uaccess.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504
  1. #ifndef _ARCH_POWERPC_UACCESS_H
  2. #define _ARCH_POWERPC_UACCESS_H
  3. #ifdef __KERNEL__
  4. #ifndef __ASSEMBLY__
  5. #include <linux/sched.h>
  6. #include <linux/errno.h>
  7. #include <asm/processor.h>
  8. #define VERIFY_READ 0
  9. #define VERIFY_WRITE 1
  10. /*
  11. * The fs value determines whether argument validity checking should be
  12. * performed or not. If get_fs() == USER_DS, checking is performed, with
  13. * get_fs() == KERNEL_DS, checking is bypassed.
  14. *
  15. * For historical reasons, these macros are grossly misnamed.
  16. *
  17. * The fs/ds values are now the highest legal address in the "segment".
  18. * This simplifies the checking in the routines below.
  19. */
  20. #define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })
  21. #ifdef __powerpc64__
  22. #define KERNEL_DS MAKE_MM_SEG(0UL)
  23. #define USER_DS MAKE_MM_SEG(0xf000000000000000UL)
  24. #else
  25. #define KERNEL_DS MAKE_MM_SEG(~0UL)
  26. #define USER_DS MAKE_MM_SEG(TASK_SIZE - 1)
  27. #endif
  28. #define get_ds() (KERNEL_DS)
  29. #define get_fs() (current->thread.fs)
  30. #define set_fs(val) (current->thread.fs = (val))
  31. #define segment_eq(a, b) ((a).seg == (b).seg)
  32. #ifdef __powerpc64__
  33. /*
  34. * Use the alpha trick for checking ranges:
  35. *
  36. * Is a address valid? This does a straightforward calculation rather
  37. * than tests.
  38. *
  39. * Address valid if:
  40. * - "addr" doesn't have any high-bits set
  41. * - AND "size" doesn't have any high-bits set
  42. * - OR we are in kernel mode.
  43. *
  44. * We dont have to check for high bits in (addr+size) because the first
  45. * two checks force the maximum result to be below the start of the
  46. * kernel region.
  47. */
  48. #define __access_ok(addr, size, segment) \
  49. (((segment).seg & (addr | size )) == 0)
  50. #else
  51. #define __access_ok(addr, size, segment) \
  52. (((addr) <= (segment).seg) && \
  53. (((size) == 0) || (((size) - 1) <= ((segment).seg - (addr)))))
  54. #endif
  55. #define access_ok(type, addr, size) \
  56. (__chk_user_ptr(addr), \
  57. __access_ok((__force unsigned long)(addr), (size), get_fs()))
  58. /*
  59. * The exception table consists of pairs of addresses: the first is the
  60. * address of an instruction that is allowed to fault, and the second is
  61. * the address at which the program should continue. No registers are
  62. * modified, so it is entirely up to the continuation code to figure out
  63. * what to do.
  64. *
  65. * All the routines below use bits of fixup code that are out of line
  66. * with the main instruction path. This means when everything is well,
  67. * we don't even have to jump over them. Further, they do not intrude
  68. * on our cache or tlb entries.
  69. */
  70. struct exception_table_entry {
  71. unsigned long insn;
  72. unsigned long fixup;
  73. };
  74. /*
  75. * These are the main single-value transfer routines. They automatically
  76. * use the right size if we just have the right pointer type.
  77. *
  78. * This gets kind of ugly. We want to return _two_ values in "get_user()"
  79. * and yet we don't want to do any pointers, because that is too much
  80. * of a performance impact. Thus we have a few rather ugly macros here,
  81. * and hide all the ugliness from the user.
  82. *
  83. * The "__xxx" versions of the user access functions are versions that
  84. * do not verify the address space, that must have been done previously
  85. * with a separate "access_ok()" call (this is used when we do multiple
  86. * accesses to the same area of user memory).
  87. *
  88. * As we use the same address space for kernel and user data on the
  89. * PowerPC, we can just do these as direct assignments. (Of course, the
  90. * exception handling means that it's no longer "just"...)
