dn_table.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Routing Forwarding Information Base (Routing Tables)
  7. *
  8. * Author: Steve Whitehouse <SteveW@ACM.org>
  9. * Mostly copied from the IPv4 routing code
  10. *
  11. *
  12. * Changes:
  13. *
  14. */
  15. #include <linux/string.h>
  16. #include <linux/net.h>
  17. #include <linux/socket.h>
  18. #include <linux/sockios.h>
  19. #include <linux/init.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netlink.h>
  22. #include <linux/rtnetlink.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/timer.h>
  26. #include <linux/spinlock.h>
  27. #include <asm/atomic.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/route.h> /* RTF_xxx */
  30. #include <net/neighbour.h>
  31. #include <net/dst.h>
  32. #include <net/flow.h>
  33. #include <net/fib_rules.h>
  34. #include <net/dn.h>
  35. #include <net/dn_route.h>
  36. #include <net/dn_fib.h>
  37. #include <net/dn_neigh.h>
  38. #include <net/dn_dev.h>
  39. struct dn_zone
  40. {
  41. struct dn_zone *dz_next;
  42. struct dn_fib_node **dz_hash;
  43. int dz_nent;
  44. int dz_divisor;
  45. u32 dz_hashmask;
  46. #define DZ_HASHMASK(dz) ((dz)->dz_hashmask)
  47. int dz_order;
  48. __le16 dz_mask;
  49. #define DZ_MASK(dz) ((dz)->dz_mask)
  50. };
  51. struct dn_hash
  52. {
  53. struct dn_zone *dh_zones[17];
  54. struct dn_zone *dh_zone_list;
  55. };
  56. #define dz_key_0(key) ((key).datum = 0)
  57. #define dz_prefix(key,dz) ((key).datum)
  58. #define for_nexthops(fi) { int nhsel; const struct dn_fib_nh *nh;\
  59. for(nhsel = 0, nh = (fi)->fib_nh; nhsel < (fi)->fib_nhs; nh++, nhsel++)
  60. #define endfor_nexthops(fi) }
  61. #define DN_MAX_DIVISOR 1024
  62. #define DN_S_ZOMBIE 1
  63. #define DN_S_ACCESSED 2
  64. #define DN_FIB_SCAN(f, fp) \
  65. for( ; ((f) = *(fp)) != NULL; (fp) = &(f)->fn_next)
  66. #define DN_FIB_SCAN_KEY(f, fp, key) \
  67. for( ; ((f) = *(fp)) != NULL && dn_key_eq((f)->fn_key, (key)); (fp) = &(f)->fn_next)
  68. #define RT_TABLE_MIN 1
  69. static DEFINE_RWLOCK(dn_fib_tables_lock);
  70. struct dn_fib_table *dn_fib_tables[RT_TABLE_MAX + 1];
  71. static kmem_cache_t *dn_hash_kmem __read_mostly;
  72. static int dn_fib_hash_zombies;
  73. static inline dn_fib_idx_t dn_hash(dn_fib_key_t key, struct dn_zone *dz)
  74. {
  75. u16 h = dn_ntohs(key.datum)>>(16 - dz->dz_order);
  76. h ^= (h >> 10);
  77. h ^= (h >> 6);
  78. h &= DZ_HASHMASK(dz);
  79. return *(dn_fib_idx_t *)&h;
  80. }
  81. static inline dn_fib_key_t dz_key(__le16 dst, struct dn_zone *dz)
  82. {
  83. dn_fib_key_t k;
  84. k.datum = dst & DZ_MASK(dz);
  85. return k;
  86. }
  87. static inline struct dn_fib_node **dn_chain_p(dn_fib_key_t key, struct dn_zone *dz)
  88. {
  89. return &dz->dz_hash[dn_hash(key, dz).datum];
  90. }
  91. static inline struct dn_fib_node *dz_chain(dn_fib_key_t key, struct dn_zone *dz)
  92. {
  93. return dz->dz_hash[dn_hash(key, dz).datum];
  94. }
  95. static inline int dn_key_eq(dn_fib_key_t a, dn_fib_key_t b)
  96. {
  97. return a.datum == b.datum;
