intel_display.c 266 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. /**
  58. * find_pll() - Find the best values for the PLL
  59. * @limit: limits for the PLL
  60. * @crtc: current CRTC
  61. * @target: target frequency in kHz
  62. * @refclk: reference clock frequency in kHz
  63. * @match_clock: if provided, @best_clock P divider must
  64. * match the P divider from @match_clock
  65. * used for LVDS downclocking
  66. * @best_clock: best PLL values found
  67. *
  68. * Returns true on success, false on failure.
  69. */
  70. bool (*find_pll)(const intel_limit_t *limit,
  71. struct drm_crtc *crtc,
  72. int target, int refclk,
  73. intel_clock_t *match_clock,
  74. intel_clock_t *best_clock);
  75. };
  76. /* FDI */
  77. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  78. int
  79. intel_pch_rawclk(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. WARN_ON(!HAS_PCH_SPLIT(dev));
  83. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  84. }
  85. static bool
  86. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  87. int target, int refclk, intel_clock_t *match_clock,
  88. intel_clock_t *best_clock);
  89. static bool
  90. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  91. int target, int refclk, intel_clock_t *match_clock,
  92. intel_clock_t *best_clock);
  93. static bool
  94. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  95. int target, int refclk, intel_clock_t *match_clock,
  96. intel_clock_t *best_clock);
  97. static inline u32 /* units of 100MHz */
  98. intel_fdi_link_freq(struct drm_device *dev)
  99. {
  100. if (IS_GEN5(dev)) {
  101. struct drm_i915_private *dev_priv = dev->dev_private;
  102. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  103. } else
  104. return 27;
  105. }
  106. static const intel_limit_t intel_limits_i8xx_dvo = {
  107. .dot = { .min = 25000, .max = 350000 },
  108. .vco = { .min = 930000, .max = 1400000 },
  109. .n = { .min = 3, .max = 16 },
  110. .m = { .min = 96, .max = 140 },
  111. .m1 = { .min = 18, .max = 26 },
  112. .m2 = { .min = 6, .max = 16 },
  113. .p = { .min = 4, .max = 128 },
  114. .p1 = { .min = 2, .max = 33 },
  115. .p2 = { .dot_limit = 165000,
  116. .p2_slow = 4, .p2_fast = 2 },
  117. .find_pll = intel_find_best_PLL,
  118. };
  119. static const intel_limit_t intel_limits_i8xx_lvds = {
  120. .dot = { .min = 25000, .max = 350000 },
  121. .vco = { .min = 930000, .max = 1400000 },
  122. .n = { .min = 3, .max = 16 },
  123. .m = { .min = 96, .max = 140 },
  124. .m1 = { .min = 18, .max = 26 },
  125. .m2 = { .min = 6, .max = 16 },
  126. .p = { .min = 4, .max = 128 },
  127. .p1 = { .min = 1, .max = 6 },
  128. .p2 = { .dot_limit = 165000,
  129. .p2_slow = 14, .p2_fast = 7 },
  130. .find_pll = intel_find_best_PLL,
  131. };
  132. static const intel_limit_t intel_limits_i9xx_sdvo = {
  133. .dot = { .min = 20000, .max = 400000 },
  134. .vco = { .min = 1400000, .max = 2800000 },
  135. .n = { .min = 1, .max = 6 },
  136. .m = { .min = 70, .max = 120 },
  137. .m1 = { .min = 8, .max = 18 },
  138. .m2 = { .min = 3, .max = 7 },
  139. .p = { .min = 5, .max = 80 },
  140. .p1 = { .min = 1, .max = 8 },
  141. .p2 = { .dot_limit = 200000,
  142. .p2_slow = 10, .p2_fast = 5 },
  143. .find_pll = intel_find_best_PLL,
  144. };
  145. static const intel_limit_t intel_limits_i9xx_lvds = {
  146. .dot = { .min = 20000, .max = 400000 },
  147. .vco = { .min = 1400000, .max = 2800000 },
  148. .n = { .min = 1, .max = 6 },
  149. .m = { .min = 70, .max = 120 },
  150. .m1 = { .min = 8, .max = 18 },
  151. .m2 = { .min = 3, .max = 7 },
  152. .p = { .min = 7, .max = 98 },
  153. .p1 = { .min = 1, .max = 8 },
  154. .p2 = { .dot_limit = 112000,
  155. .p2_slow = 14, .p2_fast = 7 },
  156. .find_pll = intel_find_best_PLL,
  157. };
  158. static const intel_limit_t intel_limits_g4x_sdvo = {
  159. .dot = { .min = 25000, .max = 270000 },
  160. .vco = { .min = 1750000, .max = 3500000},
  161. .n = { .min = 1, .max = 4 },
  162. .m = { .min = 104, .max = 138 },
  163. .m1 = { .min = 17, .max = 23 },
  164. .m2 = { .min = 5, .max = 11 },
  165. .p = { .min = 10, .max = 30 },
  166. .p1 = { .min = 1, .max = 3},
  167. .p2 = { .dot_limit = 270000,
  168. .p2_slow = 10,
  169. .p2_fast = 10
  170. },
  171. .find_pll = intel_g4x_find_best_PLL,
  172. };
  173. static const intel_limit_t intel_limits_g4x_hdmi = {
  174. .dot = { .min = 22000, .max = 400000 },
  175. .vco = { .min = 1750000, .max = 3500000},
  176. .n = { .min = 1, .max = 4 },
  177. .m = { .min = 104, .max = 138 },
  178. .m1 = { .min = 16, .max = 23 },
  179. .m2 = { .min = 5, .max = 11 },
  180. .p = { .min = 5, .max = 80 },
  181. .p1 = { .min = 1, .max = 8},
  182. .p2 = { .dot_limit = 165000,
  183. .p2_slow = 10, .p2_fast = 5 },
  184. .find_pll = intel_g4x_find_best_PLL,
  185. };
  186. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  187. .dot = { .min = 20000, .max = 115000 },
  188. .vco = { .min = 1750000, .max = 3500000 },
  189. .n = { .min = 1, .max = 3 },
  190. .m = { .min = 104, .max = 138 },
  191. .m1 = { .min = 17, .max = 23 },
  192. .m2 = { .min = 5, .max = 11 },
  193. .p = { .min = 28, .max = 112 },
  194. .p1 = { .min = 2, .max = 8 },
  195. .p2 = { .dot_limit = 0,
  196. .p2_slow = 14, .p2_fast = 14
  197. },
  198. .find_pll = intel_g4x_find_best_PLL,
  199. };
  200. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  201. .dot = { .min = 80000, .max = 224000 },
  202. .vco = { .min = 1750000, .max = 3500000 },
  203. .n = { .min = 1, .max = 3 },
  204. .m = { .min = 104, .max = 138 },
  205. .m1 = { .min = 17, .max = 23 },
  206. .m2 = { .min = 5, .max = 11 },
  207. .p = { .min = 14, .max = 42 },
  208. .p1 = { .min = 2, .max = 6 },
  209. .p2 = { .dot_limit = 0,
  210. .p2_slow = 7, .p2_fast = 7
  211. },
  212. .find_pll = intel_g4x_find_best_PLL,
  213. };
  214. static const intel_limit_t intel_limits_pineview_sdvo = {
  215. .dot = { .min = 20000, .max = 400000},
  216. .vco = { .min = 1700000, .max = 3500000 },
  217. /* Pineview's Ncounter is a ring counter */
  218. .n = { .min = 3, .max = 6 },
  219. .m = { .min = 2, .max = 256 },
  220. /* Pineview only has one combined m divider, which we treat as m2. */
  221. .m1 = { .min = 0, .max = 0 },
  222. .m2 = { .min = 0, .max = 254 },
  223. .p = { .min = 5, .max = 80 },
  224. .p1 = { .min = 1, .max = 8 },
  225. .p2 = { .dot_limit = 200000,
  226. .p2_slow = 10, .p2_fast = 5 },
  227. .find_pll = intel_find_best_PLL,
  228. };
  229. static const intel_limit_t intel_limits_pineview_lvds = {
  230. .dot = { .min = 20000, .max = 400000 },
  231. .vco = { .min = 1700000, .max = 3500000 },
  232. .n = { .min = 3, .max = 6 },
  233. .m = { .min = 2, .max = 256 },
  234. .m1 = { .min = 0, .max = 0 },
  235. .m2 = { .min = 0, .max = 254 },
  236. .p = { .min = 7, .max = 112 },
  237. .p1 = { .min = 1, .max = 8 },
  238. .p2 = { .dot_limit = 112000,
  239. .p2_slow = 14, .p2_fast = 14 },
  240. .find_pll = intel_find_best_PLL,
  241. };
  242. /* Ironlake / Sandybridge
  243. *
  244. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  245. * the range value for them is (actual_value - 2).
  246. */
  247. static const intel_limit_t intel_limits_ironlake_dac = {
  248. .dot = { .min = 25000, .max = 350000 },
  249. .vco = { .min = 1760000, .max = 3510000 },
  250. .n = { .min = 1, .max = 5 },
  251. .m = { .min = 79, .max = 127 },
  252. .m1 = { .min = 12, .max = 22 },
  253. .m2 = { .min = 5, .max = 9 },
  254. .p = { .min = 5, .max = 80 },
  255. .p1 = { .min = 1, .max = 8 },
  256. .p2 = { .dot_limit = 225000,
  257. .p2_slow = 10, .p2_fast = 5 },
  258. .find_pll = intel_g4x_find_best_PLL,
  259. };
  260. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  261. .dot = { .min = 25000, .max = 350000 },
  262. .vco = { .min = 1760000, .max = 3510000 },
  263. .n = { .min = 1, .max = 3 },
  264. .m = { .min = 79, .max = 118 },
  265. .m1 = { .min = 12, .max = 22 },
  266. .m2 = { .min = 5, .max = 9 },
  267. .p = { .min = 28, .max = 112 },
  268. .p1 = { .min = 2, .max = 8 },
  269. .p2 = { .dot_limit = 225000,
  270. .p2_slow = 14, .p2_fast = 14 },
  271. .find_pll = intel_g4x_find_best_PLL,
  272. };
  273. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  274. .dot = { .min = 25000, .max = 350000 },
  275. .vco = { .min = 1760000, .max = 3510000 },
  276. .n = { .min = 1, .max = 3 },
  277. .m = { .min = 79, .max = 127 },
  278. .m1 = { .min = 12, .max = 22 },
  279. .m2 = { .min = 5, .max = 9 },
  280. .p = { .min = 14, .max = 56 },
  281. .p1 = { .min = 2, .max = 8 },
  282. .p2 = { .dot_limit = 225000,
  283. .p2_slow = 7, .p2_fast = 7 },
  284. .find_pll = intel_g4x_find_best_PLL,
  285. };
  286. /* LVDS 100mhz refclk limits. */
  287. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  288. .dot = { .min = 25000, .max = 350000 },
  289. .vco = { .min = 1760000, .max = 3510000 },
  290. .n = { .min = 1, .max = 2 },
  291. .m = { .min = 79, .max = 126 },
  292. .m1 = { .min = 12, .max = 22 },
  293. .m2 = { .min = 5, .max = 9 },
  294. .p = { .min = 28, .max = 112 },
  295. .p1 = { .min = 2, .max = 8 },
  296. .p2 = { .dot_limit = 225000,
  297. .p2_slow = 14, .p2_fast = 14 },
  298. .find_pll = intel_g4x_find_best_PLL,
  299. };
  300. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  301. .dot = { .min = 25000, .max = 350000 },
  302. .vco = { .min = 1760000, .max = 3510000 },
  303. .n = { .min = 1, .max = 3 },
  304. .m = { .min = 79, .max = 126 },
  305. .m1 = { .min = 12, .max = 22 },
  306. .m2 = { .min = 5, .max = 9 },
  307. .p = { .min = 14, .max = 42 },
  308. .p1 = { .min = 2, .max = 6 },
  309. .p2 = { .dot_limit = 225000,
  310. .p2_slow = 7, .p2_fast = 7 },
  311. .find_pll = intel_g4x_find_best_PLL,
  312. };
  313. static const intel_limit_t intel_limits_vlv_dac = {
  314. .dot = { .min = 25000, .max = 270000 },
  315. .vco = { .min = 4000000, .max = 6000000 },
  316. .n = { .min = 1, .max = 7 },
  317. .m = { .min = 22, .max = 450 }, /* guess */
  318. .m1 = { .min = 2, .max = 3 },
  319. .m2 = { .min = 11, .max = 156 },
  320. .p = { .min = 10, .max = 30 },
  321. .p1 = { .min = 1, .max = 3 },
  322. .p2 = { .dot_limit = 270000,
  323. .p2_slow = 2, .p2_fast = 20 },
  324. .find_pll = intel_vlv_find_best_pll,
  325. };
  326. static const intel_limit_t intel_limits_vlv_hdmi = {
  327. .dot = { .min = 25000, .max = 270000 },
  328. .vco = { .min = 4000000, .max = 6000000 },
  329. .n = { .min = 1, .max = 7 },
  330. .m = { .min = 60, .max = 300 }, /* guess */
  331. .m1 = { .min = 2, .max = 3 },
  332. .m2 = { .min = 11, .max = 156 },
  333. .p = { .min = 10, .max = 30 },
  334. .p1 = { .min = 2, .max = 3 },
  335. .p2 = { .dot_limit = 270000,
  336. .p2_slow = 2, .p2_fast = 20 },
  337. .find_pll = intel_vlv_find_best_pll,
  338. };
  339. static const intel_limit_t intel_limits_vlv_dp = {
  340. .dot = { .min = 25000, .max = 270000 },
  341. .vco = { .min = 4000000, .max = 6000000 },
  342. .n = { .min = 1, .max = 7 },
  343. .m = { .min = 22, .max = 450 },
  344. .m1 = { .min = 2, .max = 3 },
  345. .m2 = { .min = 11, .max = 156 },
  346. .p = { .min = 10, .max = 30 },
  347. .p1 = { .min = 1, .max = 3 },
  348. .p2 = { .dot_limit = 270000,
  349. .p2_slow = 2, .p2_fast = 20 },
  350. .find_pll = intel_vlv_find_best_pll,
  351. };
  352. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  353. {
  354. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  355. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  356. DRM_ERROR("DPIO idle wait timed out\n");
  357. return 0;
  358. }
  359. I915_WRITE(DPIO_REG, reg);
  360. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  361. DPIO_BYTE);
  362. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  363. DRM_ERROR("DPIO read wait timed out\n");
  364. return 0;
  365. }
  366. return I915_READ(DPIO_DATA);
  367. }
  368. void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, u32 val)
  369. {
  370. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  371. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  372. DRM_ERROR("DPIO idle wait timed out\n");
  373. return;
  374. }
  375. I915_WRITE(DPIO_DATA, val);
  376. I915_WRITE(DPIO_REG, reg);
  377. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  378. DPIO_BYTE);
  379. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  380. DRM_ERROR("DPIO write wait timed out\n");
  381. }
  382. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  383. int refclk)
  384. {
  385. struct drm_device *dev = crtc->dev;
  386. const intel_limit_t *limit;
  387. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  388. if (intel_is_dual_link_lvds(dev)) {
  389. if (refclk == 100000)
  390. limit = &intel_limits_ironlake_dual_lvds_100m;
  391. else
  392. limit = &intel_limits_ironlake_dual_lvds;
  393. } else {
  394. if (refclk == 100000)
  395. limit = &intel_limits_ironlake_single_lvds_100m;
  396. else
  397. limit = &intel_limits_ironlake_single_lvds;
  398. }
  399. } else
  400. limit = &intel_limits_ironlake_dac;
  401. return limit;
  402. }
  403. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  404. {
  405. struct drm_device *dev = crtc->dev;
  406. const intel_limit_t *limit;
  407. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  408. if (intel_is_dual_link_lvds(dev))
  409. limit = &intel_limits_g4x_dual_channel_lvds;
  410. else
  411. limit = &intel_limits_g4x_single_channel_lvds;
  412. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  413. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  414. limit = &intel_limits_g4x_hdmi;
  415. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  416. limit = &intel_limits_g4x_sdvo;
  417. } else /* The option is for other outputs */
  418. limit = &intel_limits_i9xx_sdvo;
  419. return limit;
  420. }
  421. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  422. {
  423. struct drm_device *dev = crtc->dev;
  424. const intel_limit_t *limit;
  425. if (HAS_PCH_SPLIT(dev))
  426. limit = intel_ironlake_limit(crtc, refclk);
  427. else if (IS_G4X(dev)) {
  428. limit = intel_g4x_limit(crtc);
  429. } else if (IS_PINEVIEW(dev)) {
  430. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  431. limit = &intel_limits_pineview_lvds;
  432. else
  433. limit = &intel_limits_pineview_sdvo;
  434. } else if (IS_VALLEYVIEW(dev)) {
  435. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  436. limit = &intel_limits_vlv_dac;
  437. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  438. limit = &intel_limits_vlv_hdmi;
  439. else
  440. limit = &intel_limits_vlv_dp;
  441. } else if (!IS_GEN2(dev)) {
  442. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  443. limit = &intel_limits_i9xx_lvds;
  444. else
  445. limit = &intel_limits_i9xx_sdvo;
  446. } else {
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  448. limit = &intel_limits_i8xx_lvds;
  449. else
  450. limit = &intel_limits_i8xx_dvo;
  451. }
  452. return limit;
  453. }
  454. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  455. static void pineview_clock(int refclk, intel_clock_t *clock)
  456. {
  457. clock->m = clock->m2 + 2;
  458. clock->p = clock->p1 * clock->p2;
  459. clock->vco = refclk * clock->m / clock->n;
  460. clock->dot = clock->vco / clock->p;
  461. }
  462. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  463. {
  464. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  465. }
  466. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  467. {
  468. if (IS_PINEVIEW(dev)) {
  469. pineview_clock(refclk, clock);
  470. return;
  471. }
  472. clock->m = i9xx_dpll_compute_m(clock);
  473. clock->p = clock->p1 * clock->p2;
  474. clock->vco = refclk * clock->m / (clock->n + 2);
  475. clock->dot = clock->vco / clock->p;
  476. }
  477. /**
  478. * Returns whether any output on the specified pipe is of the specified type
  479. */
  480. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  481. {
  482. struct drm_device *dev = crtc->dev;
  483. struct intel_encoder *encoder;
  484. for_each_encoder_on_crtc(dev, crtc, encoder)
  485. if (encoder->type == type)
  486. return true;
  487. return false;
  488. }
  489. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  490. /**
  491. * Returns whether the given set of divisors are valid for a given refclk with
  492. * the given connectors.
  493. */
  494. static bool intel_PLL_is_valid(struct drm_device *dev,
  495. const intel_limit_t *limit,
  496. const intel_clock_t *clock)
  497. {
  498. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  499. INTELPllInvalid("p1 out of range\n");
  500. if (clock->p < limit->p.min || limit->p.max < clock->p)
  501. INTELPllInvalid("p out of range\n");
  502. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  503. INTELPllInvalid("m2 out of range\n");
  504. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  505. INTELPllInvalid("m1 out of range\n");
  506. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  507. INTELPllInvalid("m1 <= m2\n");
  508. if (clock->m < limit->m.min || limit->m.max < clock->m)
  509. INTELPllInvalid("m out of range\n");
  510. if (clock->n < limit->n.min || limit->n.max < clock->n)
  511. INTELPllInvalid("n out of range\n");
  512. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  513. INTELPllInvalid("vco out of range\n");
  514. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  515. * connector, etc., rather than just a single range.
  516. */
  517. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  518. INTELPllInvalid("dot out of range\n");
  519. return true;
  520. }
  521. static bool
  522. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  523. int target, int refclk, intel_clock_t *match_clock,
  524. intel_clock_t *best_clock)
  525. {
  526. struct drm_device *dev = crtc->dev;
  527. intel_clock_t clock;
  528. int err = target;
  529. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  530. /*
  531. * For LVDS just rely on its current settings for dual-channel.
  532. * We haven't figured out how to reliably set up different
  533. * single/dual channel state, if we even can.
  534. */
  535. if (intel_is_dual_link_lvds(dev))
  536. clock.p2 = limit->p2.p2_fast;
  537. else
  538. clock.p2 = limit->p2.p2_slow;
  539. } else {
  540. if (target < limit->p2.dot_limit)
  541. clock.p2 = limit->p2.p2_slow;
  542. else
  543. clock.p2 = limit->p2.p2_fast;
  544. }
  545. memset(best_clock, 0, sizeof(*best_clock));
  546. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  547. clock.m1++) {
  548. for (clock.m2 = limit->m2.min;
  549. clock.m2 <= limit->m2.max; clock.m2++) {
  550. /* m1 is always 0 in Pineview */
  551. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  552. break;
  553. for (clock.n = limit->n.min;
  554. clock.n <= limit->n.max; clock.n++) {
  555. for (clock.p1 = limit->p1.min;
  556. clock.p1 <= limit->p1.max; clock.p1++) {
  557. int this_err;
  558. intel_clock(dev, refclk, &clock);
  559. if (!intel_PLL_is_valid(dev, limit,
  560. &clock))
  561. continue;
  562. if (match_clock &&
  563. clock.p != match_clock->p)
  564. continue;
  565. this_err = abs(clock.dot - target);
  566. if (this_err < err) {
  567. *best_clock = clock;
  568. err = this_err;
  569. }
  570. }
  571. }
  572. }
  573. }
  574. return (err != target);
  575. }
  576. static bool
  577. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  578. int target, int refclk, intel_clock_t *match_clock,
  579. intel_clock_t *best_clock)
  580. {
  581. struct drm_device *dev = crtc->dev;
  582. intel_clock_t clock;
  583. int max_n;
  584. bool found;
  585. /* approximately equals target * 0.00585 */
  586. int err_most = (target >> 8) + (target >> 9);
  587. found = false;
  588. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  589. int lvds_reg;
  590. if (HAS_PCH_SPLIT(dev))
  591. lvds_reg = PCH_LVDS;
  592. else
  593. lvds_reg = LVDS;
  594. if (intel_is_dual_link_lvds(dev))
  595. clock.p2 = limit->p2.p2_fast;
  596. else
  597. clock.p2 = limit->p2.p2_slow;
  598. } else {
  599. if (target < limit->p2.dot_limit)
  600. clock.p2 = limit->p2.p2_slow;
  601. else
  602. clock.p2 = limit->p2.p2_fast;
  603. }
  604. memset(best_clock, 0, sizeof(*best_clock));
  605. max_n = limit->n.max;
  606. /* based on hardware requirement, prefer smaller n to precision */
  607. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  608. /* based on hardware requirement, prefere larger m1,m2 */
  609. for (clock.m1 = limit->m1.max;
  610. clock.m1 >= limit->m1.min; clock.m1--) {
  611. for (clock.m2 = limit->m2.max;
  612. clock.m2 >= limit->m2.min; clock.m2--) {
  613. for (clock.p1 = limit->p1.max;
  614. clock.p1 >= limit->p1.min; clock.p1--) {
  615. int this_err;
  616. intel_clock(dev, refclk, &clock);
  617. if (!intel_PLL_is_valid(dev, limit,
  618. &clock))
  619. continue;
  620. this_err = abs(clock.dot - target);
  621. if (this_err < err_most) {
  622. *best_clock = clock;
  623. err_most = this_err;
  624. max_n = clock.n;
  625. found = true;
  626. }
  627. }
  628. }
  629. }
  630. }
  631. return found;
  632. }
  633. static bool
  634. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  635. int target, int refclk, intel_clock_t *match_clock,
  636. intel_clock_t *best_clock)
  637. {
  638. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  639. u32 m, n, fastclk;
  640. u32 updrate, minupdate, fracbits, p;
  641. unsigned long bestppm, ppm, absppm;
  642. int dotclk, flag;
  643. flag = 0;
  644. dotclk = target * 1000;
  645. bestppm = 1000000;
  646. ppm = absppm = 0;
  647. fastclk = dotclk / (2*100);
  648. updrate = 0;
  649. minupdate = 19200;
  650. fracbits = 1;
  651. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  652. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  653. /* based on hardware requirement, prefer smaller n to precision */
  654. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  655. updrate = refclk / n;
  656. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  657. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  658. if (p2 > 10)
  659. p2 = p2 - 1;
  660. p = p1 * p2;
  661. /* based on hardware requirement, prefer bigger m1,m2 values */
  662. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  663. m2 = (((2*(fastclk * p * n / m1 )) +
  664. refclk) / (2*refclk));
  665. m = m1 * m2;
  666. vco = updrate * m;
  667. if (vco >= limit->vco.min && vco < limit->vco.max) {
  668. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  669. absppm = (ppm > 0) ? ppm : (-ppm);
  670. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  671. bestppm = 0;
  672. flag = 1;
  673. }
  674. if (absppm < bestppm - 10) {
  675. bestppm = absppm;
  676. flag = 1;
  677. }
  678. if (flag) {
  679. bestn = n;
  680. bestm1 = m1;
  681. bestm2 = m2;
  682. bestp1 = p1;
  683. bestp2 = p2;
  684. flag = 0;
  685. }
  686. }
  687. }
  688. }
  689. }
  690. }
  691. best_clock->n = bestn;
  692. best_clock->m1 = bestm1;
  693. best_clock->m2 = bestm2;
  694. best_clock->p1 = bestp1;
  695. best_clock->p2 = bestp2;
  696. return true;
  697. }
  698. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  699. enum pipe pipe)
  700. {
  701. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  702. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  703. return intel_crtc->config.cpu_transcoder;
  704. }
  705. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  706. {
  707. struct drm_i915_private *dev_priv = dev->dev_private;
  708. u32 frame, frame_reg = PIPEFRAME(pipe);
  709. frame = I915_READ(frame_reg);
  710. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  711. DRM_DEBUG_KMS("vblank wait timed out\n");
  712. }
  713. /**
  714. * intel_wait_for_vblank - wait for vblank on a given pipe
  715. * @dev: drm device
  716. * @pipe: pipe to wait for
  717. *
  718. * Wait for vblank to occur on a given pipe. Needed for various bits of
  719. * mode setting code.
