE);
  2697. if (max_load > tmp)
  2698. pwr_move += busiest->__cpu_power *
  2699. min(busiest_load_per_task, max_load - tmp);
  2700. /* Amount of load we'd add */
  2701. if (max_load * busiest->__cpu_power <
  2702. busiest_load_per_task * SCHED_LOAD_SCALE)
  2703. tmp = sg_div_cpu_power(this,
  2704. max_load * busiest->__cpu_power);
  2705. else
  2706. tmp = sg_div_cpu_power(this,
  2707. busiest_load_per_task * SCHED_LOAD_SCALE);
  2708. pwr_move += this->__cpu_power *
  2709. min(this_load_per_task, this_load + tmp);
  2710. pwr_move /= SCHED_LOAD_SCALE;
  2711. /* Move if we gain throughput */
  2712. if (pwr_move > pwr_now)
  2713. *imbalance = busiest_load_per_task;
  2714. }
  2715. return busiest;
  2716. out_balanced:
  2717. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2718. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2719. goto ret;
  2720. if (this == group_leader && group_leader != group_min) {
  2721. *imbalance = min_load_per_task;
  2722. return group_min;
  2723. }
  2724. #endif
  2725. ret:
  2726. *imbalance = 0;
  2727. return NULL;
  2728. }
  2729. /*
  2730. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2731. */
  2732. static struct rq *
  2733. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2734. unsigned long imbalance, const cpumask_t *cpus)
  2735. {
  2736. struct rq *busiest = NULL, *rq;
  2737. unsigned long max_load = 0;
  2738. int i;
  2739. for_each_cpu_mask(i, group->cpumask) {
  2740. unsigned long wl;
  2741. if (!cpu_isset(i, *cpus))
  2742. continue;
  2743. rq = cpu_rq(i);
  2744. wl = weighted_cpuload(i);
  2745. if (rq->nr_running == 1 && wl > imbalance)
  2746. continue;
  2747. if (wl > max_load) {
  2748. max_load = wl;
  2749. busiest = rq;
  2750. }
  2751. }
  2752. return busiest;
  2753. }
  2754. /*
  2755. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2756. * so long as it is large enough.
  2757. */
  2758. #define MAX_PINNED_INTERVAL 512
  2759. /*
  2760. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2761. * tasks if there is an imbalance.
  2762. */
  2763. static int load_balance(int this_cpu, struct rq *this_rq,
  2764. struct sched_domain *sd, enum cpu_idle_type idle,
  2765. int *balance, cpumask_t *cpus)
  2766. {
  2767. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2768. struct sched_group *group;
  2769. unsigned long imbalance;
  2770. struct rq *busiest;
  2771. unsigned long flags;
  2772. cpus_setall(*cpus);
  2773. /*
  2774. * When power savings policy is enabled for the parent domain, idle
  2775. * sibling can pick up load irrespective of busy siblings. In this case,
  2776. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2777. * portraying it as CPU_NOT_IDLE.
  2778. */
  2779. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2780. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2781. sd_idle = 1;
  2782. schedstat_inc(sd, lb_count[idle]);
  2783. redo:
  2784. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2785. cpus, balance);
  2786. if (*balance == 0)
  2787. goto out_balanced;
  2788. if (!group) {
  2789. schedstat_inc(sd, lb_nobusyg[idle]);
  2790. goto out_balanced;
  2791. }
  2792. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2793. if (!busiest) {
  2794. schedstat_inc(sd, lb_nobusyq[idle]);
  2795. goto out_balanced;
  2796. }
  2797. BUG_ON(busiest == this_rq);
  2798. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2799. ld_moved = 0;
  2800. if (busiest->nr_running > 1) {
  2801. /*
  2802. * Attempt to move tasks. If find_busiest_group has found
  2803. * an imbalance but busiest->nr_running <= 1, the group is
  2804. * still unbalanced. ld_moved simply stays zero, so it is
  2805. * correctly treated as an imbalance.
  2806. */
  2807. local_irq_save(flags);
  2808. double_rq_lock(this_rq, busiest);
  2809. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2810. imbalance, sd, idle, &all_pinned);
  2811. double_rq_unlock(this_rq, busiest);
  2812. local_irq_restore(flags);
  2813. /*
  2814. * some other cpu did the load balance for us.
  2815. */
  2816. if (ld_moved && this_cpu != smp_processor_id())
  2817. resched_cpu(this_cpu);
  2818. /* All tasks on this runqueue were pinned by CPU affinity */
  2819. if (unlikely(all_pinned)) {
  2820. cpu_clear(cpu_of(busiest), *cpus);
  2821. if (!cpus_empty(*cpus))
  2822. goto redo;
  2823. goto out_balanced;
  2824. }
  2825. }
  2826. if (!ld_moved) {
  2827. schedstat_inc(sd, lb_failed[idle]);
  2828. sd->nr_balance_failed++;
  2829. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2830. spin_lock_irqsave(&busiest->lock, flags);
  2831. /* don't kick the migration_thread, if the curr
  2832. * task on busiest cpu can't be moved to this_cpu
  2833. */
  2834. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2835. spin_unlock_irqrestore(&busiest->lock, flags);
  2836. all_pinned = 1;
  2837. goto out_one_pinned;
  2838. }
  2839. if (!busiest->active_balance) {
  2840. busiest->active_balance = 1;
  2841. busiest->push_cpu = this_cpu;
  2842. active_balance = 1;
  2843. }
  2844. spin_unlock_irqrestore(&busiest->lock, flags);
  2845. if (active_balance)
  2846. wake_up_process(busiest->migration_thread);
  2847. /*
  2848. * We've kicked active balancing, reset the failure
  2849. * counter.
  2850. */
  2851. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2852. }
  2853. } else
  2854. sd->nr_balance_failed = 0;
  2855. if (likely(!active_balance)) {
  2856. /* We were unbalanced, so reset the balancing interval */
  2857. sd->balance_interval = sd->min_interval;
  2858. } else {
  2859. /*
  2860. * If we've begun active balancing, start to back off. This
  2861. * case may not be covered by the all_pinned logic if there
  2862. * is only 1 task on the busy runqueue (because we don't call
  2863. * move_tasks).
  2864. */
  2865. if (sd->balance_interval < sd->max_interval)
  2866. sd->balance_interval *= 2;
  2867. }
  2868. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2869. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2870. return -1;
  2871. return ld_moved;
  2872. out_balanced:
  2873. schedstat_inc(sd, lb_balanced[idle]);
  2874. sd->nr_balance_failed = 0;
  2875. out_one_pinned:
  2876. /* tune up the balancing interval */
  2877. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2878. (sd->balance_interval < sd->max_interval))
  2879. sd->balance_interval *= 2;
  2880. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2881. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2882. return -1;
  2883. return 0;
  2884. }
  2885. /*
  2886. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2887. * tasks if there is an imbalance.
  2888. *
  2889. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2890. * this_rq is locked.
  2891. */
  2892. static int
  2893. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  2894. cpumask_t *cpus)
  2895. {
  2896. struct sched_group *group;
  2897. struct rq *busiest = NULL;
  2898. unsigned long imbalance;
  2899. int ld_moved = 0;
  2900. int sd_idle = 0;
  2901. int all_pinned = 0;
  2902. cpus_setall(*cpus);
  2903. /*
  2904. * When power savings policy is enabled for the parent domain, idle
  2905. * sibling can pick up load irrespective of busy siblings. In this case,
  2906. * let the state of idle sibling percolate up as IDLE, instead of
  2907. * portraying it as CPU_NOT_IDLE.
  2908. */
  2909. if (sd->flags & SD_SHARE_CPUPOWER &&
  2910. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2911. sd_idle = 1;
  2912. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2913. redo:
  2914. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2915. &sd_idle, cpus, NULL);
  2916. if (!group) {
  2917. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2918. goto out_balanced;
  2919. }
  2920. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  2921. if (!busiest) {
  2922. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2923. goto out_balanced;
  2924. }
  2925. BUG_ON(busiest == this_rq);
  2926. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2927. ld_moved = 0;
  2928. if (busiest->nr_running > 1) {
  2929. /* Attempt to move tasks */
  2930. double_lock_balance(this_rq, busiest);
  2931. /* this_rq->clock is already updated */
  2932. update_rq_clock(busiest);
  2933. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2934. imbalance, sd, CPU_NEWLY_IDLE,
  2935. &all_pinned);
  2936. spin_unlock(&busiest->lock);
  2937. if (unlikely(all_pinned)) {
  2938. cpu_clear(cpu_of(busiest), *cpus);
  2939. if (!cpus_empty(*cpus))
  2940. goto redo;
  2941. }
  2942. }
  2943. if (!ld_moved) {
  2944. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2945. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2946. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2947. return -1;
  2948. } else
  2949. sd->nr_balance_failed = 0;
  2950. return ld_moved;
  2951. out_balanced:
  2952. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2953. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2954. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2955. return -1;
  2956. sd->nr_balance_failed = 0;
  2957. return 0;
  2958. }
  2959. /*
  2960. * idle_balance is called by schedule() if this_cpu is about to become
  2961. * idle. Attempts to pull tasks from other CPUs.
  2962. */
  2963. static void idle_balance(int this_cpu, struct rq *this_rq)
  2964. {
  2965. struct sched_domain *sd;
  2966. int pulled_task = -1;
  2967. unsigned long next_balance = jiffies + HZ;
  2968. cpumask_t tmpmask;
  2969. for_each_domain(this_cpu, sd) {
  2970. unsigned long interval;
  2971. if (!(sd->flags & SD_LOAD_BALANCE))
  2972. continue;
  2973. if (sd->flags & SD_BALANCE_NEWIDLE)
  2974. /* If we've pulled tasks over stop searching: */
  2975. pulled_task = load_balance_newidle(this_cpu, this_rq,
  2976. sd, &tmpmask);
  2977. interval = msecs_to_jiffies(sd->balance_interval);
  2978. if (time_after(next_balance, sd->last_balance + interval))
  2979. next_balance = sd->last_balance + interval;
  2980. if (pulled_task)
  2981. break;
  2982. }
  2983. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2984. /*
  2985. * We are going idle. next_balance may be set based on
  2986. * a busy processor. So reset next_balance.
  2987. */
  2988. this_rq->next_balance = next_balance;
  2989. }
  2990. }
  2991. /*
  2992. * active_load_balance is run by migration threads. It pushes running tasks
  2993. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2994. * running on each physical CPU where possible, and avoids physical /
  2995. * logical imbalances.
  2996. *
  2997. * Called with busiest_rq locked.
  2998. */
  2999. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3000. {
  3001. int target_cpu = busiest_rq->push_cpu;
  3002. struct sched_domain *sd;
  3003. struct rq *target_rq;
  3004. /* Is there any task to move? */
  3005. if (busiest_rq->nr_running <= 1)
  3006. return;
  3007. target_rq = cpu_rq(target_cpu);
  3008. /*
  3009. * This condition is "impossible", if it occurs
  3010. * we need to fix it. Originally reported by
  3011. * Bjorn Helgaas on a 128-cpu setup.
  3012. */
  3013. BUG_ON(busiest_rq == target_rq);
  3014. /* move a task from busiest_rq to target_rq */
  3015. double_lock_balance(busiest_rq, target_rq);
  3016. update_rq_clock(busiest_rq);
  3017. update_rq_clock(target_rq);
  3018. /* Search for an sd spanning us and the target CPU. */
  3019. for_each_domain(target_cpu, sd) {
  3020. if ((sd->flags & SD_LOAD_BALANCE) &&
  3021. cpu_isset(busiest_cpu, sd->span))
  3022. break;
  3023. }
  3024. if (likely(sd)) {
  3025. schedstat_inc(sd, alb_count);
  3026. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3027. sd, CPU_IDLE))
  3028. schedstat_inc(sd, alb_pushed);
  3029. else
  3030. schedstat_inc(sd, alb_failed);
  3031. }
  3032. spin_unlock(&target_rq->lock);
  3033. }
  3034. #ifdef CONFIG_NO_HZ
  3035. static struct {
  3036. atomic_t load_balancer;
  3037. cpumask_t cpu_mask;
  3038. } nohz ____cacheline_aligned = {
  3039. .load_balancer = ATOMIC_INIT(-1),
  3040. .cpu_mask = CPU_MASK_NONE,
  3041. };
  3042. /*
  3043. * This routine will try to nominate the ilb (idle load balancing)
  3044. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3045. * load balancing on behalf of all those cpus. If all the cpus in the system
  3046. * go into this tickless mode, then there will be no ilb owner (as there is
  3047. * no need for one) and all the cpus will sleep till the next wakeup event
  3048. * arrives...
  3049. *
  3050. * For the ilb owner, tick is not stopped. And this tick will be used
  3051. * for idle load balancing. ilb owner will still be part of
  3052. * nohz.cpu_mask..
  3053. *
  3054. * While stopping the tick, this cpu will become the ilb owner if there
  3055. * is no other owner. And will be the owner till that cpu becomes busy
  3056. * or if all cpus in the system stop their ticks at which point
  3057. * there is no need for ilb owner.
  3058. *
  3059. * When the ilb owner becomes busy, it nominates another owner, during the
  3060. * next busy scheduler_tick()
  3061. */
  3062. int select_nohz_load_balancer(int stop_tick)
  3063. {
  3064. int cpu = smp_processor_id();
  3065. if (stop_tick) {
  3066. cpu_set(cpu, nohz.cpu_mask);
  3067. cpu_rq(cpu)->in_nohz_recently = 1;
  3068. /*
  3069. * If we are going offline and still the leader, give up!
  3070. */
  3071. if (cpu_is_offline(cpu) &&
  3072. atomic_read(&nohz.load_balancer) == cpu) {
  3073. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3074. BUG();
  3075. return 0;
  3076. }
  3077. /* time for ilb owner also to sleep */
  3078. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3079. if (atomic_read(&nohz.load_balancer) == cpu)
  3080. atomic_set(&nohz.load_balancer, -1);
  3081. return 0;
  3082. }
  3083. if (atomic_read(&nohz.load_balancer) == -1) {
  3084. /* make me the ilb owner */
  3085. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3086. return 1;
  3087. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3088. return 1;
  3089. } else {
  3090. if (!cpu_isset(cpu, nohz.cpu_mask))
  3091. return 0;
  3092. cpu_clear(cpu, nohz.cpu_mask);
  3093. if (atomic_read(&nohz.load_balancer) == cpu)
  3094. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3095. BUG();
  3096. }
  3097. return 0;
  3098. }
  3099. #endif
  3100. static DEFINE_SPINLOCK(balancing);
  3101. /*
  3102. * It checks each scheduling domain to see if it is due to be balanced,
  3103. * and initiates a balancing operation if so.
  3104. *
  3105. * Balancing parameters are set up in arch_init_sched_domains.
  3106. */
  3107. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3108. {
  3109. int balance = 1;
  3110. struct rq *rq = cpu_rq(cpu);
  3111. unsigned long interval;
  3112. struct sched_domain *sd;
  3113. /* Earliest time when we have to do rebalance again */
  3114. unsigned long next_balance = jiffies + 60*HZ;
  3115. int update_next_balance = 0;
  3116. cpumask_t tmp;
  3117. for_each_domain(cpu, sd) {
  3118. if (!(sd->flags & SD_LOAD_BALANCE))
  3119. continue;
  3120. interval = sd->balance_interval;
  3121. if (idle != CPU_IDLE)
  3122. interval *= sd->busy_factor;
  3123. /* scale ms to jiffies */
  3124. interval = msecs_to_jiffies(interval);
  3125. if (unlikely(!interval))
  3126. interval = 1;
  3127. if (interval > HZ*NR_CPUS/10)
  3128. interval = HZ*NR_CPUS/10;
  3129. if (sd->flags & SD_SERIALIZE) {
  3130. if (!spin_trylock(&balancing))
  3131. goto out;
  3132. }
  3133. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3134. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3135. /*
  3136. * We've pulled tasks over so either we're no
  3137. * longer idle, or one of our SMT siblings is
  3138. * not idle.
  3139. */
  3140. idle = CPU_NOT_IDLE;
  3141. }
  3142. sd->last_balance = jiffies;
  3143. }
  3144. if (sd->flags & SD_SERIALIZE)
  3145. spin_unlock(&balancing);
  3146. out:
  3147. if (time_after(next_balance, sd->last_balance + interval)) {
  3148. next_balance = sd->last_balance + interval;
  3149. update_next_balance = 1;
  3150. }
  3151. /*
  3152. * Stop the load balance at this level. There is another
  3153. * CPU in our sched group which is doing load balancing more
  3154. * actively.
  3155. */
  3156. if (!balance)
  3157. break;
  3158. }
  3159. /*
  3160. * next_balance will be updated only when there is a need.
  3161. * When the cpu is attached to null domain for ex, it will not be
  3162. * updated.
  3163. */
  3164. if (likely(update_next_balance))
  3165. rq->next_balance = next_balance;
  3166. }
  3167. /*
  3168. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3169. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3170. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3171. */
  3172. static void run_rebalance_domains(struct softirq_action *h)
  3173. {
  3174. int this_cpu = smp_processor_id();
  3175. struct rq *this_rq = cpu_rq(this_cpu);
  3176. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3177. CPU_IDLE : CPU_NOT_IDLE;
  3178. rebalance_domains(this_cpu, idle);
  3179. #ifdef CONFIG_NO_HZ
  3180. /*
  3181. * If this cpu is the owner for idle load balancing, then do the
  3182. * balancing on behalf of the other idle cpus whose ticks are
  3183. * stopped.
  3184. */
  3185. if (this_rq->idle_at_tick &&
  3186. atomic_read(&nohz.load_balancer) == this_cpu) {
  3187. cpumask_t cpus = nohz.cpu_mask;
  3188. struct rq *rq;
  3189. int balance_cpu;
  3190. cpu_clear(this_cpu, cpus);
  3191. for_each_cpu_mask(balance_cpu, cpus) {
  3192. /*
  3193. * If this cpu gets work to do, stop the load balancing
  3194. * work being done for other cpus. Next load
  3195. * balancing owner will pick it up.
  3196. */
  3197. if (need_resched())
  3198. break;
  3199. rebalance_domains(balance_cpu, CPU_IDLE);
  3200. rq = cpu_rq(balance_cpu);
  3201. if (time_after(this_rq->next_balance, rq->next_balance))
  3202. this_rq->next_balance = rq->next_balance;
  3203. }
  3204. }
  3205. #endif
  3206. }
  3207. /*
  3208. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3209. *
  3210. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3211. * idle load balancing owner or decide to stop the periodic load balancing,
  3212. * if the whole system is idle.
  3213. */
  3214. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3215. {
  3216. #ifdef CONFIG_NO_HZ
  3217. /*
  3218. * If we were in the nohz mode recently and busy at the current
  3219. * scheduler tick, then check if we need to nominate new idle
  3220. * load balancer.
  3221. */
  3222. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3223. rq->in_nohz_recently = 0;
  3224. if (atomic_read(&nohz.load_balancer) == cpu) {
  3225. cpu_clear(cpu, nohz.cpu_mask);
  3226. atomic_set(&nohz.load_balancer, -1);
  3227. }
  3228. if (atomic_read(&nohz.load_balancer) == -1) {
  3229. /*
  3230. * simple selection for now: Nominate the
  3231. * first cpu in the nohz list to be the next
  3232. * ilb owner.
  3233. *
  3234. * TBD: Traverse the sched domains and nominate
  3235. * the nearest cpu in the nohz.cpu_mask.
  3236. */
  3237. int ilb = first_cpu(nohz.cpu_mask);
  3238. if (ilb < nr_cpu_ids)
  3239. resched_cpu(ilb);
  3240. }
  3241. }
  3242. /*
  3243. * If this cpu is idle and doing idle load balancing for all the
  3244. * cpus with ticks stopped, is it time for that to stop?
  3245. */
  3246. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3247. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3248. resched_cpu(cpu);
  3249. return;
  3250. }
  3251. /*
  3252. * If this cpu is idle and the idle load balancing is done by
  3253. * someone else, then no need raise the SCHED_SOFTIRQ
  3254. */
  3255. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3256. cpu_isset(cpu, nohz.cpu_mask))
  3257. return;
  3258. #endif
  3259. if (time_after_eq(jiffies, rq->next_balance))
  3260. raise_softirq(SCHED_SOFTIRQ);
  3261. }
  3262. #else /* CONFIG_SMP */
  3263. /*
  3264. * on UP we do not need to balance between CPUs:
  3265. */
  3266. static inline void idle_balance(int cpu, struct rq *rq)
  3267. {
  3268. }
  3269. #endif
  3270. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3271. EXPORT_PER_CPU_SYMBOL(kstat);
  3272. /*
  3273. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3274. * that have not yet been banked in case the task is currently running.
  3275. */
  3276. unsigned long long task_sched_runtime(struct task_struct *p)
  3277. {
  3278. unsigned long flags;
  3279. u64 ns, delta_exec;
  3280. struct rq *rq;
  3281. rq = task_rq_lock(p, &flags);
  3282. ns = p->se.sum_exec_runtime;
  3283. if (task_current(rq, p)) {
  3284. update_rq_clock(rq);
  3285. delta_exec = rq->clock - p->se.exec_start;
  3286. if ((s64)delta_exec > 0)
  3287. ns += delta_exec;
  3288. }
  3289. task_rq_unlock(rq, &flags);
  3290. return ns;
  3291. }
  3292. /*
  3293. * Account user cpu time to a process.