  98. }
  99. static inline int dn_key_leq(dn_fib_key_t a, dn_fib_key_t b)
  100. {
  101. return a.datum <= b.datum;
  102. }
  103. static inline void dn_rebuild_zone(struct dn_zone *dz,
  104. struct dn_fib_node **old_ht,
  105. int old_divisor)
  106. {
  107. int i;
  108. struct dn_fib_node *f, **fp, *next;
  109. for(i = 0; i < old_divisor; i++) {
  110. for(f = old_ht[i]; f; f = f->fn_next) {
  111. next = f->fn_next;
  112. for(fp = dn_chain_p(f->fn_key, dz);
  113. *fp && dn_key_leq((*fp)->fn_key, f->fn_key);
  114. fp = &(*fp)->fn_next)
  115. /* NOTHING */;
  116. f->fn_next = *fp;
  117. *fp = f;
  118. }
  119. }
  120. }
  121. static void dn_rehash_zone(struct dn_zone *dz)
  122. {
  123. struct dn_fib_node **ht, **old_ht;
  124. int old_divisor, new_divisor;
  125. u32 new_hashmask;
  126. old_divisor = dz->dz_divisor;
  127. switch(old_divisor) {
  128. case 16:
  129. new_divisor = 256;
  130. new_hashmask = 0xFF;
  131. break;
  132. default:
  133. printk(KERN_DEBUG "DECnet: dn_rehash_zone: BUG! %d\n", old_divisor);
  134. case 256:
  135. new_divisor = 1024;
  136. new_hashmask = 0x3FF;
  137. break;
  138. }
  139. ht = kcalloc(new_divisor, sizeof(struct dn_fib_node*), GFP_KERNEL);
  140. if (ht == NULL)
  141. return;
  142. write_lock_bh(&dn_fib_tables_lock);
  143. old_ht = dz->dz_hash;
  144. dz->dz_hash = ht;
  145. dz->dz_hashmask = new_hashmask;
  146. dz->dz_divisor = new_divisor;
  147. dn_rebuild_zone(dz, old_ht, old_divisor);
  148. write_unlock_bh(&dn_fib_tables_lock);
  149. kfree(old_ht);
  150. }
  151. static void dn_free_node(struct dn_fib_node *f)
  152. {
  153. dn_fib_release_info(DN_FIB_INFO(f));
  154. kmem_cache_free(dn_hash_kmem, f);
  155. }
  156. static struct dn_zone *dn_new_zone(struct dn_hash *table, int z)
  157. {
  158. int i;
  159. struct dn_zone *dz = kzalloc(sizeof(struct dn_zone), GFP_KERNEL);
  160. if (!dz)
  161. return NULL;
  162. if (z) {
  163. dz->dz_divisor = 16;
  164. dz->dz_hashmask = 0x0F;
  165. } else {
  166. dz->dz_divisor = 1;
  167. dz->dz_hashmask = 0;
  168. }
  169. dz->dz_hash = kcalloc(dz->dz_divisor, sizeof(struct dn_fib_node *), GFP_KERNEL);
  170. if (!dz->dz_hash) {
  171. kfree(dz);
  172. return NULL;
  173. }
  174. dz->dz_order = z;
  175. dz->dz_mask = dnet_make_mask(z);
  176. for(i = z + 1; i <= 16; i++)
  177. if (table->dh_zones[i])
  178. break;
  179. write_lock_bh(&dn_fib_tables_lock);
  180. if (i>16) {
  181. dz->dz_next = table->dh_zone_list;
  182. table->dh_zone_list = dz;
  183. } else {
  184. dz->dz_next = table->dh_zones[i]->dz_next;
  185. table->dh_zones[i]->dz_next = dz;
  186. }
  187. table->dh_zones[z] = dz;
  188. write_unlock_bh(&dn_fib_tables_lock);
  189. return dz;
  190. }
  191. static int dn_fib_nh_match(struct rtmsg *r, struct nlmsghdr *nlh, struct dn_kern_rta *rta, struct dn_fib_info *fi)
  192. {
  193. struct rtnexthop *nhp;
  194. int nhlen;
  195. if (rta->rta_priority && *rta->rta_priority != fi->fib_priority)
  196. return 1;
  197. if (rta->rta_oif || rta->rta_gw) {