  720. */
  721. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  722. {
  723. struct drm_i915_private *dev_priv = dev->dev_private;
  724. int pipestat_reg = PIPESTAT(pipe);
  725. if (INTEL_INFO(dev)->gen >= 5) {
  726. ironlake_wait_for_vblank(dev, pipe);
  727. return;
  728. }
  729. /* Clear existing vblank status. Note this will clear any other
  730. * sticky status fields as well.
  731. *
  732. * This races with i915_driver_irq_handler() with the result
  733. * that either function could miss a vblank event. Here it is not
  734. * fatal, as we will either wait upon the next vblank interrupt or
  735. * timeout. Generally speaking intel_wait_for_vblank() is only
  736. * called during modeset at which time the GPU should be idle and
  737. * should *not* be performing page flips and thus not waiting on
  738. * vblanks...
  739. * Currently, the result of us stealing a vblank from the irq
  740. * handler is that a single frame will be skipped during swapbuffers.
  741. */
  742. I915_WRITE(pipestat_reg,
  743. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  744. /* Wait for vblank interrupt bit to set */
  745. if (wait_for(I915_READ(pipestat_reg) &
  746. PIPE_VBLANK_INTERRUPT_STATUS,
  747. 50))
  748. DRM_DEBUG_KMS("vblank wait timed out\n");
  749. }
  750. /*
  751. * intel_wait_for_pipe_off - wait for pipe to turn off
  752. * @dev: drm device
  753. * @pipe: pipe to wait for
  754. *
  755. * After disabling a pipe, we can't wait for vblank in the usual way,
  756. * spinning on the vblank interrupt status bit, since we won't actually
  757. * see an interrupt when the pipe is disabled.
  758. *
  759. * On Gen4 and above:
  760. * wait for the pipe register state bit to turn off
  761. *
  762. * Otherwise:
  763. * wait for the display line value to settle (it usually
  764. * ends up stopping at the start of the next frame).
  765. *
  766. */
  767. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  768. {
  769. struct drm_i915_private *dev_priv = dev->dev_private;
  770. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  771. pipe);
  772. if (INTEL_INFO(dev)->gen >= 4) {
  773. int reg = PIPECONF(cpu_transcoder);
  774. /* Wait for the Pipe State to go off */
  775. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  776. 100))
  777. WARN(1, "pipe_off wait timed out\n");
  778. } else {
  779. u32 last_line, line_mask;
  780. int reg = PIPEDSL(pipe);
  781. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  782. if (IS_GEN2(dev))
  783. line_mask = DSL_LINEMASK_GEN2;
  784. else
  785. line_mask = DSL_LINEMASK_GEN3;
  786. /* Wait for the display line to settle */
  787. do {
  788. last_line = I915_READ(reg) & line_mask;
  789. mdelay(5);
  790. } while (((I915_READ(reg) & line_mask) != last_line) &&
  791. time_after(timeout, jiffies));
  792. if (time_after(jiffies, timeout))
  793. WARN(1, "pipe_off wait timed out\n");
  794. }
  795. }
  796. /*
  797. * ibx_digital_port_connected - is the specified port connected?
  798. * @dev_priv: i915 private structure
  799. * @port: the port to test
  800. *
  801. * Returns true if @port is connected, false otherwise.
  802. */
  803. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  804. struct intel_digital_port *port)
  805. {
  806. u32 bit;
  807. if (HAS_PCH_IBX(dev_priv->dev)) {
  808. switch(port->port) {
  809. case PORT_B:
  810. bit = SDE_PORTB_HOTPLUG;
  811. break;
  812. case PORT_C:
  813. bit = SDE_PORTC_HOTPLUG;
  814. break;
  815. case PORT_D:
  816. bit = SDE_PORTD_HOTPLUG;
  817. break;
  818. default:
  819. return true;
  820. }
  821. } else {
  822. switch(port->port) {
  823. case PORT_B:
  824. bit = SDE_PORTB_HOTPLUG_CPT;
  825. break;
  826. case PORT_C:
  827. bit = SDE_PORTC_HOTPLUG_CPT;
  828. break;
  829. case PORT_D:
  830. bit = SDE_PORTD_HOTPLUG_CPT;
  831. break;
  832. default:
  833. return true;
  834. }
  835. }
  836. return I915_READ(SDEISR) & bit;
  837. }
  838. static const char *state_string(bool enabled)
  839. {
  840. return enabled ? "on" : "off";
  841. }
  842. /* Only for pre-ILK configs */
  843. static void assert_pll(struct drm_i915_private *dev_priv,
  844. enum pipe pipe, bool state)
  845. {
  846. int reg;
  847. u32 val;
  848. bool cur_state;
  849. reg = DPLL(pipe);
  850. val = I915_READ(reg);
  851. cur_state = !!(val & DPLL_VCO_ENABLE);
  852. WARN(cur_state != state,
  853. "PLL state assertion failure (expected %s, current %s)\n",
  854. state_string(state), state_string(cur_state));
  855. }
  856. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  857. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  858. /* For ILK+ */
  859. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  860. struct intel_pch_pll *pll,
  861. struct intel_crtc *crtc,
  862. bool state)
  863. {
  864. u32 val;
  865. bool cur_state;
  866. if (HAS_PCH_LPT(dev_priv->dev)) {
  867. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  868. return;
  869. }
  870. if (WARN (!pll,
  871. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  872. return;
  873. val = I915_READ(pll->pll_reg);
  874. cur_state = !!(val & DPLL_VCO_ENABLE);
  875. WARN(cur_state != state,
  876. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  877. pll->pll_reg, state_string(state), state_string(cur_state), val);
  878. /* Make sure the selected PLL is correctly attached to the transcoder */
  879. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  880. u32 pch_dpll;
  881. pch_dpll = I915_READ(PCH_DPLL_SEL);
  882. cur_state = pll->pll_reg == _PCH_DPLL_B;
  883. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  884. "PLL[%d] not attached to this transcoder %c: %08x\n",
  885. cur_state, pipe_name(crtc->pipe), pch_dpll)) {
  886. cur_state = !!(val >> (4*crtc->pipe + 3));
  887. WARN(cur_state != state,
  888. "PLL[%d] not %s on this transcoder %c: %08x\n",
  889. pll->pll_reg == _PCH_DPLL_B,
  890. state_string(state),
  891. pipe_name(crtc->pipe),
  892. val);
  893. }
  894. }
  895. }
  896. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  897. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  898. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  899. enum pipe pipe, bool state)
  900. {
  901. int reg;
  902. u32 val;
  903. bool cur_state;
  904. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  905. pipe);
  906. if (HAS_DDI(dev_priv->dev)) {
  907. /* DDI does not have a specific FDI_TX register */
  908. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  909. val = I915_READ(reg);
  910. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  911. } else {
  912. reg = FDI_TX_CTL(pipe);
  913. val = I915_READ(reg);
  914. cur_state = !!(val & FDI_TX_ENABLE);
  915. }
  916. WARN(cur_state != state,
  917. "FDI TX state assertion failure (expected %s, current %s)\n",
  918. state_string(state), state_string(cur_state));
  919. }
  920. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  921. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  922. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  923. enum pipe pipe, bool state)
  924. {
  925. int reg;
  926. u32 val;
  927. bool cur_state;
  928. reg = FDI_RX_CTL(pipe);
  929. val = I915_READ(reg);
  930. cur_state = !!(val & FDI_RX_ENABLE);
  931. WARN(cur_state != state,
  932. "FDI RX state assertion failure (expected %s, current %s)\n",
  933. state_string(state), state_string(cur_state));
  934. }
  935. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  936. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  937. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  938. enum pipe pipe)
  939. {
  940. int reg;
  941. u32 val;
  942. /* ILK FDI PLL is always enabled */
  943. if (dev_priv->info->gen == 5)
  944. return;
  945. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  946. if (HAS_DDI(dev_priv->dev))
  947. return;
  948. reg = FDI_TX_CTL(pipe);
  949. val = I915_READ(reg);
  950. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  951. }
  952. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  953. enum pipe pipe)
  954. {
  955. int reg;
  956. u32 val;
  957. reg = FDI_RX_CTL(pipe);
  958. val = I915_READ(reg);
  959. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  960. }
  961. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  962. enum pipe pipe)
  963. {
  964. int pp_reg, lvds_reg;
  965. u32 val;
  966. enum pipe panel_pipe = PIPE_A;
  967. bool locked = true;
  968. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  969. pp_reg = PCH_PP_CONTROL;
  970. lvds_reg = PCH_LVDS;
  971. } else {
  972. pp_reg = PP_CONTROL;
  973. lvds_reg = LVDS;
  974. }
  975. val = I915_READ(pp_reg);
  976. if (!(val & PANEL_POWER_ON) ||
  977. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  978. locked = false;
  979. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  980. panel_pipe = PIPE_B;
  981. WARN(panel_pipe == pipe && locked,
  982. "panel assertion failure, pipe %c regs locked\n",
  983. pipe_name(pipe));
  984. }
  985. void assert_pipe(struct drm_i915_private *dev_priv,
  986. enum pipe pipe, bool state)
  987. {
  988. int reg;
  989. u32 val;
  990. bool cur_state;
  991. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  992. pipe);
  993. /* if we need the pipe A quirk it must be always on */
  994. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  995. state = true;
  996. if (!intel_using_power_well(dev_priv->dev) &&
  997. cpu_transcoder != TRANSCODER_EDP) {
  998. cur_state = false;
  999. } else {
  1000. reg = PIPECONF(cpu_transcoder);
  1001. val = I915_READ(reg);
  1002. cur_state = !!(val & PIPECONF_ENABLE);
  1003. }
  1004. WARN(cur_state != state,
  1005. "pipe %c assertion failure (expected %s, current %s)\n",
  1006. pipe_name(pipe), state_string(state), state_string(cur_state));
  1007. }
  1008. static void assert_plane(struct drm_i915_private *dev_priv,
  1009. enum plane plane, bool state)
  1010. {
  1011. int reg;
  1012. u32 val;
  1013. bool cur_state;
  1014. reg = DSPCNTR(plane);
  1015. val = I915_READ(reg);
  1016. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1017. WARN(cur_state != state,
  1018. "plane %c assertion failure (expected %s, current %s)\n",
  1019. plane_name(plane), state_string(state), state_string(cur_state));
  1020. }
  1021. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1022. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1023. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1024. enum pipe pipe)
  1025. {
  1026. int reg, i;
  1027. u32 val;
  1028. int cur_pipe;
  1029. /* Planes are fixed to pipes on ILK+ */
  1030. if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
  1031. reg = DSPCNTR(pipe);
  1032. val = I915_READ(reg);
  1033. WARN((val & DISPLAY_PLANE_ENABLE),
  1034. "plane %c assertion failure, should be disabled but not\n",
  1035. plane_name(pipe));
  1036. return;
  1037. }
  1038. /* Need to check both planes against the pipe */
  1039. for (i = 0; i < 2; i++) {
  1040. reg = DSPCNTR(i);
  1041. val = I915_READ(reg);
  1042. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1043. DISPPLANE_SEL_PIPE_SHIFT;
  1044. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1045. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1046. plane_name(i), pipe_name(pipe));
  1047. }
  1048. }
  1049. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1050. enum pipe pipe)
  1051. {
  1052. int reg, i;
  1053. u32 val;
  1054. if (!IS_VALLEYVIEW(dev_priv->dev))
  1055. return;
  1056. /* Need to check both planes against the pipe */
  1057. for (i = 0; i < dev_priv->num_plane; i++) {
  1058. reg = SPCNTR(pipe, i);
  1059. val = I915_READ(reg);
  1060. WARN((val & SP_ENABLE),
  1061. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1062. sprite_name(pipe, i), pipe_name(pipe));
  1063. }
  1064. }
  1065. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1066. {
  1067. u32 val;
  1068. bool enabled;
  1069. if (HAS_PCH_LPT(dev_priv->dev)) {
  1070. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1071. return;
  1072. }
  1073. val = I915_READ(PCH_DREF_CONTROL);
  1074. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1075. DREF_SUPERSPREAD_SOURCE_MASK));
  1076. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1077. }
  1078. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1079. enum pipe pipe)
  1080. {
  1081. int reg;
  1082. u32 val;
  1083. bool enabled;
  1084. reg = TRANSCONF(pipe);
  1085. val = I915_READ(reg);
  1086. enabled = !!(val & TRANS_ENABLE);
  1087. WARN(enabled,
  1088. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1089. pipe_name(pipe));
  1090. }
  1091. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1092. enum pipe pipe, u32 port_sel, u32 val)
  1093. {
  1094. if ((val & DP_PORT_EN) == 0)
  1095. return false;
  1096. if (HAS_PCH_CPT(dev_priv->dev)) {
  1097. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1098. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1099. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1100. return false;
  1101. } else {
  1102. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1103. return false;
  1104. }
  1105. return true;
  1106. }
  1107. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1108. enum pipe pipe, u32 val)
  1109. {
  1110. if ((val & SDVO_ENABLE) == 0)
  1111. return false;
  1112. if (HAS_PCH_CPT(dev_priv->dev)) {
  1113. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1114. return false;
  1115. } else {
  1116. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1117. return false;
  1118. }
  1119. return true;
  1120. }
  1121. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1122. enum pipe pipe, u32 val)
  1123. {
  1124. if ((val & LVDS_PORT_EN) == 0)
  1125. return false;
  1126. if (HAS_PCH_CPT(dev_priv->dev)) {
  1127. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1128. return false;
  1129. } else {
  1130. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1131. return false;
  1132. }
  1133. return true;
  1134. }
  1135. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1136. enum pipe pipe, u32 val)
  1137. {
  1138. if ((val & ADPA_DAC_ENABLE) == 0)
  1139. return false;
  1140. if (HAS_PCH_CPT(dev_priv->dev)) {
  1141. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1142. return false;
  1143. } else {
  1144. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1145. return false;
  1146. }
  1147. return true;
  1148. }
  1149. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe, int reg, u32 port_sel)
  1151. {
  1152. u32 val = I915_READ(reg);
  1153. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1154. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1155. reg, pipe_name(pipe));
  1156. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1157. && (val & DP_PIPEB_SELECT),
  1158. "IBX PCH dp port still using transcoder B\n");
  1159. }
  1160. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1161. enum pipe pipe, int reg)
  1162. {
  1163. u32 val = I915_READ(reg);
  1164. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1165. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1166. reg, pipe_name(pipe));
  1167. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1168. && (val & SDVO_PIPE_B_SELECT),
  1169. "IBX PCH hdmi port still using transcoder B\n");
  1170. }
  1171. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1172. enum pipe pipe)
  1173. {
  1174. int reg;
  1175. u32 val;
  1176. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1177. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1178. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1179. reg = PCH_ADPA;
  1180. val = I915_READ(reg);
  1181. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1182. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1183. pipe_name(pipe));
  1184. reg = PCH_LVDS;
  1185. val = I915_READ(reg);
  1186. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1187. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1188. pipe_name(pipe));
  1189. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1190. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1191. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1192. }
  1193. /**
  1194. * intel_enable_pll - enable a PLL
  1195. * @dev_priv: i915 private structure
  1196. * @pipe: pipe PLL to enable
  1197. *
  1198. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1199. * make sure the PLL reg is writable first though, since the panel write
  1200. * protect mechanism may be enabled.
  1201. *
  1202. * Note! This is for pre-ILK only.
  1203. *
  1204. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1205. */
  1206. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1207. {
  1208. int reg;
  1209. u32 val;
  1210. assert_pipe_disabled(dev_priv, pipe);
  1211. /* No really, not for ILK+ */
  1212. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1213. /* PLL is protected by panel, make sure we can write it */
  1214. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1215. assert_panel_unlocked(dev_priv, pipe);
  1216. reg = DPLL(pipe);
  1217. val = I915_READ(reg);
  1218. val |= DPLL_VCO_ENABLE;
  1219. /* We do this three times for luck */
  1220. I915_WRITE(reg, val);
  1221. POSTING_READ(reg);
  1222. udelay(150); /* wait for warmup */
  1223. I915_WRITE(reg, val);
  1224. POSTING_READ(reg);
  1225. udelay(150); /* wait for warmup */
  1226. I915_WRITE(reg, val);
  1227. POSTING_READ(reg);
  1228. udelay(150); /* wait for warmup */
  1229. }
  1230. /**
  1231. * intel_disable_pll - disable a PLL
  1232. * @dev_priv: i915 private structure
  1233. * @pipe: pipe PLL to disable
  1234. *
  1235. * Disable the PLL for @pipe, making sure the pipe is off first.
  1236. *
  1237. * Note! This is for pre-ILK only.
  1238. */
  1239. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1240. {
  1241. int reg;
  1242. u32 val;
  1243. /* Don't disable pipe A or pipe A PLLs if needed */
  1244. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1245. return;
  1246. /* Make sure the pipe isn't still relying on us */
  1247. assert_pipe_disabled(dev_priv, pipe);
  1248. reg = DPLL(pipe);
  1249. val = I915_READ(reg);
  1250. val &= ~DPLL_VCO_ENABLE;
  1251. I915_WRITE(reg, val);
  1252. POSTING_READ(reg);
  1253. }
  1254. /* SBI access */
  1255. static void
  1256. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
  1257. enum intel_sbi_destination destination)
  1258. {
  1259. u32 tmp;
  1260. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1261. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1262. 100)) {
  1263. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1264. return;
  1265. }
  1266. I915_WRITE(SBI_ADDR, (reg << 16));
  1267. I915_WRITE(SBI_DATA, value);
  1268. if (destination == SBI_ICLK)
  1269. tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
  1270. else
  1271. tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
  1272. I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
  1273. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1274. 100)) {
  1275. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1276. return;
  1277. }
  1278. }
  1279. static u32
  1280. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
  1281. enum intel_sbi_destination destination)
  1282. {
  1283. u32 value = 0;
  1284. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1285. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1286. 100)) {
  1287. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1288. return 0;
  1289. }
  1290. I915_WRITE(SBI_ADDR, (reg << 16));
  1291. if (destination == SBI_ICLK)
  1292. value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
  1293. else
  1294. value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
  1295. I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
  1296. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1297. 100)) {
  1298. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1299. return 0;
  1300. }
  1301. return I915_READ(SBI_DATA);
  1302. }
  1303. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1304. {
  1305. u32 port_mask;
  1306. if (!port)
  1307. port_mask = DPLL_PORTB_READY_MASK;
  1308. else
  1309. port_mask = DPLL_PORTC_READY_MASK;
  1310. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1311. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1312. 'B' + port, I915_READ(DPLL(0)));
  1313. }
  1314. /**
  1315. * ironlake_enable_pch_pll - enable PCH PLL
  1316. * @dev_priv: i915 private structure
  1317. * @pipe: pipe PLL to enable
  1318. *
  1319. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1320. * drives the transcoder clock.
  1321. */
  1322. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1323. {
  1324. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1325. struct intel_pch_pll *pll;
  1326. int reg;
  1327. u32 val;
  1328. /* PCH PLLs only available on ILK, SNB and IVB */
  1329. BUG_ON(dev_priv->info->gen < 5);
  1330. pll = intel_crtc->pch_pll;
  1331. if (pll == NULL)
  1332. return;
  1333. if (WARN_ON(pll->refcount == 0))
  1334. return;
  1335. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1336. pll->pll_reg, pll->active, pll->on,
  1337. intel_crtc->base.base.id);
  1338. /* PCH refclock must be enabled first */
  1339. assert_pch_refclk_enabled(dev_priv);
  1340. if (pll->active++ && pll->on) {
  1341. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1342. return;
  1343. }
  1344. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1345. reg = pll->pll_reg;
  1346. val = I915_READ(reg);
  1347. val |= DPLL_VCO_ENABLE;
  1348. I915_WRITE(reg, val);
  1349. POSTING_READ(reg);
  1350. udelay(200);
  1351. pll->on = true;
  1352. }
  1353. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1354. {
  1355. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1356. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1357. int reg;
  1358. u32 val;
  1359. /* PCH only available on ILK+ */
  1360. BUG_ON(dev_priv->info->gen < 5);
  1361. if (pll == NULL)
  1362. return;
  1363. if (WARN_ON(pll->refcount == 0))
  1364. return;
  1365. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1366. pll->pll_reg, pll->active, pll->on,
  1367. intel_crtc->base.base.id);
  1368. if (WARN_ON(pll->active == 0)) {
  1369. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1370. return;
  1371. }
  1372. if (--pll->active) {
  1373. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1374. return;
  1375. }
  1376. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1377. /* Make sure transcoder isn't still depending on us */
  1378. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1379. reg = pll->pll_reg;
  1380. val = I915_READ(reg);
  1381. val &= ~DPLL_VCO_ENABLE;
  1382. I915_WRITE(reg, val);
  1383. POSTING_READ(reg);
  1384. udelay(200);
  1385. pll->on = false;
  1386. }
  1387. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1388. enum pipe pipe)
  1389. {
  1390. struct drm_device *dev = dev_priv->dev;
  1391. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1392. uint32_t reg, val, pipeconf_val;
  1393. /* PCH only available on ILK+ */
  1394. BUG_ON(dev_priv->info->gen < 5);
  1395. /* Make sure PCH DPLL is enabled */
  1396. assert_pch_pll_enabled(dev_priv,
  1397. to_intel_crtc(crtc)->pch_pll,
  1398. to_intel_crtc(crtc));
  1399. /* FDI must be feeding us bits for PCH ports */
  1400. assert_fdi_tx_enabled(dev_priv, pipe);
  1401. assert_fdi_rx_enabled(dev_priv, pipe);
  1402. if (HAS_PCH_CPT(dev)) {
  1403. /* Workaround: Set the timing override bit before enabling the
  1404. * pch transcoder. */
  1405. reg = TRANS_CHICKEN2(pipe);
  1406. val = I915_READ(reg);
  1407. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1408. I915_WRITE(reg, val);
  1409. }
  1410. reg = TRANSCONF(pipe);
  1411. val = I915_READ(reg);
  1412. pipeconf_val = I915_READ(PIPECONF(pipe));
  1413. if (HAS_PCH_IBX(dev_priv->dev)) {
  1414. /*
  1415. * make the BPC in transcoder be consistent with
  1416. * that in pipeconf reg.
  1417. */
  1418. val &= ~PIPECONF_BPC_MASK;
  1419. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1420. }
  1421. val &= ~TRANS_INTERLACE_MASK;
  1422. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1423. if (HAS_PCH_IBX(dev_priv->dev) &&
  1424. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1425. val |= TRANS_LEGACY_INTERLACED_ILK;
  1426. else
  1427. val |= TRANS_INTERLACED;
  1428. else
  1429. val |= TRANS_PROGRESSIVE;
  1430. I915_WRITE(reg, val | TRANS_ENABLE);
  1431. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1432. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1433. }
  1434. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1435. enum transcoder cpu_transcoder)
  1436. {
  1437. u32 val, pipeconf_val;
  1438. /* PCH only available on ILK+ */
  1439. BUG_ON(dev_priv->info->gen < 5);
  1440. /* FDI must be feeding us bits for PCH ports */
  1441. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1442. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1443. /* Workaround: set timing override bit. */
  1444. val = I915_READ(_TRANSA_CHICKEN2);
  1445. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1446. I915_WRITE(_TRANSA_CHICKEN2, val);
  1447. val = TRANS_ENABLE;
  1448. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1449. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1450. PIPECONF_INTERLACED_ILK)
  1451. val |= TRANS_INTERLACED;
  1452. else
  1453. val |= TRANS_PROGRESSIVE;
  1454. I915_WRITE(TRANSCONF(TRANSCODER_A), val);
  1455. if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
  1456. DRM_ERROR("Failed to enable PCH transcoder\n");
  1457. }
  1458. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1459. enum pipe pipe)
  1460. {
  1461. struct drm_device *dev = dev_priv->dev;
  1462. uint32_t reg, val;
  1463. /* FDI relies on the transcoder */
  1464. assert_fdi_tx_disabled(dev_priv, pipe);
  1465. assert_fdi_rx_disabled(dev_priv, pipe);
  1466. /* Ports must be off as well */
  1467. assert_pch_ports_disabled(dev_priv, pipe);
  1468. reg = TRANSCONF(pipe);
  1469. val = I915_READ(reg);
  1470. val &= ~TRANS_ENABLE;
  1471. I915_WRITE(reg, val);
  1472. /* wait for PCH transcoder off, transcoder state */
  1473. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1474. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1475. if (!HAS_PCH_IBX(dev)) {
  1476. /* Workaround: Clear the timing override chicken bit again. */
  1477. reg = TRANS_CHICKEN2(pipe);
  1478. val = I915_READ(reg);
  1479. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1480. I915_WRITE(reg, val);
  1481. }
  1482. }
  1483. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1484. {
  1485. u32 val;
  1486. val = I915_READ(_TRANSACONF);
  1487. val &= ~TRANS_ENABLE;
  1488. I915_WRITE(_TRANSACONF, val);
  1489. /* wait for PCH transcoder off, transcoder state */
  1490. if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
  1491. DRM_ERROR("Failed to disable PCH transcoder\n");
  1492. /* Workaround: clear timing override bit. */
  1493. val = I915_READ(_TRANSA_CHICKEN2);
  1494. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1495. I915_WRITE(_TRANSA_CHICKEN2, val);
  1496. }
  1497. /**
  1498. * intel_enable_pipe - enable a pipe, asserting requirements
  1499. * @dev_priv: i915 private structure
  1500. * @pipe: pipe to enable
  1501. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1502. *
  1503. * Enable @pipe, making sure that various hardware specific requirements
  1504. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1505. *
  1506. * @pipe should be %PIPE_A or %PIPE_B.
  1507. *
  1508. * Will wait until the pipe is actually running (i.e. first vblank) before
  1509. * returning.
  1510. */
  1511. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1512. bool pch_port)
  1513. {
  1514. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1515. pipe);
  1516. enum pipe pch_transcoder;
  1517. int reg;
  1518. u32 val;
  1519. assert_planes_disabled(dev_priv, pipe);
  1520. assert_sprites_disabled(dev_priv, pipe);
  1521. if (HAS_PCH_LPT(dev_priv->dev))
  1522. pch_transcoder = TRANSCODER_A;
  1523. else
  1524. pch_transcoder = pipe;
  1525. /*
  1526. * A pipe without a PLL won't actually be able to drive bits from
  1527. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1528. * need the check.