  3294. * @p: the process that the cpu time gets accounted to
  3295. * @cputime: the cpu time spent in user space since the last update
  3296. */
  3297. void account_user_time(struct task_struct *p, cputime_t cputime)
  3298. {
  3299. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3300. cputime64_t tmp;
  3301. p->utime = cputime_add(p->utime, cputime);
  3302. /* Add user time to cpustat. */
  3303. tmp = cputime_to_cputime64(cputime);
  3304. if (TASK_NICE(p) > 0)
  3305. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3306. else
  3307. cpustat->user = cputime64_add(cpustat->user, tmp);
  3308. }
  3309. /*
  3310. * Account guest cpu time to a process.
  3311. * @p: the process that the cpu time gets accounted to
  3312. * @cputime: the cpu time spent in virtual machine since the last update
  3313. */
  3314. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3315. {
  3316. cputime64_t tmp;
  3317. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3318. tmp = cputime_to_cputime64(cputime);
  3319. p->utime = cputime_add(p->utime, cputime);
  3320. p->gtime = cputime_add(p->gtime, cputime);
  3321. cpustat->user = cputime64_add(cpustat->user, tmp);
  3322. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3323. }
  3324. /*
  3325. * Account scaled user cpu time to a process.
  3326. * @p: the process that the cpu time gets accounted to
  3327. * @cputime: the cpu time spent in user space since the last update
  3328. */
  3329. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3330. {
  3331. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3332. }
  3333. /*
  3334. * Account system cpu time to a process.
  3335. * @p: the process that the cpu time gets accounted to
  3336. * @hardirq_offset: the offset to subtract from hardirq_count()
  3337. * @cputime: the cpu time spent in kernel space since the last update
  3338. */
  3339. void account_system_time(struct task_struct *p, int hardirq_offset,
  3340. cputime_t cputime)
  3341. {
  3342. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3343. struct rq *rq = this_rq();
  3344. cputime64_t tmp;
  3345. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3346. account_guest_time(p, cputime);
  3347. return;
  3348. }
  3349. p->stime = cputime_add(p->stime, cputime);
  3350. /* Add system time to cpustat. */
  3351. tmp = cputime_to_cputime64(cputime);
  3352. if (hardirq_count() - hardirq_offset)
  3353. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3354. else if (softirq_count())
  3355. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3356. else if (p != rq->idle)
  3357. cpustat->system = cputime64_add(cpustat->system, tmp);
  3358. else if (atomic_read(&rq->nr_iowait) > 0)
  3359. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3360. else
  3361. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3362. /* Account for system time used */
  3363. acct_update_integrals(p);
  3364. }
  3365. /*
  3366. * Account scaled system cpu time to a process.
  3367. * @p: the process that the cpu time gets accounted to
  3368. * @hardirq_offset: the offset to subtract from hardirq_count()
  3369. * @cputime: the cpu time spent in kernel space since the last update
  3370. */
  3371. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3372. {
  3373. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3374. }
  3375. /*
  3376. * Account for involuntary wait time.
  3377. * @p: the process from which the cpu time has been stolen
  3378. * @steal: the cpu time spent in involuntary wait
  3379. */
  3380. void account_steal_time(struct task_struct *p, cputime_t steal)
  3381. {
  3382. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3383. cputime64_t tmp = cputime_to_cputime64(steal);
  3384. struct rq *rq = this_rq();
  3385. if (p == rq->idle) {
  3386. p->stime = cputime_add(p->stime, steal);
  3387. if (atomic_read(&rq->nr_iowait) > 0)
  3388. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3389. else
  3390. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3391. } else
  3392. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3393. }
  3394. /*
  3395. * This function gets called by the timer code, with HZ frequency.
  3396. * We call it with interrupts disabled.
  3397. *
  3398. * It also gets called by the fork code, when changing the parent's
  3399. * timeslices.
  3400. */
  3401. void scheduler_tick(void)
  3402. {
  3403. int cpu = smp_processor_id();
  3404. struct rq *rq = cpu_rq(cpu);
  3405. struct task_struct *curr = rq->curr;
  3406. sched_clock_tick();
  3407. spin_lock(&rq->lock);
  3408. update_rq_clock(rq);
  3409. update_cpu_load(rq);
  3410. curr->sched_class->task_tick(rq, curr, 0);
  3411. spin_unlock(&rq->lock);
  3412. #ifdef CONFIG_SMP
  3413. rq->idle_at_tick = idle_cpu(cpu);
  3414. trigger_load_balance(rq, cpu);
  3415. #endif
  3416. }
  3417. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3418. void __kprobes add_preempt_count(int val)
  3419. {
  3420. /*
  3421. * Underflow?
  3422. */
  3423. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3424. return;
  3425. preempt_count() += val;
  3426. /*
  3427. * Spinlock count overflowing soon?
  3428. */
  3429. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3430. PREEMPT_MASK - 10);
  3431. }
  3432. EXPORT_SYMBOL(add_preempt_count);
  3433. void __kprobes sub_preempt_count(int val)
  3434. {
  3435. /*
  3436. * Underflow?
  3437. */
  3438. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3439. return;
  3440. /*
  3441. * Is the spinlock portion underflowing?
  3442. */
  3443. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3444. !(preempt_count() & PREEMPT_MASK)))
  3445. return;
  3446. preempt_count() -= val;
  3447. }
  3448. EXPORT_SYMBOL(sub_preempt_count);
  3449. #endif
  3450. /*
  3451. * Print scheduling while atomic bug:
  3452. */
  3453. static noinline void __schedule_bug(struct task_struct *prev)
  3454. {
  3455. struct pt_regs *regs = get_irq_regs();
  3456. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3457. prev->comm, prev->pid, preempt_count());
  3458. debug_show_held_locks(prev);
  3459. if (irqs_disabled())
  3460. print_irqtrace_events(prev);
  3461. if (regs)
  3462. show_regs(regs);
  3463. else
  3464. dump_stack();
  3465. }
  3466. /*
  3467. * Various schedule()-time debugging checks and statistics:
  3468. */
  3469. static inline void schedule_debug(struct task_struct *prev)
  3470. {
  3471. /*
  3472. * Test if we are atomic. Since do_exit() needs to call into
  3473. * schedule() atomically, we ignore that path for now.
  3474. * Otherwise, whine if we are scheduling when we should not be.
  3475. */
  3476. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3477. __schedule_bug(prev);
  3478. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3479. schedstat_inc(this_rq(), sched_count);
  3480. #ifdef CONFIG_SCHEDSTATS
  3481. if (unlikely(prev->lock_depth >= 0)) {
  3482. schedstat_inc(this_rq(), bkl_count);
  3483. schedstat_inc(prev, sched_info.bkl_count);
  3484. }
  3485. #endif
  3486. }
  3487. /*
  3488. * Pick up the highest-prio task:
  3489. */
  3490. static inline struct task_struct *
  3491. pick_next_task(struct rq *rq, struct task_struct *prev)
  3492. {
  3493. const struct sched_class *class;
  3494. struct task_struct *p;
  3495. /*
  3496. * Optimization: we know that if all tasks are in
  3497. * the fair class we can call that function directly:
  3498. */
  3499. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3500. p = fair_sched_class.pick_next_task(rq);
  3501. if (likely(p))
  3502. return p;
  3503. }
  3504. class = sched_class_highest;
  3505. for ( ; ; ) {
  3506. p = class->pick_next_task(rq);
  3507. if (p)
  3508. return p;
  3509. /*
  3510. * Will never be NULL as the idle class always
  3511. * returns a non-NULL p:
  3512. */
  3513. class = class->next;
  3514. }
  3515. }
  3516. /*
  3517. * schedule() is the main scheduler function.
  3518. */
  3519. asmlinkage void __sched schedule(void)
  3520. {
  3521. struct task_struct *prev, *next;
  3522. unsigned long *switch_count;
  3523. struct rq *rq;
  3524. int cpu;
  3525. need_resched:
  3526. preempt_disable();
  3527. cpu = smp_processor_id();
  3528. rq = cpu_rq(cpu);
  3529. rcu_qsctr_inc(cpu);
  3530. prev = rq->curr;
  3531. switch_count = &prev->nivcsw;
  3532. release_kernel_lock(prev);
  3533. need_resched_nonpreemptible:
  3534. schedule_debug(prev);
  3535. hrtick_clear(rq);
  3536. /*
  3537. * Do the rq-clock update outside the rq lock:
  3538. */
  3539. local_irq_disable();
  3540. update_rq_clock(rq);
  3541. spin_lock(&rq->lock);
  3542. clear_tsk_need_resched(prev);
  3543. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3544. if (unlikely(signal_pending_state(prev->state, prev)))
  3545. prev->state = TASK_RUNNING;
  3546. else
  3547. deactivate_task(rq, prev, 1);
  3548. switch_count = &prev->nvcsw;
  3549. }
  3550. #ifdef CONFIG_SMP
  3551. if (prev->sched_class->pre_schedule)
  3552. prev->sched_class->pre_schedule(rq, prev);
  3553. #endif
  3554. if (unlikely(!rq->nr_running))
  3555. idle_balance(cpu, rq);
  3556. prev->sched_class->put_prev_task(rq, prev);
  3557. next = pick_next_task(rq, prev);
  3558. if (likely(prev != next)) {
  3559. sched_info_switch(prev, next);
  3560. rq->nr_switches++;
  3561. rq->curr = next;
  3562. ++*switch_count;
  3563. context_switch(rq, prev, next); /* unlocks the rq */
  3564. /*
  3565. * the context switch might have flipped the stack from under
  3566. * us, hence refresh the local variables.
  3567. */
  3568. cpu = smp_processor_id();
  3569. rq = cpu_rq(cpu);
  3570. } else
  3571. spin_unlock_irq(&rq->lock);
  3572. hrtick_set(rq);
  3573. if (unlikely(reacquire_kernel_lock(current) < 0))
  3574. goto need_resched_nonpreemptible;
  3575. preempt_enable_no_resched();
  3576. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3577. goto need_resched;
  3578. }
  3579. EXPORT_SYMBOL(schedule);
  3580. #ifdef CONFIG_PREEMPT
  3581. /*
  3582. * this is the entry point to schedule() from in-kernel preemption
  3583. * off of preempt_enable. Kernel preemptions off return from interrupt
  3584. * occur there and call schedule directly.
  3585. */
  3586. asmlinkage void __sched preempt_schedule(void)
  3587. {
  3588. struct thread_info *ti = current_thread_info();
  3589. /*
  3590. * If there is a non-zero preempt_count or interrupts are disabled,
  3591. * we do not want to preempt the current task. Just return..
  3592. */
  3593. if (likely(ti->preempt_count || irqs_disabled()))
  3594. return;
  3595. do {
  3596. add_preempt_count(PREEMPT_ACTIVE);
  3597. schedule();
  3598. sub_preempt_count(PREEMPT_ACTIVE);
  3599. /*
  3600. * Check again in case we missed a preemption opportunity
  3601. * between schedule and now.
  3602. */
  3603. barrier();
  3604. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3605. }
  3606. EXPORT_SYMBOL(preempt_schedule);
  3607. /*
  3608. * this is the entry point to schedule() from kernel preemption
  3609. * off of irq context.
  3610. * Note, that this is called and return with irqs disabled. This will
  3611. * protect us against recursive calling from irq.
  3612. */
  3613. asmlinkage void __sched preempt_schedule_irq(void)
  3614. {
  3615. struct thread_info *ti = current_thread_info();
  3616. /* Catch callers which need to be fixed */
  3617. BUG_ON(ti->preempt_count || !irqs_disabled());
  3618. do {
  3619. add_preempt_count(PREEMPT_ACTIVE);
  3620. local_irq_enable();
  3621. schedule();
  3622. local_irq_disable();
  3623. sub_preempt_count(PREEMPT_ACTIVE);
  3624. /*
  3625. * Check again in case we missed a preemption opportunity
  3626. * between schedule and now.
  3627. */
  3628. barrier();
  3629. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3630. }
  3631. #endif /* CONFIG_PREEMPT */
  3632. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3633. void *key)
  3634. {
  3635. return try_to_wake_up(curr->private, mode, sync);
  3636. }
  3637. EXPORT_SYMBOL(default_wake_function);
  3638. /*
  3639. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3640. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3641. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3642. *
  3643. * There are circumstances in which we can try to wake a task which has already
  3644. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3645. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3646. */
  3647. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3648. int nr_exclusive, int sync, void *key)
  3649. {
  3650. wait_queue_t *curr, *next;
  3651. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3652. unsigned flags = curr->flags;
  3653. if (curr->func(curr, mode, sync, key) &&
  3654. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3655. break;
  3656. }
  3657. }
  3658. /**
  3659. * __wake_up - wake up threads blocked on a waitqueue.
  3660. * @q: the waitqueue
  3661. * @mode: which threads
  3662. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3663. * @key: is directly passed to the wakeup function
  3664. */
  3665. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3666. int nr_exclusive, void *key)
  3667. {
  3668. unsigned long flags;
  3669. spin_lock_irqsave(&q->lock, flags);
  3670. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3671. spin_unlock_irqrestore(&q->lock, flags);
  3672. }
  3673. EXPORT_SYMBOL(__wake_up);
  3674. /*
  3675. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3676. */
  3677. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3678. {
  3679. __wake_up_common(q, mode, 1, 0, NULL);
  3680. }
  3681. /**
  3682. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3683. * @q: the waitqueue
  3684. * @mode: which threads
  3685. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3686. *
  3687. * The sync wakeup differs that the waker knows that it will schedule
  3688. * away soon, so while the target thread will be woken up, it will not
  3689. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3690. * with each other. This can prevent needless bouncing between CPUs.
  3691. *
  3692. * On UP it can prevent extra preemption.
  3693. */
  3694. void
  3695. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3696. {
  3697. unsigned long flags;
  3698. int sync = 1;
  3699. if (unlikely(!q))
  3700. return;
  3701. if (unlikely(!nr_exclusive))
  3702. sync = 0;
  3703. spin_lock_irqsave(&q->lock, flags);
  3704. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3705. spin_unlock_irqrestore(&q->lock, flags);
  3706. }
  3707. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3708. void complete(struct completion *x)
  3709. {
  3710. unsigned long flags;
  3711. spin_lock_irqsave(&x->wait.lock, flags);
  3712. x->done++;
  3713. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3714. spin_unlock_irqrestore(&x->wait.lock, flags);
  3715. }
  3716. EXPORT_SYMBOL(complete);
  3717. void complete_all(struct completion *x)
  3718. {
  3719. unsigned long flags;
  3720. spin_lock_irqsave(&x->wait.lock, flags);
  3721. x->done += UINT_MAX/2;
  3722. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3723. spin_unlock_irqrestore(&x->wait.lock, flags);
  3724. }
  3725. EXPORT_SYMBOL(complete_all);
  3726. static inline long __sched
  3727. do_wait_for_common(struct completion *x, long timeout, int state)
  3728. {
  3729. if (!x->done) {
  3730. DECLARE_WAITQUEUE(wait, current);
  3731. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3732. __add_wait_queue_tail(&x->wait, &wait);
  3733. do {
  3734. if ((state == TASK_INTERRUPTIBLE &&
  3735. signal_pending(current)) ||
  3736. (state == TASK_KILLABLE &&
  3737. fatal_signal_pending(current))) {
  3738. __remove_wait_queue(&x->wait, &wait);
  3739. return -ERESTARTSYS;
  3740. }
  3741. __set_current_state(state);
  3742. spin_unlock_irq(&x->wait.lock);
  3743. timeout = schedule_timeout(timeout);
  3744. spin_lock_irq(&x->wait.lock);
  3745. if (!timeout) {
  3746. __remove_wait_queue(&x->wait, &wait);
  3747. return timeout;
  3748. }
  3749. } while (!x->done);
  3750. __remove_wait_queue(&x->wait, &wait);
  3751. }
  3752. x->done--;
  3753. return timeout;
  3754. }
  3755. static long __sched
  3756. wait_for_common(struct completion *x, long timeout, int state)
  3757. {
  3758. might_sleep();
  3759. spin_lock_irq(&x->wait.lock);
  3760. timeout = do_wait_for_common(x, timeout, state);
  3761. spin_unlock_irq(&x->wait.lock);
  3762. return timeout;
  3763. }
  3764. void __sched wait_for_completion(struct completion *x)
  3765. {
  3766. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3767. }
  3768. EXPORT_SYMBOL(wait_for_completion);
  3769. unsigned long __sched
  3770. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3771. {
  3772. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3773. }
  3774. EXPORT_SYMBOL(wait_for_completion_timeout);
  3775. int __sched wait_for_completion_interruptible(struct completion *x)
  3776. {
  3777. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3778. if (t == -ERESTARTSYS)
  3779. return t;
  3780. return 0;
  3781. }
  3782. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3783. unsigned long __sched
  3784. wait_for_completion_interruptible_timeout(struct completion *x,
  3785. unsigned long timeout)
  3786. {
  3787. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3788. }
  3789. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3790. int __sched wait_for_completion_killable(struct completion *x)
  3791. {
  3792. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3793. if (t == -ERESTARTSYS)
  3794. return t;
  3795. return 0;
  3796. }
  3797. EXPORT_SYMBOL(wait_for_completion_killable);
  3798. static long __sched
  3799. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3800. {
  3801. unsigned long flags;
  3802. wait_queue_t wait;
  3803. init_waitqueue_entry(&wait, current);
  3804. __set_current_state(state);
  3805. spin_lock_irqsave(&q->lock, flags);
  3806. __add_wait_queue(q, &wait);
  3807. spin_unlock(&q->lock);
  3808. timeout = schedule_timeout(timeout);
  3809. spin_lock_irq(&q->lock);
  3810. __remove_wait_queue(q, &wait);
  3811. spin_unlock_irqrestore(&q->lock, flags);
  3812. return timeout;
  3813. }
  3814. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3815. {
  3816. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3817. }
  3818. EXPORT_SYMBOL(interruptible_sleep_on);
  3819. long __sched
  3820. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3821. {
  3822. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3823. }
  3824. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3825. void __sched sleep_on(wait_queue_head_t *q)
  3826. {
  3827. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3828. }
  3829. EXPORT_SYMBOL(sleep_on);
  3830. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3831. {
  3832. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3833. }
  3834. EXPORT_SYMBOL(sleep_on_timeout);
  3835. #ifdef CONFIG_RT_MUTEXES
  3836. /*
  3837. * rt_mutex_setprio - set the current priority of a task
  3838. * @p: task
  3839. * @prio: prio value (kernel-internal form)
  3840. *
  3841. * This function changes the 'effective' priority of a task. It does
  3842. * not touch ->normal_prio like __setscheduler().
  3843. *
  3844. * Used by the rt_mutex code to implement priority inheritance logic.
  3845. */
  3846. void rt_mutex_setprio(struct task_struct *p, int prio)
  3847. {
  3848. unsigned long flags;
  3849. int oldprio, on_rq, running;
  3850. struct rq *rq;
  3851. const struct sched_class *prev_class = p->sched_class;
  3852. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3853. rq = task_rq_lock(p, &flags);
  3854. update_rq_clock(rq);
  3855. oldprio = p->prio;
  3856. on_rq = p->se.on_rq;
  3857. running = task_current(rq, p);
  3858. if (on_rq)
  3859. dequeue_task(rq, p, 0);
  3860. if (running)
  3861. p->sched_class->put_prev_task(rq, p);
  3862. if (rt_prio(prio))
  3863. p->sched_class = &rt_sched_class;
  3864. else
  3865. p->sched_class = &fair_sched_class;
  3866. p->prio = prio;
  3867. if (running)
  3868. p->sched_class->set_curr_task(rq);
  3869. if (on_rq) {
  3870. enqueue_task(rq, p, 0);
  3871. check_class_changed(rq, p, prev_class, oldprio, running);
  3872. }
  3873. task_rq_unlock(rq, &flags);
  3874. }
  3875. #endif
  3876. void set_user_nice(struct task_struct *p, long nice)
  3877. {
  3878. int old_prio, delta, on_rq;
  3879. unsigned long flags;
  3880. struct rq *rq;
  3881. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3882. return;
  3883. /*
  3884. * We have to be careful, if called from sys_setpriority(),
  3885. * the task might be in the middle of scheduling on another CPU.