  198. if ((!rta->rta_oif || *rta->rta_oif == fi->fib_nh->nh_oif) &&
  199. (!rta->rta_gw || memcmp(rta->rta_gw, &fi->fib_nh->nh_gw, 2) == 0))
  200. return 0;
  201. return 1;
  202. }
  203. if (rta->rta_mp == NULL)
  204. return 0;
  205. nhp = RTA_DATA(rta->rta_mp);
  206. nhlen = RTA_PAYLOAD(rta->rta_mp);
  207. for_nexthops(fi) {
  208. int attrlen = nhlen - sizeof(struct rtnexthop);
  209. __le16 gw;
  210. if (attrlen < 0 || (nhlen -= nhp->rtnh_len) < 0)
  211. return -EINVAL;
  212. if (nhp->rtnh_ifindex && nhp->rtnh_ifindex != nh->nh_oif)
  213. return 1;
  214. if (attrlen) {
  215. gw = dn_fib_get_attr16(RTNH_DATA(nhp), attrlen, RTA_GATEWAY);
  216. if (gw && gw != nh->nh_gw)
  217. return 1;
  218. }
  219. nhp = RTNH_NEXT(nhp);
  220. } endfor_nexthops(fi);
  221. return 0;
  222. }
  223. static int dn_fib_dump_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
  224. u32 tb_id, u8 type, u8 scope, void *dst, int dst_len,
  225. struct dn_fib_info *fi, unsigned int flags)
  226. {
  227. struct rtmsg *rtm;
  228. struct nlmsghdr *nlh;
  229. unsigned char *b = skb->tail;
  230. nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*rtm), flags);
  231. rtm = NLMSG_DATA(nlh);
  232. rtm->rtm_family = AF_DECnet;
  233. rtm->rtm_dst_len = dst_len;
  234. rtm->rtm_src_len = 0;
  235. rtm->rtm_tos = 0;
  236. rtm->rtm_table = tb_id;
  237. rtm->rtm_flags = fi->fib_flags;
  238. rtm->rtm_scope = scope;
  239. rtm->rtm_type = type;
  240. if (rtm->rtm_dst_len)
  241. RTA_PUT(skb, RTA_DST, 2, dst);
  242. rtm->rtm_protocol = fi->fib_protocol;
  243. if (fi->fib_priority)
  244. RTA_PUT(skb, RTA_PRIORITY, 4, &fi->fib_priority);
  245. if (rtnetlink_put_metrics(skb, fi->fib_metrics) < 0)
  246. goto rtattr_failure;
  247. if (fi->fib_nhs == 1) {
  248. if (fi->fib_nh->nh_gw)
  249. RTA_PUT(skb, RTA_GATEWAY, 2, &fi->fib_nh->nh_gw);
  250. if (fi->fib_nh->nh_oif)
  251. RTA_PUT(skb, RTA_OIF, sizeof(int), &fi->fib_nh->nh_oif);
  252. }
  253. if (fi->fib_nhs > 1) {
  254. struct rtnexthop *nhp;
  255. struct rtattr *mp_head;
  256. if (skb_tailroom(skb) <= RTA_SPACE(0))
  257. goto rtattr_failure;
  258. mp_head = (struct rtattr *)skb_put(skb, RTA_SPACE(0));
  259. for_nexthops(fi) {
  260. if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
  261. goto rtattr_failure;
  262. nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
  263. nhp->rtnh_flags = nh->nh_flags & 0xFF;
  264. nhp->rtnh_hops = nh->nh_weight - 1;
  265. nhp->rtnh_ifindex = nh->nh_oif;
  266. if (nh->nh_gw)
  267. RTA_PUT(skb, RTA_GATEWAY, 2, &nh->nh_gw);
  268. nhp->rtnh_len = skb->tail - (unsigned char *)nhp;
  269. } endfor_nexthops(fi);
  270. mp_head->rta_type = RTA_MULTIPATH;
  271. mp_head->rta_len = skb->tail - (u8*)mp_head;
  272. }
  273. nlh->nlmsg_len = skb->tail - b;
  274. return skb->len;
  275. nlmsg_failure:
  276. rtattr_failure:
  277. skb_trim(skb, b - skb->data);
  278. return -1;
  279. }
  280. static void dn_rtmsg_fib(int event, struct dn_fib_node *f, int z, u32 tb_id,
  281. struct nlmsghdr *nlh, struct netlink_skb_parms *req)
  282. {