  1529. */
  1530. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1531. assert_pll_enabled(dev_priv, pipe);
  1532. else {
  1533. if (pch_port) {
  1534. /* if driving the PCH, we need FDI enabled */
  1535. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1536. assert_fdi_tx_pll_enabled(dev_priv,
  1537. (enum pipe) cpu_transcoder);
  1538. }
  1539. /* FIXME: assert CPU port conditions for SNB+ */
  1540. }
  1541. reg = PIPECONF(cpu_transcoder);
  1542. val = I915_READ(reg);
  1543. if (val & PIPECONF_ENABLE)
  1544. return;
  1545. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1546. intel_wait_for_vblank(dev_priv->dev, pipe);
  1547. }
  1548. /**
  1549. * intel_disable_pipe - disable a pipe, asserting requirements
  1550. * @dev_priv: i915 private structure
  1551. * @pipe: pipe to disable
  1552. *
  1553. * Disable @pipe, making sure that various hardware specific requirements
  1554. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1555. *
  1556. * @pipe should be %PIPE_A or %PIPE_B.
  1557. *
  1558. * Will wait until the pipe has shut down before returning.
  1559. */
  1560. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1561. enum pipe pipe)
  1562. {
  1563. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1564. pipe);
  1565. int reg;
  1566. u32 val;
  1567. /*
  1568. * Make sure planes won't keep trying to pump pixels to us,
  1569. * or we might hang the display.
  1570. */
  1571. assert_planes_disabled(dev_priv, pipe);
  1572. assert_sprites_disabled(dev_priv, pipe);
  1573. /* Don't disable pipe A or pipe A PLLs if needed */
  1574. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1575. return;
  1576. reg = PIPECONF(cpu_transcoder);
  1577. val = I915_READ(reg);
  1578. if ((val & PIPECONF_ENABLE) == 0)
  1579. return;
  1580. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1581. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1582. }
  1583. /*
  1584. * Plane regs are double buffered, going from enabled->disabled needs a
  1585. * trigger in order to latch. The display address reg provides this.
  1586. */
  1587. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1588. enum plane plane)
  1589. {
  1590. if (dev_priv->info->gen >= 4)
  1591. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1592. else
  1593. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1594. }
  1595. /**
  1596. * intel_enable_plane - enable a display plane on a given pipe
  1597. * @dev_priv: i915 private structure
  1598. * @plane: plane to enable
  1599. * @pipe: pipe being fed
  1600. *
  1601. * Enable @plane on @pipe, making sure that @pipe is running first.
  1602. */
  1603. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1604. enum plane plane, enum pipe pipe)
  1605. {
  1606. int reg;
  1607. u32 val;
  1608. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1609. assert_pipe_enabled(dev_priv, pipe);
  1610. reg = DSPCNTR(plane);
  1611. val = I915_READ(reg);
  1612. if (val & DISPLAY_PLANE_ENABLE)
  1613. return;
  1614. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1615. intel_flush_display_plane(dev_priv, plane);
  1616. intel_wait_for_vblank(dev_priv->dev, pipe);
  1617. }
  1618. /**
  1619. * intel_disable_plane - disable a display plane
  1620. * @dev_priv: i915 private structure
  1621. * @plane: plane to disable
  1622. * @pipe: pipe consuming the data
  1623. *
  1624. * Disable @plane; should be an independent operation.
  1625. */
  1626. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1627. enum plane plane, enum pipe pipe)
  1628. {
  1629. int reg;
  1630. u32 val;
  1631. reg = DSPCNTR(plane);
  1632. val = I915_READ(reg);
  1633. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1634. return;
  1635. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1636. intel_flush_display_plane(dev_priv, plane);
  1637. intel_wait_for_vblank(dev_priv->dev, pipe);
  1638. }
  1639. static bool need_vtd_wa(struct drm_device *dev)
  1640. {
  1641. #ifdef CONFIG_INTEL_IOMMU
  1642. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1643. return true;
  1644. #endif
  1645. return false;
  1646. }
  1647. int
  1648. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1649. struct drm_i915_gem_object *obj,
  1650. struct intel_ring_buffer *pipelined)
  1651. {
  1652. struct drm_i915_private *dev_priv = dev->dev_private;
  1653. u32 alignment;
  1654. int ret;
  1655. switch (obj->tiling_mode) {
  1656. case I915_TILING_NONE:
  1657. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1658. alignment = 128 * 1024;
  1659. else if (INTEL_INFO(dev)->gen >= 4)
  1660. alignment = 4 * 1024;
  1661. else
  1662. alignment = 64 * 1024;
  1663. break;
  1664. case I915_TILING_X:
  1665. /* pin() will align the object as required by fence */
  1666. alignment = 0;
  1667. break;
  1668. case I915_TILING_Y:
  1669. /* Despite that we check this in framebuffer_init userspace can
  1670. * screw us over and change the tiling after the fact. Only
  1671. * pinned buffers can't change their tiling. */
  1672. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1673. return -EINVAL;
  1674. default:
  1675. BUG();
  1676. }
  1677. /* Note that the w/a also requires 64 PTE of padding following the
  1678. * bo. We currently fill all unused PTE with the shadow page and so
  1679. * we should always have valid PTE following the scanout preventing
  1680. * the VT-d warning.
  1681. */
  1682. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1683. alignment = 256 * 1024;
  1684. dev_priv->mm.interruptible = false;
  1685. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1686. if (ret)
  1687. goto err_interruptible;
  1688. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1689. * fence, whereas 965+ only requires a fence if using
  1690. * framebuffer compression. For simplicity, we always install
  1691. * a fence as the cost is not that onerous.
  1692. */
  1693. ret = i915_gem_object_get_fence(obj);
  1694. if (ret)
  1695. goto err_unpin;
  1696. i915_gem_object_pin_fence(obj);
  1697. dev_priv->mm.interruptible = true;
  1698. return 0;
  1699. err_unpin:
  1700. i915_gem_object_unpin(obj);
  1701. err_interruptible:
  1702. dev_priv->mm.interruptible = true;
  1703. return ret;
  1704. }
  1705. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1706. {
  1707. i915_gem_object_unpin_fence(obj);
  1708. i915_gem_object_unpin(obj);
  1709. }
  1710. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1711. * is assumed to be a power-of-two. */
  1712. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1713. unsigned int tiling_mode,
  1714. unsigned int cpp,
  1715. unsigned int pitch)
  1716. {
  1717. if (tiling_mode != I915_TILING_NONE) {
  1718. unsigned int tile_rows, tiles;
  1719. tile_rows = *y / 8;
  1720. *y %= 8;
  1721. tiles = *x / (512/cpp);
  1722. *x %= 512/cpp;
  1723. return tile_rows * pitch * 8 + tiles * 4096;
  1724. } else {
  1725. unsigned int offset;
  1726. offset = *y * pitch + *x * cpp;
  1727. *y = 0;
  1728. *x = (offset & 4095) / cpp;
  1729. return offset & -4096;
  1730. }
  1731. }
  1732. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1733. int x, int y)
  1734. {
  1735. struct drm_device *dev = crtc->dev;
  1736. struct drm_i915_private *dev_priv = dev->dev_private;
  1737. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1738. struct intel_framebuffer *intel_fb;
  1739. struct drm_i915_gem_object *obj;
  1740. int plane = intel_crtc->plane;
  1741. unsigned long linear_offset;
  1742. u32 dspcntr;
  1743. u32 reg;
  1744. switch (plane) {
  1745. case 0:
  1746. case 1:
  1747. break;
  1748. default:
  1749. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1750. return -EINVAL;
  1751. }
  1752. intel_fb = to_intel_framebuffer(fb);
  1753. obj = intel_fb->obj;
  1754. reg = DSPCNTR(plane);
  1755. dspcntr = I915_READ(reg);
  1756. /* Mask out pixel format bits in case we change it */
  1757. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1758. switch (fb->pixel_format) {
  1759. case DRM_FORMAT_C8:
  1760. dspcntr |= DISPPLANE_8BPP;
  1761. break;
  1762. case DRM_FORMAT_XRGB1555:
  1763. case DRM_FORMAT_ARGB1555:
  1764. dspcntr |= DISPPLANE_BGRX555;
  1765. break;
  1766. case DRM_FORMAT_RGB565:
  1767. dspcntr |= DISPPLANE_BGRX565;
  1768. break;
  1769. case DRM_FORMAT_XRGB8888:
  1770. case DRM_FORMAT_ARGB8888:
  1771. dspcntr |= DISPPLANE_BGRX888;
  1772. break;
  1773. case DRM_FORMAT_XBGR8888:
  1774. case DRM_FORMAT_ABGR8888:
  1775. dspcntr |= DISPPLANE_RGBX888;
  1776. break;
  1777. case DRM_FORMAT_XRGB2101010:
  1778. case DRM_FORMAT_ARGB2101010:
  1779. dspcntr |= DISPPLANE_BGRX101010;
  1780. break;
  1781. case DRM_FORMAT_XBGR2101010:
  1782. case DRM_FORMAT_ABGR2101010:
  1783. dspcntr |= DISPPLANE_RGBX101010;
  1784. break;
  1785. default:
  1786. BUG();
  1787. }
  1788. if (INTEL_INFO(dev)->gen >= 4) {
  1789. if (obj->tiling_mode != I915_TILING_NONE)
  1790. dspcntr |= DISPPLANE_TILED;
  1791. else
  1792. dspcntr &= ~DISPPLANE_TILED;
  1793. }
  1794. I915_WRITE(reg, dspcntr);
  1795. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1796. if (INTEL_INFO(dev)->gen >= 4) {
  1797. intel_crtc->dspaddr_offset =
  1798. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1799. fb->bits_per_pixel / 8,
  1800. fb->pitches[0]);
  1801. linear_offset -= intel_crtc->dspaddr_offset;
  1802. } else {
  1803. intel_crtc->dspaddr_offset = linear_offset;
  1804. }
  1805. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1806. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1807. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1808. if (INTEL_INFO(dev)->gen >= 4) {
  1809. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1810. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1811. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1812. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1813. } else
  1814. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1815. POSTING_READ(reg);
  1816. return 0;
  1817. }
  1818. static int ironlake_update_plane(struct drm_crtc *crtc,
  1819. struct drm_framebuffer *fb, int x, int y)
  1820. {
  1821. struct drm_device *dev = crtc->dev;
  1822. struct drm_i915_private *dev_priv = dev->dev_private;
  1823. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1824. struct intel_framebuffer *intel_fb;
  1825. struct drm_i915_gem_object *obj;
  1826. int plane = intel_crtc->plane;
  1827. unsigned long linear_offset;
  1828. u32 dspcntr;
  1829. u32 reg;
  1830. switch (plane) {
  1831. case 0:
  1832. case 1:
  1833. case 2:
  1834. break;
  1835. default:
  1836. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1837. return -EINVAL;
  1838. }
  1839. intel_fb = to_intel_framebuffer(fb);
  1840. obj = intel_fb->obj;
  1841. reg = DSPCNTR(plane);
  1842. dspcntr = I915_READ(reg);
  1843. /* Mask out pixel format bits in case we change it */
  1844. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1845. switch (fb->pixel_format) {
  1846. case DRM_FORMAT_C8:
  1847. dspcntr |= DISPPLANE_8BPP;
  1848. break;
  1849. case DRM_FORMAT_RGB565:
  1850. dspcntr |= DISPPLANE_BGRX565;
  1851. break;
  1852. case DRM_FORMAT_XRGB8888:
  1853. case DRM_FORMAT_ARGB8888:
  1854. dspcntr |= DISPPLANE_BGRX888;
  1855. break;
  1856. case DRM_FORMAT_XBGR8888:
  1857. case DRM_FORMAT_ABGR8888:
  1858. dspcntr |= DISPPLANE_RGBX888;
  1859. break;
  1860. case DRM_FORMAT_XRGB2101010:
  1861. case DRM_FORMAT_ARGB2101010:
  1862. dspcntr |= DISPPLANE_BGRX101010;
  1863. break;
  1864. case DRM_FORMAT_XBGR2101010:
  1865. case DRM_FORMAT_ABGR2101010:
  1866. dspcntr |= DISPPLANE_RGBX101010;
  1867. break;
  1868. default:
  1869. BUG();
  1870. }
  1871. if (obj->tiling_mode != I915_TILING_NONE)
  1872. dspcntr |= DISPPLANE_TILED;
  1873. else
  1874. dspcntr &= ~DISPPLANE_TILED;
  1875. /* must disable */
  1876. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1877. I915_WRITE(reg, dspcntr);
  1878. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1879. intel_crtc->dspaddr_offset =
  1880. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1881. fb->bits_per_pixel / 8,
  1882. fb->pitches[0]);
  1883. linear_offset -= intel_crtc->dspaddr_offset;
  1884. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1885. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1886. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1887. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1888. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1889. if (IS_HASWELL(dev)) {
  1890. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1891. } else {
  1892. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1893. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1894. }
  1895. POSTING_READ(reg);
  1896. return 0;
  1897. }
  1898. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1899. static int
  1900. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1901. int x, int y, enum mode_set_atomic state)
  1902. {
  1903. struct drm_device *dev = crtc->dev;
  1904. struct drm_i915_private *dev_priv = dev->dev_private;
  1905. if (dev_priv->display.disable_fbc)
  1906. dev_priv->display.disable_fbc(dev);
  1907. intel_increase_pllclock(crtc);
  1908. return dev_priv->display.update_plane(crtc, fb, x, y);
  1909. }
  1910. void intel_display_handle_reset(struct drm_device *dev)
  1911. {
  1912. struct drm_i915_private *dev_priv = dev->dev_private;
  1913. struct drm_crtc *crtc;
  1914. /*
  1915. * Flips in the rings have been nuked by the reset,
  1916. * so complete all pending flips so that user space
  1917. * will get its events and not get stuck.
  1918. *
  1919. * Also update the base address of all primary
  1920. * planes to the the last fb to make sure we're
  1921. * showing the correct fb after a reset.
  1922. *
  1923. * Need to make two loops over the crtcs so that we
  1924. * don't try to grab a crtc mutex before the
  1925. * pending_flip_queue really got woken up.
  1926. */
  1927. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1929. enum plane plane = intel_crtc->plane;
  1930. intel_prepare_page_flip(dev, plane);
  1931. intel_finish_page_flip_plane(dev, plane);
  1932. }
  1933. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1934. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1935. mutex_lock(&crtc->mutex);
  1936. if (intel_crtc->active)
  1937. dev_priv->display.update_plane(crtc, crtc->fb,
  1938. crtc->x, crtc->y);
  1939. mutex_unlock(&crtc->mutex);
  1940. }
  1941. }
  1942. static int
  1943. intel_finish_fb(struct drm_framebuffer *old_fb)
  1944. {
  1945. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1946. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1947. bool was_interruptible = dev_priv->mm.interruptible;
  1948. int ret;
  1949. /* Big Hammer, we also need to ensure that any pending
  1950. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1951. * current scanout is retired before unpinning the old
  1952. * framebuffer.
  1953. *
  1954. * This should only fail upon a hung GPU, in which case we
  1955. * can safely continue.
  1956. */
  1957. dev_priv->mm.interruptible = false;
  1958. ret = i915_gem_object_finish_gpu(obj);
  1959. dev_priv->mm.interruptible = was_interruptible;
  1960. return ret;
  1961. }
  1962. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1963. {
  1964. struct drm_device *dev = crtc->dev;
  1965. struct drm_i915_master_private *master_priv;
  1966. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1967. if (!dev->primary->master)
  1968. return;
  1969. master_priv = dev->primary->master->driver_priv;
  1970. if (!master_priv->sarea_priv)
  1971. return;
  1972. switch (intel_crtc->pipe) {
  1973. case 0:
  1974. master_priv->sarea_priv->pipeA_x = x;
  1975. master_priv->sarea_priv->pipeA_y = y;
  1976. break;
  1977. case 1:
  1978. master_priv->sarea_priv->pipeB_x = x;
  1979. master_priv->sarea_priv->pipeB_y = y;
  1980. break;
  1981. default:
  1982. break;
  1983. }
  1984. }
  1985. static int
  1986. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1987. struct drm_framebuffer *fb)
  1988. {
  1989. struct drm_device *dev = crtc->dev;
  1990. struct drm_i915_private *dev_priv = dev->dev_private;
  1991. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1992. struct drm_framebuffer *old_fb;
  1993. int ret;
  1994. /* no fb bound */
  1995. if (!fb) {
  1996. DRM_ERROR("No FB bound\n");
  1997. return 0;
  1998. }
  1999. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  2000. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  2001. plane_name(intel_crtc->plane),
  2002. INTEL_INFO(dev)->num_pipes);
  2003. return -EINVAL;
  2004. }
  2005. mutex_lock(&dev->struct_mutex);
  2006. ret = intel_pin_and_fence_fb_obj(dev,
  2007. to_intel_framebuffer(fb)->obj,
  2008. NULL);
  2009. if (ret != 0) {
  2010. mutex_unlock(&dev->struct_mutex);
  2011. DRM_ERROR("pin & fence failed\n");
  2012. return ret;
  2013. }
  2014. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2015. if (ret) {
  2016. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2017. mutex_unlock(&dev->struct_mutex);
  2018. DRM_ERROR("failed to update base address\n");
  2019. return ret;
  2020. }
  2021. old_fb = crtc->fb;
  2022. crtc->fb = fb;
  2023. crtc->x = x;
  2024. crtc->y = y;
  2025. if (old_fb) {
  2026. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2027. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2028. }
  2029. intel_update_fbc(dev);
  2030. mutex_unlock(&dev->struct_mutex);
  2031. intel_crtc_update_sarea_pos(crtc, x, y);
  2032. return 0;
  2033. }
  2034. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2035. {
  2036. struct drm_device *dev = crtc->dev;
  2037. struct drm_i915_private *dev_priv = dev->dev_private;
  2038. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2039. int pipe = intel_crtc->pipe;
  2040. u32 reg, temp;
  2041. /* enable normal train */
  2042. reg = FDI_TX_CTL(pipe);
  2043. temp = I915_READ(reg);
  2044. if (IS_IVYBRIDGE(dev)) {
  2045. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2046. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2047. } else {
  2048. temp &= ~FDI_LINK_TRAIN_NONE;
  2049. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2050. }
  2051. I915_WRITE(reg, temp);
  2052. reg = FDI_RX_CTL(pipe);
  2053. temp = I915_READ(reg);
  2054. if (HAS_PCH_CPT(dev)) {
  2055. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2056. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2057. } else {
  2058. temp &= ~FDI_LINK_TRAIN_NONE;
  2059. temp |= FDI_LINK_TRAIN_NONE;
  2060. }
  2061. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2062. /* wait one idle pattern time */
  2063. POSTING_READ(reg);
  2064. udelay(1000);
  2065. /* IVB wants error correction enabled */
  2066. if (IS_IVYBRIDGE(dev))
  2067. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2068. FDI_FE_ERRC_ENABLE);
  2069. }
  2070. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2071. {
  2072. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2073. }
  2074. static void ivb_modeset_global_resources(struct drm_device *dev)
  2075. {
  2076. struct drm_i915_private *dev_priv = dev->dev_private;
  2077. struct intel_crtc *pipe_B_crtc =
  2078. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2079. struct intel_crtc *pipe_C_crtc =
  2080. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2081. uint32_t temp;
  2082. /*
  2083. * When everything is off disable fdi C so that we could enable fdi B
  2084. * with all lanes. Note that we don't care about enabled pipes without
  2085. * an enabled pch encoder.
