sched_fair.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 6000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 750000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 8;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. /*
  83. * The exponential sliding window over which load is averaged for shares
  84. * distribution.
  85. * (default: 10msec)
  86. */
  87. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  88. static const struct sched_class fair_sched_class;
  89. /**************************************************************
  90. * CFS operations on generic schedulable entities:
  91. */
  92. #ifdef CONFIG_FAIR_GROUP_SCHED
  93. /* cpu runqueue to which this cfs_rq is attached */
  94. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  95. {
  96. return cfs_rq->rq;
  97. }
  98. /* An entity is a task if it doesn't "own" a runqueue */
  99. #define entity_is_task(se) (!se->my_q)
  100. static inline struct task_struct *task_of(struct sched_entity *se)
  101. {
  102. #ifdef CONFIG_SCHED_DEBUG
  103. WARN_ON_ONCE(!entity_is_task(se));
  104. #endif
  105. return container_of(se, struct task_struct, se);
  106. }
  107. /* Walk up scheduling entities hierarchy */
  108. #define for_each_sched_entity(se) \
  109. for (; se; se = se->parent)
  110. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  111. {
  112. return p->se.cfs_rq;
  113. }
  114. /* runqueue on which this entity is (to be) queued */
  115. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  116. {
  117. return se->cfs_rq;
  118. }
  119. /* runqueue "owned" by this group */
  120. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  121. {
  122. return grp->my_q;
  123. }
  124. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  125. * another cpu ('this_cpu')
  126. */
  127. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  128. {
  129. return cfs_rq->tg->cfs_rq[this_cpu];
  130. }
  131. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  132. {
  133. if (!cfs_rq->on_list) {
  134. /*
  135. * Ensure we either appear before our parent (if already
  136. * enqueued) or force our parent to appear after us when it is
  137. * enqueued. The fact that we always enqueue bottom-up
  138. * reduces this to two cases.
  139. */
  140. if (cfs_rq->tg->parent &&
  141. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  142. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  143. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  144. } else {
  145. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  146. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  147. }
  148. cfs_rq->on_list = 1;
  149. }
  150. }
  151. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  152. {
  153. if (cfs_rq->on_list) {
  154. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  155. cfs_rq->on_list = 0;
  156. }
  157. }
  158. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  159. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  160. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  161. /* Do the two (enqueued) entities belong to the same group ? */
  162. static inline int
  163. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  164. {
  165. if (se->cfs_rq == pse->cfs_rq)
  166. return 1;
  167. return 0;
  168. }
  169. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  170. {
  171. return se->parent;
  172. }
  173. /* return depth at which a sched entity is present in the hierarchy */
  174. static inline int depth_se(struct sched_entity *se)
  175. {
  176. int depth = 0;
  177. for_each_sched_entity(se)
  178. depth++;
  179. return depth;
  180. }
  181. static void
  182. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  183. {
  184. int se_depth, pse_depth;
  185. /*
  186. * preemption test can be made between sibling entities who are in the
  187. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  188. * both tasks until we find their ancestors who are siblings of common
  189. * parent.
  190. */
  191. /* First walk up until both entities are at same depth */
  192. se_depth = depth_se(*se);
  193. pse_depth = depth_se(*pse);
  194. while (se_depth > pse_depth) {
  195. se_depth--;
  196. *se = parent_entity(*se);
  197. }
  198. while (pse_depth > se_depth) {
  199. pse_depth--;
  200. *pse = parent_entity(*pse);
  201. }
  202. while (!is_same_group(*se, *pse)) {
  203. *se = parent_entity(*se);
  204. *pse = parent_entity(*pse);
  205. }
  206. }
  207. #else /* !CONFIG_FAIR_GROUP_SCHED */
  208. static inline struct task_struct *task_of(struct sched_entity *se)
  209. {
  210. return container_of(se, struct task_struct, se);
  211. }
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return container_of(cfs_rq, struct rq, cfs);
  215. }
  216. #define entity_is_task(se) 1
  217. #define for_each_sched_entity(se) \
  218. for (; se; se = NULL)
  219. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  220. {
  221. return &task_rq(p)->cfs;
  222. }
  223. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  224. {
  225. struct task_struct *p = task_of(se);
  226. struct rq *rq = task_rq(p);
  227. return &rq->cfs;
  228. }
  229. /* runqueue "owned" by this group */
  230. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  231. {
  232. return NULL;
  233. }
  234. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  235. {
  236. return &cpu_rq(this_cpu)->cfs;
  237. }
  238. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  239. {
  240. }
  241. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  242. {
  243. }
  244. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  245. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  246. static inline int
  247. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  248. {
  249. return 1;
  250. }
  251. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  252. {
  253. return NULL;
  254. }
  255. static inline void
  256. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  257. {
  258. }
  259. #endif /* CONFIG_FAIR_GROUP_SCHED */
  260. /**************************************************************
  261. * Scheduling class tree data structure manipulation methods:
  262. */
  263. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  264. {
  265. s64 delta = (s64)(vruntime - min_vruntime);
  266. if (delta > 0)
  267. min_vruntime = vruntime;
  268. return min_vruntime;
  269. }
  270. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  271. {
  272. s64 delta = (s64)(vruntime - min_vruntime);
  273. if (delta < 0)
  274. min_vruntime = vruntime;
  275. return min_vruntime;
  276. }
  277. static inline int entity_before(struct sched_entity *a,
  278. struct sched_entity *b)
  279. {
  280. return (s64)(a->vruntime - b->vruntime) < 0;
  281. }
  282. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  283. {
  284. return se->vruntime - cfs_rq->min_vruntime;
  285. }
  286. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  287. {
  288. u64 vruntime = cfs_rq->min_vruntime;
  289. if (cfs_rq->curr)
  290. vruntime = cfs_rq->curr->vruntime;
  291. if (cfs_rq->rb_leftmost) {
  292. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  293. struct sched_entity,
  294. run_node);
  295. if (!cfs_rq->curr)
  296. vruntime = se->vruntime;
  297. else
  298. vruntime = min_vruntime(vruntime, se->vruntime);
  299. }
  300. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  301. }
  302. /*
  303. * Enqueue an entity into the rb-tree:
  304. */
  305. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  306. {
  307. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  308. struct rb_node *parent = NULL;
  309. struct sched_entity *entry;
  310. s64 key = entity_key(cfs_rq, se);
  311. int leftmost = 1;
  312. /*
  313. * Find the right place in the rbtree:
  314. */
  315. while (*link) {
  316. parent = *link;
  317. entry = rb_entry(parent, struct sched_entity, run_node);
  318. /*
  319. * We dont care about collisions. Nodes with
  320. * the same key stay together.
  321. */
  322. if (key < entity_key(cfs_rq, entry)) {
  323. link = &parent->rb_left;
  324. } else {
  325. link = &parent->rb_right;
  326. leftmost = 0;
  327. }
  328. }
  329. /*
  330. * Maintain a cache of leftmost tree entries (it is frequently
  331. * used):
  332. */
  333. if (leftmost)
  334. cfs_rq->rb_leftmost = &se->run_node;
  335. rb_link_node(&se->run_node, parent, link);
  336. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  337. }
  338. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  339. {
  340. if (cfs_rq->rb_leftmost == &se->run_node) {
  341. struct rb_node *next_node;
  342. next_node = rb_next(&se->run_node);
  343. cfs_rq->rb_leftmost = next_node;
  344. }
  345. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  346. }
  347. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  348. {
  349. struct rb_node *left = cfs_rq->rb_leftmost;
  350. if (!left)
  351. return NULL;
  352. return rb_entry(left, struct sched_entity, run_node);
  353. }
  354. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  355. {
  356. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  357. if (!last)
  358. return NULL;
  359. return rb_entry(last, struct sched_entity, run_node);
  360. }
  361. /**************************************************************
  362. * Scheduling class statistics methods:
  363. */
  364. #ifdef CONFIG_SCHED_DEBUG
  365. int sched_proc_update_handler(struct ctl_table *table, int write,
  366. void __user *buffer, size_t *lenp,
  367. loff_t *ppos)
  368. {
  369. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  370. int factor = get_update_sysctl_factor();
  371. if (ret || !write)
  372. return ret;
  373. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  374. sysctl_sched_min_granularity);
  375. #define WRT_SYSCTL(name) \
  376. (normalized_sysctl_##name = sysctl_##name / (factor))
  377. WRT_SYSCTL(sched_min_granularity);
  378. WRT_SYSCTL(sched_latency);
  379. WRT_SYSCTL(sched_wakeup_granularity);
  380. #undef WRT_SYSCTL
  381. return 0;
  382. }
  383. #endif
  384. /*
  385. * delta /= w
  386. */
  387. static inline unsigned long
  388. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  389. {
  390. if (unlikely(se->load.weight != NICE_0_LOAD))
  391. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  392. return delta;
  393. }
  394. /*
  395. * The idea is to set a period in which each task runs once.
  396. *
  397. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  398. * this period because otherwise the slices get too small.
  399. *
  400. * p = (nr <= nl) ? l : l*nr/nl
  401. */
  402. static u64 __sched_period(unsigned long nr_running)
  403. {
  404. u64 period = sysctl_sched_latency;
  405. unsigned long nr_latency = sched_nr_latency;
  406. if (unlikely(nr_running > nr_latency)) {
  407. period = sysctl_sched_min_granularity;
  408. period *= nr_running;
  409. }
  410. return period;
  411. }
  412. /*
  413. * We calculate the wall-time slice from the period by taking a part
  414. * proportional to the weight.
  415. *
  416. * s = p*P[w/rw]
  417. */
  418. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  421. for_each_sched_entity(se) {
  422. struct load_weight *load;
  423. struct load_weight lw;
  424. cfs_rq = cfs_rq_of(se);
  425. load = &cfs_rq->load;
  426. if (unlikely(!se->on_rq)) {
  427. lw = cfs_rq->load;
  428. update_load_add(&lw, se->load.weight);
  429. load = &lw;
  430. }
  431. slice = calc_delta_mine(slice, se->load.weight, load);
  432. }
  433. return slice;
  434. }
  435. /*
  436. * We calculate the vruntime slice of a to be inserted task
  437. *
  438. * vs = s/w
  439. */
  440. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  441. {
  442. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  443. }
  444. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  445. static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
  446. /*
  447. * Update the current task's runtime statistics. Skip current tasks that
  448. * are not in our scheduling class.
  449. */
  450. static inline void
  451. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  452. unsigned long delta_exec)
  453. {
  454. unsigned long delta_exec_weighted;
  455. schedstat_set(curr->statistics.exec_max,
  456. max((u64)delta_exec, curr->statistics.exec_max));
  457. curr->sum_exec_runtime += delta_exec;
  458. schedstat_add(cfs_rq, exec_clock, delta_exec);
  459. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  460. curr->vruntime += delta_exec_weighted;
  461. update_min_vruntime(cfs_rq);
  462. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  463. cfs_rq->load_unacc_exec_time += delta_exec;
  464. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  465. update_cfs_load(cfs_rq, 0);
  466. update_cfs_shares(cfs_rq, 0);
  467. }
  468. #endif
  469. }
  470. static void update_curr(struct cfs_rq *cfs_rq)
  471. {
  472. struct sched_entity *curr = cfs_rq->curr;
  473. u64 now = rq_of(cfs_rq)->clock_task;
  474. unsigned long delta_exec;
  475. if (unlikely(!curr))
  476. return;
  477. /*
  478. * Get the amount of time the current task was running
  479. * since the last time we changed load (this cannot
  480. * overflow on 32 bits):
  481. */
  482. delta_exec = (unsigned long)(now - curr->exec_start);
  483. if (!delta_exec)
  484. return;
  485. __update_curr(cfs_rq, curr, delta_exec);
  486. curr->exec_start = now;
  487. if (entity_is_task(curr)) {
  488. struct task_struct *curtask = task_of(curr);
  489. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  490. cpuacct_charge(curtask, delta_exec);
  491. account_group_exec_runtime(curtask, delta_exec);
  492. }
  493. }
  494. static inline void
  495. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  496. {
  497. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  498. }
  499. /*
  500. * Task is being enqueued - update stats:
  501. */
  502. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  503. {
  504. /*
  505. * Are we enqueueing a waiting task? (for current tasks
  506. * a dequeue/enqueue event is a NOP)
  507. */
  508. if (se != cfs_rq->curr)
  509. update_stats_wait_start(cfs_rq, se);
  510. }
  511. static void
  512. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  513. {
  514. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  515. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  516. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  517. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  518. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  519. #ifdef CONFIG_SCHEDSTATS
  520. if (entity_is_task(se)) {
  521. trace_sched_stat_wait(task_of(se),
  522. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  523. }
  524. #endif
  525. schedstat_set(se->statistics.wait_start, 0);
  526. }
  527. static inline void
  528. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  529. {
  530. /*
  531. * Mark the end of the wait period if dequeueing a
  532. * waiting task:
  533. */
  534. if (se != cfs_rq->curr)
  535. update_stats_wait_end(cfs_rq, se);
  536. }
  537. /*
  538. * We are picking a new current task - update its stats:
  539. */
  540. static inline void
  541. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  542. {
  543. /*
  544. * We are starting a new run period:
  545. */
  546. se->exec_start = rq_of(cfs_rq)->clock_task;
  547. }
  548. /**************************************************
  549. * Scheduling class queueing methods:
  550. */
  551. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  552. static void
  553. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  554. {
  555. cfs_rq->task_weight += weight;
  556. }
  557. #else
  558. static inline void
  559. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  560. {
  561. }
  562. #endif
  563. static void
  564. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  565. {
  566. update_load_add(&cfs_rq->load, se->load.weight);
  567. if (!parent_entity(se))
  568. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  569. if (entity_is_task(se)) {
  570. add_cfs_task_weight(cfs_rq, se->load.weight);
  571. list_add(&se->group_node, &cfs_rq->tasks);
  572. }
  573. cfs_rq->nr_running++;
  574. }
  575. static void
  576. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  577. {
  578. update_load_sub(&cfs_rq->load, se->load.weight);
  579. if (!parent_entity(se))
  580. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  581. if (entity_is_task(se)) {
  582. add_cfs_task_weight(cfs_rq, -se->load.weight);
  583. list_del_init(&se->group_node);
  584. }
  585. cfs_rq->nr_running--;
  586. }
  587. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  588. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  589. int global_update)
  590. {
  591. struct task_group *tg = cfs_rq->tg;
  592. long load_avg;
  593. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  594. load_avg -= cfs_rq->load_contribution;
  595. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  596. atomic_add(load_avg, &tg->load_weight);
  597. cfs_rq->load_contribution += load_avg;
  598. }
  599. }
  600. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  601. {
  602. u64 period = sysctl_sched_shares_window;
  603. u64 now, delta;
  604. unsigned long load = cfs_rq->load.weight;
  605. if (!cfs_rq)
  606. return;
  607. now = rq_of(cfs_rq)->clock;
  608. delta = now - cfs_rq->load_stamp;
  609. /* truncate load history at 4 idle periods */
  610. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  611. now - cfs_rq->load_last > 4 * period) {
  612. cfs_rq->load_period = 0;
  613. cfs_rq->load_avg = 0;
  614. }
  615. cfs_rq->load_stamp = now;
  616. cfs_rq->load_unacc_exec_time = 0;
  617. cfs_rq->load_period += delta;
  618. if (load) {
  619. cfs_rq->load_last = now;
  620. cfs_rq->load_avg += delta * load;
  621. }
  622. /* consider updating load contribution on each fold or truncate */
  623. if (global_update || cfs_rq->load_period > period
  624. || !cfs_rq->load_period)
  625. update_cfs_rq_load_contribution(cfs_rq, global_update);
  626. while (cfs_rq->load_period > period) {
  627. /*
  628. * Inline assembly required to prevent the compiler
  629. * optimising this loop into a divmod call.