  91. *
  92. * The "user64" versions of the user access functions are versions that
  93. * allow access of 64-bit data. The "get_user" functions do not
  94. * properly handle 64-bit data because the value gets down cast to a long.
  95. * The "put_user" functions already handle 64-bit data properly but we add
  96. * "user64" versions for completeness
  97. */
  98. #define get_user(x, ptr) \
  99. __get_user_check((x), (ptr), sizeof(*(ptr)))
  100. #define put_user(x, ptr) \
  101. __put_user_check((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)))
  102. #define __get_user(x, ptr) \
  103. __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
  104. #define __put_user(x, ptr) \
  105. __put_user_nocheck((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)))
  106. #ifndef __powerpc64__
  107. #define __get_user64(x, ptr) \
  108. __get_user64_nocheck((x), (ptr), sizeof(*(ptr)))
  109. #define __put_user64(x, ptr) __put_user(x, ptr)
  110. #endif
  111. #ifdef __powerpc64__
  112. #define __get_user_unaligned __get_user
  113. #define __put_user_unaligned __put_user
  114. #endif
  115. extern long __put_user_bad(void);
  116. #ifdef __powerpc64__
  117. #define __EX_TABLE_ALIGN "3"
  118. #define __EX_TABLE_TYPE "llong"
  119. #else
  120. #define __EX_TABLE_ALIGN "2"
  121. #define __EX_TABLE_TYPE "long"
  122. #endif
  123. /*
  124. * We don't tell gcc that we are accessing memory, but this is OK
  125. * because we do not write to any memory gcc knows about, so there
  126. * are no aliasing issues.
  127. */
  128. #define __put_user_asm(x, addr, err, op) \
  129. __asm__ __volatile__( \
  130. "1: " op " %1,0(%2) # put_user\n" \
  131. "2:\n" \
  132. ".section .fixup,\"ax\"\n" \
  133. "3: li %0,%3\n" \
  134. " b 2b\n" \
  135. ".previous\n" \
  136. ".section __ex_table,\"a\"\n" \
  137. " .align " __EX_TABLE_ALIGN "\n" \
  138. " ."__EX_TABLE_TYPE" 1b,3b\n" \
  139. ".previous" \
  140. : "=r" (err) \
  141. : "r" (x), "b" (addr), "i" (-EFAULT), "0" (err))
  142. #ifndef __powerpc64__
  143. #define __put_user_asm2(x, addr, err) \
  144. __asm__ __volatile__( \
  145. "1: stw %1,0(%2)\n" \
  146. "2: stw %1+1,4(%2)\n" \
  147. "3:\n" \
  148. ".section .fixup,\"ax\"\n" \
  149. "4: li %0,%3\n" \
  150. " b 3b\n" \
  151. ".previous\n" \
  152. ".section __ex_table,\"a\"\n" \
  153. " .align " __EX_TABLE_ALIGN "\n" \
  154. " ." __EX_TABLE_TYPE " 1b,4b\n" \
  155. " ." __EX_TABLE_TYPE " 2b,4b\n" \
  156. ".previous" \
  157. : "=r" (err) \
  158. : "r" (x), "b" (addr), "i" (-EFAULT), "0" (err))
  159. #else /* __powerpc64__ */
  160. #define __put_user_asm2(x, ptr, retval) \
  161. __put_user_asm(x, ptr, retval, "std")
  162. #endif /* __powerpc64__ */
  163. #define __put_user_size(x, ptr, size, retval) \
  164. do { \
  165. retval = 0; \
  166. switch (size) { \
  167. case 1: __put_user_asm(x, ptr, retval, "stb"); break; \
  168. case 2: __put_user_asm(x, ptr, retval, "sth"); break; \
  169. case 4: __put_user_asm(x, ptr, retval, "stw"); break; \
  170. case 8: __put_user_asm2(x, ptr, retval); break; \
  171. default: __put_user_bad(); \
  172. } \
  173. } while (0)
  174. #define __put_user_nocheck(x, ptr, size) \