  2086. */
  2087. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2088. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2089. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2090. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2091. temp = I915_READ(SOUTH_CHICKEN1);
  2092. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2093. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2094. I915_WRITE(SOUTH_CHICKEN1, temp);
  2095. }
  2096. }
  2097. /* The FDI link training functions for ILK/Ibexpeak. */
  2098. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2099. {
  2100. struct drm_device *dev = crtc->dev;
  2101. struct drm_i915_private *dev_priv = dev->dev_private;
  2102. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2103. int pipe = intel_crtc->pipe;
  2104. int plane = intel_crtc->plane;
  2105. u32 reg, temp, tries;
  2106. /* FDI needs bits from pipe & plane first */
  2107. assert_pipe_enabled(dev_priv, pipe);
  2108. assert_plane_enabled(dev_priv, plane);
  2109. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2110. for train result */
  2111. reg = FDI_RX_IMR(pipe);
  2112. temp = I915_READ(reg);
  2113. temp &= ~FDI_RX_SYMBOL_LOCK;
  2114. temp &= ~FDI_RX_BIT_LOCK;
  2115. I915_WRITE(reg, temp);
  2116. I915_READ(reg);
  2117. udelay(150);
  2118. /* enable CPU FDI TX and PCH FDI RX */
  2119. reg = FDI_TX_CTL(pipe);
  2120. temp = I915_READ(reg);
  2121. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2122. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2123. temp &= ~FDI_LINK_TRAIN_NONE;
  2124. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2125. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2126. reg = FDI_RX_CTL(pipe);
  2127. temp = I915_READ(reg);
  2128. temp &= ~FDI_LINK_TRAIN_NONE;
  2129. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2130. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2131. POSTING_READ(reg);
  2132. udelay(150);
  2133. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2134. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2135. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2136. FDI_RX_PHASE_SYNC_POINTER_EN);
  2137. reg = FDI_RX_IIR(pipe);
  2138. for (tries = 0; tries < 5; tries++) {
  2139. temp = I915_READ(reg);
  2140. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2141. if ((temp & FDI_RX_BIT_LOCK)) {
  2142. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2143. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2144. break;
  2145. }
  2146. }
  2147. if (tries == 5)
  2148. DRM_ERROR("FDI train 1 fail!\n");
  2149. /* Train 2 */
  2150. reg = FDI_TX_CTL(pipe);
  2151. temp = I915_READ(reg);
  2152. temp &= ~FDI_LINK_TRAIN_NONE;
  2153. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2154. I915_WRITE(reg, temp);
  2155. reg = FDI_RX_CTL(pipe);
  2156. temp = I915_READ(reg);
  2157. temp &= ~FDI_LINK_TRAIN_NONE;
  2158. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2159. I915_WRITE(reg, temp);
  2160. POSTING_READ(reg);
  2161. udelay(150);
  2162. reg = FDI_RX_IIR(pipe);
  2163. for (tries = 0; tries < 5; tries++) {
  2164. temp = I915_READ(reg);
  2165. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2166. if (temp & FDI_RX_SYMBOL_LOCK) {
  2167. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2168. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2169. break;
  2170. }
  2171. }
  2172. if (tries == 5)
  2173. DRM_ERROR("FDI train 2 fail!\n");
  2174. DRM_DEBUG_KMS("FDI train done\n");
  2175. }
  2176. static const int snb_b_fdi_train_param[] = {
  2177. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2178. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2179. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2180. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2181. };
  2182. /* The FDI link training functions for SNB/Cougarpoint. */
  2183. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2184. {
  2185. struct drm_device *dev = crtc->dev;
  2186. struct drm_i915_private *dev_priv = dev->dev_private;
  2187. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2188. int pipe = intel_crtc->pipe;
  2189. u32 reg, temp, i, retry;
  2190. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2191. for train result */
  2192. reg = FDI_RX_IMR(pipe);
  2193. temp = I915_READ(reg);
  2194. temp &= ~FDI_RX_SYMBOL_LOCK;
  2195. temp &= ~FDI_RX_BIT_LOCK;
  2196. I915_WRITE(reg, temp);
  2197. POSTING_READ(reg);
  2198. udelay(150);
  2199. /* enable CPU FDI TX and PCH FDI RX */
  2200. reg = FDI_TX_CTL(pipe);
  2201. temp = I915_READ(reg);
  2202. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2203. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2204. temp &= ~FDI_LINK_TRAIN_NONE;
  2205. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2206. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2207. /* SNB-B */
  2208. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2209. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2210. I915_WRITE(FDI_RX_MISC(pipe),
  2211. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2212. reg = FDI_RX_CTL(pipe);
  2213. temp = I915_READ(reg);
  2214. if (HAS_PCH_CPT(dev)) {
  2215. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2216. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2217. } else {
  2218. temp &= ~FDI_LINK_TRAIN_NONE;
  2219. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2220. }
  2221. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2222. POSTING_READ(reg);
  2223. udelay(150);
  2224. for (i = 0; i < 4; i++) {
  2225. reg = FDI_TX_CTL(pipe);
  2226. temp = I915_READ(reg);
  2227. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2228. temp |= snb_b_fdi_train_param[i];
  2229. I915_WRITE(reg, temp);
  2230. POSTING_READ(reg);
  2231. udelay(500);
  2232. for (retry = 0; retry < 5; retry++) {
  2233. reg = FDI_RX_IIR(pipe);
  2234. temp = I915_READ(reg);
  2235. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2236. if (temp & FDI_RX_BIT_LOCK) {
  2237. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2238. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2239. break;
  2240. }
  2241. udelay(50);
  2242. }
  2243. if (retry < 5)
  2244. break;
  2245. }
  2246. if (i == 4)
  2247. DRM_ERROR("FDI train 1 fail!\n");
  2248. /* Train 2 */
  2249. reg = FDI_TX_CTL(pipe);
  2250. temp = I915_READ(reg);
  2251. temp &= ~FDI_LINK_TRAIN_NONE;
  2252. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2253. if (IS_GEN6(dev)) {
  2254. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2255. /* SNB-B */
  2256. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2257. }
  2258. I915_WRITE(reg, temp);
  2259. reg = FDI_RX_CTL(pipe);
  2260. temp = I915_READ(reg);
  2261. if (HAS_PCH_CPT(dev)) {
  2262. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2263. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2264. } else {
  2265. temp &= ~FDI_LINK_TRAIN_NONE;
  2266. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2267. }
  2268. I915_WRITE(reg, temp);
  2269. POSTING_READ(reg);
  2270. udelay(150);
  2271. for (i = 0; i < 4; i++) {
  2272. reg = FDI_TX_CTL(pipe);
  2273. temp = I915_READ(reg);
  2274. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2275. temp |= snb_b_fdi_train_param[i];
  2276. I915_WRITE(reg, temp);
  2277. POSTING_READ(reg);
  2278. udelay(500);
  2279. for (retry = 0; retry < 5; retry++) {
  2280. reg = FDI_RX_IIR(pipe);
  2281. temp = I915_READ(reg);
  2282. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2283. if (temp & FDI_RX_SYMBOL_LOCK) {
  2284. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2285. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2286. break;
  2287. }
  2288. udelay(50);
  2289. }
  2290. if (retry < 5)
  2291. break;
  2292. }
  2293. if (i == 4)
  2294. DRM_ERROR("FDI train 2 fail!\n");
  2295. DRM_DEBUG_KMS("FDI train done.\n");
  2296. }
  2297. /* Manual link training for Ivy Bridge A0 parts */
  2298. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2299. {
  2300. struct drm_device *dev = crtc->dev;
  2301. struct drm_i915_private *dev_priv = dev->dev_private;
  2302. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2303. int pipe = intel_crtc->pipe;
  2304. u32 reg, temp, i;
  2305. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2306. for train result */
  2307. reg = FDI_RX_IMR(pipe);
  2308. temp = I915_READ(reg);
  2309. temp &= ~FDI_RX_SYMBOL_LOCK;
  2310. temp &= ~FDI_RX_BIT_LOCK;
  2311. I915_WRITE(reg, temp);
  2312. POSTING_READ(reg);
  2313. udelay(150);
  2314. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2315. I915_READ(FDI_RX_IIR(pipe)));
  2316. /* enable CPU FDI TX and PCH FDI RX */
  2317. reg = FDI_TX_CTL(pipe);
  2318. temp = I915_READ(reg);
  2319. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2320. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2321. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2322. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2323. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2324. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2325. temp |= FDI_COMPOSITE_SYNC;
  2326. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2327. I915_WRITE(FDI_RX_MISC(pipe),
  2328. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2329. reg = FDI_RX_CTL(pipe);
  2330. temp = I915_READ(reg);
  2331. temp &= ~FDI_LINK_TRAIN_AUTO;
  2332. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2333. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2334. temp |= FDI_COMPOSITE_SYNC;
  2335. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2336. POSTING_READ(reg);
  2337. udelay(150);
  2338. for (i = 0; i < 4; i++) {
  2339. reg = FDI_TX_CTL(pipe);
  2340. temp = I915_READ(reg);
  2341. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2342. temp |= snb_b_fdi_train_param[i];
  2343. I915_WRITE(reg, temp);
  2344. POSTING_READ(reg);
  2345. udelay(500);
  2346. reg = FDI_RX_IIR(pipe);
  2347. temp = I915_READ(reg);
  2348. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2349. if (temp & FDI_RX_BIT_LOCK ||
  2350. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2351. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2352. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2353. break;
  2354. }
  2355. }
  2356. if (i == 4)
  2357. DRM_ERROR("FDI train 1 fail!\n");
  2358. /* Train 2 */
  2359. reg = FDI_TX_CTL(pipe);
  2360. temp = I915_READ(reg);
  2361. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2362. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2363. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2364. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2365. I915_WRITE(reg, temp);
  2366. reg = FDI_RX_CTL(pipe);
  2367. temp = I915_READ(reg);
  2368. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2369. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2370. I915_WRITE(reg, temp);
  2371. POSTING_READ(reg);
  2372. udelay(150);
  2373. for (i = 0; i < 4; i++) {
  2374. reg = FDI_TX_CTL(pipe);
  2375. temp = I915_READ(reg);
  2376. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2377. temp |= snb_b_fdi_train_param[i];
  2378. I915_WRITE(reg, temp);
  2379. POSTING_READ(reg);
  2380. udelay(500);
  2381. reg = FDI_RX_IIR(pipe);
  2382. temp = I915_READ(reg);
  2383. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2384. if (temp & FDI_RX_SYMBOL_LOCK) {
  2385. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2386. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2387. break;
  2388. }
  2389. }
  2390. if (i == 4)
  2391. DRM_ERROR("FDI train 2 fail!\n");
  2392. DRM_DEBUG_KMS("FDI train done.\n");
  2393. }
  2394. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2395. {
  2396. struct drm_device *dev = intel_crtc->base.dev;
  2397. struct drm_i915_private *dev_priv = dev->dev_private;
  2398. int pipe = intel_crtc->pipe;
  2399. u32 reg, temp;
  2400. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2401. reg = FDI_RX_CTL(pipe);
  2402. temp = I915_READ(reg);
  2403. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2404. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2405. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2406. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2407. POSTING_READ(reg);
  2408. udelay(200);
  2409. /* Switch from Rawclk to PCDclk */
  2410. temp = I915_READ(reg);
  2411. I915_WRITE(reg, temp | FDI_PCDCLK);
  2412. POSTING_READ(reg);
  2413. udelay(200);
  2414. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2415. reg = FDI_TX_CTL(pipe);
  2416. temp = I915_READ(reg);
  2417. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2418. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2419. POSTING_READ(reg);
  2420. udelay(100);
  2421. }
  2422. }
  2423. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2424. {
  2425. struct drm_device *dev = intel_crtc->base.dev;
  2426. struct drm_i915_private *dev_priv = dev->dev_private;
  2427. int pipe = intel_crtc->pipe;
  2428. u32 reg, temp;
  2429. /* Switch from PCDclk to Rawclk */
  2430. reg = FDI_RX_CTL(pipe);
  2431. temp = I915_READ(reg);
  2432. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2433. /* Disable CPU FDI TX PLL */
  2434. reg = FDI_TX_CTL(pipe);
  2435. temp = I915_READ(reg);
  2436. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2437. POSTING_READ(reg);
  2438. udelay(100);
  2439. reg = FDI_RX_CTL(pipe);
  2440. temp = I915_READ(reg);
  2441. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2442. /* Wait for the clocks to turn off. */
  2443. POSTING_READ(reg);
  2444. udelay(100);
  2445. }
  2446. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2447. {
  2448. struct drm_device *dev = crtc->dev;
  2449. struct drm_i915_private *dev_priv = dev->dev_private;
  2450. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2451. int pipe = intel_crtc->pipe;
  2452. u32 reg, temp;
  2453. /* disable CPU FDI tx and PCH FDI rx */
  2454. reg = FDI_TX_CTL(pipe);
  2455. temp = I915_READ(reg);
  2456. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2457. POSTING_READ(reg);
  2458. reg = FDI_RX_CTL(pipe);
  2459. temp = I915_READ(reg);
  2460. temp &= ~(0x7 << 16);
  2461. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2462. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2463. POSTING_READ(reg);
  2464. udelay(100);
  2465. /* Ironlake workaround, disable clock pointer after downing FDI */
  2466. if (HAS_PCH_IBX(dev)) {
  2467. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2468. }
  2469. /* still set train pattern 1 */
  2470. reg = FDI_TX_CTL(pipe);
  2471. temp = I915_READ(reg);
  2472. temp &= ~FDI_LINK_TRAIN_NONE;
  2473. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2474. I915_WRITE(reg, temp);
  2475. reg = FDI_RX_CTL(pipe);
  2476. temp = I915_READ(reg);
  2477. if (HAS_PCH_CPT(dev)) {
  2478. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2479. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2480. } else {
  2481. temp &= ~FDI_LINK_TRAIN_NONE;
  2482. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2483. }
  2484. /* BPC in FDI rx is consistent with that in PIPECONF */
  2485. temp &= ~(0x07 << 16);
  2486. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2487. I915_WRITE(reg, temp);
  2488. POSTING_READ(reg);
  2489. udelay(100);
  2490. }
  2491. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2492. {
  2493. struct drm_device *dev = crtc->dev;
  2494. struct drm_i915_private *dev_priv = dev->dev_private;
  2495. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2496. unsigned long flags;
  2497. bool pending;
  2498. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2499. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2500. return false;
  2501. spin_lock_irqsave(&dev->event_lock, flags);
  2502. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2503. spin_unlock_irqrestore(&dev->event_lock, flags);
  2504. return pending;
  2505. }
  2506. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2507. {
  2508. struct drm_device *dev = crtc->dev;
  2509. struct drm_i915_private *dev_priv = dev->dev_private;
  2510. if (crtc->fb == NULL)
  2511. return;
  2512. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2513. wait_event(dev_priv->pending_flip_queue,
  2514. !intel_crtc_has_pending_flip(crtc));
  2515. mutex_lock(&dev->struct_mutex);
  2516. intel_finish_fb(crtc->fb);
  2517. mutex_unlock(&dev->struct_mutex);
  2518. }
  2519. /* Program iCLKIP clock to the desired frequency */
  2520. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2521. {
  2522. struct drm_device *dev = crtc->dev;
  2523. struct drm_i915_private *dev_priv = dev->dev_private;
  2524. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2525. u32 temp;
  2526. mutex_lock(&dev_priv->dpio_lock);
  2527. /* It is necessary to ungate the pixclk gate prior to programming
  2528. * the divisors, and gate it back when it is done.
  2529. */
  2530. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2531. /* Disable SSCCTL */
  2532. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2533. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2534. SBI_SSCCTL_DISABLE,
  2535. SBI_ICLK);
  2536. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2537. if (crtc->mode.clock == 20000) {
  2538. auxdiv = 1;
  2539. divsel = 0x41;
  2540. phaseinc = 0x20;
  2541. } else {
  2542. /* The iCLK virtual clock root frequency is in MHz,
  2543. * but the crtc->mode.clock in in KHz. To get the divisors,
  2544. * it is necessary to divide one by another, so we
  2545. * convert the virtual clock precision to KHz here for higher
  2546. * precision.
  2547. */
  2548. u32 iclk_virtual_root_freq = 172800 * 1000;
  2549. u32 iclk_pi_range = 64;
  2550. u32 desired_divisor, msb_divisor_value, pi_value;
  2551. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2552. msb_divisor_value = desired_divisor / iclk_pi_range;
  2553. pi_value = desired_divisor % iclk_pi_range;
  2554. auxdiv = 0;
  2555. divsel = msb_divisor_value - 2;
  2556. phaseinc = pi_value;
  2557. }
  2558. /* This should not happen with any sane values */
  2559. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2560. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2561. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2562. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2563. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2564. crtc->mode.clock,
  2565. auxdiv,
  2566. divsel,
  2567. phasedir,
  2568. phaseinc);
  2569. /* Program SSCDIVINTPHASE6 */
  2570. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2571. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2572. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2573. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2574. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2575. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2576. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2577. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2578. /* Program SSCAUXDIV */
  2579. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2580. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2581. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2582. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2583. /* Enable modulator and associated divider */
  2584. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2585. temp &= ~SBI_SSCCTL_DISABLE;
  2586. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2587. /* Wait for initialization time */
  2588. udelay(24);
  2589. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2590. mutex_unlock(&dev_priv->dpio_lock);
  2591. }
  2592. /*
  2593. * Enable PCH resources required for PCH ports:
  2594. * - PCH PLLs
  2595. * - FDI training & RX/TX
  2596. * - update transcoder timings
  2597. * - DP transcoding bits
  2598. * - transcoder
  2599. */
  2600. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2601. {
  2602. struct drm_device *dev = crtc->dev;
  2603. struct drm_i915_private *dev_priv = dev->dev_private;
  2604. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2605. int pipe = intel_crtc->pipe;
  2606. u32 reg, temp;
  2607. assert_transcoder_disabled(dev_priv, pipe);
  2608. /* Write the TU size bits before fdi link training, so that error
  2609. * detection works. */
  2610. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2611. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2612. /* For PCH output, training FDI link */
  2613. dev_priv->display.fdi_link_train(crtc);
  2614. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2615. * transcoder, and we actually should do this to not upset any PCH
  2616. * transcoder that already use the clock when we share it.
  2617. *
  2618. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2619. * unconditionally resets the pll - we need that to have the right LVDS
  2620. * enable sequence. */
  2621. ironlake_enable_pch_pll(intel_crtc);
  2622. if (HAS_PCH_CPT(dev)) {
  2623. u32 sel;
  2624. temp = I915_READ(PCH_DPLL_SEL);
  2625. switch (pipe) {
  2626. default:
  2627. case 0:
  2628. temp |= TRANSA_DPLL_ENABLE;
  2629. sel = TRANSA_DPLLB_SEL;
  2630. break;
  2631. case 1:
  2632. temp |= TRANSB_DPLL_ENABLE;
  2633. sel = TRANSB_DPLLB_SEL;
  2634. break;
  2635. case 2:
  2636. temp |= TRANSC_DPLL_ENABLE;
  2637. sel = TRANSC_DPLLB_SEL;
  2638. break;
  2639. }
  2640. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2641. temp |= sel;
  2642. else
  2643. temp &= ~sel;
  2644. I915_WRITE(PCH_DPLL_SEL, temp);
  2645. }
  2646. /* set transcoder timing, panel must allow it */
  2647. assert_panel_unlocked(dev_priv, pipe);
  2648. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2649. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2650. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2651. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2652. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2653. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2654. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2655. intel_fdi_normal_train(crtc);
  2656. /* For PCH DP, enable TRANS_DP_CTL */
  2657. if (HAS_PCH_CPT(dev) &&
  2658. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2659. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2660. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2661. reg = TRANS_DP_CTL(pipe);
  2662. temp = I915_READ(reg);
  2663. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2664. TRANS_DP_SYNC_MASK |
  2665. TRANS_DP_BPC_MASK);
  2666. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2667. TRANS_DP_ENH_FRAMING);
  2668. temp |= bpc << 9; /* same format but at 11:9 */
  2669. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2670. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2671. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2672. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2673. switch (intel_trans_dp_port_sel(crtc)) {
  2674. case PCH_DP_B:
  2675. temp |= TRANS_DP_PORT_SEL_B;
  2676. break;
  2677. case PCH_DP_C:
  2678. temp |= TRANS_DP_PORT_SEL_C;
  2679. break;
  2680. case PCH_DP_D:
  2681. temp |= TRANS_DP_PORT_SEL_D;
  2682. break;
  2683. default:
  2684. BUG();
  2685. }
  2686. I915_WRITE(reg, temp);
  2687. }
  2688. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2689. }
  2690. static void lpt_pch_enable(struct drm_crtc *crtc)
  2691. {
  2692. struct drm_device *dev = crtc->dev;
  2693. struct drm_i915_private *dev_priv = dev->dev_private;
  2694. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2695. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2696. assert_transcoder_disabled(dev_priv, TRANSCODER_A);
  2697. lpt_program_iclkip(crtc);
  2698. /* Set transcoder timing. */
  2699. I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
  2700. I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
  2701. I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
  2702. I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
  2703. I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
  2704. I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
  2705. I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2706. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2707. }
  2708. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2709. {
  2710. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2711. if (pll == NULL)
  2712. return;
  2713. if (pll->refcount == 0) {
  2714. WARN(1, "bad PCH PLL refcount\n");
  2715. return;
  2716. }
  2717. --pll->refcount;
  2718. intel_crtc->pch_pll = NULL;
  2719. }
  2720. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2721. {
  2722. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2723. struct intel_pch_pll *pll;
  2724. int i;
  2725. pll = intel_crtc->pch_pll;
  2726. if (pll) {
  2727. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2728. intel_crtc->base.base.id, pll->pll_reg);
  2729. goto prepare;
  2730. }
  2731. if (HAS_PCH_IBX(dev_priv->dev)) {
  2732. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2733. i = intel_crtc->pipe;
  2734. pll = &dev_priv->pch_plls[i];
  2735. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2736. intel_crtc->base.base.id, pll->pll_reg);
  2737. goto found;
  2738. }
  2739. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2740. pll = &dev_priv->pch_plls[i];
  2741. /* Only want to check enabled timings first */
  2742. if (pll->refcount == 0)
  2743. continue;
  2744. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2745. fp == I915_READ(pll->fp0_reg)) {
  2746. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2747. intel_crtc->base.base.id,
  2748. pll->pll_reg, pll->refcount, pll->active);
  2749. goto found;
  2750. }
  2751. }
  2752. /* Ok no matching timings, maybe there's a free one? */
  2753. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2754. pll = &dev_priv->pch_plls[i];
  2755. if (pll->refcount == 0) {
  2756. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2757. intel_crtc->base.base.id, pll->pll_reg);
  2758. goto found;
  2759. }
  2760. }
  2761. return NULL;
  2762. found:
  2763. intel_crtc->pch_pll = pll;
  2764. pll->refcount++;
  2765. DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
  2766. prepare: /* separate function? */
  2767. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2768. /* Wait for the clocks to stabilize before rewriting the regs */
  2769. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2770. POSTING_READ(pll->pll_reg);
  2771. udelay(150);
  2772. I915_WRITE(pll->fp0_reg, fp);
  2773. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2774. pll->on = false;
  2775. return pll;
  2776. }
  2777. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2778. {
  2779. struct drm_i915_private *dev_priv = dev->dev_private;
  2780. int dslreg = PIPEDSL(pipe);
  2781. u32 temp;
  2782. temp = I915_READ(dslreg);
  2783. udelay(500);
  2784. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2785. if (wait_for(I915_READ(dslreg) != temp, 5))
  2786. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2787. }
  2788. }
  2789. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2790. {
  2791. struct drm_device *dev = crtc->base.dev;
  2792. struct drm_i915_private *dev_priv = dev->dev_private;
  2793. int pipe = crtc->pipe;
  2794. if (crtc->config.pch_pfit.size &&
  2795. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) {
  2796. /* Force use of hard-coded filter coefficients
  2797. * as some pre-programmed values are broken,
  2798. * e.g. x201.
  2799. */
  2800. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2801. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2802. PF_PIPE_SEL_IVB(pipe));
  2803. else
  2804. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2805. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2806. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2807. }
  2808. }
  2809. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2810. {
  2811. struct drm_device *dev = crtc->dev;
  2812. struct drm_i915_private *dev_priv = dev->dev_private;
  2813. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2814. struct intel_encoder *encoder;
  2815. int pipe = intel_crtc->pipe;
  2816. int plane = intel_crtc->plane;
  2817. u32 temp;
  2818. WARN_ON(!crtc->enabled);
  2819. if (intel_crtc->active)
  2820. return;
  2821. intel_crtc->active = true;
  2822. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2823. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2824. intel_update_watermarks(dev);
  2825. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2826. temp = I915_READ(PCH_LVDS);
  2827. if ((temp & LVDS_PORT_EN) == 0)
  2828. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2829. }
  2830. if (intel_crtc->config.has_pch_encoder) {
  2831. /* Note: FDI PLL enabling _must_ be done before we enable the
  2832. * cpu pipes, hence this is separate from all the other fdi/pch
  2833. * enabling. */
  2834. ironlake_fdi_pll_enable(intel_crtc);
  2835. } else {
  2836. assert_fdi_tx_disabled(dev_priv, pipe);
  2837. assert_fdi_rx_disabled(dev_priv, pipe);
  2838. }
  2839. for_each_encoder_on_crtc(dev, crtc, encoder)
  2840. if (encoder->pre_enable)
  2841. encoder->pre_enable(encoder);
  2842. /* Enable panel fitting for LVDS */
  2843. ironlake_pfit_enable(intel_crtc);
  2844. /*
  2845. * On ILK+ LUT must be loaded before the pipe is running but with
  2846. * clocks enabled
  2847. */
  2848. intel_crtc_load_lut(crtc);
  2849. intel_enable_pipe(dev_priv, pipe,
  2850. intel_crtc->config.has_pch_encoder);
  2851. intel_enable_plane(dev_priv, plane, pipe);
  2852. if (intel_crtc->config.has_pch_encoder)
  2853. ironlake_pch_enable(crtc);
  2854. mutex_lock(&dev->struct_mutex);
  2855. intel_update_fbc(dev);
  2856. mutex_unlock(&dev->struct_mutex);
  2857. intel_crtc_update_cursor(crtc, true);
  2858. for_each_encoder_on_crtc(dev, crtc, encoder)
  2859. encoder->enable(encoder);
  2860. if (HAS_PCH_CPT(dev))
  2861. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2862. /*
  2863. * There seems to be a race in PCH platform hw (at least on some
  2864. * outputs) where an enabled pipe still completes any pageflip right
  2865. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2866. * as the first vblank happend, everything works as expected. Hence just
  2867. * wait for one vblank before returning to avoid strange things
  2868. * happening.
  2869. */
  2870. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2871. }
  2872. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2873. {
  2874. struct drm_device *dev = crtc->dev;
  2875. struct drm_i915_private *dev_priv = dev->dev_private;
  2876. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2877. struct intel_encoder *encoder;
  2878. int pipe = intel_crtc->pipe;
  2879. int plane = intel_crtc->plane;
  2880. WARN_ON(!crtc->enabled);
  2881. if (intel_crtc->active)
  2882. return;
  2883. intel_crtc->active = true;
  2884. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2885. if (intel_crtc->config.has_pch_encoder)
  2886. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2887. intel_update_watermarks(dev);
  2888. if (intel_crtc->config.has_pch_encoder)
  2889. dev_priv->display.fdi_link_train(crtc);
  2890. for_each_encoder_on_crtc(dev, crtc, encoder)
  2891. if (encoder->pre_enable)
  2892. encoder->pre_enable(encoder);
  2893. intel_ddi_enable_pipe_clock(intel_crtc);
  2894. /* Enable panel fitting for eDP */
  2895. ironlake_pfit_enable(intel_crtc);
  2896. /*
  2897. * On ILK+ LUT must be loaded before the pipe is running but with
  2898. * clocks enabled
  2899. */
  2900. intel_crtc_load_lut(crtc);
  2901. intel_ddi_set_pipe_settings(crtc);
  2902. intel_ddi_enable_transcoder_func(crtc);
  2903. intel_enable_pipe(dev_priv, pipe,
  2904. intel_crtc->config.has_pch_encoder);
  2905. intel_enable_plane(dev_priv, plane, pipe);
  2906. if (intel_crtc->config.has_pch_encoder)
  2907. lpt_pch_enable(crtc);
  2908. mutex_lock(&dev->struct_mutex);
  2909. intel_update_fbc(dev);
  2910. mutex_unlock(&dev->struct_mutex);
  2911. intel_crtc_update_cursor(crtc, true);
  2912. for_each_encoder_on_crtc(dev, crtc, encoder)
  2913. encoder->enable(encoder);
  2914. /*
  2915. * There seems to be a race in PCH platform hw (at least on some
  2916. * outputs) where an enabled pipe still completes any pageflip right
  2917. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2918. * as the first vblank happend, everything works as expected. Hence just
  2919. * wait for one vblank before returning to avoid strange things
  2920. * happening.
  2921. */
  2922. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2923. }
  2924. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2925. {
  2926. struct drm_device *dev = crtc->dev;
  2927. struct drm_i915_private *dev_priv = dev->dev_private;
  2928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2929. struct intel_encoder *encoder;
  2930. int pipe = intel_crtc->pipe;
  2931. int plane = intel_crtc->plane;
  2932. u32 reg, temp;
  2933. if (!intel_crtc->active)
  2934. return;
  2935. for_each_encoder_on_crtc(dev, crtc, encoder)
  2936. encoder->disable(encoder);
  2937. intel_crtc_wait_for_pending_flips(crtc);
  2938. drm_vblank_off(dev, pipe);
  2939. intel_crtc_update_cursor(crtc, false);
  2940. intel_disable_plane(dev_priv, plane, pipe);
  2941. if (dev_priv->cfb_plane == plane)
  2942. intel_disable_fbc(dev);
  2943. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2944. intel_disable_pipe(dev_priv, pipe);
  2945. /* Disable PF */
  2946. I915_WRITE(PF_CTL(pipe), 0);
  2947. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2948. for_each_encoder_on_crtc(dev, crtc, encoder)
  2949. if (encoder->post_disable)
  2950. encoder->post_disable(encoder);
  2951. ironlake_fdi_disable(crtc);
  2952. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2953. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2954. if (HAS_PCH_CPT(dev)) {
  2955. /* disable TRANS_DP_CTL */
  2956. reg = TRANS_DP_CTL(pipe);
  2957. temp = I915_READ(reg);
  2958. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2959. temp |= TRANS_DP_PORT_SEL_NONE;
  2960. I915_WRITE(reg, temp);
  2961. /* disable DPLL_SEL */
  2962. temp = I915_READ(PCH_DPLL_SEL);
  2963. switch (pipe) {
  2964. case 0:
  2965. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2966. break;
  2967. case 1:
  2968. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2969. break;
  2970. case 2:
  2971. /* C shares PLL A or B */
  2972. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2973. break;
  2974. default:
  2975. BUG(); /* wtf */
  2976. }
  2977. I915_WRITE(PCH_DPLL_SEL, temp);
  2978. }
  2979. /* disable PCH DPLL */
  2980. intel_disable_pch_pll(intel_crtc);
  2981. ironlake_fdi_pll_disable(intel_crtc);
  2982. intel_crtc->active = false;
  2983. intel_update_watermarks(dev);
  2984. mutex_lock(&dev->struct_mutex);
  2985. intel_update_fbc(dev);
  2986. mutex_unlock(&dev->struct_mutex);
  2987. }
  2988. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2989. {
  2990. struct drm_device *dev = crtc->dev;
  2991. struct drm_i915_private *dev_priv = dev->dev_private;
  2992. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2993. struct intel_encoder *encoder;
  2994. int pipe = intel_crtc->pipe;
  2995. int plane = intel_crtc->plane;
  2996. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2997. if (!intel_crtc->active)
  2998. return;
  2999. for_each_encoder_on_crtc(dev, crtc, encoder)
  3000. encoder->disable(encoder);
  3001. intel_crtc_wait_for_pending_flips(crtc);
  3002. drm_vblank_off(dev, pipe);
  3003. intel_crtc_update_cursor(crtc, false);
  3004. intel_disable_plane(dev_priv, plane, pipe);
  3005. if (dev_priv->cfb_plane == plane)
  3006. intel_disable_fbc(dev);
  3007. if (intel_crtc->config.has_pch_encoder)
  3008. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3009. intel_disable_pipe(dev_priv, pipe);
  3010. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3011. /* XXX: Once we have proper panel fitter state tracking implemented with
  3012. * hardware state read/check support we should switch to only disable
  3013. * the panel fitter when we know it's used. */
  3014. if (intel_using_power_well(dev)) {
  3015. I915_WRITE(PF_CTL(pipe), 0);
  3016. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3017. }
  3018. intel_ddi_disable_pipe_clock(intel_crtc);
  3019. for_each_encoder_on_crtc(dev, crtc, encoder)
  3020. if (encoder->post_disable)
  3021. encoder->post_disable(encoder);
  3022. if (intel_crtc->config.has_pch_encoder) {
  3023. lpt_disable_pch_transcoder(dev_priv);
  3024. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3025. intel_ddi_fdi_disable(crtc);
  3026. }
  3027. intel_crtc->active = false;
  3028. intel_update_watermarks(dev);
  3029. mutex_lock(&dev->struct_mutex);
  3030. intel_update_fbc(dev);
  3031. mutex_unlock(&dev->struct_mutex);
  3032. }
  3033. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3034. {
  3035. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3036. intel_put_pch_pll(intel_crtc);
  3037. }
  3038. static void haswell_crtc_off(struct drm_crtc *crtc)
  3039. {
  3040. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3041. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3042. * start using it. */
  3043. intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  3044. intel_ddi_put_crtc_pll(crtc);
  3045. }
  3046. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3047. {
  3048. if (!enable && intel_crtc->overlay) {
  3049. struct drm_device *dev = intel_crtc->base.dev;
  3050. struct drm_i915_private *dev_priv = dev->dev_private;
  3051. mutex_lock(&dev->struct_mutex);
  3052. dev_priv->mm.interruptible = false;
  3053. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3054. dev_priv->mm.interruptible = true;
  3055. mutex_unlock(&dev->struct_mutex);
  3056. }
  3057. /* Let userspace switch the overlay on again. In most cases userspace
  3058. * has to recompute where to put it anyway.