  630. * See __iter_div_u64_rem() for another example of this.
  631. */
  632. asm("" : "+rm" (cfs_rq->load_period));
  633. cfs_rq->load_period /= 2;
  634. cfs_rq->load_avg /= 2;
  635. }
  636. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  637. list_del_leaf_cfs_rq(cfs_rq);
  638. }
  639. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  640. unsigned long weight)
  641. {
  642. if (se->on_rq)
  643. account_entity_dequeue(cfs_rq, se);
  644. update_load_set(&se->load, weight);
  645. if (se->on_rq)
  646. account_entity_enqueue(cfs_rq, se);
  647. }
  648. static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
  649. {
  650. struct task_group *tg;
  651. struct sched_entity *se;
  652. long load_weight, load, shares;
  653. if (!cfs_rq)
  654. return;
  655. tg = cfs_rq->tg;
  656. se = tg->se[cpu_of(rq_of(cfs_rq))];
  657. if (!se)
  658. return;
  659. load = cfs_rq->load.weight + weight_delta;
  660. load_weight = atomic_read(&tg->load_weight);
  661. load_weight -= cfs_rq->load_contribution;
  662. load_weight += load;
  663. shares = (tg->shares * load);
  664. if (load_weight)
  665. shares /= load_weight;
  666. if (shares < MIN_SHARES)
  667. shares = MIN_SHARES;
  668. if (shares > tg->shares)
  669. shares = tg->shares;
  670. reweight_entity(cfs_rq_of(se), se, shares);
  671. }
  672. #else /* CONFIG_FAIR_GROUP_SCHED */
  673. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  674. {
  675. }
  676. static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
  677. {
  678. }
  679. #endif /* CONFIG_FAIR_GROUP_SCHED */
  680. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  681. {
  682. #ifdef CONFIG_SCHEDSTATS
  683. struct task_struct *tsk = NULL;
  684. if (entity_is_task(se))
  685. tsk = task_of(se);
  686. if (se->statistics.sleep_start) {
  687. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  688. if ((s64)delta < 0)
  689. delta = 0;
  690. if (unlikely(delta > se->statistics.sleep_max))
  691. se->statistics.sleep_max = delta;
  692. se->statistics.sleep_start = 0;
  693. se->statistics.sum_sleep_runtime += delta;
  694. if (tsk) {
  695. account_scheduler_latency(tsk, delta >> 10, 1);
  696. trace_sched_stat_sleep(tsk, delta);
  697. }
  698. }
  699. if (se->statistics.block_start) {
  700. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  701. if ((s64)delta < 0)
  702. delta = 0;
  703. if (unlikely(delta > se->statistics.block_max))
  704. se->statistics.block_max = delta;
  705. se->statistics.block_start = 0;
  706. se->statistics.sum_sleep_runtime += delta;
  707. if (tsk) {
  708. if (tsk->in_iowait) {
  709. se->statistics.iowait_sum += delta;
  710. se->statistics.iowait_count++;
  711. trace_sched_stat_iowait(tsk, delta);
  712. }
  713. /*
  714. * Blocking time is in units of nanosecs, so shift by
  715. * 20 to get a milliseconds-range estimation of the
  716. * amount of time that the task spent sleeping:
  717. */
  718. if (unlikely(prof_on == SLEEP_PROFILING)) {
  719. profile_hits(SLEEP_PROFILING,
  720. (void *)get_wchan(tsk),
  721. delta >> 20);
  722. }
  723. account_scheduler_latency(tsk, delta >> 10, 0);
  724. }
  725. }
  726. #endif
  727. }
  728. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  729. {
  730. #ifdef CONFIG_SCHED_DEBUG
  731. s64 d = se->vruntime - cfs_rq->min_vruntime;
  732. if (d < 0)
  733. d = -d;
  734. if (d > 3*sysctl_sched_latency)
  735. schedstat_inc(cfs_rq, nr_spread_over);
  736. #endif
  737. }
  738. static void
  739. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  740. {
  741. u64 vruntime = cfs_rq->min_vruntime;
  742. /*
  743. * The 'current' period is already promised to the current tasks,
  744. * however the extra weight of the new task will slow them down a
  745. * little, place the new task so that it fits in the slot that
  746. * stays open at the end.
  747. */
  748. if (initial && sched_feat(START_DEBIT))
  749. vruntime += sched_vslice(cfs_rq, se);
  750. /* sleeps up to a single latency don't count. */
  751. if (!initial) {
  752. unsigned long thresh = sysctl_sched_latency;
  753. /*
  754. * Halve their sleep time's effect, to allow
  755. * for a gentler effect of sleepers:
  756. */
  757. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  758. thresh >>= 1;
  759. vruntime -= thresh;
  760. }
  761. /* ensure we never gain time by being placed backwards. */
  762. vruntime = max_vruntime(se->vruntime, vruntime);
  763. se->vruntime = vruntime;
  764. }
  765. static void
  766. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  767. {
  768. /*
  769. * Update the normalized vruntime before updating min_vruntime
  770. * through callig update_curr().
  771. */
  772. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  773. se->vruntime += cfs_rq->min_vruntime;
  774. /*
  775. * Update run-time statistics of the 'current'.
  776. */
  777. update_curr(cfs_rq);
  778. update_cfs_load(cfs_rq, 0);
  779. update_cfs_shares(cfs_rq, se->load.weight);
  780. account_entity_enqueue(cfs_rq, se);
  781. if (flags & ENQUEUE_WAKEUP) {
  782. place_entity(cfs_rq, se, 0);
  783. enqueue_sleeper(cfs_rq, se);
  784. }
  785. update_stats_enqueue(cfs_rq, se);
  786. check_spread(cfs_rq, se);
  787. if (se != cfs_rq->curr)
  788. __enqueue_entity(cfs_rq, se);
  789. se->on_rq = 1;
  790. if (cfs_rq->nr_running == 1)
  791. list_add_leaf_cfs_rq(cfs_rq);
  792. }
  793. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  794. {
  795. if (!se || cfs_rq->last == se)
  796. cfs_rq->last = NULL;
  797. if (!se || cfs_rq->next == se)
  798. cfs_rq->next = NULL;
  799. }
  800. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  801. {
  802. for_each_sched_entity(se)
  803. __clear_buddies(cfs_rq_of(se), se);
  804. }
  805. static void
  806. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  807. {
  808. /*
  809. * Update run-time statistics of the 'current'.
  810. */
  811. update_curr(cfs_rq);
  812. update_stats_dequeue(cfs_rq, se);
  813. if (flags & DEQUEUE_SLEEP) {
  814. #ifdef CONFIG_SCHEDSTATS
  815. if (entity_is_task(se)) {
  816. struct task_struct *tsk = task_of(se);
  817. if (tsk->state & TASK_INTERRUPTIBLE)
  818. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  819. if (tsk->state & TASK_UNINTERRUPTIBLE)
  820. se->statistics.block_start = rq_of(cfs_rq)->clock;
  821. }
  822. #endif
  823. }
  824. clear_buddies(cfs_rq, se);
  825. if (se != cfs_rq->curr)
  826. __dequeue_entity(cfs_rq, se);
  827. se->on_rq = 0;
  828. update_cfs_load(cfs_rq, 0);
  829. account_entity_dequeue(cfs_rq, se);
  830. update_min_vruntime(cfs_rq);
  831. update_cfs_shares(cfs_rq, 0);
  832. /*
  833. * Normalize the entity after updating the min_vruntime because the
  834. * update can refer to the ->curr item and we need to reflect this
  835. * movement in our normalized position.
  836. */
  837. if (!(flags & DEQUEUE_SLEEP))
  838. se->vruntime -= cfs_rq->min_vruntime;
  839. }
  840. /*
  841. * Preempt the current task with a newly woken task if needed:
  842. */
  843. static void
  844. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  845. {
  846. unsigned long ideal_runtime, delta_exec;
  847. ideal_runtime = sched_slice(cfs_rq, curr);
  848. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  849. if (delta_exec > ideal_runtime) {
  850. resched_task(rq_of(cfs_rq)->curr);
  851. /*
  852. * The current task ran long enough, ensure it doesn't get
  853. * re-elected due to buddy favours.
  854. */
  855. clear_buddies(cfs_rq, curr);
  856. return;
  857. }
  858. /*
  859. * Ensure that a task that missed wakeup preemption by a
  860. * narrow margin doesn't have to wait for a full slice.
  861. * This also mitigates buddy induced latencies under load.
  862. */
  863. if (!sched_feat(WAKEUP_PREEMPT))
  864. return;
  865. if (delta_exec < sysctl_sched_min_granularity)
  866. return;
  867. if (cfs_rq->nr_running > 1) {
  868. struct sched_entity *se = __pick_next_entity(cfs_rq);
  869. s64 delta = curr->vruntime - se->vruntime;
  870. if (delta > ideal_runtime)
  871. resched_task(rq_of(cfs_rq)->curr);
  872. }
  873. }
  874. static void
  875. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  876. {
  877. /* 'current' is not kept within the tree. */
  878. if (se->on_rq) {
  879. /*
  880. * Any task has to be enqueued before it get to execute on
  881. * a CPU. So account for the time it spent waiting on the
  882. * runqueue.
  883. */
  884. update_stats_wait_end(cfs_rq, se);
  885. __dequeue_entity(cfs_rq, se);
  886. }
  887. update_stats_curr_start(cfs_rq, se);
  888. cfs_rq->curr = se;
  889. #ifdef CONFIG_SCHEDSTATS
  890. /*
  891. * Track our maximum slice length, if the CPU's load is at
  892. * least twice that of our own weight (i.e. dont track it
  893. * when there are only lesser-weight tasks around):
  894. */
  895. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  896. se->statistics.slice_max = max(se->statistics.slice_max,
  897. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  898. }
  899. #endif
  900. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  901. }
  902. static int
  903. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  904. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  905. {
  906. struct sched_entity *se = __pick_next_entity(cfs_rq);
  907. struct sched_entity *left = se;
  908. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  909. se = cfs_rq->next;
  910. /*
  911. * Prefer last buddy, try to return the CPU to a preempted task.
  912. */
  913. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  914. se = cfs_rq->last;
  915. clear_buddies(cfs_rq, se);
  916. return se;
  917. }
  918. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  919. {
  920. /*
  921. * If still on the runqueue then deactivate_task()
  922. * was not called and update_curr() has to be done:
  923. */
  924. if (prev->on_rq)
  925. update_curr(cfs_rq);
  926. check_spread(cfs_rq, prev);
  927. if (prev->on_rq) {
  928. update_stats_wait_start(cfs_rq, prev);
  929. /* Put 'current' back into the tree. */
  930. __enqueue_entity(cfs_rq, prev);
  931. }
  932. cfs_rq->curr = NULL;
  933. }
  934. static void
  935. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  936. {
  937. /*
  938. * Update run-time statistics of the 'current'.
  939. */
  940. update_curr(cfs_rq);
  941. #ifdef CONFIG_SCHED_HRTICK
  942. /*
  943. * queued ticks are scheduled to match the slice, so don't bother
  944. * validating it and just reschedule.
  945. */
  946. if (queued) {
  947. resched_task(rq_of(cfs_rq)->curr);
  948. return;
  949. }
  950. /*
  951. * don't let the period tick interfere with the hrtick preemption
  952. */
  953. if (!sched_feat(DOUBLE_TICK) &&
  954. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  955. return;
  956. #endif
  957. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  958. check_preempt_tick(cfs_rq, curr);
  959. }
  960. /**************************************************
  961. * CFS operations on tasks:
  962. */
  963. #ifdef CONFIG_SCHED_HRTICK
  964. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  965. {
  966. struct sched_entity *se = &p->se;
  967. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  968. WARN_ON(task_rq(p) != rq);
  969. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  970. u64 slice = sched_slice(cfs_rq, se);
  971. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  972. s64 delta = slice - ran;
  973. if (delta < 0) {
  974. if (rq->curr == p)
  975. resched_task(p);
  976. return;
  977. }
  978. /*
  979. * Don't schedule slices shorter than 10000ns, that just
  980. * doesn't make sense. Rely on vruntime for fairness.
  981. */
  982. if (rq->curr != p)
  983. delta = max_t(s64, 10000LL, delta);
  984. hrtick_start(rq, delta);
  985. }
  986. }
  987. /*
  988. * called from enqueue/dequeue and updates the hrtick when the
  989. * current task is from our class and nr_running is low enough
  990. * to matter.