  175. ({ \
  176. long __pu_err; \
  177. might_sleep(); \
  178. __chk_user_ptr(ptr); \
  179. __put_user_size((x), (ptr), (size), __pu_err); \
  180. __pu_err; \
  181. })
  182. #define __put_user_check(x, ptr, size) \
  183. ({ \
  184. long __pu_err = -EFAULT; \
  185. __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
  186. might_sleep(); \
  187. if (access_ok(VERIFY_WRITE, __pu_addr, size)) \
  188. __put_user_size((x), __pu_addr, (size), __pu_err); \
  189. __pu_err; \
  190. })
  191. extern long __get_user_bad(void);
  192. #define __get_user_asm(x, addr, err, op) \
  193. __asm__ __volatile__( \
  194. "1: "op" %1,0(%2) # get_user\n" \
  195. "2:\n" \
  196. ".section .fixup,\"ax\"\n" \
  197. "3: li %0,%3\n" \
  198. " li %1,0\n" \
  199. " b 2b\n" \
  200. ".previous\n" \
  201. ".section __ex_table,\"a\"\n" \
  202. " .align "__EX_TABLE_ALIGN "\n" \
  203. " ." __EX_TABLE_TYPE " 1b,3b\n" \
  204. ".previous" \
  205. : "=r" (err), "=r" (x) \
  206. : "b" (addr), "i" (-EFAULT), "0" (err))
  207. #ifndef __powerpc64__
  208. #define __get_user_asm2(x, addr, err) \
  209. __asm__ __volatile__( \
  210. "1: lwz %1,0(%2)\n" \
  211. "2: lwz %1+1,4(%2)\n" \
  212. "3:\n" \
  213. ".section .fixup,\"ax\"\n" \
  214. "4: li %0,%3\n" \
  215. " li %1,0\n" \
  216. " li %1+1,0\n" \
  217. " b 3b\n" \
  218. ".previous\n" \
  219. ".section __ex_table,\"a\"\n" \
  220. " .align " __EX_TABLE_ALIGN "\n" \
  221. " ." __EX_TABLE_TYPE " 1b,4b\n" \
  222. " ." __EX_TABLE_TYPE " 2b,4b\n" \
  223. ".previous" \
  224. : "=r" (err), "=&r" (x) \
  225. : "b" (addr), "i" (-EFAULT), "0" (err))
  226. #else
  227. #define __get_user_asm2(x, addr, err) \
  228. __get_user_asm(x, addr, err, "ld")
  229. #endif /* __powerpc64__ */
  230. #define __get_user_size(x, ptr, size, retval) \
  231. do { \
  232. retval = 0; \
  233. __chk_user_ptr(ptr); \
  234. if (size > sizeof(x)) \
  235. (x) = __get_user_bad(); \
  236. switch (size) { \
  237. case 1: __get_user_asm(x, ptr, retval, "lbz"); break; \
  238. case 2: __get_user_asm(x, ptr, retval, "lhz"); break; \
  239. case 4: __get_user_asm(x, ptr, retval, "lwz"); break; \
  240. case 8: __get_user_asm2(x, ptr, retval); break; \
  241. default: (x) = __get_user_bad(); \
  242. } \
  243. } while (0)
  244. #define __get_user_nocheck(x, ptr, size) \
  245. ({ \
  246. long __gu_err; \
  247. unsigned long __gu_val; \
  248. __chk_user_ptr(ptr); \
  249. might_sleep(); \
  250. __get_user_size(__gu_val, (ptr), (size), __gu_err); \
  251. (x) = (__typeof__(*(ptr)))__gu_val; \
  252. __gu_err; \
  253. })
  254. #ifndef __powerpc64__
  255. #define __get_user64_nocheck(x, ptr, size) \
  256. ({ \
  257. long __gu_err; \
  258. long long __gu_val; \
  259. __chk_user_ptr(ptr); \
  260. might_sleep(); \
  261. __get_user_size(__gu_val, (ptr), (size), __gu_err); \
  262. (x) = (__typeof__(*(ptr)))__gu_val; \
  263. __gu_err; \
  264. })
  265. #endif /* __powerpc64__ */
  266. #define __get_user_check(x, ptr, size) \
  267. ({ \
  268. long __gu_err = -EFAULT; \
  269. unsigned long __gu_val = 0; \
  270. const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \
  271. might_sleep(); \