  283. struct sk_buff *skb;
  284. u32 pid = req ? req->pid : 0;
  285. int size = NLMSG_SPACE(sizeof(struct rtmsg) + 256);
  286. skb = alloc_skb(size, GFP_KERNEL);
  287. if (!skb)
  288. return;
  289. if (dn_fib_dump_info(skb, pid, nlh->nlmsg_seq, event, tb_id,
  290. f->fn_type, f->fn_scope, &f->fn_key, z,
  291. DN_FIB_INFO(f), 0) < 0) {
  292. kfree_skb(skb);
  293. return;
  294. }
  295. NETLINK_CB(skb).dst_group = RTNLGRP_DECnet_ROUTE;
  296. if (nlh->nlmsg_flags & NLM_F_ECHO)
  297. atomic_inc(&skb->users);
  298. netlink_broadcast(rtnl, skb, pid, RTNLGRP_DECnet_ROUTE, GFP_KERNEL);
  299. if (nlh->nlmsg_flags & NLM_F_ECHO)
  300. netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
  301. }
  302. static __inline__ int dn_hash_dump_bucket(struct sk_buff *skb,
  303. struct netlink_callback *cb,
  304. struct dn_fib_table *tb,
  305. struct dn_zone *dz,
  306. struct dn_fib_node *f)
  307. {
  308. int i, s_i;
  309. s_i = cb->args[3];
  310. for(i = 0; f; i++, f = f->fn_next) {
  311. if (i < s_i)
  312. continue;
  313. if (f->fn_state & DN_S_ZOMBIE)
  314. continue;
  315. if (dn_fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
  316. cb->nlh->nlmsg_seq,
  317. RTM_NEWROUTE,
  318. tb->n,
  319. (f->fn_state & DN_S_ZOMBIE) ? 0 : f->fn_type,
  320. f->fn_scope, &f->fn_key, dz->dz_order,
  321. f->fn_info, NLM_F_MULTI) < 0) {
  322. cb->args[3] = i;
  323. return -1;
  324. }
  325. }
  326. cb->args[3] = i;
  327. return skb->len;
  328. }
  329. static __inline__ int dn_hash_dump_zone(struct sk_buff *skb,
  330. struct netlink_callback *cb,
  331. struct dn_fib_table *tb,
  332. struct dn_zone *dz)
  333. {
  334. int h, s_h;
  335. s_h = cb->args[2];
  336. for(h = 0; h < dz->dz_divisor; h++) {
  337. if (h < s_h)
  338. continue;
  339. if (h > s_h)
  340. memset(&cb->args[3], 0, sizeof(cb->args) - 3*sizeof(cb->args[0]));
  341. if (dz->dz_hash == NULL || dz->dz_hash[h] == NULL)
  342. continue;
  343. if (dn_hash_dump_bucket(skb, cb, tb, dz, dz->dz_hash[h]) < 0) {
  344. cb->args[2] = h;
  345. return -1;
  346. }
  347. }
  348. cb->args[2] = h;
  349. return skb->len;
  350. }
  351. static int dn_fib_table_dump(struct dn_fib_table *tb, struct sk_buff *skb,
  352. struct netlink_callback *cb)
  353. {
  354. int m, s_m;
  355. struct dn_zone *dz;
  356. struct dn_hash *table = (struct dn_hash *)tb->data;
  357. s_m = cb->args[1];
  358. read_lock(&dn_fib_tables_lock);
  359. for(dz = table->dh_zone_list, m = 0; dz; dz = dz->dz_next, m++) {
  360. if (m < s_m)
  361. continue;
  362. if (m > s_m)
  363. memset(&cb->args[2], 0, sizeof(cb->args) - 2*sizeof(cb->args[0]));
  364. if (dn_hash_dump_zone(skb, cb, tb, dz) < 0) {
  365. cb->args[1] = m;
  366. read_unlock(&dn_fib_tables_lock);
  367. return -1;
  368. }
  369. }
  370. read_unlock(&dn_fib_tables_lock);
  371. cb->args[1] = m;
  372. return skb->len;
  373. }
  374. static int dn_fib_table_insert(struct dn_fib_table *tb, struct rtmsg *r, struct dn_kern_rta *rta, struct nlmsghdr *n, struct netlink_skb_parms *req)
  375. {