  991. */
  992. static void hrtick_update(struct rq *rq)
  993. {
  994. struct task_struct *curr = rq->curr;
  995. if (curr->sched_class != &fair_sched_class)
  996. return;
  997. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  998. hrtick_start_fair(rq, curr);
  999. }
  1000. #else /* !CONFIG_SCHED_HRTICK */
  1001. static inline void
  1002. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1003. {
  1004. }
  1005. static inline void hrtick_update(struct rq *rq)
  1006. {
  1007. }
  1008. #endif
  1009. /*
  1010. * The enqueue_task method is called before nr_running is
  1011. * increased. Here we update the fair scheduling stats and
  1012. * then put the task into the rbtree:
  1013. */
  1014. static void
  1015. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1016. {
  1017. struct cfs_rq *cfs_rq;
  1018. struct sched_entity *se = &p->se;
  1019. for_each_sched_entity(se) {
  1020. if (se->on_rq)
  1021. break;
  1022. cfs_rq = cfs_rq_of(se);
  1023. enqueue_entity(cfs_rq, se, flags);
  1024. flags = ENQUEUE_WAKEUP;
  1025. }
  1026. for_each_sched_entity(se) {
  1027. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1028. update_cfs_load(cfs_rq, 0);
  1029. update_cfs_shares(cfs_rq, 0);
  1030. }
  1031. hrtick_update(rq);
  1032. }
  1033. /*
  1034. * The dequeue_task method is called before nr_running is
  1035. * decreased. We remove the task from the rbtree and
  1036. * update the fair scheduling stats:
  1037. */
  1038. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1039. {
  1040. struct cfs_rq *cfs_rq;
  1041. struct sched_entity *se = &p->se;
  1042. for_each_sched_entity(se) {
  1043. cfs_rq = cfs_rq_of(se);
  1044. dequeue_entity(cfs_rq, se, flags);
  1045. /* Don't dequeue parent if it has other entities besides us */
  1046. if (cfs_rq->load.weight)
  1047. break;
  1048. flags |= DEQUEUE_SLEEP;
  1049. }
  1050. for_each_sched_entity(se) {
  1051. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1052. update_cfs_load(cfs_rq, 0);
  1053. update_cfs_shares(cfs_rq, 0);
  1054. }
  1055. hrtick_update(rq);
  1056. }
  1057. /*
  1058. * sched_yield() support is very simple - we dequeue and enqueue.
  1059. *
  1060. * If compat_yield is turned on then we requeue to the end of the tree.
  1061. */
  1062. static void yield_task_fair(struct rq *rq)
  1063. {
  1064. struct task_struct *curr = rq->curr;
  1065. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1066. struct sched_entity *rightmost, *se = &curr->se;
  1067. /*
  1068. * Are we the only task in the tree?
  1069. */
  1070. if (unlikely(cfs_rq->nr_running == 1))
  1071. return;
  1072. clear_buddies(cfs_rq, se);
  1073. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  1074. update_rq_clock(rq);
  1075. /*
  1076. * Update run-time statistics of the 'current'.
  1077. */
  1078. update_curr(cfs_rq);
  1079. return;
  1080. }
  1081. /*
  1082. * Find the rightmost entry in the rbtree:
  1083. */
  1084. rightmost = __pick_last_entity(cfs_rq);
  1085. /*
  1086. * Already in the rightmost position?
  1087. */
  1088. if (unlikely(!rightmost || entity_before(rightmost, se)))
  1089. return;
  1090. /*
  1091. * Minimally necessary key value to be last in the tree:
  1092. * Upon rescheduling, sched_class::put_prev_task() will place
  1093. * 'current' within the tree based on its new key value.
  1094. */
  1095. se->vruntime = rightmost->vruntime + 1;
  1096. }
  1097. #ifdef CONFIG_SMP
  1098. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  1099. {
  1100. struct sched_entity *se = &p->se;
  1101. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1102. se->vruntime -= cfs_rq->min_vruntime;
  1103. }
  1104. #ifdef CONFIG_FAIR_GROUP_SCHED
  1105. /*
  1106. * effective_load() calculates the load change as seen from the root_task_group
  1107. *
  1108. * Adding load to a group doesn't make a group heavier, but can cause movement
  1109. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1110. * can calculate the shift in shares.
  1111. */
  1112. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1113. {
  1114. struct sched_entity *se = tg->se[cpu];
  1115. if (!tg->parent)
  1116. return wl;
  1117. for_each_sched_entity(se) {
  1118. long S, rw, s, a, b;
  1119. S = se->my_q->tg->shares;
  1120. s = se->load.weight;
  1121. rw = se->my_q->load.weight;
  1122. a = S*(rw + wl);
  1123. b = S*rw + s*wg;
  1124. wl = s*(a-b);
  1125. if (likely(b))
  1126. wl /= b;
  1127. /*
  1128. * Assume the group is already running and will
  1129. * thus already be accounted for in the weight.
  1130. *
  1131. * That is, moving shares between CPUs, does not
  1132. * alter the group weight.
  1133. */
  1134. wg = 0;
  1135. }
  1136. return wl;
  1137. }
  1138. #else
  1139. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1140. unsigned long wl, unsigned long wg)
  1141. {
  1142. return wl;
  1143. }
  1144. #endif
  1145. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1146. {
  1147. unsigned long this_load, load;
  1148. int idx, this_cpu, prev_cpu;
  1149. unsigned long tl_per_task;
  1150. struct task_group *tg;
  1151. unsigned long weight;
  1152. int balanced;
  1153. idx = sd->wake_idx;
  1154. this_cpu = smp_processor_id();
  1155. prev_cpu = task_cpu(p);
  1156. load = source_load(prev_cpu, idx);
  1157. this_load = target_load(this_cpu, idx);
  1158. /*
  1159. * If sync wakeup then subtract the (maximum possible)
  1160. * effect of the currently running task from the load
  1161. * of the current CPU:
  1162. */
  1163. rcu_read_lock();
  1164. if (sync) {
  1165. tg = task_group(current);
  1166. weight = current->se.load.weight;
  1167. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1168. load += effective_load(tg, prev_cpu, 0, -weight);
  1169. }
  1170. tg = task_group(p);
  1171. weight = p->se.load.weight;
  1172. /*
  1173. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1174. * due to the sync cause above having dropped this_load to 0, we'll
  1175. * always have an imbalance, but there's really nothing you can do
  1176. * about that, so that's good too.
  1177. *
  1178. * Otherwise check if either cpus are near enough in load to allow this
  1179. * task to be woken on this_cpu.
  1180. */
  1181. if (this_load) {
  1182. unsigned long this_eff_load, prev_eff_load;
  1183. this_eff_load = 100;
  1184. this_eff_load *= power_of(prev_cpu);
  1185. this_eff_load *= this_load +
  1186. effective_load(tg, this_cpu, weight, weight);
  1187. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1188. prev_eff_load *= power_of(this_cpu);
  1189. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1190. balanced = this_eff_load <= prev_eff_load;
  1191. } else
  1192. balanced = true;
  1193. rcu_read_unlock();
  1194. /*
  1195. * If the currently running task will sleep within
  1196. * a reasonable amount of time then attract this newly
  1197. * woken task:
  1198. */
  1199. if (sync && balanced)
  1200. return 1;
  1201. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1202. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1203. if (balanced ||
  1204. (this_load <= load &&
  1205. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1206. /*
  1207. * This domain has SD_WAKE_AFFINE and
  1208. * p is cache cold in this domain, and
  1209. * there is no bad imbalance.
  1210. */
  1211. schedstat_inc(sd, ttwu_move_affine);
  1212. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1213. return 1;
  1214. }
  1215. return 0;
  1216. }
  1217. /*
  1218. * find_idlest_group finds and returns the least busy CPU group within the
  1219. * domain.
  1220. */
  1221. static struct sched_group *
  1222. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1223. int this_cpu, int load_idx)
  1224. {
  1225. struct sched_group *idlest = NULL, *group = sd->groups;
  1226. unsigned long min_load = ULONG_MAX, this_load = 0;
  1227. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1228. do {
  1229. unsigned long load, avg_load;
  1230. int local_group;
  1231. int i;
  1232. /* Skip over this group if it has no CPUs allowed */
  1233. if (!cpumask_intersects(sched_group_cpus(group),
  1234. &p->cpus_allowed))
  1235. continue;
  1236. local_group = cpumask_test_cpu(this_cpu,
  1237. sched_group_cpus(group));
  1238. /* Tally up the load of all CPUs in the group */
  1239. avg_load = 0;
  1240. for_each_cpu(i, sched_group_cpus(group)) {
  1241. /* Bias balancing toward cpus of our domain */
  1242. if (local_group)
  1243. load = source_load(i, load_idx);
  1244. else
  1245. load = target_load(i, load_idx);
  1246. avg_load += load;
  1247. }
  1248. /* Adjust by relative CPU power of the group */
  1249. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1250. if (local_group) {
  1251. this_load = avg_load;
  1252. } else if (avg_load < min_load) {
  1253. min_load = avg_load;
  1254. idlest = group;
  1255. }
  1256. } while (group = group->next, group != sd->groups);
  1257. if (!idlest || 100*this_load < imbalance*min_load)
  1258. return NULL;
  1259. return idlest;
  1260. }
  1261. /*
  1262. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1263. */
  1264. static int
  1265. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1266. {
  1267. unsigned long load, min_load = ULONG_MAX;
  1268. int idlest = -1;
  1269. int i;
  1270. /* Traverse only the allowed CPUs */
  1271. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1272. load = weighted_cpuload(i);
  1273. if (load < min_load || (load == min_load && i == this_cpu)) {
  1274. min_load = load;
  1275. idlest = i;
  1276. }
  1277. }
  1278. return idlest;
  1279. }
  1280. /*
  1281. * Try and locate an idle CPU in the sched_domain.
  1282. */
  1283. static int select_idle_sibling(struct task_struct *p, int target)
  1284. {
  1285. int cpu = smp_processor_id();
  1286. int prev_cpu = task_cpu(p);
  1287. struct sched_domain *sd;
  1288. int i;
  1289. /*
  1290. * If the task is going to be woken-up on this cpu and if it is
  1291. * already idle, then it is the right target.
  1292. */
  1293. if (target == cpu && idle_cpu(cpu))
  1294. return cpu;
  1295. /*
  1296. * If the task is going to be woken-up on the cpu where it previously
  1297. * ran and if it is currently idle, then it the right target.
  1298. */
  1299. if (target == prev_cpu && idle_cpu(prev_cpu))
  1300. return prev_cpu;
  1301. /*
  1302. * Otherwise, iterate the domains and find an elegible idle cpu.
  1303. */
  1304. for_each_domain(target, sd) {
  1305. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1306. break;
  1307. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1308. if (idle_cpu(i)) {
  1309. target = i;
  1310. break;
  1311. }
  1312. }
  1313. /*
  1314. * Lets stop looking for an idle sibling when we reached
  1315. * the domain that spans the current cpu and prev_cpu.
  1316. */
  1317. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1318. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1319. break;
  1320. }
  1321. return target;
  1322. }
  1323. /*
  1324. * sched_balance_self: balance the current task (running on cpu) in domains
  1325. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1326. * SD_BALANCE_EXEC.
  1327. *
  1328. * Balance, ie. select the least loaded group.
  1329. *
  1330. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1331. *
  1332. * preempt must be disabled.
  1333. */
  1334. static int
  1335. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1336. {
  1337. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1338. int cpu = smp_processor_id();
  1339. int prev_cpu = task_cpu(p);
  1340. int new_cpu = cpu;
  1341. int want_affine = 0;
  1342. int want_sd = 1;
  1343. int sync = wake_flags & WF_SYNC;
  1344. if (sd_flag & SD_BALANCE_WAKE) {
  1345. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1346. want_affine = 1;
  1347. new_cpu = prev_cpu;
  1348. }
  1349. for_each_domain(cpu, tmp) {
  1350. if (!(tmp->flags & SD_LOAD_BALANCE))
  1351. continue;
  1352. /*
  1353. * If power savings logic is enabled for a domain, see if we
  1354. * are not overloaded, if so, don't balance wider.
  1355. */
  1356. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1357. unsigned long power = 0;
  1358. unsigned long nr_running = 0;
  1359. unsigned long capacity;
  1360. int i;
  1361. for_each_cpu(i, sched_domain_span(tmp)) {
  1362. power += power_of(i);
  1363. nr_running += cpu_rq(i)->cfs.nr_running;
  1364. }
  1365. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1366. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1367. nr_running /= 2;
  1368. if (nr_running < capacity)
  1369. want_sd = 0;
  1370. }
  1371. /*
  1372. * If both cpu and prev_cpu are part of this domain,
  1373. * cpu is a valid SD_WAKE_AFFINE target.
  1374. */
  1375. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1376. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1377. affine_sd = tmp;
  1378. want_affine = 0;
  1379. }
  1380. if (!want_sd && !want_affine)
  1381. break;
  1382. if (!(tmp->flags & sd_flag))
  1383. continue;
  1384. if (want_sd)
  1385. sd = tmp;
  1386. }
  1387. if (affine_sd) {
  1388. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1389. return select_idle_sibling(p, cpu);
  1390. else
  1391. return select_idle_sibling(p, prev_cpu);
  1392. }
  1393. while (sd) {
  1394. int load_idx = sd->forkexec_idx;
  1395. struct sched_group *group;
  1396. int weight;
  1397. if (!(sd->flags & sd_flag)) {
  1398. sd = sd->child;
  1399. continue;
  1400. }
  1401. if (sd_flag & SD_BALANCE_WAKE)
  1402. load_idx = sd->wake_idx;
  1403. group = find_idlest_group(sd, p, cpu, load_idx);
  1404. if (!group) {
  1405. sd = sd->child;
  1406. continue;
  1407. }
  1408. new_cpu = find_idlest_cpu(group, p, cpu);
  1409. if (new_cpu == -1 || new_cpu == cpu) {
  1410. /* Now try balancing at a lower domain level of cpu */
  1411. sd = sd->child;
  1412. continue;
  1413. }
  1414. /* Now try balancing at a lower domain level of new_cpu */
  1415. cpu = new_cpu;
  1416. weight = sd->span_weight;
  1417. sd = NULL;
  1418. for_each_domain(cpu, tmp) {
  1419. if (weight <= tmp->span_weight)
  1420. break;
  1421. if (tmp->flags & sd_flag)
  1422. sd = tmp;
  1423. }
  1424. /* while loop will break here if sd == NULL */
  1425. }
  1426. return new_cpu;
  1427. }
  1428. #endif /* CONFIG_SMP */
  1429. static unsigned long
  1430. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1431. {
  1432. unsigned long gran = sysctl_sched_wakeup_granularity;
  1433. /*
  1434. * Since its curr running now, convert the gran from real-time
  1435. * to virtual-time in his units.
  1436. *
  1437. * By using 'se' instead of 'curr' we penalize light tasks, so
  1438. * they get preempted easier. That is, if 'se' < 'curr' then
  1439. * the resulting gran will be larger, therefore penalizing the
  1440. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1441. * be smaller, again penalizing the lighter task.
  1442. *
  1443. * This is especially important for buddies when the leftmost
  1444. * task is higher priority than the buddy.