  3886. */
  3887. rq = task_rq_lock(p, &flags);
  3888. update_rq_clock(rq);
  3889. /*
  3890. * The RT priorities are set via sched_setscheduler(), but we still
  3891. * allow the 'normal' nice value to be set - but as expected
  3892. * it wont have any effect on scheduling until the task is
  3893. * SCHED_FIFO/SCHED_RR:
  3894. */
  3895. if (task_has_rt_policy(p)) {
  3896. p->static_prio = NICE_TO_PRIO(nice);
  3897. goto out_unlock;
  3898. }
  3899. on_rq = p->se.on_rq;
  3900. if (on_rq) {
  3901. dequeue_task(rq, p, 0);
  3902. dec_load(rq, p);
  3903. }
  3904. p->static_prio = NICE_TO_PRIO(nice);
  3905. set_load_weight(p);
  3906. old_prio = p->prio;
  3907. p->prio = effective_prio(p);
  3908. delta = p->prio - old_prio;
  3909. if (on_rq) {
  3910. enqueue_task(rq, p, 0);
  3911. inc_load(rq, p);
  3912. /*
  3913. * If the task increased its priority or is running and
  3914. * lowered its priority, then reschedule its CPU:
  3915. */
  3916. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3917. resched_task(rq->curr);
  3918. }
  3919. out_unlock:
  3920. task_rq_unlock(rq, &flags);
  3921. }
  3922. EXPORT_SYMBOL(set_user_nice);
  3923. /*
  3924. * can_nice - check if a task can reduce its nice value
  3925. * @p: task
  3926. * @nice: nice value
  3927. */
  3928. int can_nice(const struct task_struct *p, const int nice)
  3929. {
  3930. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3931. int nice_rlim = 20 - nice;
  3932. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3933. capable(CAP_SYS_NICE));
  3934. }
  3935. #ifdef __ARCH_WANT_SYS_NICE
  3936. /*
  3937. * sys_nice - change the priority of the current process.
  3938. * @increment: priority increment
  3939. *
  3940. * sys_setpriority is a more generic, but much slower function that
  3941. * does similar things.
  3942. */
  3943. asmlinkage long sys_nice(int increment)
  3944. {
  3945. long nice, retval;
  3946. /*
  3947. * Setpriority might change our priority at the same moment.
  3948. * We don't have to worry. Conceptually one call occurs first
  3949. * and we have a single winner.
  3950. */
  3951. if (increment < -40)
  3952. increment = -40;
  3953. if (increment > 40)
  3954. increment = 40;
  3955. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3956. if (nice < -20)
  3957. nice = -20;
  3958. if (nice > 19)
  3959. nice = 19;
  3960. if (increment < 0 && !can_nice(current, nice))
  3961. return -EPERM;
  3962. retval = security_task_setnice(current, nice);
  3963. if (retval)
  3964. return retval;
  3965. set_user_nice(current, nice);
  3966. return 0;
  3967. }
  3968. #endif
  3969. /**
  3970. * task_prio - return the priority value of a given task.
  3971. * @p: the task in question.
  3972. *
  3973. * This is the priority value as seen by users in /proc.
  3974. * RT tasks are offset by -200. Normal tasks are centered
  3975. * around 0, value goes from -16 to +15.
  3976. */
  3977. int task_prio(const struct task_struct *p)
  3978. {
  3979. return p->prio - MAX_RT_PRIO;
  3980. }
  3981. /**
  3982. * task_nice - return the nice value of a given task.
  3983. * @p: the task in question.
  3984. */
  3985. int task_nice(const struct task_struct *p)
  3986. {
  3987. return TASK_NICE(p);
  3988. }
  3989. EXPORT_SYMBOL(task_nice);
  3990. /**
  3991. * idle_cpu - is a given cpu idle currently?
  3992. * @cpu: the processor in question.
  3993. */
  3994. int idle_cpu(int cpu)
  3995. {
  3996. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3997. }
  3998. /**
  3999. * idle_task - return the idle task for a given cpu.
  4000. * @cpu: the processor in question.
  4001. */
  4002. struct task_struct *idle_task(int cpu)
  4003. {
  4004. return cpu_rq(cpu)->idle;
  4005. }
  4006. /**
  4007. * find_process_by_pid - find a process with a matching PID value.
  4008. * @pid: the pid in question.
  4009. */
  4010. static struct task_struct *find_process_by_pid(pid_t pid)
  4011. {
  4012. return pid ? find_task_by_vpid(pid) : current;
  4013. }
  4014. /* Actually do priority change: must hold rq lock. */
  4015. static void
  4016. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4017. {
  4018. BUG_ON(p->se.on_rq);
  4019. p->policy = policy;
  4020. switch (p->policy) {
  4021. case SCHED_NORMAL:
  4022. case SCHED_BATCH:
  4023. case SCHED_IDLE:
  4024. p->sched_class = &fair_sched_class;
  4025. break;
  4026. case SCHED_FIFO:
  4027. case SCHED_RR:
  4028. p->sched_class = &rt_sched_class;
  4029. break;
  4030. }
  4031. p->rt_priority = prio;
  4032. p->normal_prio = normal_prio(p);
  4033. /* we are holding p->pi_lock already */
  4034. p->prio = rt_mutex_getprio(p);
  4035. set_load_weight(p);
  4036. }
  4037. /**
  4038. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4039. * @p: the task in question.
  4040. * @policy: new policy.
  4041. * @param: structure containing the new RT priority.
  4042. *
  4043. * NOTE that the task may be already dead.
  4044. */
  4045. int sched_setscheduler(struct task_struct *p, int policy,
  4046. struct sched_param *param)
  4047. {
  4048. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4049. unsigned long flags;
  4050. const struct sched_class *prev_class = p->sched_class;
  4051. struct rq *rq;
  4052. /* may grab non-irq protected spin_locks */
  4053. BUG_ON(in_interrupt());
  4054. recheck:
  4055. /* double check policy once rq lock held */
  4056. if (policy < 0)
  4057. policy = oldpolicy = p->policy;
  4058. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4059. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4060. policy != SCHED_IDLE)
  4061. return -EINVAL;
  4062. /*
  4063. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4064. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4065. * SCHED_BATCH and SCHED_IDLE is 0.
  4066. */
  4067. if (param->sched_priority < 0 ||
  4068. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4069. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4070. return -EINVAL;
  4071. if (rt_policy(policy) != (param->sched_priority != 0))
  4072. return -EINVAL;
  4073. /*
  4074. * Allow unprivileged RT tasks to decrease priority:
  4075. */
  4076. if (!capable(CAP_SYS_NICE)) {
  4077. if (rt_policy(policy)) {
  4078. unsigned long rlim_rtprio;
  4079. if (!lock_task_sighand(p, &flags))
  4080. return -ESRCH;
  4081. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4082. unlock_task_sighand(p, &flags);
  4083. /* can't set/change the rt policy */
  4084. if (policy != p->policy && !rlim_rtprio)
  4085. return -EPERM;
  4086. /* can't increase priority */
  4087. if (param->sched_priority > p->rt_priority &&
  4088. param->sched_priority > rlim_rtprio)
  4089. return -EPERM;
  4090. }
  4091. /*
  4092. * Like positive nice levels, dont allow tasks to
  4093. * move out of SCHED_IDLE either:
  4094. */
  4095. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4096. return -EPERM;
  4097. /* can't change other user's priorities */
  4098. if ((current->euid != p->euid) &&
  4099. (current->euid != p->uid))
  4100. return -EPERM;
  4101. }
  4102. #ifdef CONFIG_RT_GROUP_SCHED
  4103. /*
  4104. * Do not allow realtime tasks into groups that have no runtime
  4105. * assigned.
  4106. */
  4107. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4108. return -EPERM;
  4109. #endif
  4110. retval = security_task_setscheduler(p, policy, param);
  4111. if (retval)
  4112. return retval;
  4113. /*
  4114. * make sure no PI-waiters arrive (or leave) while we are
  4115. * changing the priority of the task:
  4116. */
  4117. spin_lock_irqsave(&p->pi_lock, flags);
  4118. /*
  4119. * To be able to change p->policy safely, the apropriate
  4120. * runqueue lock must be held.
  4121. */
  4122. rq = __task_rq_lock(p);
  4123. /* recheck policy now with rq lock held */
  4124. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4125. policy = oldpolicy = -1;
  4126. __task_rq_unlock(rq);
  4127. spin_unlock_irqrestore(&p->pi_lock, flags);
  4128. goto recheck;
  4129. }
  4130. update_rq_clock(rq);
  4131. on_rq = p->se.on_rq;
  4132. running = task_current(rq, p);
  4133. if (on_rq)
  4134. deactivate_task(rq, p, 0);
  4135. if (running)
  4136. p->sched_class->put_prev_task(rq, p);
  4137. oldprio = p->prio;
  4138. __setscheduler(rq, p, policy, param->sched_priority);
  4139. if (running)
  4140. p->sched_class->set_curr_task(rq);
  4141. if (on_rq) {
  4142. activate_task(rq, p, 0);
  4143. check_class_changed(rq, p, prev_class, oldprio, running);
  4144. }
  4145. __task_rq_unlock(rq);
  4146. spin_unlock_irqrestore(&p->pi_lock, flags);
  4147. rt_mutex_adjust_pi(p);
  4148. return 0;
  4149. }
  4150. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4151. static int
  4152. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4153. {
  4154. struct sched_param lparam;
  4155. struct task_struct *p;
  4156. int retval;
  4157. if (!param || pid < 0)
  4158. return -EINVAL;
  4159. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4160. return -EFAULT;
  4161. rcu_read_lock();
  4162. retval = -ESRCH;
  4163. p = find_process_by_pid(pid);
  4164. if (p != NULL)
  4165. retval = sched_setscheduler(p, policy, &lparam);
  4166. rcu_read_unlock();
  4167. return retval;
  4168. }
  4169. /**
  4170. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4171. * @pid: the pid in question.
  4172. * @policy: new policy.
  4173. * @param: structure containing the new RT priority.
  4174. */
  4175. asmlinkage long
  4176. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4177. {
  4178. /* negative values for policy are not valid */
  4179. if (policy < 0)
  4180. return -EINVAL;
  4181. return do_sched_setscheduler(pid, policy, param);
  4182. }
  4183. /**
  4184. * sys_sched_setparam - set/change the RT priority of a thread
  4185. * @pid: the pid in question.
  4186. * @param: structure containing the new RT priority.
  4187. */
  4188. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4189. {
  4190. return do_sched_setscheduler(pid, -1, param);
  4191. }
  4192. /**
  4193. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4194. * @pid: the pid in question.
  4195. */
  4196. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4197. {
  4198. struct task_struct *p;
  4199. int retval;
  4200. if (pid < 0)
  4201. return -EINVAL;
  4202. retval = -ESRCH;
  4203. read_lock(&tasklist_lock);
  4204. p = find_process_by_pid(pid);
  4205. if (p) {
  4206. retval = security_task_getscheduler(p);
  4207. if (!retval)
  4208. retval = p->policy;
  4209. }
  4210. read_unlock(&tasklist_lock);
  4211. return retval;
  4212. }
  4213. /**
  4214. * sys_sched_getscheduler - get the RT priority of a thread
  4215. * @pid: the pid in question.
  4216. * @param: structure containing the RT priority.
  4217. */
  4218. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4219. {
  4220. struct sched_param lp;
  4221. struct task_struct *p;
  4222. int retval;
  4223. if (!param || pid < 0)
  4224. return -EINVAL;
  4225. read_lock(&tasklist_lock);
  4226. p = find_process_by_pid(pid);
  4227. retval = -ESRCH;
  4228. if (!p)
  4229. goto out_unlock;
  4230. retval = security_task_getscheduler(p);
  4231. if (retval)
  4232. goto out_unlock;
  4233. lp.sched_priority = p->rt_priority;
  4234. read_unlock(&tasklist_lock);
  4235. /*
  4236. * This one might sleep, we cannot do it with a spinlock held ...
  4237. */
  4238. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4239. return retval;
  4240. out_unlock:
  4241. read_unlock(&tasklist_lock);
  4242. return retval;
  4243. }
  4244. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4245. {
  4246. cpumask_t cpus_allowed;
  4247. cpumask_t new_mask = *in_mask;
  4248. struct task_struct *p;
  4249. int retval;
  4250. get_online_cpus();
  4251. read_lock(&tasklist_lock);
  4252. p = find_process_by_pid(pid);
  4253. if (!p) {
  4254. read_unlock(&tasklist_lock);
  4255. put_online_cpus();
  4256. return -ESRCH;
  4257. }
  4258. /*
  4259. * It is not safe to call set_cpus_allowed with the
  4260. * tasklist_lock held. We will bump the task_struct's
  4261. * usage count and then drop tasklist_lock.
  4262. */
  4263. get_task_struct(p);
  4264. read_unlock(&tasklist_lock);
  4265. retval = -EPERM;
  4266. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4267. !capable(CAP_SYS_NICE))
  4268. goto out_unlock;
  4269. retval = security_task_setscheduler(p, 0, NULL);
  4270. if (retval)
  4271. goto out_unlock;
  4272. cpuset_cpus_allowed(p, &cpus_allowed);
  4273. cpus_and(new_mask, new_mask, cpus_allowed);
  4274. again:
  4275. retval = set_cpus_allowed_ptr(p, &new_mask);
  4276. if (!retval) {
  4277. cpuset_cpus_allowed(p, &cpus_allowed);
  4278. if (!cpus_subset(new_mask, cpus_allowed)) {
  4279. /*
  4280. * We must have raced with a concurrent cpuset
  4281. * update. Just reset the cpus_allowed to the
  4282. * cpuset's cpus_allowed
  4283. */
  4284. new_mask = cpus_allowed;
  4285. goto again;
  4286. }
  4287. }
  4288. out_unlock:
  4289. put_task_struct(p);
  4290. put_online_cpus();
  4291. return retval;
  4292. }
  4293. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4294. cpumask_t *new_mask)
  4295. {
  4296. if (len < sizeof(cpumask_t)) {
  4297. memset(new_mask, 0, sizeof(cpumask_t));
  4298. } else if (len > sizeof(cpumask_t)) {
  4299. len = sizeof(cpumask_t);
  4300. }
  4301. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4302. }
  4303. /**
  4304. * sys_sched_setaffinity - set the cpu affinity of a process
  4305. * @pid: pid of the process
  4306. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4307. * @user_mask_ptr: user-space pointer to the new cpu mask
  4308. */
  4309. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4310. unsigned long __user *user_mask_ptr)
  4311. {
  4312. cpumask_t new_mask;
  4313. int retval;
  4314. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4315. if (retval)
  4316. return retval;
  4317. return sched_setaffinity(pid, &new_mask);
  4318. }
  4319. /*
  4320. * Represents all cpu's present in the system
  4321. * In systems capable of hotplug, this map could dynamically grow
  4322. * as new cpu's are detected in the system via any platform specific
  4323. * method, such as ACPI for e.g.
  4324. */
  4325. cpumask_t cpu_present_map __read_mostly;
  4326. EXPORT_SYMBOL(cpu_present_map);
  4327. #ifndef CONFIG_SMP
  4328. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4329. EXPORT_SYMBOL(cpu_online_map);
  4330. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4331. EXPORT_SYMBOL(cpu_possible_map);
  4332. #endif
  4333. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4334. {
  4335. struct task_struct *p;
  4336. int retval;
  4337. get_online_cpus();
  4338. read_lock(&tasklist_lock);
  4339. retval = -ESRCH;
  4340. p = find_process_by_pid(pid);
  4341. if (!p)
  4342. goto out_unlock;
  4343. retval = security_task_getscheduler(p);
  4344. if (retval)
  4345. goto out_unlock;
  4346. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4347. out_unlock:
  4348. read_unlock(&tasklist_lock);
  4349. put_online_cpus();
  4350. return retval;
  4351. }
  4352. /**
  4353. * sys_sched_getaffinity - get the cpu affinity of a process
  4354. * @pid: pid of the process
  4355. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4356. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4357. */
  4358. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4359. unsigned long __user *user_mask_ptr)
  4360. {
  4361. int ret;
  4362. cpumask_t mask;
  4363. if (len < sizeof(cpumask_t))
  4364. return -EINVAL;
  4365. ret = sched_getaffinity(pid, &mask);
  4366. if (ret < 0)
  4367. return ret;
  4368. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4369. return -EFAULT;
  4370. return sizeof(cpumask_t);
  4371. }
  4372. /**
  4373. * sys_sched_yield - yield the current processor to other threads.
  4374. *
  4375. * This function yields the current CPU to other tasks. If there are no
  4376. * other threads running on this CPU then this function will return.
  4377. */
  4378. asmlinkage long sys_sched_yield(void)
  4379. {
  4380. struct rq *rq = this_rq_lock();
  4381. schedstat_inc(rq, yld_count);
  4382. current->sched_class->yield_task(rq);
  4383. /*
  4384. * Since we are going to call schedule() anyway, there's
  4385. * no need to preempt or enable interrupts:
  4386. */
  4387. __release(rq->lock);
  4388. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4389. _raw_spin_unlock(&rq->lock);
  4390. preempt_enable_no_resched();
  4391. schedule();
  4392. return 0;
  4393. }
  4394. static void __cond_resched(void)
  4395. {
  4396. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4397. __might_sleep(__FILE__, __LINE__);
  4398. #endif
  4399. /*
  4400. * The BKS might be reacquired before we have dropped
  4401. * PREEMPT_ACTIVE, which could trigger a second
  4402. * cond_resched() call.
  4403. */
  4404. do {
  4405. add_preempt_count(PREEMPT_ACTIVE);
  4406. schedule();
  4407. sub_preempt_count(PREEMPT_ACTIVE);
  4408. } while (need_resched());
  4409. }
  4410. int __sched _cond_resched(void)
  4411. {
  4412. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4413. system_state == SYSTEM_RUNNING) {
  4414. __cond_resched();
  4415. return 1;
  4416. }
  4417. return 0;
  4418. }
  4419. EXPORT_SYMBOL(_cond_resched);
  4420. /*
  4421. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4422. * call schedule, and on return reacquire the lock.
  4423. *
  4424. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4425. * operations here to prevent schedule() from being called twice (once via
  4426. * spin_unlock(), once by hand).
  4427. */
  4428. int cond_resched_lock(spinlock_t *lock)
  4429. {
  4430. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4431. int ret = 0;
  4432. if (spin_needbreak(lock) || resched) {
  4433. spin_unlock(lock);
  4434. if (resched && need_resched())
  4435. __cond_resched();
  4436. else
  4437. cpu_relax();
  4438. ret = 1;
  4439. spin_lock(lock);
  4440. }
  4441. return ret;
  4442. }
  4443. EXPORT_SYMBOL(cond_resched_lock);
  4444. int __sched cond_resched_softirq(void)
  4445. {
  4446. BUG_ON(!in_softirq());
  4447. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4448. local_bh_enable();
  4449. __cond_resched();
  4450. local_bh_disable();
  4451. return 1;
  4452. }
  4453. return 0;
  4454. }
  4455. EXPORT_SYMBOL(cond_resched_softirq);
  4456. /**
  4457. * yield - yield the current processor to other threads.
  4458. *
  4459. * This is a shortcut for kernel-space yielding - it marks the
  4460. * thread runnable and calls sys_sched_yield().
  4461. */
  4462. void __sched yield(void)
  4463. {
  4464. set_current_state(TASK_RUNNING);
  4465. sys_sched_yield();
  4466. }
  4467. EXPORT_SYMBOL(yield);
  4468. /*
  4469. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4470. * that process accounting knows that this is a task in IO wait state.
  4471. *
  4472. * But don't do that if it is a deliberate, throttling IO wait (this task
  4473. * has set its backing_dev_info: the queue against which it should throttle)
  4474. */
  4475. void __sched io_schedule(void)
  4476. {
  4477. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4478. delayacct_blkio_start();
  4479. atomic_inc(&rq->nr_iowait);
  4480. schedule();
  4481. atomic_dec(&rq->nr_iowait);
  4482. delayacct_blkio_end();
  4483. }
  4484. EXPORT_SYMBOL(io_schedule);
  4485. long __sched io_schedule_timeout(long timeout)
  4486. {
  4487. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4488. long ret;
  4489. delayacct_blkio_start();
  4490. atomic_inc(&rq->nr_iowait);
  4491. ret = schedule_timeout(timeout);
  4492. atomic_dec(&rq->nr_iowait);
  4493. delayacct_blkio_end();
  4494. return ret;
  4495. }
  4496. /**
  4497. * sys_sched_get_priority_max - return maximum RT priority.
  4498. * @policy: scheduling class.
  4499. *
  4500. * this syscall returns the maximum rt_priority that can be used
  4501. * by a given scheduling class.
  4502. */
  4503. asmlinkage long sys_sched_get_priority_max(int policy)
  4504. {
  4505. int ret = -EINVAL;
  4506. switch (policy) {
  4507. case SCHED_FIFO:
  4508. case SCHED_RR:
  4509. ret = MAX_USER_RT_PRIO-1;
  4510. break;
  4511. case SCHED_NORMAL:
  4512. case SCHED_BATCH:
  4513. case SCHED_IDLE:
  4514. ret = 0;
  4515. break;
  4516. }
  4517. return ret;
  4518. }
  4519. /**
  4520. * sys_sched_get_priority_min - return minimum RT priority.
  4521. * @policy: scheduling class.
  4522. *
  4523. * this syscall returns the minimum rt_priority that can be used
  4524. * by a given scheduling class.
  4525. */
  4526. asmlinkage long sys_sched_get_priority_min(int policy)
  4527. {
  4528. int ret = -EINVAL;
  4529. switch (policy) {
  4530. case SCHED_FIFO:
  4531. case SCHED_RR:
  4532. ret = 1;
  4533. break;
  4534. case SCHED_NORMAL:
  4535. case SCHED_BATCH:
  4536. case SCHED_IDLE:
  4537. ret = 0;
  4538. }
  4539. return ret;
  4540. }
  4541. /**
  4542. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4543. * @pid: pid of the process.