  376. struct dn_hash *table = (struct dn_hash *)tb->data;
  377. struct dn_fib_node *new_f, *f, **fp, **del_fp;
  378. struct dn_zone *dz;
  379. struct dn_fib_info *fi;
  380. int z = r->rtm_dst_len;
  381. int type = r->rtm_type;
  382. dn_fib_key_t key;
  383. int err;
  384. if (z > 16)
  385. return -EINVAL;
  386. dz = table->dh_zones[z];
  387. if (!dz && !(dz = dn_new_zone(table, z)))
  388. return -ENOBUFS;
  389. dz_key_0(key);
  390. if (rta->rta_dst) {
  391. __le16 dst;
  392. memcpy(&dst, rta->rta_dst, 2);
  393. if (dst & ~DZ_MASK(dz))
  394. return -EINVAL;
  395. key = dz_key(dst, dz);
  396. }
  397. if ((fi = dn_fib_create_info(r, rta, n, &err)) == NULL)
  398. return err;
  399. if (dz->dz_nent > (dz->dz_divisor << 2) &&
  400. dz->dz_divisor > DN_MAX_DIVISOR &&
  401. (z==16 || (1<<z) > dz->dz_divisor))
  402. dn_rehash_zone(dz);
  403. fp = dn_chain_p(key, dz);
  404. DN_FIB_SCAN(f, fp) {
  405. if (dn_key_leq(key, f->fn_key))
  406. break;
  407. }
  408. del_fp = NULL;
  409. if (f && (f->fn_state & DN_S_ZOMBIE) &&
  410. dn_key_eq(f->fn_key, key)) {
  411. del_fp = fp;
  412. fp = &f->fn_next;
  413. f = *fp;
  414. goto create;
  415. }
  416. DN_FIB_SCAN_KEY(f, fp, key) {
  417. if (fi->fib_priority <= DN_FIB_INFO(f)->fib_priority)
  418. break;
  419. }
  420. if (f && dn_key_eq(f->fn_key, key) &&
  421. fi->fib_priority == DN_FIB_INFO(f)->fib_priority) {
  422. struct dn_fib_node **ins_fp;
  423. err = -EEXIST;
  424. if (n->nlmsg_flags & NLM_F_EXCL)
  425. goto out;
  426. if (n->nlmsg_flags & NLM_F_REPLACE) {
  427. del_fp = fp;
  428. fp = &f->fn_next;
  429. f = *fp;
  430. goto replace;
  431. }
  432. ins_fp = fp;
  433. err = -EEXIST;
  434. DN_FIB_SCAN_KEY(f, fp, key) {
  435. if (fi->fib_priority != DN_FIB_INFO(f)->fib_priority)
  436. break;
  437. if (f->fn_type == type && f->fn_scope == r->rtm_scope
  438. && DN_FIB_INFO(f) == fi)
  439. goto out;
  440. }
  441. if (!(n->nlmsg_flags & NLM_F_APPEND)) {
  442. fp = ins_fp;
  443. f = *fp;
  444. }
  445. }
  446. create:
  447. err = -ENOENT;
  448. if (!(n->nlmsg_flags & NLM_F_CREATE))
  449. goto out;
  450. replace:
  451. err = -ENOBUFS;
  452. new_f = kmem_cache_alloc(dn_hash_kmem, SLAB_KERNEL);
  453. if (new_f == NULL)
  454. goto out;
  455. memset(new_f, 0, sizeof(struct dn_fib_node));
  456. new_f->fn_key = key;
  457. new_f->fn_type = type;
  458. new_f->fn_scope = r->rtm_scope;
  459. DN_FIB_INFO(new_f) = fi;
  460. new_f->fn_next = f;
  461. write_lock_bh(&dn_fib_tables_lock);
  462. *fp = new_f;
  463. write_unlock_bh(&dn_fib_tables_lock);
  464. dz->dz_nent++;
  465. if (del_fp) {
  466. f = *del_fp;
  467. write_lock_bh(&dn_fib_tables_lock);
  468. *del_fp = f->fn_next;
  469. write_unlock_bh(&dn_fib_tables_lock);
  470. if (!(f->fn_state & DN_S_ZOMBIE))
  471. dn_rtmsg_fib(RTM_DELROUTE, f, z, tb->n, n, req);
  472. if (f->fn_state & DN_S_ACCESSED)
  473. dn_rt_cache_flush(-1);
  474. dn_free_node(f);
  475. dz->dz_nent--;
  476. } else {
  477. dn_rt_cache_flush(-1);
  478. }
  479. dn_rtmsg_fib(RTM_NEWROUTE, new_f, z, tb->n, n, req);