  1445. */
  1446. if (unlikely(se->load.weight != NICE_0_LOAD))
  1447. gran = calc_delta_fair(gran, se);
  1448. return gran;
  1449. }
  1450. /*
  1451. * Should 'se' preempt 'curr'.
  1452. *
  1453. * |s1
  1454. * |s2
  1455. * |s3
  1456. * g
  1457. * |<--->|c
  1458. *
  1459. * w(c, s1) = -1
  1460. * w(c, s2) = 0
  1461. * w(c, s3) = 1
  1462. *
  1463. */
  1464. static int
  1465. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1466. {
  1467. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1468. if (vdiff <= 0)
  1469. return -1;
  1470. gran = wakeup_gran(curr, se);
  1471. if (vdiff > gran)
  1472. return 1;
  1473. return 0;
  1474. }
  1475. static void set_last_buddy(struct sched_entity *se)
  1476. {
  1477. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1478. for_each_sched_entity(se)
  1479. cfs_rq_of(se)->last = se;
  1480. }
  1481. }
  1482. static void set_next_buddy(struct sched_entity *se)
  1483. {
  1484. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1485. for_each_sched_entity(se)
  1486. cfs_rq_of(se)->next = se;
  1487. }
  1488. }
  1489. /*
  1490. * Preempt the current task with a newly woken task if needed:
  1491. */
  1492. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1493. {
  1494. struct task_struct *curr = rq->curr;
  1495. struct sched_entity *se = &curr->se, *pse = &p->se;
  1496. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1497. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1498. if (unlikely(rt_prio(p->prio)))
  1499. goto preempt;
  1500. if (unlikely(p->sched_class != &fair_sched_class))
  1501. return;
  1502. if (unlikely(se == pse))
  1503. return;
  1504. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1505. set_next_buddy(pse);
  1506. /*
  1507. * We can come here with TIF_NEED_RESCHED already set from new task
  1508. * wake up path.
  1509. */
  1510. if (test_tsk_need_resched(curr))
  1511. return;
  1512. /*
  1513. * Batch and idle tasks do not preempt (their preemption is driven by
  1514. * the tick):
  1515. */
  1516. if (unlikely(p->policy != SCHED_NORMAL))
  1517. return;
  1518. /* Idle tasks are by definition preempted by everybody. */
  1519. if (unlikely(curr->policy == SCHED_IDLE))
  1520. goto preempt;
  1521. if (!sched_feat(WAKEUP_PREEMPT))
  1522. return;
  1523. update_curr(cfs_rq);
  1524. find_matching_se(&se, &pse);
  1525. BUG_ON(!pse);
  1526. if (wakeup_preempt_entity(se, pse) == 1)
  1527. goto preempt;
  1528. return;
  1529. preempt:
  1530. resched_task(curr);
  1531. /*
  1532. * Only set the backward buddy when the current task is still
  1533. * on the rq. This can happen when a wakeup gets interleaved
  1534. * with schedule on the ->pre_schedule() or idle_balance()
  1535. * point, either of which can * drop the rq lock.
  1536. *
  1537. * Also, during early boot the idle thread is in the fair class,
  1538. * for obvious reasons its a bad idea to schedule back to it.
  1539. */
  1540. if (unlikely(!se->on_rq || curr == rq->idle))
  1541. return;
  1542. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1543. set_last_buddy(se);
  1544. }
  1545. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1546. {
  1547. struct task_struct *p;
  1548. struct cfs_rq *cfs_rq = &rq->cfs;
  1549. struct sched_entity *se;
  1550. if (!cfs_rq->nr_running)
  1551. return NULL;
  1552. do {
  1553. se = pick_next_entity(cfs_rq);
  1554. set_next_entity(cfs_rq, se);
  1555. cfs_rq = group_cfs_rq(se);
  1556. } while (cfs_rq);
  1557. p = task_of(se);
  1558. hrtick_start_fair(rq, p);
  1559. return p;
  1560. }
  1561. /*
  1562. * Account for a descheduled task:
  1563. */
  1564. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1565. {
  1566. struct sched_entity *se = &prev->se;
  1567. struct cfs_rq *cfs_rq;
  1568. for_each_sched_entity(se) {
  1569. cfs_rq = cfs_rq_of(se);
  1570. put_prev_entity(cfs_rq, se);
  1571. }
  1572. }
  1573. #ifdef CONFIG_SMP
  1574. /**************************************************
  1575. * Fair scheduling class load-balancing methods:
  1576. */
  1577. /*
  1578. * pull_task - move a task from a remote runqueue to the local runqueue.
  1579. * Both runqueues must be locked.
  1580. */
  1581. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1582. struct rq *this_rq, int this_cpu)
  1583. {
  1584. deactivate_task(src_rq, p, 0);
  1585. set_task_cpu(p, this_cpu);
  1586. activate_task(this_rq, p, 0);
  1587. check_preempt_curr(this_rq, p, 0);
  1588. /* re-arm NEWIDLE balancing when moving tasks */
  1589. src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
  1590. this_rq->idle_stamp = 0;
  1591. }
  1592. /*
  1593. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1594. */
  1595. static
  1596. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1597. struct sched_domain *sd, enum cpu_idle_type idle,
  1598. int *all_pinned)
  1599. {
  1600. int tsk_cache_hot = 0;
  1601. /*
  1602. * We do not migrate tasks that are:
  1603. * 1) running (obviously), or
  1604. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1605. * 3) are cache-hot on their current CPU.
  1606. */
  1607. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1608. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1609. return 0;
  1610. }
  1611. *all_pinned = 0;
  1612. if (task_running(rq, p)) {
  1613. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1614. return 0;
  1615. }
  1616. /*
  1617. * Aggressive migration if:
  1618. * 1) task is cache cold, or
  1619. * 2) too many balance attempts have failed.
  1620. */
  1621. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1622. if (!tsk_cache_hot ||
  1623. sd->nr_balance_failed > sd->cache_nice_tries) {
  1624. #ifdef CONFIG_SCHEDSTATS
  1625. if (tsk_cache_hot) {
  1626. schedstat_inc(sd, lb_hot_gained[idle]);
  1627. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1628. }
  1629. #endif
  1630. return 1;
  1631. }
  1632. if (tsk_cache_hot) {
  1633. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1634. return 0;
  1635. }
  1636. return 1;
  1637. }
  1638. /*
  1639. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1640. * part of active balancing operations within "domain".
  1641. * Returns 1 if successful and 0 otherwise.
  1642. *
  1643. * Called with both runqueues locked.
  1644. */
  1645. static int
  1646. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1647. struct sched_domain *sd, enum cpu_idle_type idle)
  1648. {
  1649. struct task_struct *p, *n;
  1650. struct cfs_rq *cfs_rq;
  1651. int pinned = 0;
  1652. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1653. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1654. if (!can_migrate_task(p, busiest, this_cpu,
  1655. sd, idle, &pinned))
  1656. continue;
  1657. pull_task(busiest, p, this_rq, this_cpu);
  1658. /*
  1659. * Right now, this is only the second place pull_task()
  1660. * is called, so we can safely collect pull_task()
  1661. * stats here rather than inside pull_task().
  1662. */
  1663. schedstat_inc(sd, lb_gained[idle]);
  1664. return 1;
  1665. }
  1666. }
  1667. return 0;
  1668. }
  1669. static unsigned long
  1670. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1671. unsigned long max_load_move, struct sched_domain *sd,
  1672. enum cpu_idle_type idle, int *all_pinned,
  1673. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1674. {
  1675. int loops = 0, pulled = 0, pinned = 0;
  1676. long rem_load_move = max_load_move;
  1677. struct task_struct *p, *n;
  1678. if (max_load_move == 0)
  1679. goto out;
  1680. pinned = 1;
  1681. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1682. if (loops++ > sysctl_sched_nr_migrate)
  1683. break;
  1684. if ((p->se.load.weight >> 1) > rem_load_move ||
  1685. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1686. continue;
  1687. pull_task(busiest, p, this_rq, this_cpu);
  1688. pulled++;
  1689. rem_load_move -= p->se.load.weight;
  1690. #ifdef CONFIG_PREEMPT
  1691. /*
  1692. * NEWIDLE balancing is a source of latency, so preemptible
  1693. * kernels will stop after the first task is pulled to minimize
  1694. * the critical section.
  1695. */
  1696. if (idle == CPU_NEWLY_IDLE)
  1697. break;
  1698. #endif
  1699. /*
  1700. * We only want to steal up to the prescribed amount of
  1701. * weighted load.
  1702. */
  1703. if (rem_load_move <= 0)
  1704. break;
  1705. if (p->prio < *this_best_prio)
  1706. *this_best_prio = p->prio;
  1707. }
  1708. out:
  1709. /*
  1710. * Right now, this is one of only two places pull_task() is called,
  1711. * so we can safely collect pull_task() stats here rather than
  1712. * inside pull_task().
  1713. */
  1714. schedstat_add(sd, lb_gained[idle], pulled);
  1715. if (all_pinned)
  1716. *all_pinned = pinned;
  1717. return max_load_move - rem_load_move;
  1718. }
  1719. #ifdef CONFIG_FAIR_GROUP_SCHED
  1720. /*
  1721. * update tg->load_weight by folding this cpu's load_avg
  1722. */
  1723. static int update_shares_cpu(struct task_group *tg, int cpu)
  1724. {
  1725. struct cfs_rq *cfs_rq;
  1726. unsigned long flags;
  1727. struct rq *rq;
  1728. if (!tg->se[cpu])
  1729. return 0;
  1730. rq = cpu_rq(cpu);
  1731. cfs_rq = tg->cfs_rq[cpu];
  1732. raw_spin_lock_irqsave(&rq->lock, flags);
  1733. update_rq_clock(rq);
  1734. update_cfs_load(cfs_rq, 1);
  1735. /*
  1736. * We need to update shares after updating tg->load_weight in
  1737. * order to adjust the weight of groups with long running tasks.
  1738. */
  1739. update_cfs_shares(cfs_rq, 0);
  1740. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1741. return 0;
  1742. }
  1743. static void update_shares(int cpu)
  1744. {
  1745. struct cfs_rq *cfs_rq;
  1746. struct rq *rq = cpu_rq(cpu);
  1747. rcu_read_lock();
  1748. for_each_leaf_cfs_rq(rq, cfs_rq)
  1749. update_shares_cpu(cfs_rq->tg, cpu);
  1750. rcu_read_unlock();
  1751. }
  1752. static unsigned long
  1753. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1754. unsigned long max_load_move,
  1755. struct sched_domain *sd, enum cpu_idle_type idle,
  1756. int *all_pinned, int *this_best_prio)
  1757. {
  1758. long rem_load_move = max_load_move;
  1759. int busiest_cpu = cpu_of(busiest);
  1760. struct task_group *tg;
  1761. rcu_read_lock();
  1762. update_h_load(busiest_cpu);
  1763. list_for_each_entry_rcu(tg, &task_groups, list) {
  1764. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1765. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1766. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1767. u64 rem_load, moved_load;
  1768. /*
  1769. * empty group
  1770. */
  1771. if (!busiest_cfs_rq->task_weight)
  1772. continue;
  1773. rem_load = (u64)rem_load_move * busiest_weight;
  1774. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1775. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1776. rem_load, sd, idle, all_pinned, this_best_prio,
  1777. busiest_cfs_rq);
  1778. if (!moved_load)
  1779. continue;
  1780. moved_load *= busiest_h_load;
  1781. moved_load = div_u64(moved_load, busiest_weight + 1);
  1782. rem_load_move -= moved_load;
  1783. if (rem_load_move < 0)
  1784. break;
  1785. }
  1786. rcu_read_unlock();
  1787. return max_load_move - rem_load_move;
  1788. }
  1789. #else
  1790. static inline void update_shares(int cpu)
  1791. {
  1792. }
  1793. static unsigned long
  1794. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1795. unsigned long max_load_move,
  1796. struct sched_domain *sd, enum cpu_idle_type idle,
  1797. int *all_pinned, int *this_best_prio)
  1798. {
  1799. return balance_tasks(this_rq, this_cpu, busiest,
  1800. max_load_move, sd, idle, all_pinned,
  1801. this_best_prio, &busiest->cfs);
  1802. }
  1803. #endif
  1804. /*
  1805. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1806. * this_rq, as part of a balancing operation within domain "sd".
  1807. * Returns 1 if successful and 0 otherwise.
  1808. *
  1809. * Called with both runqueues locked.
  1810. */
  1811. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1812. unsigned long max_load_move,
  1813. struct sched_domain *sd, enum cpu_idle_type idle,
  1814. int *all_pinned)
  1815. {
  1816. unsigned long total_load_moved = 0, load_moved;
  1817. int this_best_prio = this_rq->curr->prio;
  1818. do {
  1819. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1820. max_load_move - total_load_moved,
  1821. sd, idle, all_pinned, &this_best_prio);
  1822. total_load_moved += load_moved;
  1823. #ifdef CONFIG_PREEMPT
  1824. /*
  1825. * NEWIDLE balancing is a source of latency, so preemptible
  1826. * kernels will stop after the first task is pulled to minimize
  1827. * the critical section.
  1828. */
  1829. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1830. break;
  1831. if (raw_spin_is_contended(&this_rq->lock) ||
  1832. raw_spin_is_contended(&busiest->lock))
  1833. break;
  1834. #endif
  1835. } while (load_moved && max_load_move > total_load_moved);
  1836. return total_load_moved > 0;
  1837. }
  1838. /********** Helpers for find_busiest_group ************************/
  1839. /*
  1840. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1841. * during load balancing.
  1842. */
  1843. struct sd_lb_stats {
  1844. struct sched_group *busiest; /* Busiest group in this sd */
  1845. struct sched_group *this; /* Local group in this sd */
  1846. unsigned long total_load; /* Total load of all groups in sd */
  1847. unsigned long total_pwr; /* Total power of all groups in sd */
  1848. unsigned long avg_load; /* Average load across all groups in sd */
  1849. /** Statistics of this group */
  1850. unsigned long this_load;
  1851. unsigned long this_load_per_task;
  1852. unsigned long this_nr_running;
  1853. unsigned long this_has_capacity;
  1854. /* Statistics of the busiest group */
  1855. unsigned long max_load;
  1856. unsigned long busiest_load_per_task;
  1857. unsigned long busiest_nr_running;
  1858. unsigned long busiest_group_capacity;
  1859. unsigned long busiest_has_capacity;
  1860. int group_imb; /* Is there imbalance in this sd */
  1861. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1862. int power_savings_balance; /* Is powersave balance needed for this sd */
  1863. struct sched_group *group_min; /* Least loaded group in sd */
  1864. struct sched_group *group_leader; /* Group which relieves group_min */
  1865. unsigned long min_load_per_task; /* load_per_task in group_min */
  1866. unsigned long leader_nr_running; /* Nr running of group_leader */
  1867. unsigned long min_nr_running; /* Nr running of group_min */
  1868. #endif
  1869. };
  1870. /*
  1871. * sg_lb_stats - stats of a sched_group required for load_balancing
  1872. */
  1873. struct sg_lb_stats {
  1874. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1875. unsigned long group_load; /* Total load over the CPUs of the group */
  1876. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1877. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1878. unsigned long group_capacity;
  1879. int group_imb; /* Is there an imbalance in the group ? */
  1880. int group_has_capacity; /* Is there extra capacity in the group? */
  1881. };
  1882. /**
  1883. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1884. * @group: The group whose first cpu is to be returned.