  272. if (access_ok(VERIFY_READ, __gu_addr, (size))) \
  273. __get_user_size(__gu_val, __gu_addr, (size), __gu_err); \
  274. (x) = (__typeof__(*(ptr)))__gu_val; \
  275. __gu_err; \
  276. })
  277. /* more complex routines */
  278. extern unsigned long __copy_tofrom_user(void __user *to,
  279. const void __user *from, unsigned long size);
  280. #ifndef __powerpc64__
  281. extern inline unsigned long
  282. copy_from_user(void *to, const void __user *from, unsigned long n)
  283. {
  284. unsigned long over;
  285. if (access_ok(VERIFY_READ, from, n))
  286. return __copy_tofrom_user((__force void __user *)to, from, n);
  287. if ((unsigned long)from < TASK_SIZE) {
  288. over = (unsigned long)from + n - TASK_SIZE;
  289. return __copy_tofrom_user((__force void __user *)to, from,
  290. n - over) + over;
  291. }
  292. return n;
  293. }
  294. extern inline unsigned long
  295. copy_to_user(void __user *to, const void *from, unsigned long n)
  296. {
  297. unsigned long over;
  298. if (access_ok(VERIFY_WRITE, to, n))
  299. return __copy_tofrom_user(to, (__force void __user *)from, n);
  300. if ((unsigned long)to < TASK_SIZE) {
  301. over = (unsigned long)to + n - TASK_SIZE;
  302. return __copy_tofrom_user(to, (__force void __user *)from,
  303. n - over) + over;
  304. }
  305. return n;
  306. }
  307. #else /* __powerpc64__ */
  308. static inline unsigned long
  309. __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
  310. {
  311. if (__builtin_constant_p(n) && (n <= 8)) {
  312. unsigned long ret;
  313. switch (n) {
  314. case 1:
  315. __get_user_size(*(u8 *)to, from, 1, ret);
  316. break;
  317. case 2:
  318. __get_user_size(*(u16 *)to, from, 2, ret);
  319. break;
  320. case 4:
  321. __get_user_size(*(u32 *)to, from, 4, ret);
  322. break;
  323. case 8:
  324. __get_user_size(*(u64 *)to, from, 8, ret);
  325. break;
  326. }
  327. return (ret == -EFAULT) ? n : 0;
  328. }
  329. return __copy_tofrom_user((__force void __user *) to, from, n);
  330. }
  331. static inline unsigned long
  332. __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
  333. {
  334. if (__builtin_constant_p(n) && (n <= 8)) {
  335. unsigned long ret;
  336. switch (n) {
  337. case 1:
  338. __put_user_size(*(u8 *)from, (u8 __user *)to, 1, ret);
  339. break;
  340. case 2:
  341. __put_user_size(*(u16 *)from, (u16 __user *)to, 2, ret);
  342. break;
  343. case 4:
  344. __put_user_size(*(u32 *)from, (u32 __user *)to, 4, ret);
  345. break;
  346. case 8:
  347. __put_user_size(*(u64 *)from, (u64 __user *)to, 8, ret);
  348. break;
  349. }
  350. return (ret == -EFAULT) ? n : 0;
  351. }
  352. return __copy_tofrom_user(to, (__force const void __user *) from, n);
  353. }
  354. #endif /* __powerpc64__ */
  355. static inline unsigned long
  356. __copy_from_user(void *to, const void __user *from, unsigned long size)
  357. {
  358. might_sleep();
  359. #ifndef __powerpc64__
  360. return __copy_tofrom_user((__force void __user *)to, from, size);
  361. #else /* __powerpc64__ */
  362. return __copy_from_user_inatomic(to, from, size);
  363. #endif /* __powerpc64__ */
  364. }
  365. static inline unsigned long