  4544. * @interval: userspace pointer to the timeslice value.
  4545. *
  4546. * this syscall writes the default timeslice value of a given process
  4547. * into the user-space timespec buffer. A value of '0' means infinity.
  4548. */
  4549. asmlinkage
  4550. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4551. {
  4552. struct task_struct *p;
  4553. unsigned int time_slice;
  4554. int retval;
  4555. struct timespec t;
  4556. if (pid < 0)
  4557. return -EINVAL;
  4558. retval = -ESRCH;
  4559. read_lock(&tasklist_lock);
  4560. p = find_process_by_pid(pid);
  4561. if (!p)
  4562. goto out_unlock;
  4563. retval = security_task_getscheduler(p);
  4564. if (retval)
  4565. goto out_unlock;
  4566. /*
  4567. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4568. * tasks that are on an otherwise idle runqueue:
  4569. */
  4570. time_slice = 0;
  4571. if (p->policy == SCHED_RR) {
  4572. time_slice = DEF_TIMESLICE;
  4573. } else if (p->policy != SCHED_FIFO) {
  4574. struct sched_entity *se = &p->se;
  4575. unsigned long flags;
  4576. struct rq *rq;
  4577. rq = task_rq_lock(p, &flags);
  4578. if (rq->cfs.load.weight)
  4579. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4580. task_rq_unlock(rq, &flags);
  4581. }
  4582. read_unlock(&tasklist_lock);
  4583. jiffies_to_timespec(time_slice, &t);
  4584. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4585. return retval;
  4586. out_unlock:
  4587. read_unlock(&tasklist_lock);
  4588. return retval;
  4589. }
  4590. static const char stat_nam[] = "RSDTtZX";
  4591. void sched_show_task(struct task_struct *p)
  4592. {
  4593. unsigned long free = 0;
  4594. unsigned state;
  4595. state = p->state ? __ffs(p->state) + 1 : 0;
  4596. printk(KERN_INFO "%-13.13s %c", p->comm,
  4597. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4598. #if BITS_PER_LONG == 32
  4599. if (state == TASK_RUNNING)
  4600. printk(KERN_CONT " running ");
  4601. else
  4602. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4603. #else
  4604. if (state == TASK_RUNNING)
  4605. printk(KERN_CONT " running task ");
  4606. else
  4607. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4608. #endif
  4609. #ifdef CONFIG_DEBUG_STACK_USAGE
  4610. {
  4611. unsigned long *n = end_of_stack(p);
  4612. while (!*n)
  4613. n++;
  4614. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4615. }
  4616. #endif
  4617. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4618. task_pid_nr(p), task_pid_nr(p->real_parent));
  4619. show_stack(p, NULL);
  4620. }
  4621. void show_state_filter(unsigned long state_filter)
  4622. {
  4623. struct task_struct *g, *p;
  4624. #if BITS_PER_LONG == 32
  4625. printk(KERN_INFO
  4626. " task PC stack pid father\n");
  4627. #else
  4628. printk(KERN_INFO
  4629. " task PC stack pid father\n");
  4630. #endif
  4631. read_lock(&tasklist_lock);
  4632. do_each_thread(g, p) {
  4633. /*
  4634. * reset the NMI-timeout, listing all files on a slow
  4635. * console might take alot of time:
  4636. */
  4637. touch_nmi_watchdog();
  4638. if (!state_filter || (p->state & state_filter))
  4639. sched_show_task(p);
  4640. } while_each_thread(g, p);
  4641. touch_all_softlockup_watchdogs();
  4642. #ifdef CONFIG_SCHED_DEBUG
  4643. sysrq_sched_debug_show();
  4644. #endif
  4645. read_unlock(&tasklist_lock);
  4646. /*
  4647. * Only show locks if all tasks are dumped:
  4648. */
  4649. if (state_filter == -1)
  4650. debug_show_all_locks();
  4651. }
  4652. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4653. {
  4654. idle->sched_class = &idle_sched_class;
  4655. }
  4656. /**
  4657. * init_idle - set up an idle thread for a given CPU
  4658. * @idle: task in question
  4659. * @cpu: cpu the idle task belongs to
  4660. *
  4661. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4662. * flag, to make booting more robust.
  4663. */
  4664. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4665. {
  4666. struct rq *rq = cpu_rq(cpu);
  4667. unsigned long flags;
  4668. __sched_fork(idle);
  4669. idle->se.exec_start = sched_clock();
  4670. idle->prio = idle->normal_prio = MAX_PRIO;
  4671. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4672. __set_task_cpu(idle, cpu);
  4673. spin_lock_irqsave(&rq->lock, flags);
  4674. rq->curr = rq->idle = idle;
  4675. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4676. idle->oncpu = 1;
  4677. #endif
  4678. spin_unlock_irqrestore(&rq->lock, flags);
  4679. /* Set the preempt count _outside_ the spinlocks! */
  4680. #if defined(CONFIG_PREEMPT)
  4681. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4682. #else
  4683. task_thread_info(idle)->preempt_count = 0;
  4684. #endif
  4685. /*
  4686. * The idle tasks have their own, simple scheduling class:
  4687. */
  4688. idle->sched_class = &idle_sched_class;
  4689. }
  4690. /*
  4691. * In a system that switches off the HZ timer nohz_cpu_mask
  4692. * indicates which cpus entered this state. This is used
  4693. * in the rcu update to wait only for active cpus. For system
  4694. * which do not switch off the HZ timer nohz_cpu_mask should
  4695. * always be CPU_MASK_NONE.
  4696. */
  4697. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4698. /*
  4699. * Increase the granularity value when there are more CPUs,
  4700. * because with more CPUs the 'effective latency' as visible
  4701. * to users decreases. But the relationship is not linear,
  4702. * so pick a second-best guess by going with the log2 of the
  4703. * number of CPUs.
  4704. *
  4705. * This idea comes from the SD scheduler of Con Kolivas:
  4706. */
  4707. static inline void sched_init_granularity(void)
  4708. {
  4709. unsigned int factor = 1 + ilog2(num_online_cpus());
  4710. const unsigned long limit = 200000000;
  4711. sysctl_sched_min_granularity *= factor;
  4712. if (sysctl_sched_min_granularity > limit)
  4713. sysctl_sched_min_granularity = limit;
  4714. sysctl_sched_latency *= factor;
  4715. if (sysctl_sched_latency > limit)
  4716. sysctl_sched_latency = limit;
  4717. sysctl_sched_wakeup_granularity *= factor;
  4718. }
  4719. #ifdef CONFIG_SMP
  4720. /*
  4721. * This is how migration works:
  4722. *
  4723. * 1) we queue a struct migration_req structure in the source CPU's
  4724. * runqueue and wake up that CPU's migration thread.
  4725. * 2) we down() the locked semaphore => thread blocks.
  4726. * 3) migration thread wakes up (implicitly it forces the migrated
  4727. * thread off the CPU)
  4728. * 4) it gets the migration request and checks whether the migrated
  4729. * task is still in the wrong runqueue.
  4730. * 5) if it's in the wrong runqueue then the migration thread removes
  4731. * it and puts it into the right queue.
  4732. * 6) migration thread up()s the semaphore.
  4733. * 7) we wake up and the migration is done.
  4734. */
  4735. /*
  4736. * Change a given task's CPU affinity. Migrate the thread to a
  4737. * proper CPU and schedule it away if the CPU it's executing on
  4738. * is removed from the allowed bitmask.
  4739. *
  4740. * NOTE: the caller must have a valid reference to the task, the
  4741. * task must not exit() & deallocate itself prematurely. The
  4742. * call is not atomic; no spinlocks may be held.
  4743. */
  4744. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4745. {
  4746. struct migration_req req;
  4747. unsigned long flags;
  4748. struct rq *rq;
  4749. int ret = 0;
  4750. rq = task_rq_lock(p, &flags);
  4751. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4752. ret = -EINVAL;
  4753. goto out;
  4754. }
  4755. if (p->sched_class->set_cpus_allowed)
  4756. p->sched_class->set_cpus_allowed(p, new_mask);
  4757. else {
  4758. p->cpus_allowed = *new_mask;
  4759. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4760. }
  4761. /* Can the task run on the task's current CPU? If so, we're done */
  4762. if (cpu_isset(task_cpu(p), *new_mask))
  4763. goto out;
  4764. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4765. /* Need help from migration thread: drop lock and wait. */
  4766. task_rq_unlock(rq, &flags);
  4767. wake_up_process(rq->migration_thread);
  4768. wait_for_completion(&req.done);
  4769. tlb_migrate_finish(p->mm);
  4770. return 0;
  4771. }
  4772. out:
  4773. task_rq_unlock(rq, &flags);
  4774. return ret;
  4775. }
  4776. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4777. /*
  4778. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4779. * this because either it can't run here any more (set_cpus_allowed()
  4780. * away from this CPU, or CPU going down), or because we're
  4781. * attempting to rebalance this task on exec (sched_exec).
  4782. *
  4783. * So we race with normal scheduler movements, but that's OK, as long
  4784. * as the task is no longer on this CPU.
  4785. *
  4786. * Returns non-zero if task was successfully migrated.
  4787. */
  4788. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4789. {
  4790. struct rq *rq_dest, *rq_src;
  4791. int ret = 0, on_rq;
  4792. if (unlikely(cpu_is_offline(dest_cpu)))
  4793. return ret;
  4794. rq_src = cpu_rq(src_cpu);
  4795. rq_dest = cpu_rq(dest_cpu);
  4796. double_rq_lock(rq_src, rq_dest);
  4797. /* Already moved. */
  4798. if (task_cpu(p) != src_cpu)
  4799. goto out;
  4800. /* Affinity changed (again). */
  4801. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4802. goto out;
  4803. on_rq = p->se.on_rq;
  4804. if (on_rq)
  4805. deactivate_task(rq_src, p, 0);
  4806. set_task_cpu(p, dest_cpu);
  4807. if (on_rq) {
  4808. activate_task(rq_dest, p, 0);
  4809. check_preempt_curr(rq_dest, p);
  4810. }
  4811. ret = 1;
  4812. out:
  4813. double_rq_unlock(rq_src, rq_dest);
  4814. return ret;
  4815. }
  4816. /*
  4817. * migration_thread - this is a highprio system thread that performs
  4818. * thread migration by bumping thread off CPU then 'pushing' onto
  4819. * another runqueue.
  4820. */
  4821. static int migration_thread(void *data)
  4822. {
  4823. int cpu = (long)data;
  4824. struct rq *rq;
  4825. rq = cpu_rq(cpu);
  4826. BUG_ON(rq->migration_thread != current);
  4827. set_current_state(TASK_INTERRUPTIBLE);
  4828. while (!kthread_should_stop()) {
  4829. struct migration_req *req;
  4830. struct list_head *head;
  4831. spin_lock_irq(&rq->lock);
  4832. if (cpu_is_offline(cpu)) {
  4833. spin_unlock_irq(&rq->lock);
  4834. goto wait_to_die;
  4835. }
  4836. if (rq->active_balance) {
  4837. active_load_balance(rq, cpu);
  4838. rq->active_balance = 0;
  4839. }
  4840. head = &rq->migration_queue;
  4841. if (list_empty(head)) {
  4842. spin_unlock_irq(&rq->lock);
  4843. schedule();
  4844. set_current_state(TASK_INTERRUPTIBLE);
  4845. continue;
  4846. }
  4847. req = list_entry(head->next, struct migration_req, list);
  4848. list_del_init(head->next);
  4849. spin_unlock(&rq->lock);
  4850. __migrate_task(req->task, cpu, req->dest_cpu);
  4851. local_irq_enable();
  4852. complete(&req->done);
  4853. }
  4854. __set_current_state(TASK_RUNNING);
  4855. return 0;
  4856. wait_to_die:
  4857. /* Wait for kthread_stop */
  4858. set_current_state(TASK_INTERRUPTIBLE);
  4859. while (!kthread_should_stop()) {
  4860. schedule();
  4861. set_current_state(TASK_INTERRUPTIBLE);
  4862. }
  4863. __set_current_state(TASK_RUNNING);
  4864. return 0;
  4865. }
  4866. #ifdef CONFIG_HOTPLUG_CPU
  4867. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4868. {
  4869. int ret;
  4870. local_irq_disable();
  4871. ret = __migrate_task(p, src_cpu, dest_cpu);
  4872. local_irq_enable();
  4873. return ret;
  4874. }
  4875. /*
  4876. * Figure out where task on dead CPU should go, use force if necessary.
  4877. * NOTE: interrupts should be disabled by the caller
  4878. */
  4879. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4880. {
  4881. unsigned long flags;
  4882. cpumask_t mask;
  4883. struct rq *rq;
  4884. int dest_cpu;
  4885. do {
  4886. /* On same node? */
  4887. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4888. cpus_and(mask, mask, p->cpus_allowed);
  4889. dest_cpu = any_online_cpu(mask);
  4890. /* On any allowed CPU? */
  4891. if (dest_cpu >= nr_cpu_ids)
  4892. dest_cpu = any_online_cpu(p->cpus_allowed);
  4893. /* No more Mr. Nice Guy. */
  4894. if (dest_cpu >= nr_cpu_ids) {
  4895. cpumask_t cpus_allowed;
  4896. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  4897. /*
  4898. * Try to stay on the same cpuset, where the
  4899. * current cpuset may be a subset of all cpus.
  4900. * The cpuset_cpus_allowed_locked() variant of
  4901. * cpuset_cpus_allowed() will not block. It must be
  4902. * called within calls to cpuset_lock/cpuset_unlock.
  4903. */
  4904. rq = task_rq_lock(p, &flags);
  4905. p->cpus_allowed = cpus_allowed;
  4906. dest_cpu = any_online_cpu(p->cpus_allowed);
  4907. task_rq_unlock(rq, &flags);
  4908. /*
  4909. * Don't tell them about moving exiting tasks or
  4910. * kernel threads (both mm NULL), since they never
  4911. * leave kernel.
  4912. */
  4913. if (p->mm && printk_ratelimit()) {
  4914. printk(KERN_INFO "process %d (%s) no "
  4915. "longer affine to cpu%d\n",
  4916. task_pid_nr(p), p->comm, dead_cpu);
  4917. }
  4918. }
  4919. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4920. }
  4921. /*
  4922. * While a dead CPU has no uninterruptible tasks queued at this point,
  4923. * it might still have a nonzero ->nr_uninterruptible counter, because
  4924. * for performance reasons the counter is not stricly tracking tasks to
  4925. * their home CPUs. So we just add the counter to another CPU's counter,
  4926. * to keep the global sum constant after CPU-down:
  4927. */
  4928. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4929. {
  4930. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  4931. unsigned long flags;
  4932. local_irq_save(flags);
  4933. double_rq_lock(rq_src, rq_dest);
  4934. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4935. rq_src->nr_uninterruptible = 0;
  4936. double_rq_unlock(rq_src, rq_dest);
  4937. local_irq_restore(flags);
  4938. }
  4939. /* Run through task list and migrate tasks from the dead cpu. */
  4940. static void migrate_live_tasks(int src_cpu)
  4941. {
  4942. struct task_struct *p, *t;
  4943. read_lock(&tasklist_lock);
  4944. do_each_thread(t, p) {
  4945. if (p == current)
  4946. continue;
  4947. if (task_cpu(p) == src_cpu)
  4948. move_task_off_dead_cpu(src_cpu, p);
  4949. } while_each_thread(t, p);
  4950. read_unlock(&tasklist_lock);
  4951. }
  4952. /*
  4953. * Schedules idle task to be the next runnable task on current CPU.
  4954. * It does so by boosting its priority to highest possible.
  4955. * Used by CPU offline code.
  4956. */
  4957. void sched_idle_next(void)
  4958. {
  4959. int this_cpu = smp_processor_id();
  4960. struct rq *rq = cpu_rq(this_cpu);
  4961. struct task_struct *p = rq->idle;
  4962. unsigned long flags;
  4963. /* cpu has to be offline */
  4964. BUG_ON(cpu_online(this_cpu));
  4965. /*
  4966. * Strictly not necessary since rest of the CPUs are stopped by now
  4967. * and interrupts disabled on the current cpu.
  4968. */
  4969. spin_lock_irqsave(&rq->lock, flags);
  4970. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4971. update_rq_clock(rq);
  4972. activate_task(rq, p, 0);
  4973. spin_unlock_irqrestore(&rq->lock, flags);
  4974. }
  4975. /*
  4976. * Ensures that the idle task is using init_mm right before its cpu goes
  4977. * offline.
  4978. */
  4979. void idle_task_exit(void)
  4980. {
  4981. struct mm_struct *mm = current->active_mm;
  4982. BUG_ON(cpu_online(smp_processor_id()));
  4983. if (mm != &init_mm)
  4984. switch_mm(mm, &init_mm, current);
  4985. mmdrop(mm);
  4986. }
  4987. /* called under rq->lock with disabled interrupts */
  4988. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4989. {
  4990. struct rq *rq = cpu_rq(dead_cpu);
  4991. /* Must be exiting, otherwise would be on tasklist. */
  4992. BUG_ON(!p->exit_state);
  4993. /* Cannot have done final schedule yet: would have vanished. */
  4994. BUG_ON(p->state == TASK_DEAD);
  4995. get_task_struct(p);
  4996. /*
  4997. * Drop lock around migration; if someone else moves it,
  4998. * that's OK. No task can be added to this CPU, so iteration is
  4999. * fine.
  5000. */
  5001. spin_unlock_irq(&rq->lock);
  5002. move_task_off_dead_cpu(dead_cpu, p);
  5003. spin_lock_irq(&rq->lock);
  5004. put_task_struct(p);
  5005. }
  5006. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5007. static void migrate_dead_tasks(unsigned int dead_cpu)
  5008. {
  5009. struct rq *rq = cpu_rq(dead_cpu);
  5010. struct task_struct *next;
  5011. for ( ; ; ) {
  5012. if (!rq->nr_running)
  5013. break;
  5014. update_rq_clock(rq);
  5015. next = pick_next_task(rq, rq->curr);
  5016. if (!next)
  5017. break;
  5018. migrate_dead(dead_cpu, next);
  5019. }
  5020. }
  5021. #endif /* CONFIG_HOTPLUG_CPU */
  5022. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5023. static struct ctl_table sd_ctl_dir[] = {
  5024. {
  5025. .procname = "sched_domain",
  5026. .mode = 0555,
  5027. },
  5028. {0, },
  5029. };
  5030. static struct ctl_table sd_ctl_root[] = {
  5031. {
  5032. .ctl_name = CTL_KERN,
  5033. .procname = "kernel",
  5034. .mode = 0555,
  5035. .child = sd_ctl_dir,
  5036. },
  5037. {0, },
  5038. };
  5039. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5040. {
  5041. struct ctl_table *entry =
  5042. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5043. return entry;
  5044. }
  5045. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5046. {
  5047. struct ctl_table *entry;
  5048. /*
  5049. * In the intermediate directories, both the child directory and
  5050. * procname are dynamically allocated and could fail but the mode
  5051. * will always be set. In the lowest directory the names are
  5052. * static strings and all have proc handlers.
  5053. */
  5054. for (entry = *tablep; entry->mode; entry++) {
  5055. if (entry->child)
  5056. sd_free_ctl_entry(&entry->child);
  5057. if (entry->proc_handler == NULL)
  5058. kfree(entry->procname);
  5059. }
  5060. kfree(*tablep);
  5061. *tablep = NULL;
  5062. }
  5063. static void
  5064. set_table_entry(struct ctl_table *entry,
  5065. const char *procname, void *data, int maxlen,
  5066. mode_t mode, proc_handler *proc_handler)
  5067. {
  5068. entry->procname = procname;
  5069. entry->data = data;
  5070. entry->maxlen = maxlen;
  5071. entry->mode = mode;
  5072. entry->proc_handler = proc_handler;
  5073. }
  5074. static struct ctl_table *
  5075. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5076. {
  5077. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5078. if (table == NULL)
  5079. return NULL;
  5080. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5081. sizeof(long), 0644, proc_doulongvec_minmax);
  5082. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5083. sizeof(long), 0644, proc_doulongvec_minmax);
  5084. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5085. sizeof(int), 0644, proc_dointvec_minmax);
  5086. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5087. sizeof(int), 0644, proc_dointvec_minmax);
  5088. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5089. sizeof(int), 0644, proc_dointvec_minmax);
  5090. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5091. sizeof(int), 0644, proc_dointvec_minmax);
  5092. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5093. sizeof(int), 0644, proc_dointvec_minmax);
  5094. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5095. sizeof(int), 0644, proc_dointvec_minmax);
  5096. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5097. sizeof(int), 0644, proc_dointvec_minmax);
  5098. set_table_entry(&table[9], "cache_nice_tries",
  5099. &sd->cache_nice_tries,
  5100. sizeof(int), 0644, proc_dointvec_minmax);
  5101. set_table_entry(&table[10], "flags", &sd->flags,
  5102. sizeof(int), 0644, proc_dointvec_minmax);
  5103. /* &table[11] is terminator */
  5104. return table;
  5105. }
  5106. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5107. {
  5108. struct ctl_table *entry, *table;
  5109. struct sched_domain *sd;
  5110. int domain_num = 0, i;
  5111. char buf[32];
  5112. for_each_domain(cpu, sd)
  5113. domain_num++;
  5114. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5115. if (table == NULL)
  5116. return NULL;
  5117. i = 0;
  5118. for_each_domain(cpu, sd) {
  5119. snprintf(buf, 32, "domain%d", i);
  5120. entry->procname = kstrdup(buf, GFP_KERNEL);
  5121. entry->mode = 0555;
  5122. entry->child = sd_alloc_ctl_domain_table(sd);
  5123. entry++;
  5124. i++;
  5125. }
  5126. return table;
  5127. }
  5128. static struct ctl_table_header *sd_sysctl_header;
  5129. static void register_sched_domain_sysctl(void)
  5130. {
  5131. int i, cpu_num = num_online_cpus();
  5132. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5133. char buf[32];
  5134. WARN_ON(sd_ctl_dir[0].child);
  5135. sd_ctl_dir[0].child = entry;
  5136. if (entry == NULL)
  5137. return;
  5138. for_each_online_cpu(i) {
  5139. snprintf(buf, 32, "cpu%d", i);
  5140. entry->procname = kstrdup(buf, GFP_KERNEL);
  5141. entry->mode = 0555;
  5142. entry->child = sd_alloc_ctl_cpu_table(i);
  5143. entry++;
  5144. }
  5145. WARN_ON(sd_sysctl_header);
  5146. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5147. }
  5148. /* may be called multiple times per register */
  5149. static void unregister_sched_domain_sysctl(void)
  5150. {
  5151. if (sd_sysctl_header)
  5152. unregister_sysctl_table(sd_sysctl_header);
  5153. sd_sysctl_header = NULL;
  5154. if (sd_ctl_dir[0].child)
  5155. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5156. }
  5157. #else
  5158. static void register_sched_domain_sysctl(void)
  5159. {
  5160. }
  5161. static void unregister_sched_domain_sysctl(void)
  5162. {
  5163. }
  5164. #endif
  5165. /*
  5166. * migration_call - callback that gets triggered when a CPU is added.