  1885. */
  1886. static inline unsigned int group_first_cpu(struct sched_group *group)
  1887. {
  1888. return cpumask_first(sched_group_cpus(group));
  1889. }
  1890. /**
  1891. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1892. * @sd: The sched_domain whose load_idx is to be obtained.
  1893. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1894. */
  1895. static inline int get_sd_load_idx(struct sched_domain *sd,
  1896. enum cpu_idle_type idle)
  1897. {
  1898. int load_idx;
  1899. switch (idle) {
  1900. case CPU_NOT_IDLE:
  1901. load_idx = sd->busy_idx;
  1902. break;
  1903. case CPU_NEWLY_IDLE:
  1904. load_idx = sd->newidle_idx;
  1905. break;
  1906. default:
  1907. load_idx = sd->idle_idx;
  1908. break;
  1909. }
  1910. return load_idx;
  1911. }
  1912. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1913. /**
  1914. * init_sd_power_savings_stats - Initialize power savings statistics for
  1915. * the given sched_domain, during load balancing.
  1916. *
  1917. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1918. * @sds: Variable containing the statistics for sd.
  1919. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1920. */
  1921. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1922. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1923. {
  1924. /*
  1925. * Busy processors will not participate in power savings
  1926. * balance.
  1927. */
  1928. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1929. sds->power_savings_balance = 0;
  1930. else {
  1931. sds->power_savings_balance = 1;
  1932. sds->min_nr_running = ULONG_MAX;
  1933. sds->leader_nr_running = 0;
  1934. }
  1935. }
  1936. /**
  1937. * update_sd_power_savings_stats - Update the power saving stats for a
  1938. * sched_domain while performing load balancing.
  1939. *
  1940. * @group: sched_group belonging to the sched_domain under consideration.
  1941. * @sds: Variable containing the statistics of the sched_domain
  1942. * @local_group: Does group contain the CPU for which we're performing
  1943. * load balancing ?
  1944. * @sgs: Variable containing the statistics of the group.
  1945. */
  1946. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1947. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1948. {
  1949. if (!sds->power_savings_balance)
  1950. return;
  1951. /*
  1952. * If the local group is idle or completely loaded
  1953. * no need to do power savings balance at this domain
  1954. */
  1955. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1956. !sds->this_nr_running))
  1957. sds->power_savings_balance = 0;
  1958. /*
  1959. * If a group is already running at full capacity or idle,
  1960. * don't include that group in power savings calculations
  1961. */
  1962. if (!sds->power_savings_balance ||
  1963. sgs->sum_nr_running >= sgs->group_capacity ||
  1964. !sgs->sum_nr_running)
  1965. return;
  1966. /*
  1967. * Calculate the group which has the least non-idle load.
  1968. * This is the group from where we need to pick up the load
  1969. * for saving power
  1970. */
  1971. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  1972. (sgs->sum_nr_running == sds->min_nr_running &&
  1973. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  1974. sds->group_min = group;
  1975. sds->min_nr_running = sgs->sum_nr_running;
  1976. sds->min_load_per_task = sgs->sum_weighted_load /
  1977. sgs->sum_nr_running;
  1978. }
  1979. /*
  1980. * Calculate the group which is almost near its
  1981. * capacity but still has some space to pick up some load
  1982. * from other group and save more power
  1983. */
  1984. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  1985. return;
  1986. if (sgs->sum_nr_running > sds->leader_nr_running ||
  1987. (sgs->sum_nr_running == sds->leader_nr_running &&
  1988. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  1989. sds->group_leader = group;
  1990. sds->leader_nr_running = sgs->sum_nr_running;
  1991. }
  1992. }
  1993. /**
  1994. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  1995. * @sds: Variable containing the statistics of the sched_domain
  1996. * under consideration.
  1997. * @this_cpu: Cpu at which we're currently performing load-balancing.
  1998. * @imbalance: Variable to store the imbalance.
  1999. *
  2000. * Description:
  2001. * Check if we have potential to perform some power-savings balance.
  2002. * If yes, set the busiest group to be the least loaded group in the
  2003. * sched_domain, so that it's CPUs can be put to idle.
  2004. *
  2005. * Returns 1 if there is potential to perform power-savings balance.
  2006. * Else returns 0.
  2007. */
  2008. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2009. int this_cpu, unsigned long *imbalance)
  2010. {
  2011. if (!sds->power_savings_balance)
  2012. return 0;
  2013. if (sds->this != sds->group_leader ||
  2014. sds->group_leader == sds->group_min)
  2015. return 0;
  2016. *imbalance = sds->min_load_per_task;
  2017. sds->busiest = sds->group_min;
  2018. return 1;
  2019. }
  2020. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2021. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2022. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2023. {
  2024. return;
  2025. }
  2026. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2027. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2028. {
  2029. return;
  2030. }
  2031. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2032. int this_cpu, unsigned long *imbalance)
  2033. {
  2034. return 0;
  2035. }
  2036. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2037. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2038. {
  2039. return SCHED_LOAD_SCALE;
  2040. }
  2041. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2042. {
  2043. return default_scale_freq_power(sd, cpu);
  2044. }
  2045. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2046. {
  2047. unsigned long weight = sd->span_weight;
  2048. unsigned long smt_gain = sd->smt_gain;
  2049. smt_gain /= weight;
  2050. return smt_gain;
  2051. }
  2052. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2053. {
  2054. return default_scale_smt_power(sd, cpu);
  2055. }
  2056. unsigned long scale_rt_power(int cpu)
  2057. {
  2058. struct rq *rq = cpu_rq(cpu);
  2059. u64 total, available;
  2060. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2061. if (unlikely(total < rq->rt_avg)) {
  2062. /* Ensures that power won't end up being negative */
  2063. available = 0;
  2064. } else {
  2065. available = total - rq->rt_avg;
  2066. }
  2067. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  2068. total = SCHED_LOAD_SCALE;
  2069. total >>= SCHED_LOAD_SHIFT;
  2070. return div_u64(available, total);
  2071. }
  2072. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2073. {
  2074. unsigned long weight = sd->span_weight;
  2075. unsigned long power = SCHED_LOAD_SCALE;
  2076. struct sched_group *sdg = sd->groups;
  2077. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2078. if (sched_feat(ARCH_POWER))
  2079. power *= arch_scale_smt_power(sd, cpu);
  2080. else
  2081. power *= default_scale_smt_power(sd, cpu);
  2082. power >>= SCHED_LOAD_SHIFT;
  2083. }
  2084. sdg->cpu_power_orig = power;
  2085. if (sched_feat(ARCH_POWER))
  2086. power *= arch_scale_freq_power(sd, cpu);
  2087. else
  2088. power *= default_scale_freq_power(sd, cpu);
  2089. power >>= SCHED_LOAD_SHIFT;
  2090. power *= scale_rt_power(cpu);
  2091. power >>= SCHED_LOAD_SHIFT;
  2092. if (!power)
  2093. power = 1;
  2094. cpu_rq(cpu)->cpu_power = power;
  2095. sdg->cpu_power = power;
  2096. }
  2097. static void update_group_power(struct sched_domain *sd, int cpu)
  2098. {
  2099. struct sched_domain *child = sd->child;
  2100. struct sched_group *group, *sdg = sd->groups;
  2101. unsigned long power;
  2102. if (!child) {
  2103. update_cpu_power(sd, cpu);
  2104. return;
  2105. }
  2106. power = 0;
  2107. group = child->groups;
  2108. do {
  2109. power += group->cpu_power;
  2110. group = group->next;
  2111. } while (group != child->groups);
  2112. sdg->cpu_power = power;
  2113. }
  2114. /*
  2115. * Try and fix up capacity for tiny siblings, this is needed when
  2116. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2117. * which on its own isn't powerful enough.
  2118. *
  2119. * See update_sd_pick_busiest() and check_asym_packing().
  2120. */
  2121. static inline int
  2122. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2123. {
  2124. /*
  2125. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  2126. */
  2127. if (sd->level != SD_LV_SIBLING)
  2128. return 0;
  2129. /*
  2130. * If ~90% of the cpu_power is still there, we're good.
  2131. */
  2132. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  2133. return 1;
  2134. return 0;
  2135. }
  2136. /**
  2137. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2138. * @sd: The sched_domain whose statistics are to be updated.
  2139. * @group: sched_group whose statistics are to be updated.
  2140. * @this_cpu: Cpu for which load balance is currently performed.
  2141. * @idle: Idle status of this_cpu
  2142. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2143. * @sd_idle: Idle status of the sched_domain containing group.
  2144. * @local_group: Does group contain this_cpu.
  2145. * @cpus: Set of cpus considered for load balancing.
  2146. * @balance: Should we balance.
  2147. * @sgs: variable to hold the statistics for this group.
  2148. */
  2149. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2150. struct sched_group *group, int this_cpu,
  2151. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2152. int local_group, const struct cpumask *cpus,
  2153. int *balance, struct sg_lb_stats *sgs)
  2154. {
  2155. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2156. int i;
  2157. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2158. unsigned long avg_load_per_task = 0;
  2159. if (local_group)
  2160. balance_cpu = group_first_cpu(group);
  2161. /* Tally up the load of all CPUs in the group */
  2162. max_cpu_load = 0;
  2163. min_cpu_load = ~0UL;
  2164. max_nr_running = 0;
  2165. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2166. struct rq *rq = cpu_rq(i);
  2167. if (*sd_idle && rq->nr_running)
  2168. *sd_idle = 0;
  2169. /* Bias balancing toward cpus of our domain */
  2170. if (local_group) {
  2171. if (idle_cpu(i) && !first_idle_cpu) {
  2172. first_idle_cpu = 1;
  2173. balance_cpu = i;
  2174. }
  2175. load = target_load(i, load_idx);
  2176. } else {
  2177. load = source_load(i, load_idx);
  2178. if (load > max_cpu_load) {
  2179. max_cpu_load = load;
  2180. max_nr_running = rq->nr_running;
  2181. }
  2182. if (min_cpu_load > load)
  2183. min_cpu_load = load;
  2184. }
  2185. sgs->group_load += load;
  2186. sgs->sum_nr_running += rq->nr_running;
  2187. sgs->sum_weighted_load += weighted_cpuload(i);
  2188. }
  2189. /*
  2190. * First idle cpu or the first cpu(busiest) in this sched group
  2191. * is eligible for doing load balancing at this and above
  2192. * domains. In the newly idle case, we will allow all the cpu's
  2193. * to do the newly idle load balance.
  2194. */
  2195. if (idle != CPU_NEWLY_IDLE && local_group) {
  2196. if (balance_cpu != this_cpu) {
  2197. *balance = 0;
  2198. return;
  2199. }
  2200. update_group_power(sd, this_cpu);
  2201. }
  2202. /* Adjust by relative CPU power of the group */
  2203. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2204. /*
  2205. * Consider the group unbalanced when the imbalance is larger
  2206. * than the average weight of two tasks.
  2207. *
  2208. * APZ: with cgroup the avg task weight can vary wildly and
  2209. * might not be a suitable number - should we keep a
  2210. * normalized nr_running number somewhere that negates
  2211. * the hierarchy?
  2212. */
  2213. if (sgs->sum_nr_running)
  2214. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2215. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
  2216. sgs->group_imb = 1;
  2217. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2218. if (!sgs->group_capacity)
  2219. sgs->group_capacity = fix_small_capacity(sd, group);
  2220. if (sgs->group_capacity > sgs->sum_nr_running)
  2221. sgs->group_has_capacity = 1;
  2222. }
  2223. /**
  2224. * update_sd_pick_busiest - return 1 on busiest group
  2225. * @sd: sched_domain whose statistics are to be checked
  2226. * @sds: sched_domain statistics
  2227. * @sg: sched_group candidate to be checked for being the busiest
  2228. * @sgs: sched_group statistics
  2229. * @this_cpu: the current cpu
  2230. *
  2231. * Determine if @sg is a busier group than the previously selected
  2232. * busiest group.
  2233. */
  2234. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2235. struct sd_lb_stats *sds,
  2236. struct sched_group *sg,
  2237. struct sg_lb_stats *sgs,
  2238. int this_cpu)
  2239. {
  2240. if (sgs->avg_load <= sds->max_load)
  2241. return false;
  2242. if (sgs->sum_nr_running > sgs->group_capacity)
  2243. return true;
  2244. if (sgs->group_imb)
  2245. return true;
  2246. /*
  2247. * ASYM_PACKING needs to move all the work to the lowest
  2248. * numbered CPUs in the group, therefore mark all groups
  2249. * higher than ourself as busy.
  2250. */
  2251. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2252. this_cpu < group_first_cpu(sg)) {
  2253. if (!sds->busiest)
  2254. return true;
  2255. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2256. return true;
  2257. }
  2258. return false;
  2259. }
  2260. /**
  2261. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2262. * @sd: sched_domain whose statistics are to be updated.
  2263. * @this_cpu: Cpu for which load balance is currently performed.
  2264. * @idle: Idle status of this_cpu
  2265. * @sd_idle: Idle status of the sched_domain containing sg.
  2266. * @cpus: Set of cpus considered for load balancing.
  2267. * @balance: Should we balance.
  2268. * @sds: variable to hold the statistics for this sched_domain.