  3059. */
  3060. }
  3061. /**
  3062. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3063. * cursor plane briefly if not already running after enabling the display
  3064. * plane.
  3065. * This workaround avoids occasional blank screens when self refresh is
  3066. * enabled.
  3067. */
  3068. static void
  3069. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3070. {
  3071. u32 cntl = I915_READ(CURCNTR(pipe));
  3072. if ((cntl & CURSOR_MODE) == 0) {
  3073. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3074. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3075. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3076. intel_wait_for_vblank(dev_priv->dev, pipe);
  3077. I915_WRITE(CURCNTR(pipe), cntl);
  3078. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3079. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3080. }
  3081. }
  3082. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3083. {
  3084. struct drm_device *dev = crtc->base.dev;
  3085. struct drm_i915_private *dev_priv = dev->dev_private;
  3086. struct intel_crtc_config *pipe_config = &crtc->config;
  3087. if (!(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3088. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)))
  3089. return;
  3090. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3091. assert_pipe_disabled(dev_priv, crtc->pipe);
  3092. /*
  3093. * Enable automatic panel scaling so that non-native modes
  3094. * fill the screen. The panel fitter should only be
  3095. * adjusted whilst the pipe is disabled, according to
  3096. * register description and PRM.
  3097. */
  3098. DRM_DEBUG_KMS("applying panel-fitter: %x, %x\n",
  3099. pipe_config->gmch_pfit.control,
  3100. pipe_config->gmch_pfit.pgm_ratios);
  3101. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3102. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3103. }
  3104. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3105. {
  3106. struct drm_device *dev = crtc->dev;
  3107. struct drm_i915_private *dev_priv = dev->dev_private;
  3108. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3109. struct intel_encoder *encoder;
  3110. int pipe = intel_crtc->pipe;
  3111. int plane = intel_crtc->plane;
  3112. WARN_ON(!crtc->enabled);
  3113. if (intel_crtc->active)
  3114. return;
  3115. intel_crtc->active = true;
  3116. intel_update_watermarks(dev);
  3117. mutex_lock(&dev_priv->dpio_lock);
  3118. for_each_encoder_on_crtc(dev, crtc, encoder)
  3119. if (encoder->pre_pll_enable)
  3120. encoder->pre_pll_enable(encoder);
  3121. intel_enable_pll(dev_priv, pipe);
  3122. for_each_encoder_on_crtc(dev, crtc, encoder)
  3123. if (encoder->pre_enable)
  3124. encoder->pre_enable(encoder);
  3125. /* VLV wants encoder enabling _before_ the pipe is up. */
  3126. for_each_encoder_on_crtc(dev, crtc, encoder)
  3127. encoder->enable(encoder);
  3128. /* Enable panel fitting for eDP */
  3129. i9xx_pfit_enable(intel_crtc);
  3130. intel_enable_pipe(dev_priv, pipe, false);
  3131. intel_enable_plane(dev_priv, plane, pipe);
  3132. intel_crtc_load_lut(crtc);
  3133. intel_update_fbc(dev);
  3134. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3135. intel_crtc_dpms_overlay(intel_crtc, true);
  3136. intel_crtc_update_cursor(crtc, true);
  3137. mutex_unlock(&dev_priv->dpio_lock);
  3138. }
  3139. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3140. {
  3141. struct drm_device *dev = crtc->dev;
  3142. struct drm_i915_private *dev_priv = dev->dev_private;
  3143. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3144. struct intel_encoder *encoder;
  3145. int pipe = intel_crtc->pipe;
  3146. int plane = intel_crtc->plane;
  3147. WARN_ON(!crtc->enabled);
  3148. if (intel_crtc->active)
  3149. return;
  3150. intel_crtc->active = true;
  3151. intel_update_watermarks(dev);
  3152. intel_enable_pll(dev_priv, pipe);
  3153. for_each_encoder_on_crtc(dev, crtc, encoder)
  3154. if (encoder->pre_enable)
  3155. encoder->pre_enable(encoder);
  3156. /* Enable panel fitting for LVDS */
  3157. i9xx_pfit_enable(intel_crtc);
  3158. intel_enable_pipe(dev_priv, pipe, false);
  3159. intel_enable_plane(dev_priv, plane, pipe);
  3160. if (IS_G4X(dev))
  3161. g4x_fixup_plane(dev_priv, pipe);
  3162. intel_crtc_load_lut(crtc);
  3163. intel_update_fbc(dev);
  3164. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3165. intel_crtc_dpms_overlay(intel_crtc, true);
  3166. intel_crtc_update_cursor(crtc, true);
  3167. for_each_encoder_on_crtc(dev, crtc, encoder)
  3168. encoder->enable(encoder);
  3169. }
  3170. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3171. {
  3172. struct drm_device *dev = crtc->base.dev;
  3173. struct drm_i915_private *dev_priv = dev->dev_private;
  3174. enum pipe pipe;
  3175. uint32_t pctl = I915_READ(PFIT_CONTROL);
  3176. assert_pipe_disabled(dev_priv, crtc->pipe);
  3177. if (INTEL_INFO(dev)->gen >= 4)
  3178. pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
  3179. else
  3180. pipe = PIPE_B;
  3181. if (pipe == crtc->pipe) {
  3182. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
  3183. I915_WRITE(PFIT_CONTROL, 0);
  3184. }
  3185. }
  3186. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3187. {
  3188. struct drm_device *dev = crtc->dev;
  3189. struct drm_i915_private *dev_priv = dev->dev_private;
  3190. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3191. struct intel_encoder *encoder;
  3192. int pipe = intel_crtc->pipe;
  3193. int plane = intel_crtc->plane;
  3194. if (!intel_crtc->active)
  3195. return;
  3196. for_each_encoder_on_crtc(dev, crtc, encoder)
  3197. encoder->disable(encoder);
  3198. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3199. intel_crtc_wait_for_pending_flips(crtc);
  3200. drm_vblank_off(dev, pipe);
  3201. intel_crtc_dpms_overlay(intel_crtc, false);
  3202. intel_crtc_update_cursor(crtc, false);
  3203. if (dev_priv->cfb_plane == plane)
  3204. intel_disable_fbc(dev);
  3205. intel_disable_plane(dev_priv, plane, pipe);
  3206. intel_disable_pipe(dev_priv, pipe);
  3207. i9xx_pfit_disable(intel_crtc);
  3208. for_each_encoder_on_crtc(dev, crtc, encoder)
  3209. if (encoder->post_disable)
  3210. encoder->post_disable(encoder);
  3211. intel_disable_pll(dev_priv, pipe);
  3212. intel_crtc->active = false;
  3213. intel_update_fbc(dev);
  3214. intel_update_watermarks(dev);
  3215. }
  3216. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3217. {
  3218. }
  3219. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3220. bool enabled)
  3221. {
  3222. struct drm_device *dev = crtc->dev;
  3223. struct drm_i915_master_private *master_priv;
  3224. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3225. int pipe = intel_crtc->pipe;
  3226. if (!dev->primary->master)
  3227. return;
  3228. master_priv = dev->primary->master->driver_priv;
  3229. if (!master_priv->sarea_priv)
  3230. return;
  3231. switch (pipe) {
  3232. case 0:
  3233. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3234. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3235. break;
  3236. case 1:
  3237. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3238. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3239. break;
  3240. default:
  3241. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3242. break;
  3243. }
  3244. }
  3245. /**
  3246. * Sets the power management mode of the pipe and plane.
  3247. */
  3248. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3249. {
  3250. struct drm_device *dev = crtc->dev;
  3251. struct drm_i915_private *dev_priv = dev->dev_private;
  3252. struct intel_encoder *intel_encoder;
  3253. bool enable = false;
  3254. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3255. enable |= intel_encoder->connectors_active;
  3256. if (enable)
  3257. dev_priv->display.crtc_enable(crtc);
  3258. else
  3259. dev_priv->display.crtc_disable(crtc);
  3260. intel_crtc_update_sarea(crtc, enable);
  3261. }
  3262. static void intel_crtc_disable(struct drm_crtc *crtc)
  3263. {
  3264. struct drm_device *dev = crtc->dev;
  3265. struct drm_connector *connector;
  3266. struct drm_i915_private *dev_priv = dev->dev_private;
  3267. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3268. /* crtc should still be enabled when we disable it. */
  3269. WARN_ON(!crtc->enabled);
  3270. intel_crtc->eld_vld = false;
  3271. dev_priv->display.crtc_disable(crtc);
  3272. intel_crtc_update_sarea(crtc, false);
  3273. dev_priv->display.off(crtc);
  3274. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3275. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3276. if (crtc->fb) {
  3277. mutex_lock(&dev->struct_mutex);
  3278. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3279. mutex_unlock(&dev->struct_mutex);
  3280. crtc->fb = NULL;
  3281. }
  3282. /* Update computed state. */
  3283. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3284. if (!connector->encoder || !connector->encoder->crtc)
  3285. continue;
  3286. if (connector->encoder->crtc != crtc)
  3287. continue;
  3288. connector->dpms = DRM_MODE_DPMS_OFF;
  3289. to_intel_encoder(connector->encoder)->connectors_active = false;
  3290. }
  3291. }
  3292. void intel_modeset_disable(struct drm_device *dev)
  3293. {
  3294. struct drm_crtc *crtc;
  3295. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3296. if (crtc->enabled)
  3297. intel_crtc_disable(crtc);
  3298. }
  3299. }
  3300. void intel_encoder_destroy(struct drm_encoder *encoder)
  3301. {
  3302. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3303. drm_encoder_cleanup(encoder);
  3304. kfree(intel_encoder);
  3305. }
  3306. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3307. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3308. * state of the entire output pipe. */
  3309. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3310. {
  3311. if (mode == DRM_MODE_DPMS_ON) {
  3312. encoder->connectors_active = true;
  3313. intel_crtc_update_dpms(encoder->base.crtc);
  3314. } else {
  3315. encoder->connectors_active = false;
  3316. intel_crtc_update_dpms(encoder->base.crtc);
  3317. }
  3318. }
  3319. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3320. * internal consistency). */
  3321. static void intel_connector_check_state(struct intel_connector *connector)
  3322. {
  3323. if (connector->get_hw_state(connector)) {
  3324. struct intel_encoder *encoder = connector->encoder;
  3325. struct drm_crtc *crtc;
  3326. bool encoder_enabled;
  3327. enum pipe pipe;
  3328. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3329. connector->base.base.id,
  3330. drm_get_connector_name(&connector->base));
  3331. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3332. "wrong connector dpms state\n");
  3333. WARN(connector->base.encoder != &encoder->base,
  3334. "active connector not linked to encoder\n");
  3335. WARN(!encoder->connectors_active,
  3336. "encoder->connectors_active not set\n");
  3337. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3338. WARN(!encoder_enabled, "encoder not enabled\n");
  3339. if (WARN_ON(!encoder->base.crtc))
  3340. return;
  3341. crtc = encoder->base.crtc;
  3342. WARN(!crtc->enabled, "crtc not enabled\n");
  3343. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3344. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3345. "encoder active on the wrong pipe\n");
  3346. }
  3347. }
  3348. /* Even simpler default implementation, if there's really no special case to
  3349. * consider. */
  3350. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3351. {
  3352. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3353. /* All the simple cases only support two dpms states. */
  3354. if (mode != DRM_MODE_DPMS_ON)
  3355. mode = DRM_MODE_DPMS_OFF;
  3356. if (mode == connector->dpms)
  3357. return;
  3358. connector->dpms = mode;
  3359. /* Only need to change hw state when actually enabled */
  3360. if (encoder->base.crtc)
  3361. intel_encoder_dpms(encoder, mode);
  3362. else
  3363. WARN_ON(encoder->connectors_active != false);
  3364. intel_modeset_check_state(connector->dev);
  3365. }
  3366. /* Simple connector->get_hw_state implementation for encoders that support only
  3367. * one connector and no cloning and hence the encoder state determines the state
  3368. * of the connector. */
  3369. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3370. {
  3371. enum pipe pipe = 0;
  3372. struct intel_encoder *encoder = connector->encoder;
  3373. return encoder->get_hw_state(encoder, &pipe);
  3374. }
  3375. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3376. struct intel_crtc_config *pipe_config)
  3377. {
  3378. struct drm_i915_private *dev_priv = dev->dev_private;
  3379. struct intel_crtc *pipe_B_crtc =
  3380. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3381. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3382. pipe_name(pipe), pipe_config->fdi_lanes);
  3383. if (pipe_config->fdi_lanes > 4) {
  3384. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3385. pipe_name(pipe), pipe_config->fdi_lanes);
  3386. return false;
  3387. }
  3388. if (IS_HASWELL(dev)) {
  3389. if (pipe_config->fdi_lanes > 2) {
  3390. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3391. pipe_config->fdi_lanes);
  3392. return false;
  3393. } else {
  3394. return true;
  3395. }
  3396. }
  3397. if (INTEL_INFO(dev)->num_pipes == 2)
  3398. return true;
  3399. /* Ivybridge 3 pipe is really complicated */
  3400. switch (pipe) {
  3401. case PIPE_A:
  3402. return true;
  3403. case PIPE_B:
  3404. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3405. pipe_config->fdi_lanes > 2) {
  3406. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3407. pipe_name(pipe), pipe_config->fdi_lanes);
  3408. return false;
  3409. }
  3410. return true;
  3411. case PIPE_C:
  3412. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3413. pipe_B_crtc->config.fdi_lanes <= 2) {
  3414. if (pipe_config->fdi_lanes > 2) {
  3415. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3416. pipe_name(pipe), pipe_config->fdi_lanes);
  3417. return false;
  3418. }
  3419. } else {
  3420. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3421. return false;
  3422. }
  3423. return true;
  3424. default:
  3425. BUG();
  3426. }
  3427. }
  3428. #define RETRY 1
  3429. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3430. struct intel_crtc_config *pipe_config)
  3431. {
  3432. struct drm_device *dev = intel_crtc->base.dev;
  3433. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3434. int target_clock, lane, link_bw;
  3435. bool setup_ok, needs_recompute = false;
  3436. retry:
  3437. /* FDI is a binary signal running at ~2.7GHz, encoding
  3438. * each output octet as 10 bits. The actual frequency
  3439. * is stored as a divider into a 100MHz clock, and the
  3440. * mode pixel clock is stored in units of 1KHz.
  3441. * Hence the bw of each lane in terms of the mode signal
  3442. * is:
  3443. */
  3444. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3445. if (pipe_config->pixel_target_clock)
  3446. target_clock = pipe_config->pixel_target_clock;
  3447. else
  3448. target_clock = adjusted_mode->clock;
  3449. lane = ironlake_get_lanes_required(target_clock, link_bw,
  3450. pipe_config->pipe_bpp);
  3451. pipe_config->fdi_lanes = lane;
  3452. if (pipe_config->pixel_multiplier > 1)
  3453. link_bw *= pipe_config->pixel_multiplier;
  3454. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, target_clock,
  3455. link_bw, &pipe_config->fdi_m_n);
  3456. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3457. intel_crtc->pipe, pipe_config);
  3458. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3459. pipe_config->pipe_bpp -= 2*3;
  3460. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3461. pipe_config->pipe_bpp);
  3462. needs_recompute = true;
  3463. pipe_config->bw_constrained = true;
  3464. goto retry;
  3465. }
  3466. if (needs_recompute)
  3467. return RETRY;
  3468. return setup_ok ? 0 : -EINVAL;
  3469. }
  3470. static int intel_crtc_compute_config(struct drm_crtc *crtc,
  3471. struct intel_crtc_config *pipe_config)
  3472. {
  3473. struct drm_device *dev = crtc->dev;
  3474. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3475. if (HAS_PCH_SPLIT(dev)) {
  3476. /* FDI link clock is fixed at 2.7G */
  3477. if (pipe_config->requested_mode.clock * 3
  3478. > IRONLAKE_FDI_FREQ * 4)
  3479. return -EINVAL;
  3480. }
  3481. /* All interlaced capable intel hw wants timings in frames. Note though
  3482. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3483. * timings, so we need to be careful not to clobber these.*/
  3484. if (!pipe_config->timings_set)
  3485. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3486. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3487. * with a hsync front porch of 0.
  3488. */
  3489. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3490. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3491. return -EINVAL;
  3492. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3493. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3494. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3495. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3496. * for lvds. */
  3497. pipe_config->pipe_bpp = 8*3;
  3498. }
  3499. if (pipe_config->has_pch_encoder)
  3500. return ironlake_fdi_compute_config(to_intel_crtc(crtc), pipe_config);
  3501. return 0;
  3502. }
  3503. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3504. {
  3505. return 400000; /* FIXME */
  3506. }
  3507. static int i945_get_display_clock_speed(struct drm_device *dev)
  3508. {
  3509. return 400000;
  3510. }
  3511. static int i915_get_display_clock_speed(struct drm_device *dev)
  3512. {
  3513. return 333000;
  3514. }
  3515. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3516. {
  3517. return 200000;
  3518. }
  3519. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3520. {
  3521. u16 gcfgc = 0;
  3522. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3523. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3524. return 133000;
  3525. else {
  3526. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3527. case GC_DISPLAY_CLOCK_333_MHZ:
  3528. return 333000;
  3529. default:
  3530. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3531. return 190000;
  3532. }
  3533. }
  3534. }
  3535. static int i865_get_display_clock_speed(struct drm_device *dev)
  3536. {
  3537. return 266000;
  3538. }
  3539. static int i855_get_display_clock_speed(struct drm_device *dev)
  3540. {
  3541. u16 hpllcc = 0;
  3542. /* Assume that the hardware is in the high speed state. This
  3543. * should be the default.
  3544. */
  3545. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3546. case GC_CLOCK_133_200:
  3547. case GC_CLOCK_100_200:
  3548. return 200000;
  3549. case GC_CLOCK_166_250:
  3550. return 250000;
  3551. case GC_CLOCK_100_133:
  3552. return 133000;
  3553. }
  3554. /* Shouldn't happen */
  3555. return 0;
  3556. }
  3557. static int i830_get_display_clock_speed(struct drm_device *dev)
  3558. {
  3559. return 133000;
  3560. }
  3561. static void
  3562. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  3563. {
  3564. while (*num > 0xffffff || *den > 0xffffff) {
  3565. *num >>= 1;
  3566. *den >>= 1;
  3567. }
  3568. }
  3569. void
  3570. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3571. int pixel_clock, int link_clock,
  3572. struct intel_link_m_n *m_n)
  3573. {
  3574. m_n->tu = 64;
  3575. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3576. m_n->gmch_n = link_clock * nlanes * 8;
  3577. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3578. m_n->link_m = pixel_clock;
  3579. m_n->link_n = link_clock;
  3580. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3581. }
  3582. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3583. {
  3584. if (i915_panel_use_ssc >= 0)
  3585. return i915_panel_use_ssc != 0;
  3586. return dev_priv->lvds_use_ssc
  3587. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3588. }
  3589. static int vlv_get_refclk(struct drm_crtc *crtc)
  3590. {
  3591. struct drm_device *dev = crtc->dev;
  3592. struct drm_i915_private *dev_priv = dev->dev_private;
  3593. int refclk = 27000; /* for DP & HDMI */
  3594. return 100000; /* only one validated so far */
  3595. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3596. refclk = 96000;
  3597. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3598. if (intel_panel_use_ssc(dev_priv))
  3599. refclk = 100000;
  3600. else
  3601. refclk = 96000;
  3602. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3603. refclk = 100000;
  3604. }
  3605. return refclk;
  3606. }
  3607. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3608. {
  3609. struct drm_device *dev = crtc->dev;
  3610. struct drm_i915_private *dev_priv = dev->dev_private;
  3611. int refclk;
  3612. if (IS_VALLEYVIEW(dev)) {
  3613. refclk = vlv_get_refclk(crtc);
  3614. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3615. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3616. refclk = dev_priv->lvds_ssc_freq * 1000;
  3617. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3618. refclk / 1000);
  3619. } else if (!IS_GEN2(dev)) {
  3620. refclk = 96000;
  3621. } else {
  3622. refclk = 48000;
  3623. }
  3624. return refclk;
  3625. }
  3626. static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
  3627. {
  3628. unsigned dotclock = crtc->config.adjusted_mode.clock;
  3629. struct dpll *clock = &crtc->config.dpll;
  3630. /* SDVO TV has fixed PLL values depend on its clock range,
  3631. this mirrors vbios setting. */
  3632. if (dotclock >= 100000 && dotclock < 140500) {
  3633. clock->p1 = 2;
  3634. clock->p2 = 10;
  3635. clock->n = 3;
  3636. clock->m1 = 16;
  3637. clock->m2 = 8;
  3638. } else if (dotclock >= 140500 && dotclock <= 200000) {
  3639. clock->p1 = 1;
  3640. clock->p2 = 10;
  3641. clock->n = 6;
  3642. clock->m1 = 12;
  3643. clock->m2 = 8;
  3644. }
  3645. crtc->config.clock_set = true;
  3646. }
  3647. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3648. {
  3649. return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
  3650. }
  3651. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3652. {
  3653. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3654. }
  3655. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3656. intel_clock_t *reduced_clock)
  3657. {
  3658. struct drm_device *dev = crtc->base.dev;
  3659. struct drm_i915_private *dev_priv = dev->dev_private;
  3660. int pipe = crtc->pipe;
  3661. u32 fp, fp2 = 0;
  3662. if (IS_PINEVIEW(dev)) {
  3663. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3664. if (reduced_clock)
  3665. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3666. } else {
  3667. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3668. if (reduced_clock)
  3669. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3670. }
  3671. I915_WRITE(FP0(pipe), fp);
  3672. crtc->lowfreq_avail = false;
  3673. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3674. reduced_clock && i915_powersave) {
  3675. I915_WRITE(FP1(pipe), fp2);
  3676. crtc->lowfreq_avail = true;
  3677. } else {
  3678. I915_WRITE(FP1(pipe), fp);
  3679. }
  3680. }
  3681. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3682. {
  3683. u32 reg_val;
  3684. /*
  3685. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3686. * and set it to a reasonable value instead.