  5167. * Here we can start up the necessary migration thread for the new CPU.
  5168. */
  5169. static int __cpuinit
  5170. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5171. {
  5172. struct task_struct *p;
  5173. int cpu = (long)hcpu;
  5174. unsigned long flags;
  5175. struct rq *rq;
  5176. switch (action) {
  5177. case CPU_UP_PREPARE:
  5178. case CPU_UP_PREPARE_FROZEN:
  5179. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5180. if (IS_ERR(p))
  5181. return NOTIFY_BAD;
  5182. kthread_bind(p, cpu);
  5183. /* Must be high prio: stop_machine expects to yield to it. */
  5184. rq = task_rq_lock(p, &flags);
  5185. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5186. task_rq_unlock(rq, &flags);
  5187. cpu_rq(cpu)->migration_thread = p;
  5188. break;
  5189. case CPU_ONLINE:
  5190. case CPU_ONLINE_FROZEN:
  5191. /* Strictly unnecessary, as first user will wake it. */
  5192. wake_up_process(cpu_rq(cpu)->migration_thread);
  5193. /* Update our root-domain */
  5194. rq = cpu_rq(cpu);
  5195. spin_lock_irqsave(&rq->lock, flags);
  5196. if (rq->rd) {
  5197. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5198. cpu_set(cpu, rq->rd->online);
  5199. }
  5200. spin_unlock_irqrestore(&rq->lock, flags);
  5201. break;
  5202. #ifdef CONFIG_HOTPLUG_CPU
  5203. case CPU_UP_CANCELED:
  5204. case CPU_UP_CANCELED_FROZEN:
  5205. if (!cpu_rq(cpu)->migration_thread)
  5206. break;
  5207. /* Unbind it from offline cpu so it can run. Fall thru. */
  5208. kthread_bind(cpu_rq(cpu)->migration_thread,
  5209. any_online_cpu(cpu_online_map));
  5210. kthread_stop(cpu_rq(cpu)->migration_thread);
  5211. cpu_rq(cpu)->migration_thread = NULL;
  5212. break;
  5213. case CPU_DEAD:
  5214. case CPU_DEAD_FROZEN:
  5215. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5216. migrate_live_tasks(cpu);
  5217. rq = cpu_rq(cpu);
  5218. kthread_stop(rq->migration_thread);
  5219. rq->migration_thread = NULL;
  5220. /* Idle task back to normal (off runqueue, low prio) */
  5221. spin_lock_irq(&rq->lock);
  5222. update_rq_clock(rq);
  5223. deactivate_task(rq, rq->idle, 0);
  5224. rq->idle->static_prio = MAX_PRIO;
  5225. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5226. rq->idle->sched_class = &idle_sched_class;
  5227. migrate_dead_tasks(cpu);
  5228. spin_unlock_irq(&rq->lock);
  5229. cpuset_unlock();
  5230. migrate_nr_uninterruptible(rq);
  5231. BUG_ON(rq->nr_running != 0);
  5232. /*
  5233. * No need to migrate the tasks: it was best-effort if
  5234. * they didn't take sched_hotcpu_mutex. Just wake up
  5235. * the requestors.
  5236. */
  5237. spin_lock_irq(&rq->lock);
  5238. while (!list_empty(&rq->migration_queue)) {
  5239. struct migration_req *req;
  5240. req = list_entry(rq->migration_queue.next,
  5241. struct migration_req, list);
  5242. list_del_init(&req->list);
  5243. complete(&req->done);
  5244. }
  5245. spin_unlock_irq(&rq->lock);
  5246. break;
  5247. case CPU_DYING:
  5248. case CPU_DYING_FROZEN:
  5249. /* Update our root-domain */
  5250. rq = cpu_rq(cpu);
  5251. spin_lock_irqsave(&rq->lock, flags);
  5252. if (rq->rd) {
  5253. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5254. cpu_clear(cpu, rq->rd->online);
  5255. }
  5256. spin_unlock_irqrestore(&rq->lock, flags);
  5257. break;
  5258. #endif
  5259. }
  5260. return NOTIFY_OK;
  5261. }
  5262. /* Register at highest priority so that task migration (migrate_all_tasks)
  5263. * happens before everything else.
  5264. */
  5265. static struct notifier_block __cpuinitdata migration_notifier = {
  5266. .notifier_call = migration_call,
  5267. .priority = 10
  5268. };
  5269. void __init migration_init(void)
  5270. {
  5271. void *cpu = (void *)(long)smp_processor_id();
  5272. int err;
  5273. /* Start one for the boot CPU: */
  5274. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5275. BUG_ON(err == NOTIFY_BAD);
  5276. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5277. register_cpu_notifier(&migration_notifier);
  5278. }
  5279. #endif
  5280. #ifdef CONFIG_SMP
  5281. #ifdef CONFIG_SCHED_DEBUG
  5282. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5283. cpumask_t *groupmask)
  5284. {
  5285. struct sched_group *group = sd->groups;
  5286. char str[256];
  5287. cpulist_scnprintf(str, sizeof(str), sd->span);
  5288. cpus_clear(*groupmask);
  5289. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5290. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5291. printk("does not load-balance\n");
  5292. if (sd->parent)
  5293. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5294. " has parent");
  5295. return -1;
  5296. }
  5297. printk(KERN_CONT "span %s\n", str);
  5298. if (!cpu_isset(cpu, sd->span)) {
  5299. printk(KERN_ERR "ERROR: domain->span does not contain "
  5300. "CPU%d\n", cpu);
  5301. }
  5302. if (!cpu_isset(cpu, group->cpumask)) {
  5303. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5304. " CPU%d\n", cpu);
  5305. }
  5306. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5307. do {
  5308. if (!group) {
  5309. printk("\n");
  5310. printk(KERN_ERR "ERROR: group is NULL\n");
  5311. break;
  5312. }
  5313. if (!group->__cpu_power) {
  5314. printk(KERN_CONT "\n");
  5315. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5316. "set\n");
  5317. break;
  5318. }
  5319. if (!cpus_weight(group->cpumask)) {
  5320. printk(KERN_CONT "\n");
  5321. printk(KERN_ERR "ERROR: empty group\n");
  5322. break;
  5323. }
  5324. if (cpus_intersects(*groupmask, group->cpumask)) {
  5325. printk(KERN_CONT "\n");
  5326. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5327. break;
  5328. }
  5329. cpus_or(*groupmask, *groupmask, group->cpumask);
  5330. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5331. printk(KERN_CONT " %s", str);
  5332. group = group->next;
  5333. } while (group != sd->groups);
  5334. printk(KERN_CONT "\n");
  5335. if (!cpus_equal(sd->span, *groupmask))
  5336. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5337. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5338. printk(KERN_ERR "ERROR: parent span is not a superset "
  5339. "of domain->span\n");
  5340. return 0;
  5341. }
  5342. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5343. {
  5344. cpumask_t *groupmask;
  5345. int level = 0;
  5346. if (!sd) {
  5347. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5348. return;
  5349. }
  5350. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5351. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5352. if (!groupmask) {
  5353. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5354. return;
  5355. }
  5356. for (;;) {
  5357. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5358. break;
  5359. level++;
  5360. sd = sd->parent;
  5361. if (!sd)
  5362. break;
  5363. }
  5364. kfree(groupmask);
  5365. }
  5366. #else
  5367. # define sched_domain_debug(sd, cpu) do { } while (0)
  5368. #endif
  5369. static int sd_degenerate(struct sched_domain *sd)
  5370. {
  5371. if (cpus_weight(sd->span) == 1)
  5372. return 1;
  5373. /* Following flags need at least 2 groups */
  5374. if (sd->flags & (SD_LOAD_BALANCE |
  5375. SD_BALANCE_NEWIDLE |
  5376. SD_BALANCE_FORK |
  5377. SD_BALANCE_EXEC |
  5378. SD_SHARE_CPUPOWER |
  5379. SD_SHARE_PKG_RESOURCES)) {
  5380. if (sd->groups != sd->groups->next)
  5381. return 0;
  5382. }
  5383. /* Following flags don't use groups */
  5384. if (sd->flags & (SD_WAKE_IDLE |
  5385. SD_WAKE_AFFINE |
  5386. SD_WAKE_BALANCE))
  5387. return 0;
  5388. return 1;
  5389. }
  5390. static int
  5391. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5392. {
  5393. unsigned long cflags = sd->flags, pflags = parent->flags;
  5394. if (sd_degenerate(parent))
  5395. return 1;
  5396. if (!cpus_equal(sd->span, parent->span))
  5397. return 0;
  5398. /* Does parent contain flags not in child? */
  5399. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5400. if (cflags & SD_WAKE_AFFINE)
  5401. pflags &= ~SD_WAKE_BALANCE;
  5402. /* Flags needing groups don't count if only 1 group in parent */
  5403. if (parent->groups == parent->groups->next) {
  5404. pflags &= ~(SD_LOAD_BALANCE |
  5405. SD_BALANCE_NEWIDLE |
  5406. SD_BALANCE_FORK |
  5407. SD_BALANCE_EXEC |
  5408. SD_SHARE_CPUPOWER |
  5409. SD_SHARE_PKG_RESOURCES);
  5410. }
  5411. if (~cflags & pflags)
  5412. return 0;
  5413. return 1;
  5414. }
  5415. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5416. {
  5417. unsigned long flags;
  5418. const struct sched_class *class;
  5419. spin_lock_irqsave(&rq->lock, flags);
  5420. if (rq->rd) {
  5421. struct root_domain *old_rd = rq->rd;
  5422. for (class = sched_class_highest; class; class = class->next) {
  5423. if (class->leave_domain)
  5424. class->leave_domain(rq);
  5425. }
  5426. cpu_clear(rq->cpu, old_rd->span);
  5427. cpu_clear(rq->cpu, old_rd->online);
  5428. if (atomic_dec_and_test(&old_rd->refcount))
  5429. kfree(old_rd);
  5430. }
  5431. atomic_inc(&rd->refcount);
  5432. rq->rd = rd;
  5433. cpu_set(rq->cpu, rd->span);
  5434. if (cpu_isset(rq->cpu, cpu_online_map))
  5435. cpu_set(rq->cpu, rd->online);
  5436. for (class = sched_class_highest; class; class = class->next) {
  5437. if (class->join_domain)
  5438. class->join_domain(rq);
  5439. }
  5440. spin_unlock_irqrestore(&rq->lock, flags);
  5441. }
  5442. static void init_rootdomain(struct root_domain *rd)
  5443. {
  5444. memset(rd, 0, sizeof(*rd));
  5445. cpus_clear(rd->span);
  5446. cpus_clear(rd->online);
  5447. }
  5448. static void init_defrootdomain(void)
  5449. {
  5450. init_rootdomain(&def_root_domain);
  5451. atomic_set(&def_root_domain.refcount, 1);
  5452. }
  5453. static struct root_domain *alloc_rootdomain(void)
  5454. {
  5455. struct root_domain *rd;
  5456. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5457. if (!rd)
  5458. return NULL;
  5459. init_rootdomain(rd);
  5460. return rd;
  5461. }
  5462. /*
  5463. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5464. * hold the hotplug lock.
  5465. */
  5466. static void
  5467. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5468. {
  5469. struct rq *rq = cpu_rq(cpu);
  5470. struct sched_domain *tmp;
  5471. /* Remove the sched domains which do not contribute to scheduling. */
  5472. for (tmp = sd; tmp; tmp = tmp->parent) {
  5473. struct sched_domain *parent = tmp->parent;
  5474. if (!parent)
  5475. break;
  5476. if (sd_parent_degenerate(tmp, parent)) {
  5477. tmp->parent = parent->parent;
  5478. if (parent->parent)
  5479. parent->parent->child = tmp;
  5480. }
  5481. }
  5482. if (sd && sd_degenerate(sd)) {
  5483. sd = sd->parent;
  5484. if (sd)
  5485. sd->child = NULL;
  5486. }
  5487. sched_domain_debug(sd, cpu);
  5488. rq_attach_root(rq, rd);
  5489. rcu_assign_pointer(rq->sd, sd);
  5490. }
  5491. /* cpus with isolated domains */
  5492. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5493. /* Setup the mask of cpus configured for isolated domains */
  5494. static int __init isolated_cpu_setup(char *str)
  5495. {
  5496. int ints[NR_CPUS], i;
  5497. str = get_options(str, ARRAY_SIZE(ints), ints);
  5498. cpus_clear(cpu_isolated_map);
  5499. for (i = 1; i <= ints[0]; i++)
  5500. if (ints[i] < NR_CPUS)
  5501. cpu_set(ints[i], cpu_isolated_map);
  5502. return 1;
  5503. }
  5504. __setup("isolcpus=", isolated_cpu_setup);
  5505. /*
  5506. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5507. * to a function which identifies what group(along with sched group) a CPU
  5508. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5509. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5510. *
  5511. * init_sched_build_groups will build a circular linked list of the groups
  5512. * covered by the given span, and will set each group's ->cpumask correctly,
  5513. * and ->cpu_power to 0.
  5514. */
  5515. static void
  5516. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5517. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5518. struct sched_group **sg,
  5519. cpumask_t *tmpmask),
  5520. cpumask_t *covered, cpumask_t *tmpmask)
  5521. {
  5522. struct sched_group *first = NULL, *last = NULL;
  5523. int i;
  5524. cpus_clear(*covered);
  5525. for_each_cpu_mask(i, *span) {
  5526. struct sched_group *sg;
  5527. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5528. int j;
  5529. if (cpu_isset(i, *covered))
  5530. continue;
  5531. cpus_clear(sg->cpumask);
  5532. sg->__cpu_power = 0;
  5533. for_each_cpu_mask(j, *span) {
  5534. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5535. continue;
  5536. cpu_set(j, *covered);
  5537. cpu_set(j, sg->cpumask);
  5538. }
  5539. if (!first)
  5540. first = sg;
  5541. if (last)
  5542. last->next = sg;
  5543. last = sg;
  5544. }
  5545. last->next = first;
  5546. }
  5547. #define SD_NODES_PER_DOMAIN 16
  5548. #ifdef CONFIG_NUMA
  5549. /**
  5550. * find_next_best_node - find the next node to include in a sched_domain
  5551. * @node: node whose sched_domain we're building
  5552. * @used_nodes: nodes already in the sched_domain
  5553. *
  5554. * Find the next node to include in a given scheduling domain. Simply
  5555. * finds the closest node not already in the @used_nodes map.
  5556. *
  5557. * Should use nodemask_t.
  5558. */
  5559. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5560. {
  5561. int i, n, val, min_val, best_node = 0;
  5562. min_val = INT_MAX;
  5563. for (i = 0; i < MAX_NUMNODES; i++) {
  5564. /* Start at @node */
  5565. n = (node + i) % MAX_NUMNODES;
  5566. if (!nr_cpus_node(n))
  5567. continue;
  5568. /* Skip already used nodes */
  5569. if (node_isset(n, *used_nodes))
  5570. continue;
  5571. /* Simple min distance search */
  5572. val = node_distance(node, n);
  5573. if (val < min_val) {
  5574. min_val = val;
  5575. best_node = n;
  5576. }
  5577. }
  5578. node_set(best_node, *used_nodes);
  5579. return best_node;
  5580. }
  5581. /**
  5582. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5583. * @node: node whose cpumask we're constructing
  5584. * @span: resulting cpumask
  5585. *
  5586. * Given a node, construct a good cpumask for its sched_domain to span. It
  5587. * should be one that prevents unnecessary balancing, but also spreads tasks
  5588. * out optimally.
  5589. */
  5590. static void sched_domain_node_span(int node, cpumask_t *span)
  5591. {
  5592. nodemask_t used_nodes;
  5593. node_to_cpumask_ptr(nodemask, node);
  5594. int i;
  5595. cpus_clear(*span);
  5596. nodes_clear(used_nodes);
  5597. cpus_or(*span, *span, *nodemask);
  5598. node_set(node, used_nodes);
  5599. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5600. int next_node = find_next_best_node(node, &used_nodes);
  5601. node_to_cpumask_ptr_next(nodemask, next_node);
  5602. cpus_or(*span, *span, *nodemask);
  5603. }
  5604. }
  5605. #endif
  5606. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5607. /*
  5608. * SMT sched-domains:
  5609. */
  5610. #ifdef CONFIG_SCHED_SMT
  5611. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5612. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5613. static int
  5614. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5615. cpumask_t *unused)
  5616. {
  5617. if (sg)
  5618. *sg = &per_cpu(sched_group_cpus, cpu);
  5619. return cpu;
  5620. }
  5621. #endif
  5622. /*
  5623. * multi-core sched-domains:
  5624. */
  5625. #ifdef CONFIG_SCHED_MC
  5626. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5627. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5628. #endif
  5629. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5630. static int
  5631. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5632. cpumask_t *mask)
  5633. {
  5634. int group;
  5635. *mask = per_cpu(cpu_sibling_map, cpu);
  5636. cpus_and(*mask, *mask, *cpu_map);
  5637. group = first_cpu(*mask);
  5638. if (sg)
  5639. *sg = &per_cpu(sched_group_core, group);
  5640. return group;
  5641. }
  5642. #elif defined(CONFIG_SCHED_MC)
  5643. static int
  5644. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5645. cpumask_t *unused)
  5646. {
  5647. if (sg)
  5648. *sg = &per_cpu(sched_group_core, cpu);
  5649. return cpu;
  5650. }
  5651. #endif
  5652. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5653. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5654. static int
  5655. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5656. cpumask_t *mask)
  5657. {
  5658. int group;
  5659. #ifdef CONFIG_SCHED_MC
  5660. *mask = cpu_coregroup_map(cpu);
  5661. cpus_and(*mask, *mask, *cpu_map);
  5662. group = first_cpu(*mask);
  5663. #elif defined(CONFIG_SCHED_SMT)
  5664. *mask = per_cpu(cpu_sibling_map, cpu);
  5665. cpus_and(*mask, *mask, *cpu_map);
  5666. group = first_cpu(*mask);
  5667. #else
  5668. group = cpu;
  5669. #endif
  5670. if (sg)
  5671. *sg = &per_cpu(sched_group_phys, group);
  5672. return group;
  5673. }
  5674. #ifdef CONFIG_NUMA
  5675. /*
  5676. * The init_sched_build_groups can't handle what we want to do with node
  5677. * groups, so roll our own. Now each node has its own list of groups which
  5678. * gets dynamically allocated.
  5679. */
  5680. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5681. static struct sched_group ***sched_group_nodes_bycpu;
  5682. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5683. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5684. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5685. struct sched_group **sg, cpumask_t *nodemask)
  5686. {
  5687. int group;
  5688. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5689. cpus_and(*nodemask, *nodemask, *cpu_map);
  5690. group = first_cpu(*nodemask);
  5691. if (sg)
  5692. *sg = &per_cpu(sched_group_allnodes, group);
  5693. return group;
  5694. }
  5695. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5696. {
  5697. struct sched_group *sg = group_head;
  5698. int j;
  5699. if (!sg)
  5700. return;
  5701. do {
  5702. for_each_cpu_mask(j, sg->cpumask) {
  5703. struct sched_domain *sd;
  5704. sd = &per_cpu(phys_domains, j);
  5705. if (j != first_cpu(sd->groups->cpumask)) {
  5706. /*
  5707. * Only add "power" once for each
  5708. * physical package.