  480. return 0;
  481. out:
  482. dn_fib_release_info(fi);
  483. return err;
  484. }
  485. static int dn_fib_table_delete(struct dn_fib_table *tb, struct rtmsg *r, struct dn_kern_rta *rta, struct nlmsghdr *n, struct netlink_skb_parms *req)
  486. {
  487. struct dn_hash *table = (struct dn_hash*)tb->data;
  488. struct dn_fib_node **fp, **del_fp, *f;
  489. int z = r->rtm_dst_len;
  490. struct dn_zone *dz;
  491. dn_fib_key_t key;
  492. int matched;
  493. if (z > 16)
  494. return -EINVAL;
  495. if ((dz = table->dh_zones[z]) == NULL)
  496. return -ESRCH;
  497. dz_key_0(key);
  498. if (rta->rta_dst) {
  499. __le16 dst;
  500. memcpy(&dst, rta->rta_dst, 2);
  501. if (dst & ~DZ_MASK(dz))
  502. return -EINVAL;
  503. key = dz_key(dst, dz);
  504. }
  505. fp = dn_chain_p(key, dz);
  506. DN_FIB_SCAN(f, fp) {
  507. if (dn_key_eq(f->fn_key, key))
  508. break;
  509. if (dn_key_leq(key, f->fn_key))
  510. return -ESRCH;
  511. }
  512. matched = 0;
  513. del_fp = NULL;
  514. DN_FIB_SCAN_KEY(f, fp, key) {
  515. struct dn_fib_info *fi = DN_FIB_INFO(f);
  516. if (f->fn_state & DN_S_ZOMBIE)
  517. return -ESRCH;
  518. matched++;
  519. if (del_fp == NULL &&
  520. (!r->rtm_type || f->fn_type == r->rtm_type) &&
  521. (r->rtm_scope == RT_SCOPE_NOWHERE || f->fn_scope == r->rtm_scope) &&
  522. (!r->rtm_protocol ||
  523. fi->fib_protocol == r->rtm_protocol) &&
  524. dn_fib_nh_match(r, n, rta, fi) == 0)
  525. del_fp = fp;
  526. }
  527. if (del_fp) {
  528. f = *del_fp;
  529. dn_rtmsg_fib(RTM_DELROUTE, f, z, tb->n, n, req);
  530. if (matched != 1) {
  531. write_lock_bh(&dn_fib_tables_lock);
  532. *del_fp = f->fn_next;
  533. write_unlock_bh(&dn_fib_tables_lock);
  534. if (f->fn_state & DN_S_ACCESSED)
  535. dn_rt_cache_flush(-1);
  536. dn_free_node(f);
  537. dz->dz_nent--;
  538. } else {
  539. f->fn_state |= DN_S_ZOMBIE;
  540. if (f->fn_state & DN_S_ACCESSED) {
  541. f->fn_state &= ~DN_S_ACCESSED;
  542. dn_rt_cache_flush(-1);
  543. }
  544. if (++dn_fib_hash_zombies > 128)
  545. dn_fib_flush();
  546. }
  547. return 0;
  548. }
  549. return -ESRCH;
  550. }
  551. static inline int dn_flush_list(struct dn_fib_node **fp, int z, struct dn_hash *table)
  552. {
  553. int found = 0;
  554. struct dn_fib_node *f;
  555. while((f = *fp) != NULL) {
  556. struct dn_fib_info *fi = DN_FIB_INFO(f);
  557. if (fi && ((f->fn_state & DN_S_ZOMBIE) || (fi->fib_flags & RTNH_F_DEAD))) {
  558. write_lock_bh(&dn_fib_tables_lock);
  559. *fp = f->fn_next;
  560. write_unlock_bh(&dn_fib_tables_lock);
  561. dn_free_node(f);
  562. found++;
  563. continue;
  564. }
  565. fp = &f->fn_next;
  566. }
  567. return found;
  568. }
  569. static int dn_fib_table_flush(struct dn_fib_table *tb)
  570. {
  571. struct dn_hash *table = (struct dn_hash *)tb->data;
  572. struct dn_zone *dz;
  573. int found = 0;
  574. dn_fib_hash_zombies = 0;
  575. for(dz = table->dh_zone_list; dz; dz = dz->dz_next) {
  576. int i;
  577. int tmp = 0;
  578. for(i = dz->dz_divisor-1; i >= 0; i--)