  3687. */
  3688. reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
  3689. reg_val &= 0xffffff00;
  3690. reg_val |= 0x00000030;
  3691. intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3692. reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
  3693. reg_val &= 0x8cffffff;
  3694. reg_val = 0x8c000000;
  3695. intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3696. reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
  3697. reg_val &= 0xffffff00;
  3698. intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3699. reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
  3700. reg_val &= 0x00ffffff;
  3701. reg_val |= 0xb0000000;
  3702. intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3703. }
  3704. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3705. {
  3706. if (crtc->config.has_pch_encoder)
  3707. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3708. else
  3709. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3710. }
  3711. static void vlv_update_pll(struct intel_crtc *crtc)
  3712. {
  3713. struct drm_device *dev = crtc->base.dev;
  3714. struct drm_i915_private *dev_priv = dev->dev_private;
  3715. struct drm_display_mode *adjusted_mode =
  3716. &crtc->config.adjusted_mode;
  3717. struct intel_encoder *encoder;
  3718. int pipe = crtc->pipe;
  3719. u32 dpll, mdiv;
  3720. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3721. bool is_hdmi;
  3722. u32 coreclk, reg_val, dpll_md;
  3723. mutex_lock(&dev_priv->dpio_lock);
  3724. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3725. bestn = crtc->config.dpll.n;
  3726. bestm1 = crtc->config.dpll.m1;
  3727. bestm2 = crtc->config.dpll.m2;
  3728. bestp1 = crtc->config.dpll.p1;
  3729. bestp2 = crtc->config.dpll.p2;
  3730. /* See eDP HDMI DPIO driver vbios notes doc */
  3731. /* PLL B needs special handling */
  3732. if (pipe)
  3733. vlv_pllb_recal_opamp(dev_priv);
  3734. /* Set up Tx target for periodic Rcomp update */
  3735. intel_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3736. /* Disable target IRef on PLL */
  3737. reg_val = intel_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3738. reg_val &= 0x00ffffff;
  3739. intel_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3740. /* Disable fast lock */
  3741. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3742. /* Set idtafcrecal before PLL is enabled */
  3743. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3744. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3745. mdiv |= ((bestn << DPIO_N_SHIFT));
  3746. mdiv |= (1 << DPIO_K_SHIFT);
  3747. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI) ||
  3748. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3749. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3750. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3751. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3752. mdiv |= DPIO_ENABLE_CALIBRATION;
  3753. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3754. /* Set HBR and RBR LPF coefficients */
  3755. if (adjusted_mode->clock == 162000 ||
  3756. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3757. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3758. 0x005f0021);
  3759. else
  3760. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3761. 0x00d0000f);
  3762. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3763. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3764. /* Use SSC source */
  3765. if (!pipe)
  3766. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3767. 0x0df40000);
  3768. else
  3769. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3770. 0x0df70000);
  3771. } else { /* HDMI or VGA */
  3772. /* Use bend source */
  3773. if (!pipe)
  3774. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3775. 0x0df70000);
  3776. else
  3777. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3778. 0x0df40000);
  3779. }
  3780. coreclk = intel_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3781. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3782. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3783. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3784. coreclk |= 0x01000000;
  3785. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3786. intel_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3787. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3788. if (encoder->pre_pll_enable)
  3789. encoder->pre_pll_enable(encoder);
  3790. /* Enable DPIO clock input */
  3791. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3792. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3793. if (pipe)
  3794. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3795. dpll |= DPLL_VCO_ENABLE;
  3796. I915_WRITE(DPLL(pipe), dpll);
  3797. POSTING_READ(DPLL(pipe));
  3798. udelay(150);
  3799. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3800. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3801. dpll_md = 0;
  3802. if (crtc->config.pixel_multiplier > 1) {
  3803. dpll_md = (crtc->config.pixel_multiplier - 1)
  3804. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3805. }
  3806. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3807. POSTING_READ(DPLL_MD(pipe));
  3808. if (crtc->config.has_dp_encoder)
  3809. intel_dp_set_m_n(crtc);
  3810. mutex_unlock(&dev_priv->dpio_lock);
  3811. }
  3812. static void i9xx_update_pll(struct intel_crtc *crtc,
  3813. intel_clock_t *reduced_clock,
  3814. int num_connectors)
  3815. {
  3816. struct drm_device *dev = crtc->base.dev;
  3817. struct drm_i915_private *dev_priv = dev->dev_private;
  3818. struct intel_encoder *encoder;
  3819. int pipe = crtc->pipe;
  3820. u32 dpll;
  3821. bool is_sdvo;
  3822. struct dpll *clock = &crtc->config.dpll;
  3823. i9xx_update_pll_dividers(crtc, reduced_clock);
  3824. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3825. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3826. dpll = DPLL_VGA_MODE_DIS;
  3827. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3828. dpll |= DPLLB_MODE_LVDS;
  3829. else
  3830. dpll |= DPLLB_MODE_DAC_SERIAL;
  3831. if ((crtc->config.pixel_multiplier > 1) &&
  3832. (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
  3833. dpll |= (crtc->config.pixel_multiplier - 1)
  3834. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3835. }
  3836. if (is_sdvo)
  3837. dpll |= DPLL_DVO_HIGH_SPEED;
  3838. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3839. dpll |= DPLL_DVO_HIGH_SPEED;
  3840. /* compute bitmask from p1 value */
  3841. if (IS_PINEVIEW(dev))
  3842. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3843. else {
  3844. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3845. if (IS_G4X(dev) && reduced_clock)
  3846. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3847. }
  3848. switch (clock->p2) {
  3849. case 5:
  3850. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3851. break;
  3852. case 7:
  3853. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3854. break;
  3855. case 10:
  3856. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3857. break;
  3858. case 14:
  3859. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3860. break;
  3861. }
  3862. if (INTEL_INFO(dev)->gen >= 4)
  3863. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3864. if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
  3865. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3866. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
  3867. /* XXX: just matching BIOS for now */
  3868. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3869. dpll |= 3;
  3870. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3871. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3872. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3873. else
  3874. dpll |= PLL_REF_INPUT_DREFCLK;
  3875. dpll |= DPLL_VCO_ENABLE;
  3876. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3877. POSTING_READ(DPLL(pipe));
  3878. udelay(150);
  3879. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3880. if (encoder->pre_pll_enable)
  3881. encoder->pre_pll_enable(encoder);
  3882. if (crtc->config.has_dp_encoder)
  3883. intel_dp_set_m_n(crtc);
  3884. I915_WRITE(DPLL(pipe), dpll);
  3885. /* Wait for the clocks to stabilize. */
  3886. POSTING_READ(DPLL(pipe));
  3887. udelay(150);
  3888. if (INTEL_INFO(dev)->gen >= 4) {
  3889. u32 dpll_md = 0;
  3890. if (crtc->config.pixel_multiplier > 1) {
  3891. dpll_md = (crtc->config.pixel_multiplier - 1)
  3892. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3893. }
  3894. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3895. } else {
  3896. /* The pixel multiplier can only be updated once the
  3897. * DPLL is enabled and the clocks are stable.
  3898. *
  3899. * So write it again.
  3900. */
  3901. I915_WRITE(DPLL(pipe), dpll);
  3902. }
  3903. }
  3904. static void i8xx_update_pll(struct intel_crtc *crtc,
  3905. struct drm_display_mode *adjusted_mode,
  3906. intel_clock_t *reduced_clock,
  3907. int num_connectors)
  3908. {
  3909. struct drm_device *dev = crtc->base.dev;
  3910. struct drm_i915_private *dev_priv = dev->dev_private;
  3911. struct intel_encoder *encoder;
  3912. int pipe = crtc->pipe;
  3913. u32 dpll;
  3914. struct dpll *clock = &crtc->config.dpll;
  3915. i9xx_update_pll_dividers(crtc, reduced_clock);
  3916. dpll = DPLL_VGA_MODE_DIS;
  3917. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3918. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3919. } else {
  3920. if (clock->p1 == 2)
  3921. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3922. else
  3923. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3924. if (clock->p2 == 4)
  3925. dpll |= PLL_P2_DIVIDE_BY_4;
  3926. }
  3927. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3928. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3929. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3930. else
  3931. dpll |= PLL_REF_INPUT_DREFCLK;
  3932. dpll |= DPLL_VCO_ENABLE;
  3933. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3934. POSTING_READ(DPLL(pipe));
  3935. udelay(150);
  3936. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3937. if (encoder->pre_pll_enable)
  3938. encoder->pre_pll_enable(encoder);
  3939. I915_WRITE(DPLL(pipe), dpll);
  3940. /* Wait for the clocks to stabilize. */
  3941. POSTING_READ(DPLL(pipe));
  3942. udelay(150);
  3943. /* The pixel multiplier can only be updated once the
  3944. * DPLL is enabled and the clocks are stable.
  3945. *
  3946. * So write it again.
  3947. */
  3948. I915_WRITE(DPLL(pipe), dpll);
  3949. }
  3950. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3951. struct drm_display_mode *mode,
  3952. struct drm_display_mode *adjusted_mode)
  3953. {
  3954. struct drm_device *dev = intel_crtc->base.dev;
  3955. struct drm_i915_private *dev_priv = dev->dev_private;
  3956. enum pipe pipe = intel_crtc->pipe;
  3957. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3958. uint32_t vsyncshift;
  3959. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3960. /* the chip adds 2 halflines automatically */
  3961. adjusted_mode->crtc_vtotal -= 1;
  3962. adjusted_mode->crtc_vblank_end -= 1;
  3963. vsyncshift = adjusted_mode->crtc_hsync_start
  3964. - adjusted_mode->crtc_htotal / 2;
  3965. } else {
  3966. vsyncshift = 0;
  3967. }
  3968. if (INTEL_INFO(dev)->gen > 3)
  3969. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3970. I915_WRITE(HTOTAL(cpu_transcoder),
  3971. (adjusted_mode->crtc_hdisplay - 1) |
  3972. ((adjusted_mode->crtc_htotal - 1) << 16));
  3973. I915_WRITE(HBLANK(cpu_transcoder),
  3974. (adjusted_mode->crtc_hblank_start - 1) |
  3975. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3976. I915_WRITE(HSYNC(cpu_transcoder),
  3977. (adjusted_mode->crtc_hsync_start - 1) |
  3978. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3979. I915_WRITE(VTOTAL(cpu_transcoder),
  3980. (adjusted_mode->crtc_vdisplay - 1) |
  3981. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3982. I915_WRITE(VBLANK(cpu_transcoder),
  3983. (adjusted_mode->crtc_vblank_start - 1) |
  3984. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3985. I915_WRITE(VSYNC(cpu_transcoder),
  3986. (adjusted_mode->crtc_vsync_start - 1) |
  3987. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3988. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3989. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3990. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3991. * bits. */
  3992. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3993. (pipe == PIPE_B || pipe == PIPE_C))
  3994. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3995. /* pipesrc controls the size that is scaled from, which should
  3996. * always be the user's requested size.
  3997. */
  3998. I915_WRITE(PIPESRC(pipe),
  3999. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4000. }
  4001. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4002. struct intel_crtc_config *pipe_config)
  4003. {
  4004. struct drm_device *dev = crtc->base.dev;
  4005. struct drm_i915_private *dev_priv = dev->dev_private;
  4006. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4007. uint32_t tmp;
  4008. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4009. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4010. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4011. tmp = I915_READ(HBLANK(cpu_transcoder));
  4012. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4013. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4014. tmp = I915_READ(HSYNC(cpu_transcoder));
  4015. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4016. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4017. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4018. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4019. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4020. tmp = I915_READ(VBLANK(cpu_transcoder));
  4021. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4022. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4023. tmp = I915_READ(VSYNC(cpu_transcoder));
  4024. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4025. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4026. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4027. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4028. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4029. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4030. }
  4031. tmp = I915_READ(PIPESRC(crtc->pipe));
  4032. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4033. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4034. }
  4035. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4036. {
  4037. struct drm_device *dev = intel_crtc->base.dev;
  4038. struct drm_i915_private *dev_priv = dev->dev_private;
  4039. uint32_t pipeconf;
  4040. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  4041. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4042. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4043. * core speed.
  4044. *
  4045. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4046. * pipe == 0 check?
  4047. */
  4048. if (intel_crtc->config.requested_mode.clock >
  4049. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4050. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4051. else
  4052. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4053. }
  4054. /* only g4x and later have fancy bpc/dither controls */
  4055. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4056. pipeconf &= ~(PIPECONF_BPC_MASK |
  4057. PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4058. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4059. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4060. pipeconf |= PIPECONF_DITHER_EN |
  4061. PIPECONF_DITHER_TYPE_SP;
  4062. switch (intel_crtc->config.pipe_bpp) {
  4063. case 18:
  4064. pipeconf |= PIPECONF_6BPC;
  4065. break;
  4066. case 24:
  4067. pipeconf |= PIPECONF_8BPC;
  4068. break;
  4069. case 30:
  4070. pipeconf |= PIPECONF_10BPC;
  4071. break;
  4072. default:
  4073. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4074. BUG();
  4075. }
  4076. }
  4077. if (HAS_PIPE_CXSR(dev)) {
  4078. if (intel_crtc->lowfreq_avail) {
  4079. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4080. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4081. } else {
  4082. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4083. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4084. }
  4085. }
  4086. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4087. if (!IS_GEN2(dev) &&
  4088. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4089. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4090. else
  4091. pipeconf |= PIPECONF_PROGRESSIVE;
  4092. if (IS_VALLEYVIEW(dev)) {
  4093. if (intel_crtc->config.limited_color_range)
  4094. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4095. else
  4096. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  4097. }
  4098. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4099. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4100. }
  4101. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4102. int x, int y,
  4103. struct drm_framebuffer *fb)
  4104. {
  4105. struct drm_device *dev = crtc->dev;
  4106. struct drm_i915_private *dev_priv = dev->dev_private;
  4107. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4108. struct drm_display_mode *adjusted_mode =
  4109. &intel_crtc->config.adjusted_mode;
  4110. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4111. int pipe = intel_crtc->pipe;
  4112. int plane = intel_crtc->plane;
  4113. int refclk, num_connectors = 0;
  4114. intel_clock_t clock, reduced_clock;
  4115. u32 dspcntr;
  4116. bool ok, has_reduced_clock = false, is_sdvo = false;
  4117. bool is_lvds = false, is_tv = false;
  4118. struct intel_encoder *encoder;
  4119. const intel_limit_t *limit;
  4120. int ret;
  4121. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4122. switch (encoder->type) {
  4123. case INTEL_OUTPUT_LVDS:
  4124. is_lvds = true;
  4125. break;
  4126. case INTEL_OUTPUT_SDVO:
  4127. case INTEL_OUTPUT_HDMI:
  4128. is_sdvo = true;
  4129. if (encoder->needs_tv_clock)
  4130. is_tv = true;
  4131. break;
  4132. case INTEL_OUTPUT_TVOUT:
  4133. is_tv = true;
  4134. break;
  4135. }
  4136. num_connectors++;
  4137. }
  4138. refclk = i9xx_get_refclk(crtc, num_connectors);
  4139. /*
  4140. * Returns a set of divisors for the desired target clock with the given
  4141. * refclk, or FALSE. The returned values represent the clock equation:
  4142. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4143. */
  4144. limit = intel_limit(crtc, refclk);
  4145. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4146. &clock);
  4147. if (!ok) {
  4148. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4149. return -EINVAL;
  4150. }
  4151. /* Ensure that the cursor is valid for the new mode before changing... */
  4152. intel_crtc_update_cursor(crtc, true);
  4153. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4154. /*
  4155. * Ensure we match the reduced clock's P to the target clock.
  4156. * If the clocks don't match, we can't switch the display clock
  4157. * by using the FP0/FP1. In such case we will disable the LVDS
  4158. * downclock feature.
  4159. */
  4160. has_reduced_clock = limit->find_pll(limit, crtc,
  4161. dev_priv->lvds_downclock,
  4162. refclk,
  4163. &clock,
  4164. &reduced_clock);
  4165. }
  4166. /* Compat-code for transition, will disappear. */
  4167. if (!intel_crtc->config.clock_set) {
  4168. intel_crtc->config.dpll.n = clock.n;
  4169. intel_crtc->config.dpll.m1 = clock.m1;
  4170. intel_crtc->config.dpll.m2 = clock.m2;
  4171. intel_crtc->config.dpll.p1 = clock.p1;
  4172. intel_crtc->config.dpll.p2 = clock.p2;
  4173. }
  4174. if (is_sdvo && is_tv)
  4175. i9xx_adjust_sdvo_tv_clock(intel_crtc);
  4176. if (IS_GEN2(dev))
  4177. i8xx_update_pll(intel_crtc, adjusted_mode,
  4178. has_reduced_clock ? &reduced_clock : NULL,
  4179. num_connectors);
  4180. else if (IS_VALLEYVIEW(dev))
  4181. vlv_update_pll(intel_crtc);
  4182. else
  4183. i9xx_update_pll(intel_crtc,
  4184. has_reduced_clock ? &reduced_clock : NULL,
  4185. num_connectors);
  4186. /* Set up the display plane register */
  4187. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4188. if (!IS_VALLEYVIEW(dev)) {
  4189. if (pipe == 0)
  4190. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4191. else
  4192. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4193. }
  4194. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4195. drm_mode_debug_printmodeline(mode);
  4196. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4197. /* pipesrc and dspsize control the size that is scaled from,
  4198. * which should always be the user's requested size.
  4199. */
  4200. I915_WRITE(DSPSIZE(plane),
  4201. ((mode->vdisplay - 1) << 16) |
  4202. (mode->hdisplay - 1));
  4203. I915_WRITE(DSPPOS(plane), 0);
  4204. i9xx_set_pipeconf(intel_crtc);
  4205. I915_WRITE(DSPCNTR(plane), dspcntr);
  4206. POSTING_READ(DSPCNTR(plane));
  4207. ret = intel_pipe_set_base(crtc, x, y, fb);
  4208. intel_update_watermarks(dev);
  4209. return ret;
  4210. }
  4211. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4212. struct intel_crtc_config *pipe_config)
  4213. {
  4214. struct drm_device *dev = crtc->base.dev;
  4215. struct drm_i915_private *dev_priv = dev->dev_private;
  4216. uint32_t tmp;
  4217. tmp = I915_READ(PIPECONF(crtc->pipe));
  4218. if (!(tmp & PIPECONF_ENABLE))
  4219. return false;
  4220. intel_get_pipe_timings(crtc, pipe_config);
  4221. return true;
  4222. }
  4223. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4224. {
  4225. struct drm_i915_private *dev_priv = dev->dev_private;
  4226. struct drm_mode_config *mode_config = &dev->mode_config;
  4227. struct intel_encoder *encoder;
  4228. u32 val, final;
  4229. bool has_lvds = false;
  4230. bool has_cpu_edp = false;
  4231. bool has_pch_edp = false;
  4232. bool has_panel = false;
  4233. bool has_ck505 = false;
  4234. bool can_ssc = false;
  4235. /* We need to take the global config into account */
  4236. list_for_each_entry(encoder, &mode_config->encoder_list,
  4237. base.head) {
  4238. switch (encoder->type) {
  4239. case INTEL_OUTPUT_LVDS:
  4240. has_panel = true;
  4241. has_lvds = true;
  4242. break;
  4243. case INTEL_OUTPUT_EDP:
  4244. has_panel = true;
  4245. if (intel_encoder_is_pch_edp(&encoder->base))
  4246. has_pch_edp = true;
  4247. else
  4248. has_cpu_edp = true;
  4249. break;
  4250. }
  4251. }
  4252. if (HAS_PCH_IBX(dev)) {
  4253. has_ck505 = dev_priv->display_clock_mode;
  4254. can_ssc = has_ck505;
  4255. } else {
  4256. has_ck505 = false;
  4257. can_ssc = true;
  4258. }
  4259. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4260. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4261. has_ck505);
  4262. /* Ironlake: try to setup display ref clock before DPLL
  4263. * enabling. This is only under driver's control after
  4264. * PCH B stepping, previous chipset stepping should be
  4265. * ignoring this setting.
  4266. */
  4267. val = I915_READ(PCH_DREF_CONTROL);
  4268. /* As we must carefully and slowly disable/enable each source in turn,
  4269. * compute the final state we want first and check if we need to
  4270. * make any changes at all.
  4271. */
  4272. final = val;
  4273. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4274. if (has_ck505)
  4275. final |= DREF_NONSPREAD_CK505_ENABLE;
  4276. else
  4277. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4278. final &= ~DREF_SSC_SOURCE_MASK;
  4279. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4280. final &= ~DREF_SSC1_ENABLE;
  4281. if (has_panel) {
  4282. final |= DREF_SSC_SOURCE_ENABLE;
  4283. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4284. final |= DREF_SSC1_ENABLE;
  4285. if (has_cpu_edp) {
  4286. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4287. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4288. else
  4289. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4290. } else
  4291. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4292. } else {
  4293. final |= DREF_SSC_SOURCE_DISABLE;
  4294. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4295. }
  4296. if (final == val)
  4297. return;
  4298. /* Always enable nonspread source */
  4299. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4300. if (has_ck505)
  4301. val |= DREF_NONSPREAD_CK505_ENABLE;
  4302. else
  4303. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4304. if (has_panel) {
  4305. val &= ~DREF_SSC_SOURCE_MASK;
  4306. val |= DREF_SSC_SOURCE_ENABLE;
  4307. /* SSC must be turned on before enabling the CPU output */
  4308. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4309. DRM_DEBUG_KMS("Using SSC on panel\n");
  4310. val |= DREF_SSC1_ENABLE;
  4311. } else
  4312. val &= ~DREF_SSC1_ENABLE;
  4313. /* Get SSC going before enabling the outputs */
  4314. I915_WRITE(PCH_DREF_CONTROL, val);
  4315. POSTING_READ(PCH_DREF_CONTROL);
  4316. udelay(200);
  4317. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4318. /* Enable CPU source on CPU attached eDP */
  4319. if (has_cpu_edp) {
  4320. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4321. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4322. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4323. }
  4324. else
  4325. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4326. } else
  4327. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4328. I915_WRITE(PCH_DREF_CONTROL, val);
  4329. POSTING_READ(PCH_DREF_CONTROL);
  4330. udelay(200);
  4331. } else {
  4332. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4333. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4334. /* Turn off CPU output */
  4335. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4336. I915_WRITE(PCH_DREF_CONTROL, val);
  4337. POSTING_READ(PCH_DREF_CONTROL);
  4338. udelay(200);
  4339. /* Turn off the SSC source */
  4340. val &= ~DREF_SSC_SOURCE_MASK;
  4341. val |= DREF_SSC_SOURCE_DISABLE;
  4342. /* Turn off SSC1 */
  4343. val &= ~DREF_SSC1_ENABLE;
  4344. I915_WRITE(PCH_DREF_CONTROL, val);
  4345. POSTING_READ(PCH_DREF_CONTROL);
  4346. udelay(200);
  4347. }
  4348. BUG_ON(val != final);
  4349. }
  4350. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4351. static void lpt_init_pch_refclk(struct drm_device *dev)
  4352. {
  4353. struct drm_i915_private *dev_priv = dev->dev_private;
  4354. struct drm_mode_config *mode_config = &dev->mode_config;
  4355. struct intel_encoder *encoder;
  4356. bool has_vga = false;
  4357. bool is_sdv = false;
  4358. u32 tmp;
  4359. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4360. switch (encoder->type) {
  4361. case INTEL_OUTPUT_ANALOG:
  4362. has_vga = true;
  4363. break;
  4364. }
  4365. }
  4366. if (!has_vga)
  4367. return;
  4368. mutex_lock(&dev_priv->dpio_lock);
  4369. /* XXX: Rip out SDV support once Haswell ships for real. */
  4370. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4371. is_sdv = true;
  4372. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4373. tmp &= ~SBI_SSCCTL_DISABLE;
  4374. tmp |= SBI_SSCCTL_PATHALT;
  4375. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4376. udelay(24);
  4377. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4378. tmp &= ~SBI_SSCCTL_PATHALT;
  4379. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4380. if (!is_sdv) {
  4381. tmp = I915_READ(SOUTH_CHICKEN2);
  4382. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4383. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4384. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4385. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4386. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4387. tmp = I915_READ(SOUTH_CHICKEN2);
  4388. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4389. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4390. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4391. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4392. 100))
  4393. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4394. }
  4395. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4396. tmp &= ~(0xFF << 24);
  4397. tmp |= (0x12 << 24);
  4398. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4399. if (is_sdv) {
  4400. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4401. tmp |= 0x7FFF;
  4402. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4403. }
  4404. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4405. tmp |= (1 << 11);
  4406. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4407. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4408. tmp |= (1 << 11);
  4409. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4410. if (is_sdv) {
  4411. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4412. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4413. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4414. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4415. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4416. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4417. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4418. tmp |= (0x3F << 8);
  4419. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4420. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4421. tmp |= (0x3F << 8);
  4422. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4423. }
  4424. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4425. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4426. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4427. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4428. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4429. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4430. if (!is_sdv) {
  4431. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4432. tmp &= ~(7 << 13);
  4433. tmp |= (5 << 13);
  4434. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4435. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4436. tmp &= ~(7 << 13);
  4437. tmp |= (5 << 13);
  4438. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4439. }
  4440. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4441. tmp &= ~0xFF;
  4442. tmp |= 0x1C;
  4443. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4444. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4445. tmp &= ~0xFF;
  4446. tmp |= 0x1C;
  4447. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4448. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4449. tmp &= ~(0xFF << 16);
  4450. tmp |= (0x1C << 16);
  4451. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4452. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4453. tmp &= ~(0xFF << 16);
  4454. tmp |= (0x1C << 16);
  4455. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4456. if (!is_sdv) {
  4457. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4458. tmp |= (1 << 27);
  4459. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4460. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4461. tmp |= (1 << 27);
  4462. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4463. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4464. tmp &= ~(0xF << 28);
  4465. tmp |= (4 << 28);
  4466. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4467. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4468. tmp &= ~(0xF << 28);
  4469. tmp |= (4 << 28);
  4470. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4471. }
  4472. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4473. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4474. tmp |= SBI_DBUFF0_ENABLE;
  4475. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4476. mutex_unlock(&dev_priv->dpio_lock);
  4477. }
  4478. /*
  4479. * Initialize reference clocks when the driver loads
  4480. */
  4481. void intel_init_pch_refclk(struct drm_device *dev)
  4482. {
  4483. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4484. ironlake_init_pch_refclk(dev);
  4485. else if (HAS_PCH_LPT(dev))
  4486. lpt_init_pch_refclk(dev);
  4487. }
  4488. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4489. {
  4490. struct drm_device *dev = crtc->dev;
  4491. struct drm_i915_private *dev_priv = dev->dev_private;
  4492. struct intel_encoder *encoder;
  4493. struct intel_encoder *edp_encoder = NULL;
  4494. int num_connectors = 0;
  4495. bool is_lvds = false;
  4496. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4497. switch (encoder->type) {
  4498. case INTEL_OUTPUT_LVDS:
  4499. is_lvds = true;
  4500. break;
  4501. case INTEL_OUTPUT_EDP:
  4502. edp_encoder = encoder;
  4503. break;
  4504. }
  4505. num_connectors++;
  4506. }
  4507. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4508. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4509. dev_priv->lvds_ssc_freq);
  4510. return dev_priv->lvds_ssc_freq * 1000;
  4511. }
  4512. return 120000;
  4513. }
  4514. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4515. {
  4516. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4517. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4518. int pipe = intel_crtc->pipe;
  4519. uint32_t val;
  4520. val = I915_READ(PIPECONF(pipe));
  4521. val &= ~PIPECONF_BPC_MASK;
  4522. switch (intel_crtc->config.pipe_bpp) {
  4523. case 18:
  4524. val |= PIPECONF_6BPC;
  4525. break;
  4526. case 24:
  4527. val |= PIPECONF_8BPC;
  4528. break;
  4529. case 30:
  4530. val |= PIPECONF_10BPC;
  4531. break;
  4532. case 36:
  4533. val |= PIPECONF_12BPC;
  4534. break;
  4535. default:
  4536. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4537. BUG();
  4538. }
  4539. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4540. if (intel_crtc->config.dither)
  4541. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4542. val &= ~PIPECONF_INTERLACE_MASK;
  4543. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4544. val |= PIPECONF_INTERLACED_ILK;
  4545. else
  4546. val |= PIPECONF_PROGRESSIVE;
  4547. if (intel_crtc->config.limited_color_range)
  4548. val |= PIPECONF_COLOR_RANGE_SELECT;
  4549. else
  4550. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4551. I915_WRITE(PIPECONF(pipe), val);
  4552. POSTING_READ(PIPECONF(pipe));
  4553. }
  4554. /*
  4555. * Set up the pipe CSC unit.