  5709. */
  5710. continue;
  5711. }
  5712. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5713. }
  5714. sg = sg->next;
  5715. } while (sg != group_head);
  5716. }
  5717. #endif
  5718. #ifdef CONFIG_NUMA
  5719. /* Free memory allocated for various sched_group structures */
  5720. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5721. {
  5722. int cpu, i;
  5723. for_each_cpu_mask(cpu, *cpu_map) {
  5724. struct sched_group **sched_group_nodes
  5725. = sched_group_nodes_bycpu[cpu];
  5726. if (!sched_group_nodes)
  5727. continue;
  5728. for (i = 0; i < MAX_NUMNODES; i++) {
  5729. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5730. *nodemask = node_to_cpumask(i);
  5731. cpus_and(*nodemask, *nodemask, *cpu_map);
  5732. if (cpus_empty(*nodemask))
  5733. continue;
  5734. if (sg == NULL)
  5735. continue;
  5736. sg = sg->next;
  5737. next_sg:
  5738. oldsg = sg;
  5739. sg = sg->next;
  5740. kfree(oldsg);
  5741. if (oldsg != sched_group_nodes[i])
  5742. goto next_sg;
  5743. }
  5744. kfree(sched_group_nodes);
  5745. sched_group_nodes_bycpu[cpu] = NULL;
  5746. }
  5747. }
  5748. #else
  5749. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5750. {
  5751. }
  5752. #endif
  5753. /*
  5754. * Initialize sched groups cpu_power.
  5755. *
  5756. * cpu_power indicates the capacity of sched group, which is used while
  5757. * distributing the load between different sched groups in a sched domain.
  5758. * Typically cpu_power for all the groups in a sched domain will be same unless
  5759. * there are asymmetries in the topology. If there are asymmetries, group
  5760. * having more cpu_power will pickup more load compared to the group having
  5761. * less cpu_power.
  5762. *
  5763. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5764. * the maximum number of tasks a group can handle in the presence of other idle
  5765. * or lightly loaded groups in the same sched domain.
  5766. */
  5767. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5768. {
  5769. struct sched_domain *child;
  5770. struct sched_group *group;
  5771. WARN_ON(!sd || !sd->groups);
  5772. if (cpu != first_cpu(sd->groups->cpumask))
  5773. return;
  5774. child = sd->child;
  5775. sd->groups->__cpu_power = 0;
  5776. /*
  5777. * For perf policy, if the groups in child domain share resources
  5778. * (for example cores sharing some portions of the cache hierarchy
  5779. * or SMT), then set this domain groups cpu_power such that each group
  5780. * can handle only one task, when there are other idle groups in the
  5781. * same sched domain.
  5782. */
  5783. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5784. (child->flags &
  5785. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5786. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5787. return;
  5788. }
  5789. /*
  5790. * add cpu_power of each child group to this groups cpu_power
  5791. */
  5792. group = child->groups;
  5793. do {
  5794. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5795. group = group->next;
  5796. } while (group != child->groups);
  5797. }
  5798. /*
  5799. * Initializers for schedule domains
  5800. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5801. */
  5802. #define SD_INIT(sd, type) sd_init_##type(sd)
  5803. #define SD_INIT_FUNC(type) \
  5804. static noinline void sd_init_##type(struct sched_domain *sd) \
  5805. { \
  5806. memset(sd, 0, sizeof(*sd)); \
  5807. *sd = SD_##type##_INIT; \
  5808. sd->level = SD_LV_##type; \
  5809. }
  5810. SD_INIT_FUNC(CPU)
  5811. #ifdef CONFIG_NUMA
  5812. SD_INIT_FUNC(ALLNODES)
  5813. SD_INIT_FUNC(NODE)
  5814. #endif
  5815. #ifdef CONFIG_SCHED_SMT
  5816. SD_INIT_FUNC(SIBLING)
  5817. #endif
  5818. #ifdef CONFIG_SCHED_MC
  5819. SD_INIT_FUNC(MC)
  5820. #endif
  5821. /*
  5822. * To minimize stack usage kmalloc room for cpumasks and share the
  5823. * space as the usage in build_sched_domains() dictates. Used only
  5824. * if the amount of space is significant.
  5825. */
  5826. struct allmasks {
  5827. cpumask_t tmpmask; /* make this one first */
  5828. union {
  5829. cpumask_t nodemask;
  5830. cpumask_t this_sibling_map;
  5831. cpumask_t this_core_map;
  5832. };
  5833. cpumask_t send_covered;
  5834. #ifdef CONFIG_NUMA
  5835. cpumask_t domainspan;
  5836. cpumask_t covered;
  5837. cpumask_t notcovered;
  5838. #endif
  5839. };
  5840. #if NR_CPUS > 128
  5841. #define SCHED_CPUMASK_ALLOC 1
  5842. #define SCHED_CPUMASK_FREE(v) kfree(v)
  5843. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  5844. #else
  5845. #define SCHED_CPUMASK_ALLOC 0
  5846. #define SCHED_CPUMASK_FREE(v)
  5847. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  5848. #endif
  5849. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  5850. ((unsigned long)(a) + offsetof(struct allmasks, v))
  5851. static int default_relax_domain_level = -1;
  5852. static int __init setup_relax_domain_level(char *str)
  5853. {
  5854. default_relax_domain_level = simple_strtoul(str, NULL, 0);
  5855. return 1;
  5856. }
  5857. __setup("relax_domain_level=", setup_relax_domain_level);
  5858. static void set_domain_attribute(struct sched_domain *sd,
  5859. struct sched_domain_attr *attr)
  5860. {
  5861. int request;
  5862. if (!attr || attr->relax_domain_level < 0) {
  5863. if (default_relax_domain_level < 0)
  5864. return;
  5865. else
  5866. request = default_relax_domain_level;
  5867. } else
  5868. request = attr->relax_domain_level;
  5869. if (request < sd->level) {
  5870. /* turn off idle balance on this domain */
  5871. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  5872. } else {
  5873. /* turn on idle balance on this domain */
  5874. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  5875. }
  5876. }
  5877. /*
  5878. * Build sched domains for a given set of cpus and attach the sched domains
  5879. * to the individual cpus
  5880. */
  5881. static int __build_sched_domains(const cpumask_t *cpu_map,
  5882. struct sched_domain_attr *attr)
  5883. {
  5884. int i;
  5885. struct root_domain *rd;
  5886. SCHED_CPUMASK_DECLARE(allmasks);
  5887. cpumask_t *tmpmask;
  5888. #ifdef CONFIG_NUMA
  5889. struct sched_group **sched_group_nodes = NULL;
  5890. int sd_allnodes = 0;
  5891. /*
  5892. * Allocate the per-node list of sched groups
  5893. */
  5894. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5895. GFP_KERNEL);
  5896. if (!sched_group_nodes) {
  5897. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5898. return -ENOMEM;
  5899. }
  5900. #endif
  5901. rd = alloc_rootdomain();
  5902. if (!rd) {
  5903. printk(KERN_WARNING "Cannot alloc root domain\n");
  5904. #ifdef CONFIG_NUMA
  5905. kfree(sched_group_nodes);
  5906. #endif
  5907. return -ENOMEM;
  5908. }
  5909. #if SCHED_CPUMASK_ALLOC
  5910. /* get space for all scratch cpumask variables */
  5911. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  5912. if (!allmasks) {
  5913. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  5914. kfree(rd);
  5915. #ifdef CONFIG_NUMA
  5916. kfree(sched_group_nodes);
  5917. #endif
  5918. return -ENOMEM;
  5919. }
  5920. #endif
  5921. tmpmask = (cpumask_t *)allmasks;
  5922. #ifdef CONFIG_NUMA
  5923. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5924. #endif
  5925. /*
  5926. * Set up domains for cpus specified by the cpu_map.
  5927. */
  5928. for_each_cpu_mask(i, *cpu_map) {
  5929. struct sched_domain *sd = NULL, *p;
  5930. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5931. *nodemask = node_to_cpumask(cpu_to_node(i));
  5932. cpus_and(*nodemask, *nodemask, *cpu_map);
  5933. #ifdef CONFIG_NUMA
  5934. if (cpus_weight(*cpu_map) >
  5935. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  5936. sd = &per_cpu(allnodes_domains, i);
  5937. SD_INIT(sd, ALLNODES);
  5938. set_domain_attribute(sd, attr);
  5939. sd->span = *cpu_map;
  5940. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  5941. p = sd;
  5942. sd_allnodes = 1;
  5943. } else
  5944. p = NULL;
  5945. sd = &per_cpu(node_domains, i);
  5946. SD_INIT(sd, NODE);
  5947. set_domain_attribute(sd, attr);
  5948. sched_domain_node_span(cpu_to_node(i), &sd->span);
  5949. sd->parent = p;
  5950. if (p)
  5951. p->child = sd;
  5952. cpus_and(sd->span, sd->span, *cpu_map);
  5953. #endif
  5954. p = sd;
  5955. sd = &per_cpu(phys_domains, i);
  5956. SD_INIT(sd, CPU);
  5957. set_domain_attribute(sd, attr);
  5958. sd->span = *nodemask;
  5959. sd->parent = p;
  5960. if (p)
  5961. p->child = sd;
  5962. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  5963. #ifdef CONFIG_SCHED_MC
  5964. p = sd;
  5965. sd = &per_cpu(core_domains, i);
  5966. SD_INIT(sd, MC);
  5967. set_domain_attribute(sd, attr);
  5968. sd->span = cpu_coregroup_map(i);
  5969. cpus_and(sd->span, sd->span, *cpu_map);
  5970. sd->parent = p;
  5971. p->child = sd;
  5972. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  5973. #endif
  5974. #ifdef CONFIG_SCHED_SMT
  5975. p = sd;
  5976. sd = &per_cpu(cpu_domains, i);
  5977. SD_INIT(sd, SIBLING);
  5978. set_domain_attribute(sd, attr);
  5979. sd->span = per_cpu(cpu_sibling_map, i);
  5980. cpus_and(sd->span, sd->span, *cpu_map);
  5981. sd->parent = p;
  5982. p->child = sd;
  5983. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  5984. #endif
  5985. }
  5986. #ifdef CONFIG_SCHED_SMT
  5987. /* Set up CPU (sibling) groups */
  5988. for_each_cpu_mask(i, *cpu_map) {
  5989. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  5990. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5991. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  5992. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  5993. if (i != first_cpu(*this_sibling_map))
  5994. continue;
  5995. init_sched_build_groups(this_sibling_map, cpu_map,
  5996. &cpu_to_cpu_group,
  5997. send_covered, tmpmask);
  5998. }
  5999. #endif
  6000. #ifdef CONFIG_SCHED_MC
  6001. /* Set up multi-core groups */
  6002. for_each_cpu_mask(i, *cpu_map) {
  6003. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6004. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6005. *this_core_map = cpu_coregroup_map(i);
  6006. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6007. if (i != first_cpu(*this_core_map))
  6008. continue;
  6009. init_sched_build_groups(this_core_map, cpu_map,
  6010. &cpu_to_core_group,
  6011. send_covered, tmpmask);
  6012. }
  6013. #endif
  6014. /* Set up physical groups */
  6015. for (i = 0; i < MAX_NUMNODES; i++) {
  6016. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6017. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6018. *nodemask = node_to_cpumask(i);
  6019. cpus_and(*nodemask, *nodemask, *cpu_map);
  6020. if (cpus_empty(*nodemask))
  6021. continue;
  6022. init_sched_build_groups(nodemask, cpu_map,
  6023. &cpu_to_phys_group,
  6024. send_covered, tmpmask);
  6025. }
  6026. #ifdef CONFIG_NUMA
  6027. /* Set up node groups */
  6028. if (sd_allnodes) {
  6029. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6030. init_sched_build_groups(cpu_map, cpu_map,
  6031. &cpu_to_allnodes_group,
  6032. send_covered, tmpmask);
  6033. }
  6034. for (i = 0; i < MAX_NUMNODES; i++) {
  6035. /* Set up node groups */
  6036. struct sched_group *sg, *prev;
  6037. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6038. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6039. SCHED_CPUMASK_VAR(covered, allmasks);
  6040. int j;
  6041. *nodemask = node_to_cpumask(i);
  6042. cpus_clear(*covered);
  6043. cpus_and(*nodemask, *nodemask, *cpu_map);
  6044. if (cpus_empty(*nodemask)) {
  6045. sched_group_nodes[i] = NULL;
  6046. continue;
  6047. }
  6048. sched_domain_node_span(i, domainspan);
  6049. cpus_and(*domainspan, *domainspan, *cpu_map);
  6050. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6051. if (!sg) {
  6052. printk(KERN_WARNING "Can not alloc domain group for "
  6053. "node %d\n", i);
  6054. goto error;
  6055. }
  6056. sched_group_nodes[i] = sg;
  6057. for_each_cpu_mask(j, *nodemask) {
  6058. struct sched_domain *sd;
  6059. sd = &per_cpu(node_domains, j);
  6060. sd->groups = sg;
  6061. }
  6062. sg->__cpu_power = 0;
  6063. sg->cpumask = *nodemask;
  6064. sg->next = sg;
  6065. cpus_or(*covered, *covered, *nodemask);
  6066. prev = sg;
  6067. for (j = 0; j < MAX_NUMNODES; j++) {
  6068. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6069. int n = (i + j) % MAX_NUMNODES;
  6070. node_to_cpumask_ptr(pnodemask, n);
  6071. cpus_complement(*notcovered, *covered);
  6072. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6073. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6074. if (cpus_empty(*tmpmask))
  6075. break;
  6076. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6077. if (cpus_empty(*tmpmask))
  6078. continue;
  6079. sg = kmalloc_node(sizeof(struct sched_group),
  6080. GFP_KERNEL, i);
  6081. if (!sg) {
  6082. printk(KERN_WARNING
  6083. "Can not alloc domain group for node %d\n", j);
  6084. goto error;
  6085. }
  6086. sg->__cpu_power = 0;
  6087. sg->cpumask = *tmpmask;
  6088. sg->next = prev->next;
  6089. cpus_or(*covered, *covered, *tmpmask);
  6090. prev->next = sg;
  6091. prev = sg;
  6092. }
  6093. }
  6094. #endif
  6095. /* Calculate CPU power for physical packages and nodes */
  6096. #ifdef CONFIG_SCHED_SMT
  6097. for_each_cpu_mask(i, *cpu_map) {
  6098. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6099. init_sched_groups_power(i, sd);
  6100. }
  6101. #endif
  6102. #ifdef CONFIG_SCHED_MC
  6103. for_each_cpu_mask(i, *cpu_map) {
  6104. struct sched_domain *sd = &per_cpu(core_domains, i);
  6105. init_sched_groups_power(i, sd);
  6106. }
  6107. #endif
  6108. for_each_cpu_mask(i, *cpu_map) {
  6109. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6110. init_sched_groups_power(i, sd);
  6111. }
  6112. #ifdef CONFIG_NUMA
  6113. for (i = 0; i < MAX_NUMNODES; i++)
  6114. init_numa_sched_groups_power(sched_group_nodes[i]);
  6115. if (sd_allnodes) {
  6116. struct sched_group *sg;
  6117. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6118. tmpmask);
  6119. init_numa_sched_groups_power(sg);
  6120. }
  6121. #endif
  6122. /* Attach the domains */
  6123. for_each_cpu_mask(i, *cpu_map) {
  6124. struct sched_domain *sd;
  6125. #ifdef CONFIG_SCHED_SMT
  6126. sd = &per_cpu(cpu_domains, i);
  6127. #elif defined(CONFIG_SCHED_MC)
  6128. sd = &per_cpu(core_domains, i);
  6129. #else
  6130. sd = &per_cpu(phys_domains, i);
  6131. #endif
  6132. cpu_attach_domain(sd, rd, i);
  6133. }
  6134. SCHED_CPUMASK_FREE((void *)allmasks);
  6135. return 0;
  6136. #ifdef CONFIG_NUMA
  6137. error:
  6138. free_sched_groups(cpu_map, tmpmask);
  6139. SCHED_CPUMASK_FREE((void *)allmasks);
  6140. return -ENOMEM;
  6141. #endif
  6142. }
  6143. static int build_sched_domains(const cpumask_t *cpu_map)
  6144. {
  6145. return __build_sched_domains(cpu_map, NULL);
  6146. }
  6147. static cpumask_t *doms_cur; /* current sched domains */
  6148. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6149. static struct sched_domain_attr *dattr_cur;
  6150. /* attribues of custom domains in 'doms_cur' */
  6151. /*
  6152. * Special case: If a kmalloc of a doms_cur partition (array of
  6153. * cpumask_t) fails, then fallback to a single sched domain,
  6154. * as determined by the single cpumask_t fallback_doms.
  6155. */
  6156. static cpumask_t fallback_doms;
  6157. void __attribute__((weak)) arch_update_cpu_topology(void)
  6158. {
  6159. }
  6160. /*
  6161. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6162. * For now this just excludes isolated cpus, but could be used to
  6163. * exclude other special cases in the future.
  6164. */
  6165. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6166. {
  6167. int err;
  6168. arch_update_cpu_topology();
  6169. ndoms_cur = 1;
  6170. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6171. if (!doms_cur)
  6172. doms_cur = &fallback_doms;
  6173. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6174. dattr_cur = NULL;
  6175. err = build_sched_domains(doms_cur);
  6176. register_sched_domain_sysctl();
  6177. return err;
  6178. }
  6179. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6180. cpumask_t *tmpmask)
  6181. {
  6182. free_sched_groups(cpu_map, tmpmask);
  6183. }
  6184. /*
  6185. * Detach sched domains from a group of cpus specified in cpu_map
  6186. * These cpus will now be attached to the NULL domain
  6187. */
  6188. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6189. {
  6190. cpumask_t tmpmask;
  6191. int i;
  6192. unregister_sched_domain_sysctl();
  6193. for_each_cpu_mask(i, *cpu_map)
  6194. cpu_attach_domain(NULL, &def_root_domain, i);
  6195. synchronize_sched();
  6196. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6197. }
  6198. /* handle null as "default" */
  6199. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6200. struct sched_domain_attr *new, int idx_new)
  6201. {
  6202. struct sched_domain_attr tmp;
  6203. /* fast path */
  6204. if (!new && !cur)
  6205. return 1;
  6206. tmp = SD_ATTR_INIT;
  6207. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6208. new ? (new + idx_new) : &tmp,
  6209. sizeof(struct sched_domain_attr));
  6210. }
  6211. /*
  6212. * Partition sched domains as specified by the 'ndoms_new'
  6213. * cpumasks in the array doms_new[] of cpumasks. This compares
  6214. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6215. * It destroys each deleted domain and builds each new domain.
  6216. *
  6217. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6218. * The masks don't intersect (don't overlap.) We should setup one
  6219. * sched domain for each mask. CPUs not in any of the cpumasks will
  6220. * not be load balanced. If the same cpumask appears both in the
  6221. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6222. * it as it is.
  6223. *
  6224. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6225. * ownership of it and will kfree it when done with it. If the caller
  6226. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6227. * and partition_sched_domains() will fallback to the single partition
  6228. * 'fallback_doms'.