  579. tmp += dn_flush_list(&dz->dz_hash[i], dz->dz_order, table);
  580. dz->dz_nent -= tmp;
  581. found += tmp;
  582. }
  583. return found;
  584. }
  585. static int dn_fib_table_lookup(struct dn_fib_table *tb, const struct flowi *flp, struct dn_fib_res *res)
  586. {
  587. int err;
  588. struct dn_zone *dz;
  589. struct dn_hash *t = (struct dn_hash *)tb->data;
  590. read_lock(&dn_fib_tables_lock);
  591. for(dz = t->dh_zone_list; dz; dz = dz->dz_next) {
  592. struct dn_fib_node *f;
  593. dn_fib_key_t k = dz_key(flp->fld_dst, dz);
  594. for(f = dz_chain(k, dz); f; f = f->fn_next) {
  595. if (!dn_key_eq(k, f->fn_key)) {
  596. if (dn_key_leq(k, f->fn_key))
  597. break;
  598. else
  599. continue;
  600. }
  601. f->fn_state |= DN_S_ACCESSED;
  602. if (f->fn_state&DN_S_ZOMBIE)
  603. continue;
  604. if (f->fn_scope < flp->fld_scope)
  605. continue;
  606. err = dn_fib_semantic_match(f->fn_type, DN_FIB_INFO(f), flp, res);
  607. if (err == 0) {
  608. res->type = f->fn_type;
  609. res->scope = f->fn_scope;
  610. res->prefixlen = dz->dz_order;
  611. goto out;
  612. }
  613. if (err < 0)
  614. goto out;
  615. }
  616. }
  617. err = 1;
  618. out:
  619. read_unlock(&dn_fib_tables_lock);
  620. return err;
  621. }
  622. struct dn_fib_table *dn_fib_get_table(u32 n, int create)
  623. {
  624. struct dn_fib_table *t;
  625. if (n < RT_TABLE_MIN)
  626. return NULL;
  627. if (n > RT_TABLE_MAX)
  628. return NULL;
  629. if (dn_fib_tables[n])
  630. return dn_fib_tables[n];
  631. if (!create)
  632. return NULL;
  633. if (in_interrupt() && net_ratelimit()) {
  634. printk(KERN_DEBUG "DECnet: BUG! Attempt to create routing table from interrupt\n");
  635. return NULL;
  636. }
  637. if ((t = kmalloc(sizeof(struct dn_fib_table) + sizeof(struct dn_hash), GFP_KERNEL)) == NULL)
  638. return NULL;
  639. memset(t, 0, sizeof(struct dn_fib_table));
  640. t->n = n;
  641. t->insert = dn_fib_table_insert;
  642. t->delete = dn_fib_table_delete;
  643. t->lookup = dn_fib_table_lookup;
  644. t->flush = dn_fib_table_flush;
  645. t->dump = dn_fib_table_dump;
  646. memset(t->data, 0, sizeof(struct dn_hash));
  647. dn_fib_tables[n] = t;
  648. return t;
  649. }
  650. static void dn_fib_del_tree(u32 n)
  651. {
  652. struct dn_fib_table *t;
  653. write_lock(&dn_fib_tables_lock);
  654. t = dn_fib_tables[n];
  655. dn_fib_tables[n] = NULL;
  656. write_unlock(&dn_fib_tables_lock);
  657. kfree(t);
  658. }
  659. struct dn_fib_table *dn_fib_empty_table(void)
  660. {
  661. u32 id;
  662. for(id = RT_TABLE_MIN; id <= RT_TABLE_MAX; id++)
  663. if (dn_fib_tables[id] == NULL)
  664. return dn_fib_get_table(id, 1);
  665. return NULL;
  666. }
  667. void __init dn_fib_table_init(void)
  668. {
  669. dn_hash_kmem = kmem_cache_create("dn_fib_info_cache",
  670. sizeof(struct dn_fib_info),
  671. 0, SLAB_HWCACHE_ALIGN,
  672. NULL, NULL);
  673. }
  674. void __exit dn_fib_table_cleanup(void)
  675. {
  676. int i;
  677. for (i = RT_TABLE_MIN; i <= RT_TABLE_MAX; ++i)
  678. dn_fib_del_tree(i);
  679. return;
  680. }