  4556. *
  4557. * Currently only full range RGB to limited range RGB conversion
  4558. * is supported, but eventually this should handle various
  4559. * RGB<->YCbCr scenarios as well.
  4560. */
  4561. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4562. {
  4563. struct drm_device *dev = crtc->dev;
  4564. struct drm_i915_private *dev_priv = dev->dev_private;
  4565. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4566. int pipe = intel_crtc->pipe;
  4567. uint16_t coeff = 0x7800; /* 1.0 */
  4568. /*
  4569. * TODO: Check what kind of values actually come out of the pipe
  4570. * with these coeff/postoff values and adjust to get the best
  4571. * accuracy. Perhaps we even need to take the bpc value into
  4572. * consideration.
  4573. */
  4574. if (intel_crtc->config.limited_color_range)
  4575. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4576. /*
  4577. * GY/GU and RY/RU should be the other way around according
  4578. * to BSpec, but reality doesn't agree. Just set them up in
  4579. * a way that results in the correct picture.
  4580. */
  4581. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4582. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4583. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4584. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4585. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4586. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4587. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4588. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4589. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4590. if (INTEL_INFO(dev)->gen > 6) {
  4591. uint16_t postoff = 0;
  4592. if (intel_crtc->config.limited_color_range)
  4593. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4594. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4595. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4596. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4597. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4598. } else {
  4599. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4600. if (intel_crtc->config.limited_color_range)
  4601. mode |= CSC_BLACK_SCREEN_OFFSET;
  4602. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4603. }
  4604. }
  4605. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4606. {
  4607. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4608. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4609. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4610. uint32_t val;
  4611. val = I915_READ(PIPECONF(cpu_transcoder));
  4612. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4613. if (intel_crtc->config.dither)
  4614. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4615. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4616. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4617. val |= PIPECONF_INTERLACED_ILK;
  4618. else
  4619. val |= PIPECONF_PROGRESSIVE;
  4620. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4621. POSTING_READ(PIPECONF(cpu_transcoder));
  4622. }
  4623. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4624. struct drm_display_mode *adjusted_mode,
  4625. intel_clock_t *clock,
  4626. bool *has_reduced_clock,
  4627. intel_clock_t *reduced_clock)
  4628. {
  4629. struct drm_device *dev = crtc->dev;
  4630. struct drm_i915_private *dev_priv = dev->dev_private;
  4631. struct intel_encoder *intel_encoder;
  4632. int refclk;
  4633. const intel_limit_t *limit;
  4634. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4635. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4636. switch (intel_encoder->type) {
  4637. case INTEL_OUTPUT_LVDS:
  4638. is_lvds = true;
  4639. break;
  4640. case INTEL_OUTPUT_SDVO:
  4641. case INTEL_OUTPUT_HDMI:
  4642. is_sdvo = true;
  4643. if (intel_encoder->needs_tv_clock)
  4644. is_tv = true;
  4645. break;
  4646. case INTEL_OUTPUT_TVOUT:
  4647. is_tv = true;
  4648. break;
  4649. }
  4650. }
  4651. refclk = ironlake_get_refclk(crtc);
  4652. /*
  4653. * Returns a set of divisors for the desired target clock with the given
  4654. * refclk, or FALSE. The returned values represent the clock equation:
  4655. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4656. */
  4657. limit = intel_limit(crtc, refclk);
  4658. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4659. clock);
  4660. if (!ret)
  4661. return false;
  4662. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4663. /*
  4664. * Ensure we match the reduced clock's P to the target clock.
  4665. * If the clocks don't match, we can't switch the display clock
  4666. * by using the FP0/FP1. In such case we will disable the LVDS
  4667. * downclock feature.
  4668. */
  4669. *has_reduced_clock = limit->find_pll(limit, crtc,
  4670. dev_priv->lvds_downclock,
  4671. refclk,
  4672. clock,
  4673. reduced_clock);
  4674. }
  4675. if (is_sdvo && is_tv)
  4676. i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
  4677. return true;
  4678. }
  4679. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4680. {
  4681. struct drm_i915_private *dev_priv = dev->dev_private;
  4682. uint32_t temp;
  4683. temp = I915_READ(SOUTH_CHICKEN1);
  4684. if (temp & FDI_BC_BIFURCATION_SELECT)
  4685. return;
  4686. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4687. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4688. temp |= FDI_BC_BIFURCATION_SELECT;
  4689. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4690. I915_WRITE(SOUTH_CHICKEN1, temp);
  4691. POSTING_READ(SOUTH_CHICKEN1);
  4692. }
  4693. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4694. {
  4695. struct drm_device *dev = intel_crtc->base.dev;
  4696. struct drm_i915_private *dev_priv = dev->dev_private;
  4697. switch (intel_crtc->pipe) {
  4698. case PIPE_A:
  4699. break;
  4700. case PIPE_B:
  4701. if (intel_crtc->config.fdi_lanes > 2)
  4702. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4703. else
  4704. cpt_enable_fdi_bc_bifurcation(dev);
  4705. break;
  4706. case PIPE_C:
  4707. cpt_enable_fdi_bc_bifurcation(dev);
  4708. break;
  4709. default:
  4710. BUG();
  4711. }
  4712. }
  4713. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4714. {
  4715. /*
  4716. * Account for spread spectrum to avoid
  4717. * oversubscribing the link. Max center spread
  4718. * is 2.5%; use 5% for safety's sake.
  4719. */
  4720. u32 bps = target_clock * bpp * 21 / 20;
  4721. return bps / (link_bw * 8) + 1;
  4722. }
  4723. void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  4724. struct intel_link_m_n *m_n)
  4725. {
  4726. struct drm_device *dev = crtc->base.dev;
  4727. struct drm_i915_private *dev_priv = dev->dev_private;
  4728. int pipe = crtc->pipe;
  4729. I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4730. I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
  4731. I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
  4732. I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
  4733. }
  4734. void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  4735. struct intel_link_m_n *m_n)
  4736. {
  4737. struct drm_device *dev = crtc->base.dev;
  4738. struct drm_i915_private *dev_priv = dev->dev_private;
  4739. int pipe = crtc->pipe;
  4740. enum transcoder transcoder = crtc->config.cpu_transcoder;
  4741. if (INTEL_INFO(dev)->gen >= 5) {
  4742. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4743. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  4744. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  4745. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  4746. } else {
  4747. I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4748. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
  4749. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
  4750. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
  4751. }
  4752. }
  4753. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4754. {
  4755. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4756. }
  4757. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4758. u32 *fp,
  4759. intel_clock_t *reduced_clock, u32 *fp2)
  4760. {
  4761. struct drm_crtc *crtc = &intel_crtc->base;
  4762. struct drm_device *dev = crtc->dev;
  4763. struct drm_i915_private *dev_priv = dev->dev_private;
  4764. struct intel_encoder *intel_encoder;
  4765. uint32_t dpll;
  4766. int factor, num_connectors = 0;
  4767. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4768. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4769. switch (intel_encoder->type) {
  4770. case INTEL_OUTPUT_LVDS:
  4771. is_lvds = true;
  4772. break;
  4773. case INTEL_OUTPUT_SDVO:
  4774. case INTEL_OUTPUT_HDMI:
  4775. is_sdvo = true;
  4776. if (intel_encoder->needs_tv_clock)
  4777. is_tv = true;
  4778. break;
  4779. case INTEL_OUTPUT_TVOUT:
  4780. is_tv = true;
  4781. break;
  4782. }
  4783. num_connectors++;
  4784. }
  4785. /* Enable autotuning of the PLL clock (if permissible) */
  4786. factor = 21;
  4787. if (is_lvds) {
  4788. if ((intel_panel_use_ssc(dev_priv) &&
  4789. dev_priv->lvds_ssc_freq == 100) ||
  4790. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4791. factor = 25;
  4792. } else if (is_sdvo && is_tv)
  4793. factor = 20;
  4794. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4795. *fp |= FP_CB_TUNE;
  4796. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4797. *fp2 |= FP_CB_TUNE;
  4798. dpll = 0;
  4799. if (is_lvds)
  4800. dpll |= DPLLB_MODE_LVDS;
  4801. else
  4802. dpll |= DPLLB_MODE_DAC_SERIAL;
  4803. if (intel_crtc->config.pixel_multiplier > 1) {
  4804. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4805. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4806. }
  4807. if (is_sdvo)
  4808. dpll |= DPLL_DVO_HIGH_SPEED;
  4809. if (intel_crtc->config.has_dp_encoder)
  4810. dpll |= DPLL_DVO_HIGH_SPEED;
  4811. /* compute bitmask from p1 value */
  4812. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4813. /* also FPA1 */
  4814. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4815. switch (intel_crtc->config.dpll.p2) {
  4816. case 5:
  4817. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4818. break;
  4819. case 7:
  4820. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4821. break;
  4822. case 10:
  4823. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4824. break;
  4825. case 14:
  4826. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4827. break;
  4828. }
  4829. if (is_sdvo && is_tv)
  4830. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4831. else if (is_tv)
  4832. /* XXX: just matching BIOS for now */
  4833. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4834. dpll |= 3;
  4835. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4836. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4837. else
  4838. dpll |= PLL_REF_INPUT_DREFCLK;
  4839. return dpll;
  4840. }
  4841. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4842. int x, int y,
  4843. struct drm_framebuffer *fb)
  4844. {
  4845. struct drm_device *dev = crtc->dev;
  4846. struct drm_i915_private *dev_priv = dev->dev_private;
  4847. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4848. struct drm_display_mode *adjusted_mode =
  4849. &intel_crtc->config.adjusted_mode;
  4850. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4851. int pipe = intel_crtc->pipe;
  4852. int plane = intel_crtc->plane;
  4853. int num_connectors = 0;
  4854. intel_clock_t clock, reduced_clock;
  4855. u32 dpll = 0, fp = 0, fp2 = 0;
  4856. bool ok, has_reduced_clock = false;
  4857. bool is_lvds = false;
  4858. struct intel_encoder *encoder;
  4859. int ret;
  4860. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4861. switch (encoder->type) {
  4862. case INTEL_OUTPUT_LVDS:
  4863. is_lvds = true;
  4864. break;
  4865. }
  4866. num_connectors++;
  4867. }
  4868. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4869. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4870. intel_crtc->config.cpu_transcoder = pipe;
  4871. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4872. &has_reduced_clock, &reduced_clock);
  4873. if (!ok) {
  4874. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4875. return -EINVAL;
  4876. }
  4877. /* Compat-code for transition, will disappear. */
  4878. if (!intel_crtc->config.clock_set) {
  4879. intel_crtc->config.dpll.n = clock.n;
  4880. intel_crtc->config.dpll.m1 = clock.m1;
  4881. intel_crtc->config.dpll.m2 = clock.m2;
  4882. intel_crtc->config.dpll.p1 = clock.p1;
  4883. intel_crtc->config.dpll.p2 = clock.p2;
  4884. }
  4885. /* Ensure that the cursor is valid for the new mode before changing... */
  4886. intel_crtc_update_cursor(crtc, true);
  4887. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4888. drm_mode_debug_printmodeline(mode);
  4889. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4890. if (intel_crtc->config.has_pch_encoder) {
  4891. struct intel_pch_pll *pll;
  4892. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4893. if (has_reduced_clock)
  4894. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4895. dpll = ironlake_compute_dpll(intel_crtc,
  4896. &fp, &reduced_clock,
  4897. has_reduced_clock ? &fp2 : NULL);
  4898. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4899. if (pll == NULL) {
  4900. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4901. pipe_name(pipe));
  4902. return -EINVAL;
  4903. }
  4904. } else
  4905. intel_put_pch_pll(intel_crtc);
  4906. if (intel_crtc->config.has_dp_encoder)
  4907. intel_dp_set_m_n(intel_crtc);
  4908. for_each_encoder_on_crtc(dev, crtc, encoder)
  4909. if (encoder->pre_pll_enable)
  4910. encoder->pre_pll_enable(encoder);
  4911. if (intel_crtc->pch_pll) {
  4912. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4913. /* Wait for the clocks to stabilize. */
  4914. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4915. udelay(150);
  4916. /* The pixel multiplier can only be updated once the
  4917. * DPLL is enabled and the clocks are stable.
  4918. *
  4919. * So write it again.
  4920. */
  4921. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4922. }
  4923. intel_crtc->lowfreq_avail = false;
  4924. if (intel_crtc->pch_pll) {
  4925. if (is_lvds && has_reduced_clock && i915_powersave) {
  4926. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4927. intel_crtc->lowfreq_avail = true;
  4928. } else {
  4929. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4930. }
  4931. }
  4932. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4933. if (intel_crtc->config.has_pch_encoder) {
  4934. intel_cpu_transcoder_set_m_n(intel_crtc,
  4935. &intel_crtc->config.fdi_m_n);
  4936. }
  4937. if (IS_IVYBRIDGE(dev))
  4938. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4939. ironlake_set_pipeconf(crtc);
  4940. /* Set up the display plane register */
  4941. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4942. POSTING_READ(DSPCNTR(plane));
  4943. ret = intel_pipe_set_base(crtc, x, y, fb);
  4944. intel_update_watermarks(dev);
  4945. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4946. return ret;
  4947. }
  4948. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4949. struct intel_crtc_config *pipe_config)
  4950. {
  4951. struct drm_device *dev = crtc->base.dev;
  4952. struct drm_i915_private *dev_priv = dev->dev_private;
  4953. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4954. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4955. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4956. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4957. & ~TU_SIZE_MASK;
  4958. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4959. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4960. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4961. }
  4962. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4963. struct intel_crtc_config *pipe_config)
  4964. {
  4965. struct drm_device *dev = crtc->base.dev;
  4966. struct drm_i915_private *dev_priv = dev->dev_private;
  4967. uint32_t tmp;
  4968. tmp = I915_READ(PIPECONF(crtc->pipe));
  4969. if (!(tmp & PIPECONF_ENABLE))
  4970. return false;
  4971. if (I915_READ(TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4972. pipe_config->has_pch_encoder = true;
  4973. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4974. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4975. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4976. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4977. }
  4978. intel_get_pipe_timings(crtc, pipe_config);
  4979. return true;
  4980. }
  4981. static void haswell_modeset_global_resources(struct drm_device *dev)
  4982. {
  4983. struct drm_i915_private *dev_priv = dev->dev_private;
  4984. bool enable = false;
  4985. struct intel_crtc *crtc;
  4986. struct intel_encoder *encoder;
  4987. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4988. if (crtc->pipe != PIPE_A && crtc->base.enabled)
  4989. enable = true;
  4990. /* XXX: Should check for edp transcoder here, but thanks to init
  4991. * sequence that's not yet available. Just in case desktop eDP
  4992. * on PORT D is possible on haswell, too. */
  4993. /* Even the eDP panel fitter is outside the always-on well. */
  4994. if (I915_READ(PF_WIN_SZ(crtc->pipe)))
  4995. enable = true;
  4996. }
  4997. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  4998. base.head) {
  4999. if (encoder->type != INTEL_OUTPUT_EDP &&
  5000. encoder->connectors_active)
  5001. enable = true;
  5002. }
  5003. intel_set_power_well(dev, enable);
  5004. }
  5005. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5006. int x, int y,
  5007. struct drm_framebuffer *fb)
  5008. {
  5009. struct drm_device *dev = crtc->dev;
  5010. struct drm_i915_private *dev_priv = dev->dev_private;
  5011. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5012. struct drm_display_mode *adjusted_mode =
  5013. &intel_crtc->config.adjusted_mode;
  5014. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5015. int pipe = intel_crtc->pipe;
  5016. int plane = intel_crtc->plane;
  5017. int num_connectors = 0;
  5018. bool is_cpu_edp = false;
  5019. struct intel_encoder *encoder;
  5020. int ret;
  5021. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5022. switch (encoder->type) {
  5023. case INTEL_OUTPUT_EDP:
  5024. if (!intel_encoder_is_pch_edp(&encoder->base))
  5025. is_cpu_edp = true;
  5026. break;
  5027. }
  5028. num_connectors++;
  5029. }
  5030. if (is_cpu_edp)
  5031. intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
  5032. else
  5033. intel_crtc->config.cpu_transcoder = pipe;
  5034. /* We are not sure yet this won't happen. */
  5035. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  5036. INTEL_PCH_TYPE(dev));
  5037. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  5038. num_connectors, pipe_name(pipe));
  5039. WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
  5040. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  5041. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  5042. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  5043. return -EINVAL;
  5044. /* Ensure that the cursor is valid for the new mode before changing... */
  5045. intel_crtc_update_cursor(crtc, true);
  5046. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  5047. drm_mode_debug_printmodeline(mode);
  5048. if (intel_crtc->config.has_dp_encoder)
  5049. intel_dp_set_m_n(intel_crtc);
  5050. intel_crtc->lowfreq_avail = false;
  5051. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  5052. if (intel_crtc->config.has_pch_encoder) {
  5053. intel_cpu_transcoder_set_m_n(intel_crtc,
  5054. &intel_crtc->config.fdi_m_n);
  5055. }
  5056. haswell_set_pipeconf(crtc);
  5057. intel_set_pipe_csc(crtc);
  5058. /* Set up the display plane register */
  5059. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5060. POSTING_READ(DSPCNTR(plane));
  5061. ret = intel_pipe_set_base(crtc, x, y, fb);
  5062. intel_update_watermarks(dev);
  5063. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  5064. return ret;
  5065. }
  5066. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5067. struct intel_crtc_config *pipe_config)
  5068. {
  5069. struct drm_device *dev = crtc->base.dev;
  5070. struct drm_i915_private *dev_priv = dev->dev_private;
  5071. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  5072. uint32_t tmp;
  5073. if (!intel_using_power_well(dev_priv->dev) &&
  5074. cpu_transcoder != TRANSCODER_EDP)
  5075. return false;
  5076. tmp = I915_READ(PIPECONF(cpu_transcoder));
  5077. if (!(tmp & PIPECONF_ENABLE))
  5078. return false;
  5079. /*
  5080. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5081. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5082. * the PCH transcoder is on.
  5083. */
  5084. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  5085. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5086. I915_READ(TRANSCONF(PIPE_A)) & TRANS_ENABLE) {
  5087. pipe_config->has_pch_encoder = true;
  5088. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5089. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5090. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5091. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5092. }
  5093. intel_get_pipe_timings(crtc, pipe_config);
  5094. return true;
  5095. }
  5096. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5097. int x, int y,
  5098. struct drm_framebuffer *fb)
  5099. {
  5100. struct drm_device *dev = crtc->dev;
  5101. struct drm_i915_private *dev_priv = dev->dev_private;
  5102. struct drm_encoder_helper_funcs *encoder_funcs;
  5103. struct intel_encoder *encoder;
  5104. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5105. struct drm_display_mode *adjusted_mode =
  5106. &intel_crtc->config.adjusted_mode;
  5107. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5108. int pipe = intel_crtc->pipe;
  5109. int ret;
  5110. drm_vblank_pre_modeset(dev, pipe);
  5111. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5112. drm_vblank_post_modeset(dev, pipe);
  5113. if (ret != 0)
  5114. return ret;
  5115. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5116. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5117. encoder->base.base.id,
  5118. drm_get_encoder_name(&encoder->base),
  5119. mode->base.id, mode->name);
  5120. if (encoder->mode_set) {
  5121. encoder->mode_set(encoder);
  5122. } else {
  5123. encoder_funcs = encoder->base.helper_private;
  5124. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5125. }
  5126. }
  5127. return 0;
  5128. }
  5129. static bool intel_eld_uptodate(struct drm_connector *connector,
  5130. int reg_eldv, uint32_t bits_eldv,
  5131. int reg_elda, uint32_t bits_elda,
  5132. int reg_edid)
  5133. {
  5134. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5135. uint8_t *eld = connector->eld;
  5136. uint32_t i;
  5137. i = I915_READ(reg_eldv);
  5138. i &= bits_eldv;
  5139. if (!eld[0])
  5140. return !i;
  5141. if (!i)
  5142. return false;
  5143. i = I915_READ(reg_elda);
  5144. i &= ~bits_elda;
  5145. I915_WRITE(reg_elda, i);
  5146. for (i = 0; i < eld[2]; i++)
  5147. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5148. return false;
  5149. return true;
  5150. }
  5151. static void g4x_write_eld(struct drm_connector *connector,
  5152. struct drm_crtc *crtc)
  5153. {
  5154. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5155. uint8_t *eld = connector->eld;
  5156. uint32_t eldv;
  5157. uint32_t len;
  5158. uint32_t i;
  5159. i = I915_READ(G4X_AUD_VID_DID);
  5160. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5161. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5162. else
  5163. eldv = G4X_ELDV_DEVCTG;
  5164. if (intel_eld_uptodate(connector,
  5165. G4X_AUD_CNTL_ST, eldv,
  5166. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5167. G4X_HDMIW_HDMIEDID))
  5168. return;
  5169. i = I915_READ(G4X_AUD_CNTL_ST);
  5170. i &= ~(eldv | G4X_ELD_ADDR);
  5171. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5172. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5173. if (!eld[0])
  5174. return;
  5175. len = min_t(uint8_t, eld[2], len);
  5176. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5177. for (i = 0; i < len; i++)
  5178. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5179. i = I915_READ(G4X_AUD_CNTL_ST);
  5180. i |= eldv;
  5181. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5182. }
  5183. static void haswell_write_eld(struct drm_connector *connector,
  5184. struct drm_crtc *crtc)
  5185. {
  5186. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5187. uint8_t *eld = connector->eld;
  5188. struct drm_device *dev = crtc->dev;
  5189. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5190. uint32_t eldv;
  5191. uint32_t i;
  5192. int len;
  5193. int pipe = to_intel_crtc(crtc)->pipe;
  5194. int tmp;
  5195. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5196. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5197. int aud_config = HSW_AUD_CFG(pipe);
  5198. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5199. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5200. /* Audio output enable */
  5201. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5202. tmp = I915_READ(aud_cntrl_st2);
  5203. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5204. I915_WRITE(aud_cntrl_st2, tmp);
  5205. /* Wait for 1 vertical blank */
  5206. intel_wait_for_vblank(dev, pipe);
  5207. /* Set ELD valid state */
  5208. tmp = I915_READ(aud_cntrl_st2);
  5209. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5210. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5211. I915_WRITE(aud_cntrl_st2, tmp);
  5212. tmp = I915_READ(aud_cntrl_st2);
  5213. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5214. /* Enable HDMI mode */
  5215. tmp = I915_READ(aud_config);
  5216. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5217. /* clear N_programing_enable and N_value_index */
  5218. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5219. I915_WRITE(aud_config, tmp);
  5220. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5221. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5222. intel_crtc->eld_vld = true;
  5223. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5224. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5225. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5226. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5227. } else
  5228. I915_WRITE(aud_config, 0);
  5229. if (intel_eld_uptodate(connector,
  5230. aud_cntrl_st2, eldv,
  5231. aud_cntl_st, IBX_ELD_ADDRESS,
  5232. hdmiw_hdmiedid))
  5233. return;
  5234. i = I915_READ(aud_cntrl_st2);
  5235. i &= ~eldv;
  5236. I915_WRITE(aud_cntrl_st2, i);
  5237. if (!eld[0])
  5238. return;
  5239. i = I915_READ(aud_cntl_st);
  5240. i &= ~IBX_ELD_ADDRESS;
  5241. I915_WRITE(aud_cntl_st, i);
  5242. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5243. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5244. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5245. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5246. for (i = 0; i < len; i++)
  5247. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5248. i = I915_READ(aud_cntrl_st2);
  5249. i |= eldv;
  5250. I915_WRITE(aud_cntrl_st2, i);
  5251. }
  5252. static void ironlake_write_eld(struct drm_connector *connector,
  5253. struct drm_crtc *crtc)
  5254. {
  5255. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5256. uint8_t *eld = connector->eld;
  5257. uint32_t eldv;
  5258. uint32_t i;
  5259. int len;
  5260. int hdmiw_hdmiedid;
  5261. int aud_config;
  5262. int aud_cntl_st;
  5263. int aud_cntrl_st2;
  5264. int pipe = to_intel_crtc(crtc)->pipe;
  5265. if (HAS_PCH_IBX(connector->dev)) {
  5266. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5267. aud_config = IBX_AUD_CFG(pipe);
  5268. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5269. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5270. } else {
  5271. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5272. aud_config = CPT_AUD_CFG(pipe);
  5273. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5274. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5275. }
  5276. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5277. i = I915_READ(aud_cntl_st);
  5278. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5279. if (!i) {
  5280. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5281. /* operate blindly on all ports */
  5282. eldv = IBX_ELD_VALIDB;
  5283. eldv |= IBX_ELD_VALIDB << 4;
  5284. eldv |= IBX_ELD_VALIDB << 8;
  5285. } else {
  5286. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5287. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5288. }
  5289. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5290. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5291. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5292. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5293. } else
  5294. I915_WRITE(aud_config, 0);
  5295. if (intel_eld_uptodate(connector,
  5296. aud_cntrl_st2, eldv,
  5297. aud_cntl_st, IBX_ELD_ADDRESS,
  5298. hdmiw_hdmiedid))
  5299. return;
  5300. i = I915_READ(aud_cntrl_st2);
  5301. i &= ~eldv;
  5302. I915_WRITE(aud_cntrl_st2, i);
  5303. if (!eld[0])
  5304. return;
  5305. i = I915_READ(aud_cntl_st);
  5306. i &= ~IBX_ELD_ADDRESS;
  5307. I915_WRITE(aud_cntl_st, i);
  5308. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5309. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5310. for (i = 0; i < len; i++)
  5311. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5312. i = I915_READ(aud_cntrl_st2);
  5313. i |= eldv;
  5314. I915_WRITE(aud_cntrl_st2, i);
  5315. }
  5316. void intel_write_eld(struct drm_encoder *encoder,
  5317. struct drm_display_mode *mode)
  5318. {
  5319. struct drm_crtc *crtc = encoder->crtc;
  5320. struct drm_connector *connector;
  5321. struct drm_device *dev = encoder->dev;
  5322. struct drm_i915_private *dev_priv = dev->dev_private;
  5323. connector = drm_select_eld(encoder, mode);
  5324. if (!connector)
  5325. return;
  5326. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5327. connector->base.id,
  5328. drm_get_connector_name(connector),
  5329. connector->encoder->base.id,
  5330. drm_get_encoder_name(connector->encoder));
  5331. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5332. if (dev_priv->display.write_eld)
  5333. dev_priv->display.write_eld(connector, crtc);
  5334. }
  5335. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5336. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5337. {
  5338. struct drm_device *dev = crtc->dev;
  5339. struct drm_i915_private *dev_priv = dev->dev_private;
  5340. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5341. int palreg = PALETTE(intel_crtc->pipe);
  5342. int i;
  5343. /* The clocks have to be on to load the palette. */
  5344. if (!crtc->enabled || !intel_crtc->active)
  5345. return;
  5346. /* use legacy palette for Ironlake */
  5347. if (HAS_PCH_SPLIT(dev))
  5348. palreg = LGC_PALETTE(intel_crtc->pipe);
  5349. for (i = 0; i < 256; i++) {
  5350. I915_WRITE(palreg + 4 * i,
  5351. (intel_crtc->lut_r[i] << 16) |
  5352. (intel_crtc->lut_g[i] << 8) |
  5353. intel_crtc->lut_b[i]);
  5354. }
  5355. }
  5356. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5357. {
  5358. struct drm_device *dev = crtc->dev;
  5359. struct drm_i915_private *dev_priv = dev->dev_private;
  5360. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5361. bool visible = base != 0;
  5362. u32 cntl;
  5363. if (intel_crtc->cursor_visible == visible)
  5364. return;
  5365. cntl = I915_READ(_CURACNTR);
  5366. if (visible) {
  5367. /* On these chipsets we can only modify the base whilst
  5368. * the cursor is disabled.