  366. __copy_to_user(void __user *to, const void *from, unsigned long size)
  367. {
  368. might_sleep();
  369. #ifndef __powerpc64__
  370. return __copy_tofrom_user(to, (__force void __user *)from, size);
  371. #else /* __powerpc64__ */
  372. return __copy_to_user_inatomic(to, from, size);
  373. #endif /* __powerpc64__ */
  374. }
  375. #ifndef __powerpc64__
  376. #define __copy_to_user_inatomic __copy_to_user
  377. #define __copy_from_user_inatomic __copy_from_user
  378. #else /* __powerpc64__ */
  379. #define __copy_in_user(to, from, size) \
  380. __copy_tofrom_user((to), (from), (size))
  381. extern unsigned long copy_from_user(void *to, const void __user *from,
  382. unsigned long n);
  383. extern unsigned long copy_to_user(void __user *to, const void *from,
  384. unsigned long n);
  385. extern unsigned long copy_in_user(void __user *to, const void __user *from,
  386. unsigned long n);
  387. #endif /* __powerpc64__ */
  388. extern unsigned long __clear_user(void __user *addr, unsigned long size);
  389. static inline unsigned long clear_user(void __user *addr, unsigned long size)
  390. {
  391. might_sleep();
  392. if (likely(access_ok(VERIFY_WRITE, addr, size)))
  393. return __clear_user(addr, size);
  394. #ifndef __powerpc64__
  395. if ((unsigned long)addr < TASK_SIZE) {
  396. unsigned long over = (unsigned long)addr + size - TASK_SIZE;
  397. return __clear_user(addr, size - over) + over;
  398. }
  399. #endif /* __powerpc64__ */
  400. return size;
  401. }
  402. extern int __strncpy_from_user(char *dst, const char __user *src, long count);
  403. static inline long strncpy_from_user(char *dst, const char __user *src,
  404. long count)
  405. {
  406. might_sleep();
  407. if (likely(access_ok(VERIFY_READ, src, 1)))
  408. return __strncpy_from_user(dst, src, count);
  409. return -EFAULT;
  410. }
  411. /*
  412. * Return the size of a string (including the ending 0)
  413. *
  414. * Return 0 for error
  415. */
  416. #ifndef __powerpc64__
  417. extern int __strnlen_user(const char __user *str, long len, unsigned long top);
  418. #else /* __powerpc64__ */
  419. extern int __strnlen_user(const char __user *str, long len);
  420. #endif /* __powerpc64__ */
  421. /*
  422. * Returns the length of the string at str (including the null byte),
  423. * or 0 if we hit a page we can't access,
  424. * or something > len if we didn't find a null byte.
  425. *
  426. * The `top' parameter to __strnlen_user is to make sure that
  427. * we can never overflow from the user area into kernel space.
  428. */
  429. static inline int strnlen_user(const char __user *str, long len)
  430. {
  431. #ifndef __powerpc64__
  432. unsigned long top = current->thread.fs.seg;
  433. if ((unsigned long)str > top)
  434. return 0;
  435. return __strnlen_user(str, len, top);
  436. #else /* __powerpc64__ */
  437. might_sleep();
  438. if (likely(access_ok(VERIFY_READ, str, 1)))
  439. return __strnlen_user(str, len);
  440. return 0;
  441. #endif /* __powerpc64__ */
  442. }
  443. #define strlen_user(str) strnlen_user((str), 0x7ffffffe)
  444. #endif /* __ASSEMBLY__ */
  445. #endif /* __KERNEL__ */
  446. #endif /* _ARCH_POWERPC_UACCESS_H */