cpu.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583
  1. /* CPU control.
  2. * (C) 2001, 2002, 2003, 2004 Rusty Russell
  3. *
  4. * This code is licenced under the GPL.
  5. */
  6. #include <linux/proc_fs.h>
  7. #include <linux/smp.h>
  8. #include <linux/init.h>
  9. #include <linux/notifier.h>
  10. #include <linux/sched.h>
  11. #include <linux/unistd.h>
  12. #include <linux/cpu.h>
  13. #include <linux/module.h>
  14. #include <linux/kthread.h>
  15. #include <linux/stop_machine.h>
  16. #include <linux/mutex.h>
  17. #include <linux/gfp.h>
  18. #ifdef CONFIG_SMP
  19. /* Serializes the updates to cpu_online_mask, cpu_present_mask */
  20. static DEFINE_MUTEX(cpu_add_remove_lock);
  21. /*
  22. * The following two API's must be used when attempting
  23. * to serialize the updates to cpu_online_mask, cpu_present_mask.
  24. */
  25. void cpu_maps_update_begin(void)
  26. {
  27. mutex_lock(&cpu_add_remove_lock);
  28. }
  29. void cpu_maps_update_done(void)
  30. {
  31. mutex_unlock(&cpu_add_remove_lock);
  32. }
  33. static RAW_NOTIFIER_HEAD(cpu_chain);
  34. /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
  35. * Should always be manipulated under cpu_add_remove_lock
  36. */
  37. static int cpu_hotplug_disabled;
  38. #ifdef CONFIG_HOTPLUG_CPU
  39. static struct {
  40. struct task_struct *active_writer;
  41. struct mutex lock; /* Synchronizes accesses to refcount, */
  42. /*
  43. * Also blocks the new readers during
  44. * an ongoing cpu hotplug operation.
  45. */
  46. int refcount;
  47. } cpu_hotplug = {
  48. .active_writer = NULL,
  49. .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
  50. .refcount = 0,
  51. };
  52. void get_online_cpus(void)
  53. {
  54. might_sleep();
  55. if (cpu_hotplug.active_writer == current)
  56. return;
  57. mutex_lock(&cpu_hotplug.lock);
  58. cpu_hotplug.refcount++;
  59. mutex_unlock(&cpu_hotplug.lock);
  60. }
  61. EXPORT_SYMBOL_GPL(get_online_cpus);
  62. void put_online_cpus(void)
  63. {
  64. if (cpu_hotplug.active_writer == current)
  65. return;
  66. mutex_lock(&cpu_hotplug.lock);
  67. if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
  68. wake_up_process(cpu_hotplug.active_writer);
  69. mutex_unlock(&cpu_hotplug.lock);
  70. }
  71. EXPORT_SYMBOL_GPL(put_online_cpus);
  72. /*
  73. * This ensures that the hotplug operation can begin only when the
  74. * refcount goes to zero.
  75. *
  76. * Note that during a cpu-hotplug operation, the new readers, if any,
  77. * will be blocked by the cpu_hotplug.lock
  78. *
  79. * Since cpu_hotplug_begin() is always called after invoking
  80. * cpu_maps_update_begin(), we can be sure that only one writer is active.
  81. *
  82. * Note that theoretically, there is a possibility of a livelock:
  83. * - Refcount goes to zero, last reader wakes up the sleeping
  84. * writer.
  85. * - Last reader unlocks the cpu_hotplug.lock.
  86. * - A new reader arrives at this moment, bumps up the refcount.
  87. * - The writer acquires the cpu_hotplug.lock finds the refcount
  88. * non zero and goes to sleep again.
  89. *
  90. * However, this is very difficult to achieve in practice since
  91. * get_online_cpus() not an api which is called all that often.