  6229. *
  6230. * Call with hotplug lock held
  6231. */
  6232. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6233. struct sched_domain_attr *dattr_new)
  6234. {
  6235. int i, j;
  6236. mutex_lock(&sched_domains_mutex);
  6237. /* always unregister in case we don't destroy any domains */
  6238. unregister_sched_domain_sysctl();
  6239. if (doms_new == NULL) {
  6240. ndoms_new = 1;
  6241. doms_new = &fallback_doms;
  6242. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6243. dattr_new = NULL;
  6244. }
  6245. /* Destroy deleted domains */
  6246. for (i = 0; i < ndoms_cur; i++) {
  6247. for (j = 0; j < ndoms_new; j++) {
  6248. if (cpus_equal(doms_cur[i], doms_new[j])
  6249. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6250. goto match1;
  6251. }
  6252. /* no match - a current sched domain not in new doms_new[] */
  6253. detach_destroy_domains(doms_cur + i);
  6254. match1:
  6255. ;
  6256. }
  6257. /* Build new domains */
  6258. for (i = 0; i < ndoms_new; i++) {
  6259. for (j = 0; j < ndoms_cur; j++) {
  6260. if (cpus_equal(doms_new[i], doms_cur[j])
  6261. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6262. goto match2;
  6263. }
  6264. /* no match - add a new doms_new */
  6265. __build_sched_domains(doms_new + i,
  6266. dattr_new ? dattr_new + i : NULL);
  6267. match2:
  6268. ;
  6269. }
  6270. /* Remember the new sched domains */
  6271. if (doms_cur != &fallback_doms)
  6272. kfree(doms_cur);
  6273. kfree(dattr_cur); /* kfree(NULL) is safe */
  6274. doms_cur = doms_new;
  6275. dattr_cur = dattr_new;
  6276. ndoms_cur = ndoms_new;
  6277. register_sched_domain_sysctl();
  6278. mutex_unlock(&sched_domains_mutex);
  6279. }
  6280. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6281. int arch_reinit_sched_domains(void)
  6282. {
  6283. int err;
  6284. get_online_cpus();
  6285. mutex_lock(&sched_domains_mutex);
  6286. detach_destroy_domains(&cpu_online_map);
  6287. err = arch_init_sched_domains(&cpu_online_map);
  6288. mutex_unlock(&sched_domains_mutex);
  6289. put_online_cpus();
  6290. return err;
  6291. }
  6292. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6293. {
  6294. int ret;
  6295. if (buf[0] != '0' && buf[0] != '1')
  6296. return -EINVAL;
  6297. if (smt)
  6298. sched_smt_power_savings = (buf[0] == '1');
  6299. else
  6300. sched_mc_power_savings = (buf[0] == '1');
  6301. ret = arch_reinit_sched_domains();
  6302. return ret ? ret : count;
  6303. }
  6304. #ifdef CONFIG_SCHED_MC
  6305. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6306. {
  6307. return sprintf(page, "%u\n", sched_mc_power_savings);
  6308. }
  6309. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6310. const char *buf, size_t count)
  6311. {
  6312. return sched_power_savings_store(buf, count, 0);
  6313. }
  6314. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6315. sched_mc_power_savings_store);
  6316. #endif
  6317. #ifdef CONFIG_SCHED_SMT
  6318. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6319. {
  6320. return sprintf(page, "%u\n", sched_smt_power_savings);
  6321. }
  6322. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6323. const char *buf, size_t count)
  6324. {
  6325. return sched_power_savings_store(buf, count, 1);
  6326. }
  6327. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6328. sched_smt_power_savings_store);
  6329. #endif
  6330. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6331. {
  6332. int err = 0;
  6333. #ifdef CONFIG_SCHED_SMT
  6334. if (smt_capable())
  6335. err = sysfs_create_file(&cls->kset.kobj,
  6336. &attr_sched_smt_power_savings.attr);
  6337. #endif
  6338. #ifdef CONFIG_SCHED_MC
  6339. if (!err && mc_capable())
  6340. err = sysfs_create_file(&cls->kset.kobj,
  6341. &attr_sched_mc_power_savings.attr);
  6342. #endif
  6343. return err;
  6344. }
  6345. #endif
  6346. /*
  6347. * Force a reinitialization of the sched domains hierarchy. The domains
  6348. * and groups cannot be updated in place without racing with the balancing
  6349. * code, so we temporarily attach all running cpus to the NULL domain
  6350. * which will prevent rebalancing while the sched domains are recalculated.
  6351. */
  6352. static int update_sched_domains(struct notifier_block *nfb,
  6353. unsigned long action, void *hcpu)
  6354. {
  6355. switch (action) {
  6356. case CPU_UP_PREPARE:
  6357. case CPU_UP_PREPARE_FROZEN:
  6358. case CPU_DOWN_PREPARE:
  6359. case CPU_DOWN_PREPARE_FROZEN:
  6360. detach_destroy_domains(&cpu_online_map);
  6361. return NOTIFY_OK;
  6362. case CPU_UP_CANCELED:
  6363. case CPU_UP_CANCELED_FROZEN:
  6364. case CPU_DOWN_FAILED:
  6365. case CPU_DOWN_FAILED_FROZEN:
  6366. case CPU_ONLINE:
  6367. case CPU_ONLINE_FROZEN:
  6368. case CPU_DEAD:
  6369. case CPU_DEAD_FROZEN:
  6370. /*
  6371. * Fall through and re-initialise the domains.
  6372. */
  6373. break;
  6374. default:
  6375. return NOTIFY_DONE;
  6376. }
  6377. /* The hotplug lock is already held by cpu_up/cpu_down */
  6378. arch_init_sched_domains(&cpu_online_map);
  6379. return NOTIFY_OK;
  6380. }
  6381. void __init sched_init_smp(void)
  6382. {
  6383. cpumask_t non_isolated_cpus;
  6384. #if defined(CONFIG_NUMA)
  6385. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6386. GFP_KERNEL);
  6387. BUG_ON(sched_group_nodes_bycpu == NULL);
  6388. #endif
  6389. get_online_cpus();
  6390. mutex_lock(&sched_domains_mutex);
  6391. arch_init_sched_domains(&cpu_online_map);
  6392. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6393. if (cpus_empty(non_isolated_cpus))
  6394. cpu_set(smp_processor_id(), non_isolated_cpus);
  6395. mutex_unlock(&sched_domains_mutex);
  6396. put_online_cpus();
  6397. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6398. hotcpu_notifier(update_sched_domains, 0);
  6399. init_hrtick();
  6400. /* Move init over to a non-isolated CPU */
  6401. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6402. BUG();
  6403. sched_init_granularity();
  6404. }
  6405. #else
  6406. void __init sched_init_smp(void)
  6407. {
  6408. sched_init_granularity();
  6409. }
  6410. #endif /* CONFIG_SMP */
  6411. int in_sched_functions(unsigned long addr)
  6412. {
  6413. return in_lock_functions(addr) ||
  6414. (addr >= (unsigned long)__sched_text_start
  6415. && addr < (unsigned long)__sched_text_end);
  6416. }
  6417. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6418. {
  6419. cfs_rq->tasks_timeline = RB_ROOT;
  6420. INIT_LIST_HEAD(&cfs_rq->tasks);
  6421. #ifdef CONFIG_FAIR_GROUP_SCHED
  6422. cfs_rq->rq = rq;
  6423. #endif
  6424. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6425. }
  6426. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6427. {
  6428. struct rt_prio_array *array;
  6429. int i;
  6430. array = &rt_rq->active;
  6431. for (i = 0; i < MAX_RT_PRIO; i++) {
  6432. INIT_LIST_HEAD(array->queue + i);
  6433. __clear_bit(i, array->bitmap);
  6434. }
  6435. /* delimiter for bitsearch: */
  6436. __set_bit(MAX_RT_PRIO, array->bitmap);
  6437. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6438. rt_rq->highest_prio = MAX_RT_PRIO;
  6439. #endif
  6440. #ifdef CONFIG_SMP
  6441. rt_rq->rt_nr_migratory = 0;
  6442. rt_rq->overloaded = 0;
  6443. #endif
  6444. rt_rq->rt_time = 0;
  6445. rt_rq->rt_throttled = 0;
  6446. rt_rq->rt_runtime = 0;
  6447. spin_lock_init(&rt_rq->rt_runtime_lock);
  6448. #ifdef CONFIG_RT_GROUP_SCHED
  6449. rt_rq->rt_nr_boosted = 0;
  6450. rt_rq->rq = rq;
  6451. #endif
  6452. }
  6453. #ifdef CONFIG_FAIR_GROUP_SCHED
  6454. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6455. struct sched_entity *se, int cpu, int add,
  6456. struct sched_entity *parent)
  6457. {
  6458. struct rq *rq = cpu_rq(cpu);
  6459. tg->cfs_rq[cpu] = cfs_rq;
  6460. init_cfs_rq(cfs_rq, rq);
  6461. cfs_rq->tg = tg;
  6462. if (add)
  6463. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6464. tg->se[cpu] = se;
  6465. /* se could be NULL for init_task_group */
  6466. if (!se)
  6467. return;
  6468. if (!parent)
  6469. se->cfs_rq = &rq->cfs;
  6470. else
  6471. se->cfs_rq = parent->my_q;
  6472. se->my_q = cfs_rq;
  6473. se->load.weight = tg->shares;
  6474. se->load.inv_weight = 0;
  6475. se->parent = parent;
  6476. }
  6477. #endif
  6478. #ifdef CONFIG_RT_GROUP_SCHED
  6479. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6480. struct sched_rt_entity *rt_se, int cpu, int add,
  6481. struct sched_rt_entity *parent)
  6482. {
  6483. struct rq *rq = cpu_rq(cpu);
  6484. tg->rt_rq[cpu] = rt_rq;
  6485. init_rt_rq(rt_rq, rq);
  6486. rt_rq->tg = tg;
  6487. rt_rq->rt_se = rt_se;
  6488. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6489. if (add)
  6490. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6491. tg->rt_se[cpu] = rt_se;
  6492. if (!rt_se)
  6493. return;
  6494. if (!parent)
  6495. rt_se->rt_rq = &rq->rt;
  6496. else
  6497. rt_se->rt_rq = parent->my_q;
  6498. rt_se->rt_rq = &rq->rt;
  6499. rt_se->my_q = rt_rq;
  6500. rt_se->parent = parent;
  6501. INIT_LIST_HEAD(&rt_se->run_list);
  6502. }
  6503. #endif
  6504. void __init sched_init(void)
  6505. {
  6506. int i, j;
  6507. unsigned long alloc_size = 0, ptr;
  6508. #ifdef CONFIG_FAIR_GROUP_SCHED
  6509. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6510. #endif
  6511. #ifdef CONFIG_RT_GROUP_SCHED
  6512. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6513. #endif
  6514. #ifdef CONFIG_USER_SCHED
  6515. alloc_size *= 2;
  6516. #endif
  6517. /*
  6518. * As sched_init() is called before page_alloc is setup,
  6519. * we use alloc_bootmem().
  6520. */
  6521. if (alloc_size) {
  6522. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6523. #ifdef CONFIG_FAIR_GROUP_SCHED
  6524. init_task_group.se = (struct sched_entity **)ptr;
  6525. ptr += nr_cpu_ids * sizeof(void **);
  6526. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6527. ptr += nr_cpu_ids * sizeof(void **);
  6528. #ifdef CONFIG_USER_SCHED
  6529. root_task_group.se = (struct sched_entity **)ptr;
  6530. ptr += nr_cpu_ids * sizeof(void **);
  6531. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6532. ptr += nr_cpu_ids * sizeof(void **);
  6533. #endif
  6534. #endif
  6535. #ifdef CONFIG_RT_GROUP_SCHED
  6536. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6537. ptr += nr_cpu_ids * sizeof(void **);
  6538. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6539. ptr += nr_cpu_ids * sizeof(void **);
  6540. #ifdef CONFIG_USER_SCHED
  6541. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6542. ptr += nr_cpu_ids * sizeof(void **);
  6543. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6544. ptr += nr_cpu_ids * sizeof(void **);
  6545. #endif
  6546. #endif
  6547. }
  6548. #ifdef CONFIG_SMP
  6549. init_defrootdomain();
  6550. #endif
  6551. init_rt_bandwidth(&def_rt_bandwidth,
  6552. global_rt_period(), global_rt_runtime());
  6553. #ifdef CONFIG_RT_GROUP_SCHED
  6554. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6555. global_rt_period(), global_rt_runtime());
  6556. #ifdef CONFIG_USER_SCHED
  6557. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6558. global_rt_period(), RUNTIME_INF);
  6559. #endif
  6560. #endif
  6561. #ifdef CONFIG_GROUP_SCHED
  6562. list_add(&init_task_group.list, &task_groups);
  6563. INIT_LIST_HEAD(&init_task_group.children);
  6564. #ifdef CONFIG_USER_SCHED
  6565. INIT_LIST_HEAD(&root_task_group.children);
  6566. init_task_group.parent = &root_task_group;
  6567. list_add(&init_task_group.siblings, &root_task_group.children);
  6568. #endif
  6569. #endif
  6570. for_each_possible_cpu(i) {
  6571. struct rq *rq;
  6572. rq = cpu_rq(i);
  6573. spin_lock_init(&rq->lock);
  6574. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6575. rq->nr_running = 0;
  6576. init_cfs_rq(&rq->cfs, rq);
  6577. init_rt_rq(&rq->rt, rq);
  6578. #ifdef CONFIG_FAIR_GROUP_SCHED
  6579. init_task_group.shares = init_task_group_load;
  6580. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6581. #ifdef CONFIG_CGROUP_SCHED
  6582. /*
  6583. * How much cpu bandwidth does init_task_group get?
  6584. *
  6585. * In case of task-groups formed thr' the cgroup filesystem, it
  6586. * gets 100% of the cpu resources in the system. This overall
  6587. * system cpu resource is divided among the tasks of
  6588. * init_task_group and its child task-groups in a fair manner,
  6589. * based on each entity's (task or task-group's) weight
  6590. * (se->load.weight).
  6591. *
  6592. * In other words, if init_task_group has 10 tasks of weight
  6593. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6594. * then A0's share of the cpu resource is:
  6595. *
  6596. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6597. *
  6598. * We achieve this by letting init_task_group's tasks sit
  6599. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6600. */
  6601. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6602. #elif defined CONFIG_USER_SCHED
  6603. root_task_group.shares = NICE_0_LOAD;
  6604. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6605. /*
  6606. * In case of task-groups formed thr' the user id of tasks,
  6607. * init_task_group represents tasks belonging to root user.
  6608. * Hence it forms a sibling of all subsequent groups formed.
  6609. * In this case, init_task_group gets only a fraction of overall
  6610. * system cpu resource, based on the weight assigned to root
  6611. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6612. * by letting tasks of init_task_group sit in a separate cfs_rq
  6613. * (init_cfs_rq) and having one entity represent this group of
  6614. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6615. */
  6616. init_tg_cfs_entry(&init_task_group,
  6617. &per_cpu(init_cfs_rq, i),
  6618. &per_cpu(init_sched_entity, i), i, 1,
  6619. root_task_group.se[i]);
  6620. #endif
  6621. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6622. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6623. #ifdef CONFIG_RT_GROUP_SCHED
  6624. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6625. #ifdef CONFIG_CGROUP_SCHED
  6626. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6627. #elif defined CONFIG_USER_SCHED
  6628. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6629. init_tg_rt_entry(&init_task_group,
  6630. &per_cpu(init_rt_rq, i),
  6631. &per_cpu(init_sched_rt_entity, i), i, 1,
  6632. root_task_group.rt_se[i]);
  6633. #endif
  6634. #endif
  6635. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6636. rq->cpu_load[j] = 0;
  6637. #ifdef CONFIG_SMP
  6638. rq->sd = NULL;
  6639. rq->rd = NULL;
  6640. rq->active_balance = 0;
  6641. rq->next_balance = jiffies;
  6642. rq->push_cpu = 0;
  6643. rq->cpu = i;
  6644. rq->migration_thread = NULL;
  6645. INIT_LIST_HEAD(&rq->migration_queue);
  6646. rq_attach_root(rq, &def_root_domain);
  6647. #endif
  6648. init_rq_hrtick(rq);
  6649. atomic_set(&rq->nr_iowait, 0);
  6650. }
  6651. set_load_weight(&init_task);
  6652. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6653. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6654. #endif
  6655. #ifdef CONFIG_SMP
  6656. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6657. #endif
  6658. #ifdef CONFIG_RT_MUTEXES
  6659. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6660. #endif
  6661. /*
  6662. * The boot idle thread does lazy MMU switching as well:
  6663. */
  6664. atomic_inc(&init_mm.mm_count);
  6665. enter_lazy_tlb(&init_mm, current);
  6666. /*
  6667. * Make us the idle thread. Technically, schedule() should not be
  6668. * called from this thread, however somewhere below it might be,
  6669. * but because we are the idle thread, we just pick up running again
  6670. * when this runqueue becomes "idle".
  6671. */
  6672. init_idle(current, smp_processor_id());
  6673. /*
  6674. * During early bootup we pretend to be a normal task:
  6675. */
  6676. current->sched_class = &fair_sched_class;
  6677. scheduler_running = 1;
  6678. }
  6679. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6680. void __might_sleep(char *file, int line)
  6681. {
  6682. #ifdef in_atomic
  6683. static unsigned long prev_jiffy; /* ratelimiting */
  6684. if ((in_atomic() || irqs_disabled()) &&
  6685. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6686. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6687. return;
  6688. prev_jiffy = jiffies;
  6689. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6690. " context at %s:%d\n", file, line);
  6691. printk("in_atomic():%d, irqs_disabled():%d\n",
  6692. in_atomic(), irqs_disabled());
  6693. debug_show_held_locks(current);
  6694. if (irqs_disabled())
  6695. print_irqtrace_events(current);
  6696. dump_stack();
  6697. }
  6698. #endif
  6699. }
  6700. EXPORT_SYMBOL(__might_sleep);
  6701. #endif
  6702. #ifdef CONFIG_MAGIC_SYSRQ
  6703. static void normalize_task(struct rq *rq, struct task_struct *p)
  6704. {
  6705. int on_rq;
  6706. update_rq_clock(rq);
  6707. on_rq = p->se.on_rq;
  6708. if (on_rq)
  6709. deactivate_task(rq, p, 0);
  6710. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6711. if (on_rq) {
  6712. activate_task(rq, p, 0);
  6713. resched_task(rq->curr);
  6714. }
  6715. }
  6716. void normalize_rt_tasks(void)
  6717. {
  6718. struct task_struct *g, *p;
  6719. unsigned long flags;
  6720. struct rq *rq;
  6721. read_lock_irqsave(&tasklist_lock, flags);
  6722. do_each_thread(g, p) {
  6723. /*
  6724. * Only normalize user tasks:
  6725. */
  6726. if (!p->mm)
  6727. continue;
  6728. p->se.exec_start = 0;
  6729. #ifdef CONFIG_SCHEDSTATS
  6730. p->se.wait_start = 0;
  6731. p->se.sleep_start = 0;
  6732. p->se.block_start = 0;
  6733. #endif
  6734. if (!rt_task(p)) {
  6735. /*
  6736. * Renice negative nice level userspace
  6737. * tasks back to 0:
  6738. */
  6739. if (TASK_NICE(p) < 0 && p->mm)
  6740. set_user_nice(p, 0);
  6741. continue;
  6742. }
  6743. spin_lock(&p->pi_lock);
  6744. rq = __task_rq_lock(p);
  6745. normalize_task(rq, p);
  6746. __task_rq_unlock(rq);
  6747. spin_unlock(&p->pi_lock);
  6748. } while_each_thread(g, p);
  6749. read_unlock_irqrestore(&tasklist_lock, flags);
  6750. }
  6751. #endif /* CONFIG_MAGIC_SYSRQ */
  6752. #ifdef CONFIG_IA64
  6753. /*
  6754. * These functions are only useful for the IA64 MCA handling.
  6755. *
  6756. * They can only be called when the whole system has been
  6757. * stopped - every CPU needs to be quiescent, and no scheduling
  6758. * activity can take place. Using them for anything else would
  6759. * be a serious bug, and as a result, they aren't even visible
  6760. * under any other configuration.
  6761. */
  6762. /**
  6763. * curr_task - return the current task for a given cpu.
  6764. * @cpu: the processor in question.
  6765. *
  6766. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6767. */
  6768. struct task_struct *curr_task(int cpu)
  6769. {
  6770. return cpu_curr(cpu);
  6771. }
  6772. /**
  6773. * set_curr_task - set the current task for a given cpu.
  6774. * @cpu: the processor in question.
  6775. * @p: the task pointer to set.
  6776. *
  6777. * Description: This function must only be used when non-maskable interrupts
  6778. * are serviced on a separate stack. It allows the architecture to switch the
  6779. * notion of the current task on a cpu in a non-blocking manner. This function
  6780. * must be called with all CPU's synchronized, and interrupts disabled, the
  6781. * and caller must save the original value of the current task (see
  6782. * curr_task() above) and restore that value before reenabling interrupts and
  6783. * re-starting the system.