  2269. */
  2270. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2271. enum cpu_idle_type idle, int *sd_idle,
  2272. const struct cpumask *cpus, int *balance,
  2273. struct sd_lb_stats *sds)
  2274. {
  2275. struct sched_domain *child = sd->child;
  2276. struct sched_group *sg = sd->groups;
  2277. struct sg_lb_stats sgs;
  2278. int load_idx, prefer_sibling = 0;
  2279. if (child && child->flags & SD_PREFER_SIBLING)
  2280. prefer_sibling = 1;
  2281. init_sd_power_savings_stats(sd, sds, idle);
  2282. load_idx = get_sd_load_idx(sd, idle);
  2283. do {
  2284. int local_group;
  2285. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2286. memset(&sgs, 0, sizeof(sgs));
  2287. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
  2288. local_group, cpus, balance, &sgs);
  2289. if (local_group && !(*balance))
  2290. return;
  2291. sds->total_load += sgs.group_load;
  2292. sds->total_pwr += sg->cpu_power;
  2293. /*
  2294. * In case the child domain prefers tasks go to siblings
  2295. * first, lower the sg capacity to one so that we'll try
  2296. * and move all the excess tasks away. We lower the capacity
  2297. * of a group only if the local group has the capacity to fit
  2298. * these excess tasks, i.e. nr_running < group_capacity. The
  2299. * extra check prevents the case where you always pull from the
  2300. * heaviest group when it is already under-utilized (possible
  2301. * with a large weight task outweighs the tasks on the system).
  2302. */
  2303. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2304. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2305. if (local_group) {
  2306. sds->this_load = sgs.avg_load;
  2307. sds->this = sg;
  2308. sds->this_nr_running = sgs.sum_nr_running;
  2309. sds->this_load_per_task = sgs.sum_weighted_load;
  2310. sds->this_has_capacity = sgs.group_has_capacity;
  2311. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2312. sds->max_load = sgs.avg_load;
  2313. sds->busiest = sg;
  2314. sds->busiest_nr_running = sgs.sum_nr_running;
  2315. sds->busiest_group_capacity = sgs.group_capacity;
  2316. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2317. sds->busiest_has_capacity = sgs.group_has_capacity;
  2318. sds->group_imb = sgs.group_imb;
  2319. }
  2320. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2321. sg = sg->next;
  2322. } while (sg != sd->groups);
  2323. }
  2324. int __weak arch_sd_sibling_asym_packing(void)
  2325. {
  2326. return 0*SD_ASYM_PACKING;
  2327. }
  2328. /**
  2329. * check_asym_packing - Check to see if the group is packed into the
  2330. * sched doman.
  2331. *
  2332. * This is primarily intended to used at the sibling level. Some
  2333. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2334. * case of POWER7, it can move to lower SMT modes only when higher
  2335. * threads are idle. When in lower SMT modes, the threads will
  2336. * perform better since they share less core resources. Hence when we
  2337. * have idle threads, we want them to be the higher ones.
  2338. *
  2339. * This packing function is run on idle threads. It checks to see if
  2340. * the busiest CPU in this domain (core in the P7 case) has a higher
  2341. * CPU number than the packing function is being run on. Here we are
  2342. * assuming lower CPU number will be equivalent to lower a SMT thread
  2343. * number.
  2344. *
  2345. * Returns 1 when packing is required and a task should be moved to
  2346. * this CPU. The amount of the imbalance is returned in *imbalance.
  2347. *
  2348. * @sd: The sched_domain whose packing is to be checked.
  2349. * @sds: Statistics of the sched_domain which is to be packed
  2350. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2351. * @imbalance: returns amount of imbalanced due to packing.
  2352. */
  2353. static int check_asym_packing(struct sched_domain *sd,
  2354. struct sd_lb_stats *sds,
  2355. int this_cpu, unsigned long *imbalance)
  2356. {
  2357. int busiest_cpu;
  2358. if (!(sd->flags & SD_ASYM_PACKING))
  2359. return 0;
  2360. if (!sds->busiest)
  2361. return 0;
  2362. busiest_cpu = group_first_cpu(sds->busiest);
  2363. if (this_cpu > busiest_cpu)
  2364. return 0;
  2365. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2366. SCHED_LOAD_SCALE);
  2367. return 1;
  2368. }
  2369. /**
  2370. * fix_small_imbalance - Calculate the minor imbalance that exists
  2371. * amongst the groups of a sched_domain, during
  2372. * load balancing.
  2373. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2374. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2375. * @imbalance: Variable to store the imbalance.
  2376. */
  2377. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2378. int this_cpu, unsigned long *imbalance)
  2379. {
  2380. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2381. unsigned int imbn = 2;
  2382. unsigned long scaled_busy_load_per_task;
  2383. if (sds->this_nr_running) {
  2384. sds->this_load_per_task /= sds->this_nr_running;
  2385. if (sds->busiest_load_per_task >
  2386. sds->this_load_per_task)
  2387. imbn = 1;
  2388. } else
  2389. sds->this_load_per_task =
  2390. cpu_avg_load_per_task(this_cpu);
  2391. scaled_busy_load_per_task = sds->busiest_load_per_task
  2392. * SCHED_LOAD_SCALE;
  2393. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2394. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2395. (scaled_busy_load_per_task * imbn)) {
  2396. *imbalance = sds->busiest_load_per_task;
  2397. return;
  2398. }
  2399. /*
  2400. * OK, we don't have enough imbalance to justify moving tasks,
  2401. * however we may be able to increase total CPU power used by
  2402. * moving them.
  2403. */
  2404. pwr_now += sds->busiest->cpu_power *
  2405. min(sds->busiest_load_per_task, sds->max_load);
  2406. pwr_now += sds->this->cpu_power *
  2407. min(sds->this_load_per_task, sds->this_load);
  2408. pwr_now /= SCHED_LOAD_SCALE;
  2409. /* Amount of load we'd subtract */
  2410. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2411. sds->busiest->cpu_power;
  2412. if (sds->max_load > tmp)
  2413. pwr_move += sds->busiest->cpu_power *
  2414. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2415. /* Amount of load we'd add */
  2416. if (sds->max_load * sds->busiest->cpu_power <
  2417. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2418. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2419. sds->this->cpu_power;
  2420. else
  2421. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2422. sds->this->cpu_power;
  2423. pwr_move += sds->this->cpu_power *
  2424. min(sds->this_load_per_task, sds->this_load + tmp);
  2425. pwr_move /= SCHED_LOAD_SCALE;
  2426. /* Move if we gain throughput */
  2427. if (pwr_move > pwr_now)
  2428. *imbalance = sds->busiest_load_per_task;
  2429. }
  2430. /**
  2431. * calculate_imbalance - Calculate the amount of imbalance present within the
  2432. * groups of a given sched_domain during load balance.
  2433. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2434. * @this_cpu: Cpu for which currently load balance is being performed.
  2435. * @imbalance: The variable to store the imbalance.
  2436. */
  2437. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2438. unsigned long *imbalance)
  2439. {
  2440. unsigned long max_pull, load_above_capacity = ~0UL;
  2441. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2442. if (sds->group_imb) {
  2443. sds->busiest_load_per_task =
  2444. min(sds->busiest_load_per_task, sds->avg_load);
  2445. }
  2446. /*
  2447. * In the presence of smp nice balancing, certain scenarios can have
  2448. * max load less than avg load(as we skip the groups at or below
  2449. * its cpu_power, while calculating max_load..)
  2450. */
  2451. if (sds->max_load < sds->avg_load) {
  2452. *imbalance = 0;
  2453. return fix_small_imbalance(sds, this_cpu, imbalance);
  2454. }
  2455. if (!sds->group_imb) {
  2456. /*
  2457. * Don't want to pull so many tasks that a group would go idle.
  2458. */
  2459. load_above_capacity = (sds->busiest_nr_running -
  2460. sds->busiest_group_capacity);
  2461. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2462. load_above_capacity /= sds->busiest->cpu_power;
  2463. }
  2464. /*
  2465. * We're trying to get all the cpus to the average_load, so we don't
  2466. * want to push ourselves above the average load, nor do we wish to
  2467. * reduce the max loaded cpu below the average load. At the same time,
  2468. * we also don't want to reduce the group load below the group capacity
  2469. * (so that we can implement power-savings policies etc). Thus we look
  2470. * for the minimum possible imbalance.
  2471. * Be careful of negative numbers as they'll appear as very large values
  2472. * with unsigned longs.
  2473. */
  2474. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2475. /* How much load to actually move to equalise the imbalance */
  2476. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2477. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2478. / SCHED_LOAD_SCALE;
  2479. /*
  2480. * if *imbalance is less than the average load per runnable task
  2481. * there is no gaurantee that any tasks will be moved so we'll have
  2482. * a think about bumping its value to force at least one task to be
  2483. * moved
  2484. */
  2485. if (*imbalance < sds->busiest_load_per_task)
  2486. return fix_small_imbalance(sds, this_cpu, imbalance);
  2487. }
  2488. /******* find_busiest_group() helpers end here *********************/
  2489. /**
  2490. * find_busiest_group - Returns the busiest group within the sched_domain
  2491. * if there is an imbalance. If there isn't an imbalance, and
  2492. * the user has opted for power-savings, it returns a group whose
  2493. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2494. * such a group exists.
  2495. *
  2496. * Also calculates the amount of weighted load which should be moved
  2497. * to restore balance.
  2498. *
  2499. * @sd: The sched_domain whose busiest group is to be returned.
  2500. * @this_cpu: The cpu for which load balancing is currently being performed.
  2501. * @imbalance: Variable which stores amount of weighted load which should
  2502. * be moved to restore balance/put a group to idle.
  2503. * @idle: The idle status of this_cpu.
  2504. * @sd_idle: The idleness of sd
  2505. * @cpus: The set of CPUs under consideration for load-balancing.
  2506. * @balance: Pointer to a variable indicating if this_cpu
  2507. * is the appropriate cpu to perform load balancing at this_level.
  2508. *
  2509. * Returns: - the busiest group if imbalance exists.
  2510. * - If no imbalance and user has opted for power-savings balance,
  2511. * return the least loaded group whose CPUs can be
  2512. * put to idle by rebalancing its tasks onto our group.
  2513. */
  2514. static struct sched_group *
  2515. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2516. unsigned long *imbalance, enum cpu_idle_type idle,
  2517. int *sd_idle, const struct cpumask *cpus, int *balance)
  2518. {
  2519. struct sd_lb_stats sds;
  2520. memset(&sds, 0, sizeof(sds));
  2521. /*
  2522. * Compute the various statistics relavent for load balancing at
  2523. * this level.
  2524. */
  2525. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2526. balance, &sds);
  2527. /* Cases where imbalance does not exist from POV of this_cpu */
  2528. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2529. * at this level.
  2530. * 2) There is no busy sibling group to pull from.
  2531. * 3) This group is the busiest group.
  2532. * 4) This group is more busy than the avg busieness at this
  2533. * sched_domain.
  2534. * 5) The imbalance is within the specified limit.
  2535. *
  2536. * Note: when doing newidle balance, if the local group has excess
  2537. * capacity (i.e. nr_running < group_capacity) and the busiest group
  2538. * does not have any capacity, we force a load balance to pull tasks
  2539. * to the local group. In this case, we skip past checks 3, 4 and 5.
  2540. */
  2541. if (!(*balance))
  2542. goto ret;
  2543. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2544. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2545. return sds.busiest;
  2546. if (!sds.busiest || sds.busiest_nr_running == 0)
  2547. goto out_balanced;
  2548. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2549. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2550. !sds.busiest_has_capacity)
  2551. goto force_balance;
  2552. if (sds.this_load >= sds.max_load)
  2553. goto out_balanced;
  2554. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2555. if (sds.this_load >= sds.avg_load)
  2556. goto out_balanced;
  2557. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2558. goto out_balanced;
  2559. force_balance:
  2560. /* Looks like there is an imbalance. Compute it */
  2561. calculate_imbalance(&sds, this_cpu, imbalance);
  2562. return sds.busiest;
  2563. out_balanced:
  2564. /*
  2565. * There is no obvious imbalance. But check if we can do some balancing
  2566. * to save power.
  2567. */
  2568. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2569. return sds.busiest;
  2570. ret:
  2571. *imbalance = 0;
  2572. return NULL;
  2573. }
  2574. /*
  2575. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2576. */
  2577. static struct rq *
  2578. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2579. enum cpu_idle_type idle, unsigned long imbalance,
  2580. const struct cpumask *cpus)
  2581. {
  2582. struct rq *busiest = NULL, *rq;
  2583. unsigned long max_load = 0;
  2584. int i;
  2585. for_each_cpu(i, sched_group_cpus(group)) {
  2586. unsigned long power = power_of(i);
  2587. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2588. unsigned long wl;
  2589. if (!capacity)
  2590. capacity = fix_small_capacity(sd, group);
  2591. if (!cpumask_test_cpu(i, cpus))
  2592. continue;
  2593. rq = cpu_rq(i);
  2594. wl = weighted_cpuload(i);
  2595. /*
  2596. * When comparing with imbalance, use weighted_cpuload()
  2597. * which is not scaled with the cpu power.
  2598. */
  2599. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2600. continue;
  2601. /*
  2602. * For the load comparisons with the other cpu's, consider
  2603. * the weighted_cpuload() scaled with the cpu power, so that
  2604. * the load can be moved away from the cpu that is potentially
  2605. * running at a lower capacity.
  2606. */
  2607. wl = (wl * SCHED_LOAD_SCALE) / power;
  2608. if (wl > max_load) {
  2609. max_load = wl;
  2610. busiest = rq;
  2611. }
  2612. }
  2613. return busiest;
  2614. }
  2615. /*
  2616. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2617. * so long as it is large enough.
  2618. */
  2619. #define MAX_PINNED_INTERVAL 512
  2620. /* Working cpumask for load_balance and load_balance_newidle. */
  2621. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2622. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
  2623. int busiest_cpu, int this_cpu)
  2624. {
  2625. if (idle == CPU_NEWLY_IDLE) {
  2626. /*
  2627. * ASYM_PACKING needs to force migrate tasks from busy but
  2628. * higher numbered CPUs in order to pack all tasks in the
  2629. * lowest numbered CPUs.
  2630. */
  2631. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2632. return 1;
  2633. /*
  2634. * The only task running in a non-idle cpu can be moved to this
  2635. * cpu in an attempt to completely freeup the other CPU
  2636. * package.
  2637. *
  2638. * The package power saving logic comes from
  2639. * find_busiest_group(). If there are no imbalance, then
  2640. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2641. * f_b_g() will select a group from which a running task may be
  2642. * pulled to this cpu in order to make the other package idle.
  2643. * If there is no opportunity to make a package idle and if
  2644. * there are no imbalance, then f_b_g() will return NULL and no
  2645. * action will be taken in load_balance_newidle().