  92. *
  93. */
  94. static void cpu_hotplug_begin(void)
  95. {
  96. cpu_hotplug.active_writer = current;
  97. for (;;) {
  98. mutex_lock(&cpu_hotplug.lock);
  99. if (likely(!cpu_hotplug.refcount))
  100. break;
  101. __set_current_state(TASK_UNINTERRUPTIBLE);
  102. mutex_unlock(&cpu_hotplug.lock);
  103. schedule();
  104. }
  105. }
  106. static void cpu_hotplug_done(void)
  107. {
  108. cpu_hotplug.active_writer = NULL;
  109. mutex_unlock(&cpu_hotplug.lock);
  110. }
  111. #else /* #if CONFIG_HOTPLUG_CPU */
  112. static void cpu_hotplug_begin(void) {}
  113. static void cpu_hotplug_done(void) {}
  114. #endif /* #esle #if CONFIG_HOTPLUG_CPU */
  115. /* Need to know about CPUs going up/down? */
  116. int __ref register_cpu_notifier(struct notifier_block *nb)
  117. {
  118. int ret;
  119. cpu_maps_update_begin();
  120. ret = raw_notifier_chain_register(&cpu_chain, nb);
  121. cpu_maps_update_done();
  122. return ret;
  123. }
  124. static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
  125. int *nr_calls)
  126. {
  127. int ret;
  128. ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
  129. nr_calls);
  130. return notifier_to_errno(ret);
  131. }
  132. static int cpu_notify(unsigned long val, void *v)
  133. {
  134. return __cpu_notify(val, v, -1, NULL);
  135. }
  136. #ifdef CONFIG_HOTPLUG_CPU
  137. static void cpu_notify_nofail(unsigned long val, void *v)
  138. {
  139. BUG_ON(cpu_notify(val, v));
  140. }
  141. EXPORT_SYMBOL(register_cpu_notifier);
  142. void __ref unregister_cpu_notifier(struct notifier_block *nb)
  143. {
  144. cpu_maps_update_begin();
  145. raw_notifier_chain_unregister(&cpu_chain, nb);
  146. cpu_maps_update_done();
  147. }
  148. EXPORT_SYMBOL(unregister_cpu_notifier);
  149. static inline void check_for_tasks(int cpu)
  150. {
  151. struct task_struct *p;
  152. write_lock_irq(&tasklist_lock);
  153. for_each_process(p) {
  154. if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
  155. (!cputime_eq(p->utime, cputime_zero) ||
  156. !cputime_eq(p->stime, cputime_zero)))
  157. printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
  158. "(state = %ld, flags = %x)\n",
  159. p->comm, task_pid_nr(p), cpu,
  160. p->state, p->flags);
  161. }
  162. write_unlock_irq(&tasklist_lock);
  163. }
  164. struct take_cpu_down_param {
  165. unsigned long mod;
  166. void *hcpu;
  167. };
  168. /* Take this CPU down. */
  169. static int __ref take_cpu_down(void *_param)
  170. {
  171. struct take_cpu_down_param *param = _param;
  172. int err;
  173. /* Ensure this CPU doesn't handle any more interrupts. */
  174. err = __cpu_disable();
  175. if (err < 0)
  176. return err;
  177. cpu_notify(CPU_DYING | param->mod, param->hcpu);
  178. return 0;
  179. }
  180. /* Requires cpu_add_remove_lock to be held */
  181. static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
  182. {
  183. int err, nr_calls = 0;
  184. void *hcpu = (void *)(long)cpu;
  185. unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
  186. struct take_cpu_down_param tcd_param = {
  187. .mod = mod,
  188. .hcpu = hcpu,
  189. };
  190. if (num_online_cpus() == 1)
  191. return -EBUSY;
  192. if (!cpu_online(cpu))
  193. return -EINVAL;
  194. cpu_hotplug_begin();
  195. err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
  196. if (err) {
  197. nr_calls--;
  198. __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
  199. printk("%s: attempt to take down CPU %u failed\n",
  200. __func__, cpu);
  201. goto out_release;
  202. }
  203. err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
  204. if (err) {
  205. /* CPU didn't die: tell everyone. Can't complain. */
  206. cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
  207. goto out_release;
  208. }
  209. BUG_ON(cpu_online(cpu));
  210. /*
  211. * The migration_call() CPU_DYING callback will have removed all
  212. * runnable tasks from the cpu, there's only the idle task left now
  213. * that the migration thread is done doing the stop_machine thing.