  6784. *
  6785. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6786. */
  6787. void set_curr_task(int cpu, struct task_struct *p)
  6788. {
  6789. cpu_curr(cpu) = p;
  6790. }
  6791. #endif
  6792. #ifdef CONFIG_FAIR_GROUP_SCHED
  6793. static void free_fair_sched_group(struct task_group *tg)
  6794. {
  6795. int i;
  6796. for_each_possible_cpu(i) {
  6797. if (tg->cfs_rq)
  6798. kfree(tg->cfs_rq[i]);
  6799. if (tg->se)
  6800. kfree(tg->se[i]);
  6801. }
  6802. kfree(tg->cfs_rq);
  6803. kfree(tg->se);
  6804. }
  6805. static
  6806. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6807. {
  6808. struct cfs_rq *cfs_rq;
  6809. struct sched_entity *se, *parent_se;
  6810. struct rq *rq;
  6811. int i;
  6812. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6813. if (!tg->cfs_rq)
  6814. goto err;
  6815. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6816. if (!tg->se)
  6817. goto err;
  6818. tg->shares = NICE_0_LOAD;
  6819. for_each_possible_cpu(i) {
  6820. rq = cpu_rq(i);
  6821. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6822. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6823. if (!cfs_rq)
  6824. goto err;
  6825. se = kmalloc_node(sizeof(struct sched_entity),
  6826. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6827. if (!se)
  6828. goto err;
  6829. parent_se = parent ? parent->se[i] : NULL;
  6830. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  6831. }
  6832. return 1;
  6833. err:
  6834. return 0;
  6835. }
  6836. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6837. {
  6838. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6839. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6840. }
  6841. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6842. {
  6843. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6844. }
  6845. #else
  6846. static inline void free_fair_sched_group(struct task_group *tg)
  6847. {
  6848. }
  6849. static inline
  6850. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6851. {
  6852. return 1;
  6853. }
  6854. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6855. {
  6856. }
  6857. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6858. {
  6859. }
  6860. #endif
  6861. #ifdef CONFIG_RT_GROUP_SCHED
  6862. static void free_rt_sched_group(struct task_group *tg)
  6863. {
  6864. int i;
  6865. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6866. for_each_possible_cpu(i) {
  6867. if (tg->rt_rq)
  6868. kfree(tg->rt_rq[i]);
  6869. if (tg->rt_se)
  6870. kfree(tg->rt_se[i]);
  6871. }
  6872. kfree(tg->rt_rq);
  6873. kfree(tg->rt_se);
  6874. }
  6875. static
  6876. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6877. {
  6878. struct rt_rq *rt_rq;
  6879. struct sched_rt_entity *rt_se, *parent_se;
  6880. struct rq *rq;
  6881. int i;
  6882. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6883. if (!tg->rt_rq)
  6884. goto err;
  6885. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6886. if (!tg->rt_se)
  6887. goto err;
  6888. init_rt_bandwidth(&tg->rt_bandwidth,
  6889. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6890. for_each_possible_cpu(i) {
  6891. rq = cpu_rq(i);
  6892. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6893. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6894. if (!rt_rq)
  6895. goto err;
  6896. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6897. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6898. if (!rt_se)
  6899. goto err;
  6900. parent_se = parent ? parent->rt_se[i] : NULL;
  6901. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  6902. }
  6903. return 1;
  6904. err:
  6905. return 0;
  6906. }
  6907. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6908. {
  6909. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6910. &cpu_rq(cpu)->leaf_rt_rq_list);
  6911. }
  6912. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6913. {
  6914. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6915. }
  6916. #else
  6917. static inline void free_rt_sched_group(struct task_group *tg)
  6918. {
  6919. }
  6920. static inline
  6921. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6922. {
  6923. return 1;
  6924. }
  6925. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6926. {
  6927. }
  6928. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6929. {
  6930. }
  6931. #endif
  6932. #ifdef CONFIG_GROUP_SCHED
  6933. static void free_sched_group(struct task_group *tg)
  6934. {
  6935. free_fair_sched_group(tg);
  6936. free_rt_sched_group(tg);
  6937. kfree(tg);
  6938. }
  6939. /* allocate runqueue etc for a new task group */
  6940. struct task_group *sched_create_group(struct task_group *parent)
  6941. {
  6942. struct task_group *tg;
  6943. unsigned long flags;
  6944. int i;
  6945. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6946. if (!tg)
  6947. return ERR_PTR(-ENOMEM);
  6948. if (!alloc_fair_sched_group(tg, parent))
  6949. goto err;
  6950. if (!alloc_rt_sched_group(tg, parent))
  6951. goto err;
  6952. spin_lock_irqsave(&task_group_lock, flags);
  6953. for_each_possible_cpu(i) {
  6954. register_fair_sched_group(tg, i);
  6955. register_rt_sched_group(tg, i);
  6956. }
  6957. list_add_rcu(&tg->list, &task_groups);
  6958. WARN_ON(!parent); /* root should already exist */
  6959. tg->parent = parent;
  6960. list_add_rcu(&tg->siblings, &parent->children);
  6961. INIT_LIST_HEAD(&tg->children);
  6962. spin_unlock_irqrestore(&task_group_lock, flags);
  6963. return tg;
  6964. err:
  6965. free_sched_group(tg);
  6966. return ERR_PTR(-ENOMEM);
  6967. }
  6968. /* rcu callback to free various structures associated with a task group */
  6969. static void free_sched_group_rcu(struct rcu_head *rhp)
  6970. {
  6971. /* now it should be safe to free those cfs_rqs */
  6972. free_sched_group(container_of(rhp, struct task_group, rcu));
  6973. }
  6974. /* Destroy runqueue etc associated with a task group */
  6975. void sched_destroy_group(struct task_group *tg)
  6976. {
  6977. unsigned long flags;
  6978. int i;
  6979. spin_lock_irqsave(&task_group_lock, flags);
  6980. for_each_possible_cpu(i) {
  6981. unregister_fair_sched_group(tg, i);
  6982. unregister_rt_sched_group(tg, i);
  6983. }
  6984. list_del_rcu(&tg->list);
  6985. list_del_rcu(&tg->siblings);
  6986. spin_unlock_irqrestore(&task_group_lock, flags);
  6987. /* wait for possible concurrent references to cfs_rqs complete */
  6988. call_rcu(&tg->rcu, free_sched_group_rcu);
  6989. }
  6990. /* change task's runqueue when it moves between groups.
  6991. * The caller of this function should have put the task in its new group
  6992. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6993. * reflect its new group.
  6994. */
  6995. void sched_move_task(struct task_struct *tsk)
  6996. {
  6997. int on_rq, running;
  6998. unsigned long flags;
  6999. struct rq *rq;
  7000. rq = task_rq_lock(tsk, &flags);
  7001. update_rq_clock(rq);
  7002. running = task_current(rq, tsk);
  7003. on_rq = tsk->se.on_rq;
  7004. if (on_rq)
  7005. dequeue_task(rq, tsk, 0);
  7006. if (unlikely(running))
  7007. tsk->sched_class->put_prev_task(rq, tsk);
  7008. set_task_rq(tsk, task_cpu(tsk));
  7009. #ifdef CONFIG_FAIR_GROUP_SCHED
  7010. if (tsk->sched_class->moved_group)
  7011. tsk->sched_class->moved_group(tsk);
  7012. #endif
  7013. if (unlikely(running))
  7014. tsk->sched_class->set_curr_task(rq);
  7015. if (on_rq)
  7016. enqueue_task(rq, tsk, 0);
  7017. task_rq_unlock(rq, &flags);
  7018. }
  7019. #endif
  7020. #ifdef CONFIG_FAIR_GROUP_SCHED
  7021. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7022. {
  7023. struct cfs_rq *cfs_rq = se->cfs_rq;
  7024. struct rq *rq = cfs_rq->rq;
  7025. int on_rq;
  7026. spin_lock_irq(&rq->lock);
  7027. on_rq = se->on_rq;
  7028. if (on_rq)
  7029. dequeue_entity(cfs_rq, se, 0);
  7030. se->load.weight = shares;
  7031. se->load.inv_weight = 0;
  7032. if (on_rq)
  7033. enqueue_entity(cfs_rq, se, 0);
  7034. spin_unlock_irq(&rq->lock);
  7035. }
  7036. static DEFINE_MUTEX(shares_mutex);
  7037. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7038. {
  7039. int i;
  7040. unsigned long flags;
  7041. /*
  7042. * We can't change the weight of the root cgroup.
  7043. */
  7044. if (!tg->se[0])
  7045. return -EINVAL;
  7046. if (shares < MIN_SHARES)
  7047. shares = MIN_SHARES;
  7048. else if (shares > MAX_SHARES)
  7049. shares = MAX_SHARES;
  7050. mutex_lock(&shares_mutex);
  7051. if (tg->shares == shares)
  7052. goto done;
  7053. spin_lock_irqsave(&task_group_lock, flags);
  7054. for_each_possible_cpu(i)
  7055. unregister_fair_sched_group(tg, i);
  7056. list_del_rcu(&tg->siblings);
  7057. spin_unlock_irqrestore(&task_group_lock, flags);
  7058. /* wait for any ongoing reference to this group to finish */
  7059. synchronize_sched();
  7060. /*
  7061. * Now we are free to modify the group's share on each cpu
  7062. * w/o tripping rebalance_share or load_balance_fair.
  7063. */
  7064. tg->shares = shares;
  7065. for_each_possible_cpu(i)
  7066. set_se_shares(tg->se[i], shares);
  7067. /*
  7068. * Enable load balance activity on this group, by inserting it back on
  7069. * each cpu's rq->leaf_cfs_rq_list.
  7070. */
  7071. spin_lock_irqsave(&task_group_lock, flags);
  7072. for_each_possible_cpu(i)
  7073. register_fair_sched_group(tg, i);
  7074. list_add_rcu(&tg->siblings, &tg->parent->children);
  7075. spin_unlock_irqrestore(&task_group_lock, flags);
  7076. done:
  7077. mutex_unlock(&shares_mutex);
  7078. return 0;
  7079. }
  7080. unsigned long sched_group_shares(struct task_group *tg)
  7081. {
  7082. return tg->shares;
  7083. }
  7084. #endif
  7085. #ifdef CONFIG_RT_GROUP_SCHED
  7086. /*
  7087. * Ensure that the real time constraints are schedulable.
  7088. */
  7089. static DEFINE_MUTEX(rt_constraints_mutex);
  7090. static unsigned long to_ratio(u64 period, u64 runtime)
  7091. {
  7092. if (runtime == RUNTIME_INF)
  7093. return 1ULL << 16;
  7094. return div64_u64(runtime << 16, period);
  7095. }
  7096. #ifdef CONFIG_CGROUP_SCHED
  7097. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7098. {
  7099. struct task_group *tgi, *parent = tg->parent;
  7100. unsigned long total = 0;
  7101. if (!parent) {
  7102. if (global_rt_period() < period)
  7103. return 0;
  7104. return to_ratio(period, runtime) <
  7105. to_ratio(global_rt_period(), global_rt_runtime());
  7106. }
  7107. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7108. return 0;
  7109. rcu_read_lock();
  7110. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7111. if (tgi == tg)
  7112. continue;
  7113. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7114. tgi->rt_bandwidth.rt_runtime);
  7115. }
  7116. rcu_read_unlock();
  7117. return total + to_ratio(period, runtime) <
  7118. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7119. parent->rt_bandwidth.rt_runtime);
  7120. }
  7121. #elif defined CONFIG_USER_SCHED
  7122. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7123. {
  7124. struct task_group *tgi;
  7125. unsigned long total = 0;
  7126. unsigned long global_ratio =
  7127. to_ratio(global_rt_period(), global_rt_runtime());
  7128. rcu_read_lock();
  7129. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7130. if (tgi == tg)
  7131. continue;
  7132. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7133. tgi->rt_bandwidth.rt_runtime);
  7134. }
  7135. rcu_read_unlock();
  7136. return total + to_ratio(period, runtime) < global_ratio;
  7137. }
  7138. #endif
  7139. /* Must be called with tasklist_lock held */
  7140. static inline int tg_has_rt_tasks(struct task_group *tg)
  7141. {
  7142. struct task_struct *g, *p;
  7143. do_each_thread(g, p) {
  7144. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7145. return 1;
  7146. } while_each_thread(g, p);
  7147. return 0;
  7148. }
  7149. static int tg_set_bandwidth(struct task_group *tg,
  7150. u64 rt_period, u64 rt_runtime)
  7151. {
  7152. int i, err = 0;
  7153. mutex_lock(&rt_constraints_mutex);
  7154. read_lock(&tasklist_lock);
  7155. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7156. err = -EBUSY;
  7157. goto unlock;
  7158. }
  7159. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7160. err = -EINVAL;
  7161. goto unlock;
  7162. }
  7163. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7164. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7165. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7166. for_each_possible_cpu(i) {
  7167. struct rt_rq *rt_rq = tg->rt_rq[i];
  7168. spin_lock(&rt_rq->rt_runtime_lock);
  7169. rt_rq->rt_runtime = rt_runtime;
  7170. spin_unlock(&rt_rq->rt_runtime_lock);
  7171. }
  7172. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7173. unlock:
  7174. read_unlock(&tasklist_lock);
  7175. mutex_unlock(&rt_constraints_mutex);
  7176. return err;
  7177. }
  7178. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7179. {
  7180. u64 rt_runtime, rt_period;
  7181. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7182. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7183. if (rt_runtime_us < 0)
  7184. rt_runtime = RUNTIME_INF;
  7185. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7186. }
  7187. long sched_group_rt_runtime(struct task_group *tg)
  7188. {
  7189. u64 rt_runtime_us;
  7190. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7191. return -1;
  7192. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7193. do_div(rt_runtime_us, NSEC_PER_USEC);
  7194. return rt_runtime_us;
  7195. }
  7196. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7197. {
  7198. u64 rt_runtime, rt_period;
  7199. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7200. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7201. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7202. }
  7203. long sched_group_rt_period(struct task_group *tg)
  7204. {
  7205. u64 rt_period_us;
  7206. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7207. do_div(rt_period_us, NSEC_PER_USEC);
  7208. return rt_period_us;
  7209. }
  7210. static int sched_rt_global_constraints(void)
  7211. {
  7212. int ret = 0;
  7213. mutex_lock(&rt_constraints_mutex);
  7214. if (!__rt_schedulable(NULL, 1, 0))
  7215. ret = -EINVAL;
  7216. mutex_unlock(&rt_constraints_mutex);
  7217. return ret;
  7218. }
  7219. #else
  7220. static int sched_rt_global_constraints(void)
  7221. {
  7222. unsigned long flags;
  7223. int i;
  7224. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7225. for_each_possible_cpu(i) {
  7226. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7227. spin_lock(&rt_rq->rt_runtime_lock);
  7228. rt_rq->rt_runtime = global_rt_runtime();
  7229. spin_unlock(&rt_rq->rt_runtime_lock);
  7230. }
  7231. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7232. return 0;
  7233. }
  7234. #endif
  7235. int sched_rt_handler(struct ctl_table *table, int write,
  7236. struct file *filp, void __user *buffer, size_t *lenp,
  7237. loff_t *ppos)
  7238. {
  7239. int ret;
  7240. int old_period, old_runtime;
  7241. static DEFINE_MUTEX(mutex);
  7242. mutex_lock(&mutex);
  7243. old_period = sysctl_sched_rt_period;
  7244. old_runtime = sysctl_sched_rt_runtime;
  7245. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7246. if (!ret && write) {
  7247. ret = sched_rt_global_constraints();
  7248. if (ret) {
  7249. sysctl_sched_rt_period = old_period;
  7250. sysctl_sched_rt_runtime = old_runtime;
  7251. } else {
  7252. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7253. def_rt_bandwidth.rt_period =
  7254. ns_to_ktime(global_rt_period());
  7255. }
  7256. }
  7257. mutex_unlock(&mutex);
  7258. return ret;
  7259. }
  7260. #ifdef CONFIG_CGROUP_SCHED
  7261. /* return corresponding task_group object of a cgroup */
  7262. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7263. {
  7264. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7265. struct task_group, css);
  7266. }
  7267. static struct cgroup_subsys_state *
  7268. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7269. {
  7270. struct task_group *tg, *parent;
  7271. if (!cgrp->parent) {
  7272. /* This is early initialization for the top cgroup */
  7273. init_task_group.css.cgroup = cgrp;
  7274. return &init_task_group.css;
  7275. }
  7276. parent = cgroup_tg(cgrp->parent);
  7277. tg = sched_create_group(parent);
  7278. if (IS_ERR(tg))
  7279. return ERR_PTR(-ENOMEM);
  7280. /* Bind the cgroup to task_group object we just created */
  7281. tg->css.cgroup = cgrp;
  7282. return &tg->css;
  7283. }
  7284. static void
  7285. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7286. {
  7287. struct task_group *tg = cgroup_tg(cgrp);
  7288. sched_destroy_group(tg);
  7289. }
  7290. static int
  7291. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7292. struct task_struct *tsk)
  7293. {
  7294. #ifdef CONFIG_RT_GROUP_SCHED
  7295. /* Don't accept realtime tasks when there is no way for them to run */
  7296. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7297. return -EINVAL;
  7298. #else
  7299. /* We don't support RT-tasks being in separate groups */
  7300. if (tsk->sched_class != &fair_sched_class)
  7301. return -EINVAL;
  7302. #endif
  7303. return 0;
  7304. }
  7305. static void
  7306. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7307. struct cgroup *old_cont, struct task_struct *tsk)
  7308. {
  7309. sched_move_task(tsk);
  7310. }
  7311. #ifdef CONFIG_FAIR_GROUP_SCHED
  7312. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7313. u64 shareval)
  7314. {
  7315. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7316. }
  7317. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7318. {
  7319. struct task_group *tg = cgroup_tg(cgrp);
  7320. return (u64) tg->shares;
  7321. }
  7322. #endif
  7323. #ifdef CONFIG_RT_GROUP_SCHED
  7324. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7325. s64 val)
  7326. {
  7327. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7328. }
  7329. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7330. {
  7331. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7332. }
  7333. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7334. u64 rt_period_us)
  7335. {
  7336. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7337. }
  7338. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7339. {
  7340. return sched_group_rt_period(cgroup_tg(cgrp));
  7341. }
  7342. #endif
  7343. static struct cftype cpu_files[] = {
  7344. #ifdef CONFIG_FAIR_GROUP_SCHED
  7345. {
  7346. .name = "shares",
  7347. .read_u64 = cpu_shares_read_u64,
  7348. .write_u64 = cpu_shares_write_u64,
  7349. },
  7350. #endif
  7351. #ifdef CONFIG_RT_GROUP_SCHED
  7352. {
  7353. .name = "rt_runtime_us",
  7354. .read_s64 = cpu_rt_runtime_read,
  7355. .write_s64 = cpu_rt_runtime_write,
  7356. },
  7357. {
  7358. .name = "rt_period_us",
  7359. .read_u64 = cpu_rt_period_read_uint,
  7360. .write_u64 = cpu_rt_period_write_uint,
  7361. },
  7362. #endif
  7363. };
  7364. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7365. {
  7366. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7367. }
  7368. struct cgroup_subsys cpu_cgroup_subsys = {
  7369. .name = "cpu",
  7370. .create = cpu_cgroup_create,
  7371. .destroy = cpu_cgroup_destroy,
  7372. .can_attach = cpu_cgroup_can_attach,
  7373. .attach = cpu_cgroup_attach,
  7374. .populate = cpu_cgroup_populate,
  7375. .subsys_id = cpu_cgroup_subsys_id,
  7376. .early_init = 1,
  7377. };
  7378. #endif /* CONFIG_CGROUP_SCHED */
  7379. #ifdef CONFIG_CGROUP_CPUACCT
  7380. /*
  7381. * CPU accounting code for task groups.
  7382. *
  7383. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7384. * (balbir@in.ibm.com).
  7385. */
  7386. /* track cpu usage of a group of tasks */
  7387. struct cpuacct {
  7388. struct cgroup_subsys_state css;
  7389. /* cpuusage holds pointer to a u64-type object on every cpu */
  7390. u64 *cpuusage;
  7391. };
  7392. struct cgroup_subsys cpuacct_subsys;
  7393. /* return cpu accounting group corresponding to this container */
  7394. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7395. {
  7396. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7397. struct cpuacct, css);
  7398. }
  7399. /* return cpu accounting group to which this task belongs */
  7400. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7401. {
  7402. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7403. struct cpuacct, css);
  7404. }
  7405. /* create a new cpu accounting group */
  7406. static struct cgroup_subsys_state *cpuacct_create(
  7407. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7408. {
  7409. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7410. if (!ca)
  7411. return ERR_PTR(-ENOMEM);
  7412. ca->cpuusage = alloc_percpu(u64);
  7413. if (!ca->cpuusage) {
  7414. kfree(ca);
  7415. return ERR_PTR(-ENOMEM);
  7416. }
  7417. return &ca->css;
  7418. }
  7419. /* destroy an existing cpu accounting group */
  7420. static void
  7421. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7422. {
  7423. struct cpuacct *ca = cgroup_ca(cgrp);
  7424. free_percpu(ca->cpuusage);
  7425. kfree(ca);
  7426. }
  7427. /* return total cpu usage (in nanoseconds) of a group */
  7428. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7429. {
  7430. struct cpuacct *ca = cgroup_ca(cgrp);
  7431. u64 totalcpuusage = 0;
  7432. int i;
  7433. for_each_possible_cpu(i) {
  7434. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7435. /*
  7436. * Take rq->lock to make 64-bit addition safe on 32-bit
  7437. * platforms.
  7438. */
  7439. spin_lock_irq(&cpu_rq(i)->lock);
  7440. totalcpuusage += *cpuusage;
  7441. spin_unlock_irq(&cpu_rq(i)->lock);
  7442. }
  7443. return totalcpuusage;
  7444. }
  7445. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7446. u64 reset)
  7447. {
  7448. struct cpuacct *ca = cgroup_ca(cgrp);
  7449. int err = 0;
  7450. int i;
  7451. if (reset) {
  7452. err = -EINVAL;
  7453. goto out;
  7454. }
  7455. for_each_possible_cpu(i) {
  7456. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7457. spin_lock_irq(&cpu_rq(i)->lock);
  7458. *cpuusage = 0;
  7459. spin_unlock_irq(&cpu_rq(i)->lock);
  7460. }
  7461. out:
  7462. return err;
  7463. }
  7464. static struct cftype files[] = {
  7465. {
  7466. .name = "usage",
  7467. .read_u64 = cpuusage_read,
  7468. .write_u64 = cpuusage_write,
  7469. },
  7470. };
  7471. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7472. {
  7473. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7474. }
  7475. /*
  7476. * charge this task's execution time to its accounting group.
  7477. *
  7478. * called with rq->lock held.
  7479. */
  7480. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7481. {
  7482. struct cpuacct *ca;
  7483. if (!cpuacct_subsys.active)
  7484. return;
  7485. ca = task_ca(tsk);
  7486. if (ca) {
  7487. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7488. *cpuusage += cputime;
  7489. }
  7490. }
  7491. struct cgroup_subsys cpuacct_subsys = {
  7492. .name = "cpuacct",
  7493. .create = cpuacct_create,
  7494. .destroy = cpuacct_destroy,
  7495. .populate = cpuacct_populate,
  7496. .subsys_id = cpuacct_subsys_id,
  7497. };
  7498. #endif /* CONFIG_CGROUP_CPUACCT */