  2646. *
  2647. * Under normal task pull operation due to imbalance, there
  2648. * will be more than one task in the source run queue and
  2649. * move_tasks() will succeed. ld_moved will be true and this
  2650. * active balance code will not be triggered.
  2651. */
  2652. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2653. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2654. return 0;
  2655. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2656. return 0;
  2657. }
  2658. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2659. }
  2660. static int active_load_balance_cpu_stop(void *data);
  2661. /*
  2662. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2663. * tasks if there is an imbalance.
  2664. */
  2665. static int load_balance(int this_cpu, struct rq *this_rq,
  2666. struct sched_domain *sd, enum cpu_idle_type idle,
  2667. int *balance)
  2668. {
  2669. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2670. struct sched_group *group;
  2671. unsigned long imbalance;
  2672. struct rq *busiest;
  2673. unsigned long flags;
  2674. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2675. cpumask_copy(cpus, cpu_active_mask);
  2676. /*
  2677. * When power savings policy is enabled for the parent domain, idle
  2678. * sibling can pick up load irrespective of busy siblings. In this case,
  2679. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2680. * portraying it as CPU_NOT_IDLE.
  2681. */
  2682. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2683. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2684. sd_idle = 1;
  2685. schedstat_inc(sd, lb_count[idle]);
  2686. redo:
  2687. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2688. cpus, balance);
  2689. if (*balance == 0)
  2690. goto out_balanced;
  2691. if (!group) {
  2692. schedstat_inc(sd, lb_nobusyg[idle]);
  2693. goto out_balanced;
  2694. }
  2695. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2696. if (!busiest) {
  2697. schedstat_inc(sd, lb_nobusyq[idle]);
  2698. goto out_balanced;
  2699. }
  2700. BUG_ON(busiest == this_rq);
  2701. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2702. ld_moved = 0;
  2703. if (busiest->nr_running > 1) {
  2704. /*
  2705. * Attempt to move tasks. If find_busiest_group has found
  2706. * an imbalance but busiest->nr_running <= 1, the group is
  2707. * still unbalanced. ld_moved simply stays zero, so it is
  2708. * correctly treated as an imbalance.
  2709. */
  2710. local_irq_save(flags);
  2711. double_rq_lock(this_rq, busiest);
  2712. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2713. imbalance, sd, idle, &all_pinned);
  2714. double_rq_unlock(this_rq, busiest);
  2715. local_irq_restore(flags);
  2716. /*
  2717. * some other cpu did the load balance for us.
  2718. */
  2719. if (ld_moved && this_cpu != smp_processor_id())
  2720. resched_cpu(this_cpu);
  2721. /* All tasks on this runqueue were pinned by CPU affinity */
  2722. if (unlikely(all_pinned)) {
  2723. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2724. if (!cpumask_empty(cpus))
  2725. goto redo;
  2726. goto out_balanced;
  2727. }
  2728. }
  2729. if (!ld_moved) {
  2730. schedstat_inc(sd, lb_failed[idle]);
  2731. /*
  2732. * Increment the failure counter only on periodic balance.
  2733. * We do not want newidle balance, which can be very
  2734. * frequent, pollute the failure counter causing
  2735. * excessive cache_hot migrations and active balances.
  2736. */
  2737. if (idle != CPU_NEWLY_IDLE)
  2738. sd->nr_balance_failed++;
  2739. if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
  2740. this_cpu)) {
  2741. raw_spin_lock_irqsave(&busiest->lock, flags);
  2742. /* don't kick the active_load_balance_cpu_stop,
  2743. * if the curr task on busiest cpu can't be
  2744. * moved to this_cpu
  2745. */
  2746. if (!cpumask_test_cpu(this_cpu,
  2747. &busiest->curr->cpus_allowed)) {
  2748. raw_spin_unlock_irqrestore(&busiest->lock,
  2749. flags);
  2750. all_pinned = 1;
  2751. goto out_one_pinned;
  2752. }
  2753. /*
  2754. * ->active_balance synchronizes accesses to
  2755. * ->active_balance_work. Once set, it's cleared
  2756. * only after active load balance is finished.
  2757. */
  2758. if (!busiest->active_balance) {
  2759. busiest->active_balance = 1;
  2760. busiest->push_cpu = this_cpu;
  2761. active_balance = 1;
  2762. }
  2763. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2764. if (active_balance)
  2765. stop_one_cpu_nowait(cpu_of(busiest),
  2766. active_load_balance_cpu_stop, busiest,
  2767. &busiest->active_balance_work);
  2768. /*
  2769. * We've kicked active balancing, reset the failure
  2770. * counter.
  2771. */
  2772. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2773. }
  2774. } else
  2775. sd->nr_balance_failed = 0;
  2776. if (likely(!active_balance)) {
  2777. /* We were unbalanced, so reset the balancing interval */
  2778. sd->balance_interval = sd->min_interval;
  2779. } else {
  2780. /*
  2781. * If we've begun active balancing, start to back off. This
  2782. * case may not be covered by the all_pinned logic if there
  2783. * is only 1 task on the busy runqueue (because we don't call
  2784. * move_tasks).
  2785. */
  2786. if (sd->balance_interval < sd->max_interval)
  2787. sd->balance_interval *= 2;
  2788. }
  2789. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2790. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2791. ld_moved = -1;
  2792. goto out;
  2793. out_balanced:
  2794. schedstat_inc(sd, lb_balanced[idle]);
  2795. sd->nr_balance_failed = 0;
  2796. out_one_pinned:
  2797. /* tune up the balancing interval */
  2798. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2799. (sd->balance_interval < sd->max_interval))
  2800. sd->balance_interval *= 2;
  2801. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2802. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2803. ld_moved = -1;
  2804. else
  2805. ld_moved = 0;
  2806. out:
  2807. return ld_moved;
  2808. }
  2809. /*
  2810. * idle_balance is called by schedule() if this_cpu is about to become
  2811. * idle. Attempts to pull tasks from other CPUs.
  2812. */
  2813. static void idle_balance(int this_cpu, struct rq *this_rq)
  2814. {
  2815. struct sched_domain *sd;
  2816. int pulled_task = 0;
  2817. unsigned long next_balance = jiffies + HZ;
  2818. this_rq->idle_stamp = this_rq->clock;
  2819. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2820. return;
  2821. /*
  2822. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2823. */
  2824. raw_spin_unlock(&this_rq->lock);
  2825. update_shares(this_cpu);
  2826. for_each_domain(this_cpu, sd) {
  2827. unsigned long interval;
  2828. int balance = 1;
  2829. if (!(sd->flags & SD_LOAD_BALANCE))
  2830. continue;
  2831. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2832. /* If we've pulled tasks over stop searching: */
  2833. pulled_task = load_balance(this_cpu, this_rq,
  2834. sd, CPU_NEWLY_IDLE, &balance);
  2835. }
  2836. interval = msecs_to_jiffies(sd->balance_interval);
  2837. if (time_after(next_balance, sd->last_balance + interval))
  2838. next_balance = sd->last_balance + interval;
  2839. if (pulled_task)
  2840. break;
  2841. }
  2842. raw_spin_lock(&this_rq->lock);
  2843. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2844. /*
  2845. * We are going idle. next_balance may be set based on
  2846. * a busy processor. So reset next_balance.
  2847. */
  2848. this_rq->next_balance = next_balance;
  2849. }
  2850. }
  2851. /*
  2852. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2853. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2854. * least 1 task to be running on each physical CPU where possible, and
  2855. * avoids physical / logical imbalances.
  2856. */
  2857. static int active_load_balance_cpu_stop(void *data)
  2858. {
  2859. struct rq *busiest_rq = data;
  2860. int busiest_cpu = cpu_of(busiest_rq);
  2861. int target_cpu = busiest_rq->push_cpu;
  2862. struct rq *target_rq = cpu_rq(target_cpu);
  2863. struct sched_domain *sd;
  2864. raw_spin_lock_irq(&busiest_rq->lock);
  2865. /* make sure the requested cpu hasn't gone down in the meantime */
  2866. if (unlikely(busiest_cpu != smp_processor_id() ||
  2867. !busiest_rq->active_balance))
  2868. goto out_unlock;
  2869. /* Is there any task to move? */
  2870. if (busiest_rq->nr_running <= 1)
  2871. goto out_unlock;
  2872. /*
  2873. * This condition is "impossible", if it occurs
  2874. * we need to fix it. Originally reported by
  2875. * Bjorn Helgaas on a 128-cpu setup.
  2876. */
  2877. BUG_ON(busiest_rq == target_rq);
  2878. /* move a task from busiest_rq to target_rq */
  2879. double_lock_balance(busiest_rq, target_rq);
  2880. /* Search for an sd spanning us and the target CPU. */
  2881. for_each_domain(target_cpu, sd) {
  2882. if ((sd->flags & SD_LOAD_BALANCE) &&
  2883. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2884. break;
  2885. }
  2886. if (likely(sd)) {
  2887. schedstat_inc(sd, alb_count);
  2888. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2889. sd, CPU_IDLE))
  2890. schedstat_inc(sd, alb_pushed);
  2891. else
  2892. schedstat_inc(sd, alb_failed);
  2893. }
  2894. double_unlock_balance(busiest_rq, target_rq);
  2895. out_unlock:
  2896. busiest_rq->active_balance = 0;
  2897. raw_spin_unlock_irq(&busiest_rq->lock);
  2898. return 0;
  2899. }
  2900. #ifdef CONFIG_NO_HZ
  2901. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2902. static void trigger_sched_softirq(void *data)
  2903. {
  2904. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2905. }
  2906. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  2907. {
  2908. csd->func = trigger_sched_softirq;
  2909. csd->info = NULL;
  2910. csd->flags = 0;
  2911. csd->priv = 0;
  2912. }
  2913. /*
  2914. * idle load balancing details
  2915. * - One of the idle CPUs nominates itself as idle load_balancer, while
  2916. * entering idle.
  2917. * - This idle load balancer CPU will also go into tickless mode when
  2918. * it is idle, just like all other idle CPUs
  2919. * - When one of the busy CPUs notice that there may be an idle rebalancing
  2920. * needed, they will kick the idle load balancer, which then does idle
  2921. * load balancing for all the idle CPUs.
  2922. */
  2923. static struct {
  2924. atomic_t load_balancer;
  2925. atomic_t first_pick_cpu;
  2926. atomic_t second_pick_cpu;
  2927. cpumask_var_t idle_cpus_mask;
  2928. cpumask_var_t grp_idle_mask;
  2929. unsigned long next_balance; /* in jiffy units */
  2930. } nohz ____cacheline_aligned;
  2931. int get_nohz_load_balancer(void)
  2932. {
  2933. return atomic_read(&nohz.load_balancer);
  2934. }
  2935. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2936. /**
  2937. * lowest_flag_domain - Return lowest sched_domain containing flag.
  2938. * @cpu: The cpu whose lowest level of sched domain is to
  2939. * be returned.
  2940. * @flag: The flag to check for the lowest sched_domain
  2941. * for the given cpu.
  2942. *
  2943. * Returns the lowest sched_domain of a cpu which contains the given flag.
  2944. */
  2945. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  2946. {
  2947. struct sched_domain *sd;
  2948. for_each_domain(cpu, sd)
  2949. if (sd && (sd->flags & flag))
  2950. break;
  2951. return sd;
  2952. }
  2953. /**
  2954. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  2955. * @cpu: The cpu whose domains we're iterating over.
  2956. * @sd: variable holding the value of the power_savings_sd
  2957. * for cpu.
  2958. * @flag: The flag to filter the sched_domains to be iterated.
  2959. *
  2960. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  2961. * set, starting from the lowest sched_domain to the highest.
  2962. */
  2963. #define for_each_flag_domain(cpu, sd, flag) \
  2964. for (sd = lowest_flag_domain(cpu, flag); \
  2965. (sd && (sd->flags & flag)); sd = sd->parent)
  2966. /**
  2967. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  2968. * @ilb_group: group to be checked for semi-idleness
  2969. *
  2970. * Returns: 1 if the group is semi-idle. 0 otherwise.
  2971. *
  2972. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  2973. * and atleast one non-idle CPU. This helper function checks if the given
  2974. * sched_group is semi-idle or not.
  2975. */
  2976. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  2977. {
  2978. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  2979. sched_group_cpus(ilb_group));
  2980. /*
  2981. * A sched_group is semi-idle when it has atleast one busy cpu
  2982. * and atleast one idle cpu.
  2983. */
  2984. if (cpumask_empty(nohz.grp_idle_mask))
  2985. return 0;
  2986. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  2987. return 0;
  2988. return 1;
  2989. }
  2990. /**
  2991. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  2992. * @cpu: The cpu which is nominating a new idle_load_balancer.
  2993. *
  2994. * Returns: Returns the id of the idle load balancer if it exists,
  2995. * Else, returns >= nr_cpu_ids.
  2996. *
  2997. * This algorithm picks the idle load balancer such that it belongs to a
  2998. * semi-idle powersavings sched_domain. The idea is to try and avoid
  2999. * completely idle packages/cores just for the purpose of idle load balancing
  3000. * when there are other idle cpu's which are better suited for that job.
  3001. */
  3002. static int find_new_ilb(int cpu)
  3003. {
  3004. struct sched_domain *sd;
  3005. struct sched_group *ilb_group;
  3006. /*
  3007. * Have idle load balancer selection from semi-idle packages only
  3008. * when power-aware load balancing is enabled
  3009. */
  3010. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3011. goto out_done;
  3012. /*
  3013. * Optimize for the case when we have no idle CPUs or only one
  3014. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3015. */
  3016. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3017. goto out_done;
  3018. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3019. ilb_group = sd->groups;
  3020. do {
  3021. if (is_semi_idle_group(ilb_group))
  3022. return cpumask_first(nohz.grp_idle_mask);
  3023. ilb_group = ilb_group->next;
  3024. } while (ilb_group != sd->groups);
  3025. }
  3026. out_done:
  3027. return nr_cpu_ids;
  3028. }
  3029. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3030. static inline int find_new_ilb(int call_cpu)
  3031. {
  3032. return nr_cpu_ids;
  3033. }
  3034. #endif
  3035. /*
  3036. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3037. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3038. * CPU (if there is one).
  3039. */
  3040. static void nohz_balancer_kick(int cpu)
  3041. {
  3042. int ilb_cpu;
  3043. nohz.next_balance++;
  3044. ilb_cpu = get_nohz_load_balancer();
  3045. if (ilb_cpu >= nr_cpu_ids) {
  3046. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3047. if (ilb_cpu >= nr_cpu_ids)
  3048. return;
  3049. }
  3050. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3051. struct call_single_data *cp;
  3052. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3053. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3054. __smp_call_function_single(ilb_cpu, cp, 0);
  3055. }
  3056. return;
  3057. }
  3058. /*
  3059. * This routine will try to nominate the ilb (idle load balancing)
  3060. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3061. * load balancing on behalf of all those cpus.