  214. */
  215. BUG_ON(!idle_cpu(cpu));
  216. /* This actually kills the CPU. */
  217. __cpu_die(cpu);
  218. /* CPU is completely dead: tell everyone. Too late to complain. */
  219. cpu_notify_nofail(CPU_DEAD | mod, hcpu);
  220. check_for_tasks(cpu);
  221. out_release:
  222. cpu_hotplug_done();
  223. if (!err)
  224. cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
  225. return err;
  226. }
  227. int __ref cpu_down(unsigned int cpu)
  228. {
  229. int err;
  230. cpu_maps_update_begin();
  231. if (cpu_hotplug_disabled) {
  232. err = -EBUSY;
  233. goto out;
  234. }
  235. err = _cpu_down(cpu, 0);
  236. out:
  237. cpu_maps_update_done();
  238. return err;
  239. }
  240. EXPORT_SYMBOL(cpu_down);
  241. #endif /*CONFIG_HOTPLUG_CPU*/
  242. /* Requires cpu_add_remove_lock to be held */
  243. static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
  244. {
  245. int ret, nr_calls = 0;
  246. void *hcpu = (void *)(long)cpu;
  247. unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
  248. if (cpu_online(cpu) || !cpu_present(cpu))
  249. return -EINVAL;
  250. cpu_hotplug_begin();
  251. ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
  252. if (ret) {
  253. nr_calls--;
  254. printk("%s: attempt to bring up CPU %u failed\n",
  255. __func__, cpu);
  256. goto out_notify;
  257. }
  258. /* Arch-specific enabling code. */
  259. ret = __cpu_up(cpu);
  260. if (ret != 0)
  261. goto out_notify;
  262. BUG_ON(!cpu_online(cpu));
  263. /* Now call notifier in preparation. */
  264. cpu_notify(CPU_ONLINE | mod, hcpu);
  265. out_notify:
  266. if (ret != 0)
  267. __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
  268. cpu_hotplug_done();
  269. return ret;
  270. }
  271. int __cpuinit cpu_up(unsigned int cpu)
  272. {
  273. int err = 0;
  274. #ifdef CONFIG_MEMORY_HOTPLUG
  275. int nid;
  276. pg_data_t *pgdat;
  277. #endif
  278. if (!cpu_possible(cpu)) {
  279. printk(KERN_ERR "can't online cpu %d because it is not "
  280. "configured as may-hotadd at boot time\n", cpu);
  281. #if defined(CONFIG_IA64)
  282. printk(KERN_ERR "please check additional_cpus= boot "
  283. "parameter\n");
  284. #endif
  285. return -EINVAL;
  286. }
  287. #ifdef CONFIG_MEMORY_HOTPLUG
  288. nid = cpu_to_node(cpu);
  289. if (!node_online(nid)) {
  290. err = mem_online_node(nid);
  291. if (err)
  292. return err;
  293. }
  294. pgdat = NODE_DATA(nid);
  295. if (!pgdat) {
  296. printk(KERN_ERR
  297. "Can't online cpu %d due to NULL pgdat\n", cpu);
  298. return -ENOMEM;
  299. }
  300. if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
  301. mutex_lock(&zonelists_mutex);
  302. build_all_zonelists(NULL);
  303. mutex_unlock(&zonelists_mutex);
  304. }
  305. #endif
  306. cpu_maps_update_begin();
  307. if (cpu_hotplug_disabled) {
  308. err = -EBUSY;
  309. goto out;
  310. }
  311. err = _cpu_up(cpu, 0);
  312. out:
  313. cpu_maps_update_done();
  314. return err;
  315. }
  316. #ifdef CONFIG_PM_SLEEP_SMP
  317. static cpumask_var_t frozen_cpus;
  318. int disable_nonboot_cpus(void)
  319. {
  320. int cpu, first_cpu, error = 0;
  321. cpu_maps_update_begin();
  322. first_cpu = cpumask_first(cpu_online_mask);
  323. /*
  324. * We take down all of the non-boot CPUs in one shot to avoid races
  325. * with the userspace trying to use the CPU hotplug at the same time
  326. */
  327. cpumask_clear(frozen_cpus);
  328. printk("Disabling non-boot CPUs ...\n");
  329. for_each_online_cpu(cpu) {
  330. if (cpu == first_cpu)
  331. continue;
  332. error = _cpu_down(cpu, 1);
  333. if (!error)
  334. cpumask_set_cpu(cpu, frozen_cpus);
  335. else {
  336. printk(KERN_ERR "Error taking CPU%d down: %d\n",
  337. cpu, error);
  338. break;
  339. }
  340. }
  341. if (!error) {
  342. BUG_ON(num_online_cpus() > 1);
  343. /* Make sure the CPUs won't be enabled by someone else */
  344. cpu_hotplug_disabled = 1;
  345. } else {
  346. printk(KERN_ERR "Non-boot CPUs are not disabled\n");
  347. }
  348. cpu_maps_update_done();
  349. return error;
  350. }
  351. void __weak arch_enable_nonboot_cpus_begin(void)
  352. {
  353. }
  354. void __weak arch_enable_nonboot_cpus_end(void)
  355. {
  356. }
  357. void __ref enable_nonboot_cpus(void)
  358. {
  359. int cpu, error;
  360. /* Allow everyone to use the CPU hotplug again */
  361. cpu_maps_update_begin();
  362. cpu_hotplug_disabled = 0;
  363. if (cpumask_empty(frozen_cpus))
  364. goto out;
  365. printk("Enabling non-boot CPUs ...\n");
  366. arch_enable_nonboot_cpus_begin();
  367. for_each_cpu(cpu, frozen_cpus) {
  368. error = _cpu_up(cpu, 1);
  369. if (!error) {
  370. printk("CPU%d is up\n", cpu);
  371. continue;
  372. }
  373. printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
  374. }
  375. arch_enable_nonboot_cpus_end();
  376. cpumask_clear(frozen_cpus);
  377. out:
  378. cpu_maps_update_done();
  379. }
  380. static int alloc_frozen_cpus(void)
  381. {
  382. if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
  383. return -ENOMEM;
  384. return 0;
  385. }
  386. core_initcall(alloc_frozen_cpus);
  387. #endif /* CONFIG_PM_SLEEP_SMP */
  388. /**
  389. * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
  390. * @cpu: cpu that just started
  391. *
  392. * This function calls the cpu_chain notifiers with CPU_STARTING.