  3062. *
  3063. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3064. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3065. * idle load balancing by kicking one of the idle CPUs.
  3066. *
  3067. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3068. * ilb owner CPU in future (when there is a need for idle load balancing on
  3069. * behalf of all idle CPUs).
  3070. */
  3071. void select_nohz_load_balancer(int stop_tick)
  3072. {
  3073. int cpu = smp_processor_id();
  3074. if (stop_tick) {
  3075. if (!cpu_active(cpu)) {
  3076. if (atomic_read(&nohz.load_balancer) != cpu)
  3077. return;
  3078. /*
  3079. * If we are going offline and still the leader,
  3080. * give up!
  3081. */
  3082. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3083. nr_cpu_ids) != cpu)
  3084. BUG();
  3085. return;
  3086. }
  3087. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3088. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3089. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3090. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3091. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3092. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3093. int new_ilb;
  3094. /* make me the ilb owner */
  3095. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3096. cpu) != nr_cpu_ids)
  3097. return;
  3098. /*
  3099. * Check to see if there is a more power-efficient
  3100. * ilb.
  3101. */
  3102. new_ilb = find_new_ilb(cpu);
  3103. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3104. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3105. resched_cpu(new_ilb);
  3106. return;
  3107. }
  3108. return;
  3109. }
  3110. } else {
  3111. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3112. return;
  3113. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3114. if (atomic_read(&nohz.load_balancer) == cpu)
  3115. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3116. nr_cpu_ids) != cpu)
  3117. BUG();
  3118. }
  3119. return;
  3120. }
  3121. #endif
  3122. static DEFINE_SPINLOCK(balancing);
  3123. /*
  3124. * It checks each scheduling domain to see if it is due to be balanced,
  3125. * and initiates a balancing operation if so.
  3126. *
  3127. * Balancing parameters are set up in arch_init_sched_domains.
  3128. */
  3129. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3130. {
  3131. int balance = 1;
  3132. struct rq *rq = cpu_rq(cpu);
  3133. unsigned long interval;
  3134. struct sched_domain *sd;
  3135. /* Earliest time when we have to do rebalance again */
  3136. unsigned long next_balance = jiffies + 60*HZ;
  3137. int update_next_balance = 0;
  3138. int need_serialize;
  3139. update_shares(cpu);
  3140. for_each_domain(cpu, sd) {
  3141. if (!(sd->flags & SD_LOAD_BALANCE))
  3142. continue;
  3143. interval = sd->balance_interval;
  3144. if (idle != CPU_IDLE)
  3145. interval *= sd->busy_factor;
  3146. /* scale ms to jiffies */
  3147. interval = msecs_to_jiffies(interval);
  3148. if (unlikely(!interval))
  3149. interval = 1;
  3150. if (interval > HZ*NR_CPUS/10)
  3151. interval = HZ*NR_CPUS/10;
  3152. need_serialize = sd->flags & SD_SERIALIZE;
  3153. if (need_serialize) {
  3154. if (!spin_trylock(&balancing))
  3155. goto out;
  3156. }
  3157. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3158. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3159. /*
  3160. * We've pulled tasks over so either we're no
  3161. * longer idle, or one of our SMT siblings is
  3162. * not idle.
  3163. */
  3164. idle = CPU_NOT_IDLE;
  3165. }
  3166. sd->last_balance = jiffies;
  3167. }
  3168. if (need_serialize)
  3169. spin_unlock(&balancing);
  3170. out:
  3171. if (time_after(next_balance, sd->last_balance + interval)) {
  3172. next_balance = sd->last_balance + interval;
  3173. update_next_balance = 1;
  3174. }
  3175. /*
  3176. * Stop the load balance at this level. There is another
  3177. * CPU in our sched group which is doing load balancing more
  3178. * actively.
  3179. */
  3180. if (!balance)
  3181. break;
  3182. }
  3183. /*
  3184. * next_balance will be updated only when there is a need.
  3185. * When the cpu is attached to null domain for ex, it will not be
  3186. * updated.
  3187. */
  3188. if (likely(update_next_balance))
  3189. rq->next_balance = next_balance;
  3190. }
  3191. #ifdef CONFIG_NO_HZ
  3192. /*
  3193. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3194. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3195. */
  3196. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3197. {
  3198. struct rq *this_rq = cpu_rq(this_cpu);
  3199. struct rq *rq;
  3200. int balance_cpu;
  3201. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3202. return;
  3203. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3204. if (balance_cpu == this_cpu)
  3205. continue;
  3206. /*
  3207. * If this cpu gets work to do, stop the load balancing
  3208. * work being done for other cpus. Next load
  3209. * balancing owner will pick it up.
  3210. */
  3211. if (need_resched()) {
  3212. this_rq->nohz_balance_kick = 0;
  3213. break;
  3214. }
  3215. raw_spin_lock_irq(&this_rq->lock);
  3216. update_rq_clock(this_rq);
  3217. update_cpu_load(this_rq);
  3218. raw_spin_unlock_irq(&this_rq->lock);
  3219. rebalance_domains(balance_cpu, CPU_IDLE);
  3220. rq = cpu_rq(balance_cpu);
  3221. if (time_after(this_rq->next_balance, rq->next_balance))
  3222. this_rq->next_balance = rq->next_balance;
  3223. }
  3224. nohz.next_balance = this_rq->next_balance;
  3225. this_rq->nohz_balance_kick = 0;
  3226. }
  3227. /*
  3228. * Current heuristic for kicking the idle load balancer
  3229. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3230. * idle load balancer when it has more than one process active. This
  3231. * eliminates the need for idle load balancing altogether when we have
  3232. * only one running process in the system (common case).
  3233. * - If there are more than one busy CPU, idle load balancer may have
  3234. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3235. * SMT or core siblings and can run better if they move to different
  3236. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3237. * which will kick idle load balancer as soon as it has any load.
  3238. */
  3239. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3240. {
  3241. unsigned long now = jiffies;
  3242. int ret;
  3243. int first_pick_cpu, second_pick_cpu;
  3244. if (time_before(now, nohz.next_balance))
  3245. return 0;
  3246. if (rq->idle_at_tick)
  3247. return 0;
  3248. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3249. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3250. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3251. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3252. return 0;
  3253. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3254. if (ret == nr_cpu_ids || ret == cpu) {
  3255. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3256. if (rq->nr_running > 1)
  3257. return 1;
  3258. } else {
  3259. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3260. if (ret == nr_cpu_ids || ret == cpu) {
  3261. if (rq->nr_running)
  3262. return 1;
  3263. }
  3264. }
  3265. return 0;
  3266. }
  3267. #else
  3268. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3269. #endif
  3270. /*
  3271. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3272. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3273. */
  3274. static void run_rebalance_domains(struct softirq_action *h)
  3275. {
  3276. int this_cpu = smp_processor_id();
  3277. struct rq *this_rq = cpu_rq(this_cpu);
  3278. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3279. CPU_IDLE : CPU_NOT_IDLE;
  3280. rebalance_domains(this_cpu, idle);
  3281. /*
  3282. * If this cpu has a pending nohz_balance_kick, then do the
  3283. * balancing on behalf of the other idle cpus whose ticks are
  3284. * stopped.
  3285. */
  3286. nohz_idle_balance(this_cpu, idle);
  3287. }
  3288. static inline int on_null_domain(int cpu)
  3289. {
  3290. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3291. }
  3292. /*
  3293. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3294. */
  3295. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3296. {
  3297. /* Don't need to rebalance while attached to NULL domain */
  3298. if (time_after_eq(jiffies, rq->next_balance) &&
  3299. likely(!on_null_domain(cpu)))
  3300. raise_softirq(SCHED_SOFTIRQ);
  3301. #ifdef CONFIG_NO_HZ
  3302. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3303. nohz_balancer_kick(cpu);
  3304. #endif
  3305. }
  3306. static void rq_online_fair(struct rq *rq)
  3307. {
  3308. update_sysctl();
  3309. }
  3310. static void rq_offline_fair(struct rq *rq)
  3311. {
  3312. update_sysctl();
  3313. }
  3314. #else /* CONFIG_SMP */
  3315. /*
  3316. * on UP we do not need to balance between CPUs:
  3317. */
  3318. static inline void idle_balance(int cpu, struct rq *rq)
  3319. {
  3320. }
  3321. #endif /* CONFIG_SMP */
  3322. /*
  3323. * scheduler tick hitting a task of our scheduling class:
  3324. */
  3325. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3326. {
  3327. struct cfs_rq *cfs_rq;
  3328. struct sched_entity *se = &curr->se;
  3329. for_each_sched_entity(se) {
  3330. cfs_rq = cfs_rq_of(se);
  3331. entity_tick(cfs_rq, se, queued);
  3332. }
  3333. }
  3334. /*
  3335. * called on fork with the child task as argument from the parent's context
  3336. * - child not yet on the tasklist
  3337. * - preemption disabled
  3338. */
  3339. static void task_fork_fair(struct task_struct *p)
  3340. {
  3341. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3342. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3343. int this_cpu = smp_processor_id();
  3344. struct rq *rq = this_rq();
  3345. unsigned long flags;
  3346. raw_spin_lock_irqsave(&rq->lock, flags);
  3347. update_rq_clock(rq);
  3348. if (unlikely(task_cpu(p) != this_cpu)) {
  3349. rcu_read_lock();
  3350. __set_task_cpu(p, this_cpu);
  3351. rcu_read_unlock();
  3352. }
  3353. update_curr(cfs_rq);
  3354. if (curr)
  3355. se->vruntime = curr->vruntime;
  3356. place_entity(cfs_rq, se, 1);
  3357. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3358. /*
  3359. * Upon rescheduling, sched_class::put_prev_task() will place
  3360. * 'current' within the tree based on its new key value.
  3361. */
  3362. swap(curr->vruntime, se->vruntime);
  3363. resched_task(rq->curr);
  3364. }
  3365. se->vruntime -= cfs_rq->min_vruntime;
  3366. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3367. }
  3368. /*
  3369. * Priority of the task has changed. Check to see if we preempt
  3370. * the current task.
  3371. */
  3372. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  3373. int oldprio, int running)
  3374. {
  3375. /*
  3376. * Reschedule if we are currently running on this runqueue and
  3377. * our priority decreased, or if we are not currently running on
  3378. * this runqueue and our priority is higher than the current's
  3379. */
  3380. if (running) {
  3381. if (p->prio > oldprio)
  3382. resched_task(rq->curr);
  3383. } else
  3384. check_preempt_curr(rq, p, 0);
  3385. }
  3386. /*
  3387. * We switched to the sched_fair class.
  3388. */
  3389. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3390. int running)
  3391. {
  3392. /*
  3393. * We were most likely switched from sched_rt, so
  3394. * kick off the schedule if running, otherwise just see
  3395. * if we can still preempt the current task.
  3396. */
  3397. if (running)
  3398. resched_task(rq->curr);
  3399. else
  3400. check_preempt_curr(rq, p, 0);
  3401. }
  3402. /* Account for a task changing its policy or group.
  3403. *
  3404. * This routine is mostly called to set cfs_rq->curr field when a task
  3405. * migrates between groups/classes.
  3406. */
  3407. static void set_curr_task_fair(struct rq *rq)
  3408. {
  3409. struct sched_entity *se = &rq->curr->se;
  3410. for_each_sched_entity(se)
  3411. set_next_entity(cfs_rq_of(se), se);
  3412. }
  3413. #ifdef CONFIG_FAIR_GROUP_SCHED
  3414. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3415. {
  3416. /*
  3417. * If the task was not on the rq at the time of this cgroup movement
  3418. * it must have been asleep, sleeping tasks keep their ->vruntime
  3419. * absolute on their old rq until wakeup (needed for the fair sleeper
  3420. * bonus in place_entity()).
  3421. *
  3422. * If it was on the rq, we've just 'preempted' it, which does convert
  3423. * ->vruntime to a relative base.
  3424. *
  3425. * Make sure both cases convert their relative position when migrating
  3426. * to another cgroup's rq. This does somewhat interfere with the
  3427. * fair sleeper stuff for the first placement, but who cares.
  3428. */
  3429. if (!on_rq)
  3430. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3431. set_task_rq(p, task_cpu(p));
  3432. if (!on_rq)
  3433. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3434. }
  3435. #endif
  3436. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3437. {
  3438. struct sched_entity *se = &task->se;
  3439. unsigned int rr_interval = 0;
  3440. /*
  3441. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3442. * idle runqueue:
  3443. */
  3444. if (rq->cfs.load.weight)
  3445. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3446. return rr_interval;
  3447. }
  3448. /*
  3449. * All the scheduling class methods:
  3450. */
  3451. static const struct sched_class fair_sched_class = {
  3452. .next = &idle_sched_class,
  3453. .enqueue_task = enqueue_task_fair,
  3454. .dequeue_task = dequeue_task_fair,
  3455. .yield_task = yield_task_fair,
  3456. .check_preempt_curr = check_preempt_wakeup,
  3457. .pick_next_task = pick_next_task_fair,
  3458. .put_prev_task = put_prev_task_fair,
  3459. #ifdef CONFIG_SMP
  3460. .select_task_rq = select_task_rq_fair,
  3461. .rq_online = rq_online_fair,
  3462. .rq_offline = rq_offline_fair,
  3463. .task_waking = task_waking_fair,
  3464. #endif
  3465. .set_curr_task = set_curr_task_fair,
  3466. .task_tick = task_tick_fair,
  3467. .task_fork = task_fork_fair,
  3468. .prio_changed = prio_changed_fair,
  3469. .switched_to = switched_to_fair,
  3470. .get_rr_interval = get_rr_interval_fair,
  3471. #ifdef CONFIG_FAIR_GROUP_SCHED
  3472. .task_move_group = task_move_group_fair,
  3473. #endif
  3474. };
  3475. #ifdef CONFIG_SCHED_DEBUG
  3476. static void print_cfs_stats(struct seq_file *m, int cpu)
  3477. {
  3478. struct cfs_rq *cfs_rq;
  3479. rcu_read_lock();
  3480. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3481. print_cfs_rq(m, cpu, cfs_rq);
  3482. rcu_read_unlock();
  3483. }
  3484. #endif