  393. * It must be called by the arch code on the new cpu, before the new cpu
  394. * enables interrupts and before the "boot" cpu returns from __cpu_up().
  395. */
  396. void __cpuinit notify_cpu_starting(unsigned int cpu)
  397. {
  398. unsigned long val = CPU_STARTING;
  399. #ifdef CONFIG_PM_SLEEP_SMP
  400. if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
  401. val = CPU_STARTING_FROZEN;
  402. #endif /* CONFIG_PM_SLEEP_SMP */
  403. cpu_notify(val, (void *)(long)cpu);
  404. }
  405. #endif /* CONFIG_SMP */
  406. /*
  407. * cpu_bit_bitmap[] is a special, "compressed" data structure that
  408. * represents all NR_CPUS bits binary values of 1<<nr.
  409. *
  410. * It is used by cpumask_of() to get a constant address to a CPU
  411. * mask value that has a single bit set only.
  412. */
  413. /* cpu_bit_bitmap[0] is empty - so we can back into it */
  414. #define MASK_DECLARE_1(x) [x+1][0] = 1UL << (x)
  415. #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
  416. #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
  417. #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
  418. const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
  419. MASK_DECLARE_8(0), MASK_DECLARE_8(8),
  420. MASK_DECLARE_8(16), MASK_DECLARE_8(24),
  421. #if BITS_PER_LONG > 32
  422. MASK_DECLARE_8(32), MASK_DECLARE_8(40),
  423. MASK_DECLARE_8(48), MASK_DECLARE_8(56),
  424. #endif
  425. };
  426. EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
  427. const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
  428. EXPORT_SYMBOL(cpu_all_bits);
  429. #ifdef CONFIG_INIT_ALL_POSSIBLE
  430. static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
  431. = CPU_BITS_ALL;
  432. #else
  433. static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
  434. #endif
  435. const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
  436. EXPORT_SYMBOL(cpu_possible_mask);
  437. static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
  438. const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
  439. EXPORT_SYMBOL(cpu_online_mask);
  440. static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
  441. const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
  442. EXPORT_SYMBOL(cpu_present_mask);
  443. static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
  444. const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
  445. EXPORT_SYMBOL(cpu_active_mask);
  446. void set_cpu_possible(unsigned int cpu, bool possible)
  447. {
  448. if (possible)
  449. cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
  450. else
  451. cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
  452. }
  453. void set_cpu_present(unsigned int cpu, bool present)
  454. {
  455. if (present)
  456. cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
  457. else
  458. cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
  459. }
  460. void set_cpu_online(unsigned int cpu, bool online)
  461. {
  462. if (online)
  463. cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
  464. else
  465. cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
  466. }
  467. void set_cpu_active(unsigned int cpu, bool active)
  468. {
  469. if (active)
  470. cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
  471. else
  472. cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
  473. }
  474. void init_cpu_present(const struct cpumask *src)
  475. {
  476. cpumask_copy(to_cpumask(cpu_present_bits), src);
  477. }
  478. void init_cpu_possible(const struct cpumask *src)
  479. {
  480. cpumask_copy(to_cpumask(cpu_possible_bits), src);
  481. }
  482. void init_cpu_online(const struct cpumask *src)
  483. {
  484. cpumask_copy(to_cpumask(cpu_online_bits), src);
  485. }