  5369. */
  5370. I915_WRITE(_CURABASE, base);
  5371. cntl &= ~(CURSOR_FORMAT_MASK);
  5372. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5373. cntl |= CURSOR_ENABLE |
  5374. CURSOR_GAMMA_ENABLE |
  5375. CURSOR_FORMAT_ARGB;
  5376. } else
  5377. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5378. I915_WRITE(_CURACNTR, cntl);
  5379. intel_crtc->cursor_visible = visible;
  5380. }
  5381. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5382. {
  5383. struct drm_device *dev = crtc->dev;
  5384. struct drm_i915_private *dev_priv = dev->dev_private;
  5385. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5386. int pipe = intel_crtc->pipe;
  5387. bool visible = base != 0;
  5388. if (intel_crtc->cursor_visible != visible) {
  5389. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5390. if (base) {
  5391. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5392. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5393. cntl |= pipe << 28; /* Connect to correct pipe */
  5394. } else {
  5395. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5396. cntl |= CURSOR_MODE_DISABLE;
  5397. }
  5398. I915_WRITE(CURCNTR(pipe), cntl);
  5399. intel_crtc->cursor_visible = visible;
  5400. }
  5401. /* and commit changes on next vblank */
  5402. I915_WRITE(CURBASE(pipe), base);
  5403. }
  5404. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5405. {
  5406. struct drm_device *dev = crtc->dev;
  5407. struct drm_i915_private *dev_priv = dev->dev_private;
  5408. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5409. int pipe = intel_crtc->pipe;
  5410. bool visible = base != 0;
  5411. if (intel_crtc->cursor_visible != visible) {
  5412. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5413. if (base) {
  5414. cntl &= ~CURSOR_MODE;
  5415. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5416. } else {
  5417. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5418. cntl |= CURSOR_MODE_DISABLE;
  5419. }
  5420. if (IS_HASWELL(dev))
  5421. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5422. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5423. intel_crtc->cursor_visible = visible;
  5424. }
  5425. /* and commit changes on next vblank */
  5426. I915_WRITE(CURBASE_IVB(pipe), base);
  5427. }
  5428. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5429. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5430. bool on)
  5431. {
  5432. struct drm_device *dev = crtc->dev;
  5433. struct drm_i915_private *dev_priv = dev->dev_private;
  5434. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5435. int pipe = intel_crtc->pipe;
  5436. int x = intel_crtc->cursor_x;
  5437. int y = intel_crtc->cursor_y;
  5438. u32 base, pos;
  5439. bool visible;
  5440. pos = 0;
  5441. if (on && crtc->enabled && crtc->fb) {
  5442. base = intel_crtc->cursor_addr;
  5443. if (x > (int) crtc->fb->width)
  5444. base = 0;
  5445. if (y > (int) crtc->fb->height)
  5446. base = 0;
  5447. } else
  5448. base = 0;
  5449. if (x < 0) {
  5450. if (x + intel_crtc->cursor_width < 0)
  5451. base = 0;
  5452. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5453. x = -x;
  5454. }
  5455. pos |= x << CURSOR_X_SHIFT;
  5456. if (y < 0) {
  5457. if (y + intel_crtc->cursor_height < 0)
  5458. base = 0;
  5459. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5460. y = -y;
  5461. }
  5462. pos |= y << CURSOR_Y_SHIFT;
  5463. visible = base != 0;
  5464. if (!visible && !intel_crtc->cursor_visible)
  5465. return;
  5466. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5467. I915_WRITE(CURPOS_IVB(pipe), pos);
  5468. ivb_update_cursor(crtc, base);
  5469. } else {
  5470. I915_WRITE(CURPOS(pipe), pos);
  5471. if (IS_845G(dev) || IS_I865G(dev))
  5472. i845_update_cursor(crtc, base);
  5473. else
  5474. i9xx_update_cursor(crtc, base);
  5475. }
  5476. }
  5477. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5478. struct drm_file *file,
  5479. uint32_t handle,
  5480. uint32_t width, uint32_t height)
  5481. {
  5482. struct drm_device *dev = crtc->dev;
  5483. struct drm_i915_private *dev_priv = dev->dev_private;
  5484. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5485. struct drm_i915_gem_object *obj;
  5486. uint32_t addr;
  5487. int ret;
  5488. /* if we want to turn off the cursor ignore width and height */
  5489. if (!handle) {
  5490. DRM_DEBUG_KMS("cursor off\n");
  5491. addr = 0;
  5492. obj = NULL;
  5493. mutex_lock(&dev->struct_mutex);
  5494. goto finish;
  5495. }
  5496. /* Currently we only support 64x64 cursors */
  5497. if (width != 64 || height != 64) {
  5498. DRM_ERROR("we currently only support 64x64 cursors\n");
  5499. return -EINVAL;
  5500. }
  5501. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5502. if (&obj->base == NULL)
  5503. return -ENOENT;
  5504. if (obj->base.size < width * height * 4) {
  5505. DRM_ERROR("buffer is to small\n");
  5506. ret = -ENOMEM;
  5507. goto fail;
  5508. }
  5509. /* we only need to pin inside GTT if cursor is non-phy */
  5510. mutex_lock(&dev->struct_mutex);
  5511. if (!dev_priv->info->cursor_needs_physical) {
  5512. unsigned alignment;
  5513. if (obj->tiling_mode) {
  5514. DRM_ERROR("cursor cannot be tiled\n");
  5515. ret = -EINVAL;
  5516. goto fail_locked;
  5517. }
  5518. /* Note that the w/a also requires 2 PTE of padding following
  5519. * the bo. We currently fill all unused PTE with the shadow
  5520. * page and so we should always have valid PTE following the
  5521. * cursor preventing the VT-d warning.
  5522. */
  5523. alignment = 0;
  5524. if (need_vtd_wa(dev))
  5525. alignment = 64*1024;
  5526. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5527. if (ret) {
  5528. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5529. goto fail_locked;
  5530. }
  5531. ret = i915_gem_object_put_fence(obj);
  5532. if (ret) {
  5533. DRM_ERROR("failed to release fence for cursor");
  5534. goto fail_unpin;
  5535. }
  5536. addr = obj->gtt_offset;
  5537. } else {
  5538. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5539. ret = i915_gem_attach_phys_object(dev, obj,
  5540. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5541. align);
  5542. if (ret) {
  5543. DRM_ERROR("failed to attach phys object\n");
  5544. goto fail_locked;
  5545. }
  5546. addr = obj->phys_obj->handle->busaddr;
  5547. }
  5548. if (IS_GEN2(dev))
  5549. I915_WRITE(CURSIZE, (height << 12) | width);
  5550. finish:
  5551. if (intel_crtc->cursor_bo) {
  5552. if (dev_priv->info->cursor_needs_physical) {
  5553. if (intel_crtc->cursor_bo != obj)
  5554. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5555. } else
  5556. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5557. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5558. }
  5559. mutex_unlock(&dev->struct_mutex);
  5560. intel_crtc->cursor_addr = addr;
  5561. intel_crtc->cursor_bo = obj;
  5562. intel_crtc->cursor_width = width;
  5563. intel_crtc->cursor_height = height;
  5564. intel_crtc_update_cursor(crtc, true);
  5565. return 0;
  5566. fail_unpin:
  5567. i915_gem_object_unpin(obj);
  5568. fail_locked:
  5569. mutex_unlock(&dev->struct_mutex);
  5570. fail:
  5571. drm_gem_object_unreference_unlocked(&obj->base);
  5572. return ret;
  5573. }
  5574. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5575. {
  5576. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5577. intel_crtc->cursor_x = x;
  5578. intel_crtc->cursor_y = y;
  5579. intel_crtc_update_cursor(crtc, true);
  5580. return 0;
  5581. }
  5582. /** Sets the color ramps on behalf of RandR */
  5583. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5584. u16 blue, int regno)
  5585. {
  5586. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5587. intel_crtc->lut_r[regno] = red >> 8;
  5588. intel_crtc->lut_g[regno] = green >> 8;
  5589. intel_crtc->lut_b[regno] = blue >> 8;
  5590. }
  5591. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5592. u16 *blue, int regno)
  5593. {
  5594. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5595. *red = intel_crtc->lut_r[regno] << 8;
  5596. *green = intel_crtc->lut_g[regno] << 8;
  5597. *blue = intel_crtc->lut_b[regno] << 8;
  5598. }
  5599. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5600. u16 *blue, uint32_t start, uint32_t size)
  5601. {
  5602. int end = (start + size > 256) ? 256 : start + size, i;
  5603. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5604. for (i = start; i < end; i++) {
  5605. intel_crtc->lut_r[i] = red[i] >> 8;
  5606. intel_crtc->lut_g[i] = green[i] >> 8;
  5607. intel_crtc->lut_b[i] = blue[i] >> 8;
  5608. }
  5609. intel_crtc_load_lut(crtc);
  5610. }
  5611. /* VESA 640x480x72Hz mode to set on the pipe */
  5612. static struct drm_display_mode load_detect_mode = {
  5613. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5614. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5615. };
  5616. static struct drm_framebuffer *
  5617. intel_framebuffer_create(struct drm_device *dev,
  5618. struct drm_mode_fb_cmd2 *mode_cmd,
  5619. struct drm_i915_gem_object *obj)
  5620. {
  5621. struct intel_framebuffer *intel_fb;
  5622. int ret;
  5623. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5624. if (!intel_fb) {
  5625. drm_gem_object_unreference_unlocked(&obj->base);
  5626. return ERR_PTR(-ENOMEM);
  5627. }
  5628. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5629. if (ret) {
  5630. drm_gem_object_unreference_unlocked(&obj->base);
  5631. kfree(intel_fb);
  5632. return ERR_PTR(ret);
  5633. }
  5634. return &intel_fb->base;
  5635. }
  5636. static u32
  5637. intel_framebuffer_pitch_for_width(int width, int bpp)
  5638. {
  5639. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5640. return ALIGN(pitch, 64);
  5641. }
  5642. static u32
  5643. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5644. {
  5645. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5646. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5647. }
  5648. static struct drm_framebuffer *
  5649. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5650. struct drm_display_mode *mode,
  5651. int depth, int bpp)
  5652. {
  5653. struct drm_i915_gem_object *obj;
  5654. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5655. obj = i915_gem_alloc_object(dev,
  5656. intel_framebuffer_size_for_mode(mode, bpp));
  5657. if (obj == NULL)
  5658. return ERR_PTR(-ENOMEM);
  5659. mode_cmd.width = mode->hdisplay;
  5660. mode_cmd.height = mode->vdisplay;
  5661. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5662. bpp);
  5663. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5664. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5665. }
  5666. static struct drm_framebuffer *
  5667. mode_fits_in_fbdev(struct drm_device *dev,
  5668. struct drm_display_mode *mode)
  5669. {
  5670. struct drm_i915_private *dev_priv = dev->dev_private;
  5671. struct drm_i915_gem_object *obj;
  5672. struct drm_framebuffer *fb;
  5673. if (dev_priv->fbdev == NULL)
  5674. return NULL;
  5675. obj = dev_priv->fbdev->ifb.obj;
  5676. if (obj == NULL)
  5677. return NULL;
  5678. fb = &dev_priv->fbdev->ifb.base;
  5679. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5680. fb->bits_per_pixel))
  5681. return NULL;
  5682. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5683. return NULL;
  5684. return fb;
  5685. }
  5686. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5687. struct drm_display_mode *mode,
  5688. struct intel_load_detect_pipe *old)
  5689. {
  5690. struct intel_crtc *intel_crtc;
  5691. struct intel_encoder *intel_encoder =
  5692. intel_attached_encoder(connector);
  5693. struct drm_crtc *possible_crtc;
  5694. struct drm_encoder *encoder = &intel_encoder->base;
  5695. struct drm_crtc *crtc = NULL;
  5696. struct drm_device *dev = encoder->dev;
  5697. struct drm_framebuffer *fb;
  5698. int i = -1;
  5699. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5700. connector->base.id, drm_get_connector_name(connector),
  5701. encoder->base.id, drm_get_encoder_name(encoder));
  5702. /*
  5703. * Algorithm gets a little messy:
  5704. *
  5705. * - if the connector already has an assigned crtc, use it (but make
  5706. * sure it's on first)
  5707. *
  5708. * - try to find the first unused crtc that can drive this connector,
  5709. * and use that if we find one
  5710. */
  5711. /* See if we already have a CRTC for this connector */
  5712. if (encoder->crtc) {
  5713. crtc = encoder->crtc;
  5714. mutex_lock(&crtc->mutex);
  5715. old->dpms_mode = connector->dpms;
  5716. old->load_detect_temp = false;
  5717. /* Make sure the crtc and connector are running */
  5718. if (connector->dpms != DRM_MODE_DPMS_ON)
  5719. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5720. return true;
  5721. }
  5722. /* Find an unused one (if possible) */
  5723. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5724. i++;
  5725. if (!(encoder->possible_crtcs & (1 << i)))
  5726. continue;
  5727. if (!possible_crtc->enabled) {
  5728. crtc = possible_crtc;
  5729. break;
  5730. }
  5731. }
  5732. /*
  5733. * If we didn't find an unused CRTC, don't use any.
  5734. */
  5735. if (!crtc) {
  5736. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5737. return false;
  5738. }
  5739. mutex_lock(&crtc->mutex);
  5740. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5741. to_intel_connector(connector)->new_encoder = intel_encoder;
  5742. intel_crtc = to_intel_crtc(crtc);
  5743. old->dpms_mode = connector->dpms;
  5744. old->load_detect_temp = true;
  5745. old->release_fb = NULL;
  5746. if (!mode)
  5747. mode = &load_detect_mode;
  5748. /* We need a framebuffer large enough to accommodate all accesses
  5749. * that the plane may generate whilst we perform load detection.
  5750. * We can not rely on the fbcon either being present (we get called
  5751. * during its initialisation to detect all boot displays, or it may
  5752. * not even exist) or that it is large enough to satisfy the
  5753. * requested mode.
  5754. */
  5755. fb = mode_fits_in_fbdev(dev, mode);
  5756. if (fb == NULL) {
  5757. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5758. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5759. old->release_fb = fb;
  5760. } else
  5761. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5762. if (IS_ERR(fb)) {
  5763. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5764. mutex_unlock(&crtc->mutex);
  5765. return false;
  5766. }
  5767. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5768. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5769. if (old->release_fb)
  5770. old->release_fb->funcs->destroy(old->release_fb);
  5771. mutex_unlock(&crtc->mutex);
  5772. return false;
  5773. }
  5774. /* let the connector get through one full cycle before testing */
  5775. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5776. return true;
  5777. }
  5778. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5779. struct intel_load_detect_pipe *old)
  5780. {
  5781. struct intel_encoder *intel_encoder =
  5782. intel_attached_encoder(connector);
  5783. struct drm_encoder *encoder = &intel_encoder->base;
  5784. struct drm_crtc *crtc = encoder->crtc;
  5785. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5786. connector->base.id, drm_get_connector_name(connector),
  5787. encoder->base.id, drm_get_encoder_name(encoder));
  5788. if (old->load_detect_temp) {
  5789. to_intel_connector(connector)->new_encoder = NULL;
  5790. intel_encoder->new_crtc = NULL;
  5791. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5792. if (old->release_fb) {
  5793. drm_framebuffer_unregister_private(old->release_fb);
  5794. drm_framebuffer_unreference(old->release_fb);
  5795. }
  5796. mutex_unlock(&crtc->mutex);
  5797. return;
  5798. }
  5799. /* Switch crtc and encoder back off if necessary */
  5800. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5801. connector->funcs->dpms(connector, old->dpms_mode);
  5802. mutex_unlock(&crtc->mutex);
  5803. }
  5804. /* Returns the clock of the currently programmed mode of the given pipe. */
  5805. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5806. {
  5807. struct drm_i915_private *dev_priv = dev->dev_private;
  5808. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5809. int pipe = intel_crtc->pipe;
  5810. u32 dpll = I915_READ(DPLL(pipe));
  5811. u32 fp;
  5812. intel_clock_t clock;
  5813. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5814. fp = I915_READ(FP0(pipe));
  5815. else
  5816. fp = I915_READ(FP1(pipe));
  5817. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5818. if (IS_PINEVIEW(dev)) {
  5819. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5820. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5821. } else {
  5822. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5823. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5824. }
  5825. if (!IS_GEN2(dev)) {
  5826. if (IS_PINEVIEW(dev))
  5827. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5828. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5829. else
  5830. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5831. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5832. switch (dpll & DPLL_MODE_MASK) {
  5833. case DPLLB_MODE_DAC_SERIAL:
  5834. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5835. 5 : 10;
  5836. break;
  5837. case DPLLB_MODE_LVDS:
  5838. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5839. 7 : 14;
  5840. break;
  5841. default:
  5842. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5843. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5844. return 0;
  5845. }
  5846. /* XXX: Handle the 100Mhz refclk */
  5847. intel_clock(dev, 96000, &clock);
  5848. } else {
  5849. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5850. if (is_lvds) {
  5851. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5852. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5853. clock.p2 = 14;
  5854. if ((dpll & PLL_REF_INPUT_MASK) ==
  5855. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5856. /* XXX: might not be 66MHz */
  5857. intel_clock(dev, 66000, &clock);
  5858. } else
  5859. intel_clock(dev, 48000, &clock);
  5860. } else {
  5861. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5862. clock.p1 = 2;
  5863. else {
  5864. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5865. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5866. }
  5867. if (dpll & PLL_P2_DIVIDE_BY_4)
  5868. clock.p2 = 4;
  5869. else
  5870. clock.p2 = 2;
  5871. intel_clock(dev, 48000, &clock);
  5872. }
  5873. }
  5874. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5875. * i830PllIsValid() because it relies on the xf86_config connector
  5876. * configuration being accurate, which it isn't necessarily.
  5877. */
  5878. return clock.dot;
  5879. }
  5880. /** Returns the currently programmed mode of the given pipe. */
  5881. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5882. struct drm_crtc *crtc)
  5883. {
  5884. struct drm_i915_private *dev_priv = dev->dev_private;
  5885. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5886. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5887. struct drm_display_mode *mode;
  5888. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5889. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5890. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5891. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5892. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5893. if (!mode)
  5894. return NULL;
  5895. mode->clock = intel_crtc_clock_get(dev, crtc);
  5896. mode->hdisplay = (htot & 0xffff) + 1;
  5897. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5898. mode->hsync_start = (hsync & 0xffff) + 1;
  5899. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5900. mode->vdisplay = (vtot & 0xffff) + 1;
  5901. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5902. mode->vsync_start = (vsync & 0xffff) + 1;
  5903. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5904. drm_mode_set_name(mode);
  5905. return mode;
  5906. }
  5907. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5908. {
  5909. struct drm_device *dev = crtc->dev;
  5910. drm_i915_private_t *dev_priv = dev->dev_private;
  5911. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5912. int pipe = intel_crtc->pipe;
  5913. int dpll_reg = DPLL(pipe);
  5914. int dpll;
  5915. if (HAS_PCH_SPLIT(dev))
  5916. return;
  5917. if (!dev_priv->lvds_downclock_avail)
  5918. return;
  5919. dpll = I915_READ(dpll_reg);
  5920. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5921. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5922. assert_panel_unlocked(dev_priv, pipe);
  5923. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5924. I915_WRITE(dpll_reg, dpll);
  5925. intel_wait_for_vblank(dev, pipe);
  5926. dpll = I915_READ(dpll_reg);
  5927. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5928. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5929. }
  5930. }
  5931. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5932. {
  5933. struct drm_device *dev = crtc->dev;
  5934. drm_i915_private_t *dev_priv = dev->dev_private;
  5935. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5936. if (HAS_PCH_SPLIT(dev))
  5937. return;
  5938. if (!dev_priv->lvds_downclock_avail)
  5939. return;
  5940. /*
  5941. * Since this is called by a timer, we should never get here in
  5942. * the manual case.
  5943. */
  5944. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5945. int pipe = intel_crtc->pipe;
  5946. int dpll_reg = DPLL(pipe);
  5947. int dpll;
  5948. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5949. assert_panel_unlocked(dev_priv, pipe);
  5950. dpll = I915_READ(dpll_reg);
  5951. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5952. I915_WRITE(dpll_reg, dpll);
  5953. intel_wait_for_vblank(dev, pipe);
  5954. dpll = I915_READ(dpll_reg);
  5955. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5956. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5957. }
  5958. }
  5959. void intel_mark_busy(struct drm_device *dev)
  5960. {
  5961. i915_update_gfx_val(dev->dev_private);
  5962. }
  5963. void intel_mark_idle(struct drm_device *dev)
  5964. {
  5965. struct drm_crtc *crtc;
  5966. if (!i915_powersave)
  5967. return;
  5968. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5969. if (!crtc->fb)
  5970. continue;
  5971. intel_decrease_pllclock(crtc);
  5972. }
  5973. }
  5974. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5975. {
  5976. struct drm_device *dev = obj->base.dev;
  5977. struct drm_crtc *crtc;
  5978. if (!i915_powersave)
  5979. return;
  5980. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5981. if (!crtc->fb)
  5982. continue;
  5983. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5984. intel_increase_pllclock(crtc);
  5985. }
  5986. }
  5987. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5988. {
  5989. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5990. struct drm_device *dev = crtc->dev;
  5991. struct intel_unpin_work *work;
  5992. unsigned long flags;
  5993. spin_lock_irqsave(&dev->event_lock, flags);
  5994. work = intel_crtc->unpin_work;
  5995. intel_crtc->unpin_work = NULL;
  5996. spin_unlock_irqrestore(&dev->event_lock, flags);
  5997. if (work) {
  5998. cancel_work_sync(&work->work);
  5999. kfree(work);
  6000. }
  6001. drm_crtc_cleanup(crtc);
  6002. kfree(intel_crtc);
  6003. }
  6004. static void intel_unpin_work_fn(struct work_struct *__work)
  6005. {
  6006. struct intel_unpin_work *work =
  6007. container_of(__work, struct intel_unpin_work, work);
  6008. struct drm_device *dev = work->crtc->dev;
  6009. mutex_lock(&dev->struct_mutex);
  6010. intel_unpin_fb_obj(work->old_fb_obj);
  6011. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6012. drm_gem_object_unreference(&work->old_fb_obj->base);
  6013. intel_update_fbc(dev);
  6014. mutex_unlock(&dev->struct_mutex);
  6015. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6016. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6017. kfree(work);
  6018. }
  6019. static void do_intel_finish_page_flip(struct drm_device *dev,
  6020. struct drm_crtc *crtc)
  6021. {
  6022. drm_i915_private_t *dev_priv = dev->dev_private;
  6023. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6024. struct intel_unpin_work *work;
  6025. unsigned long flags;
  6026. /* Ignore early vblank irqs */
  6027. if (intel_crtc == NULL)
  6028. return;
  6029. spin_lock_irqsave(&dev->event_lock, flags);
  6030. work = intel_crtc->unpin_work;
  6031. /* Ensure we don't miss a work->pending update ... */
  6032. smp_rmb();
  6033. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6034. spin_unlock_irqrestore(&dev->event_lock, flags);
  6035. return;
  6036. }
  6037. /* and that the unpin work is consistent wrt ->pending. */
  6038. smp_rmb();
  6039. intel_crtc->unpin_work = NULL;
  6040. if (work->event)
  6041. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6042. drm_vblank_put(dev, intel_crtc->pipe);
  6043. spin_unlock_irqrestore(&dev->event_lock, flags);
  6044. wake_up_all(&dev_priv->pending_flip_queue);
  6045. queue_work(dev_priv->wq, &work->work);
  6046. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6047. }
  6048. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6049. {
  6050. drm_i915_private_t *dev_priv = dev->dev_private;
  6051. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6052. do_intel_finish_page_flip(dev, crtc);
  6053. }
  6054. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6055. {
  6056. drm_i915_private_t *dev_priv = dev->dev_private;
  6057. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6058. do_intel_finish_page_flip(dev, crtc);
  6059. }
  6060. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6061. {
  6062. drm_i915_private_t *dev_priv = dev->dev_private;
  6063. struct intel_crtc *intel_crtc =
  6064. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6065. unsigned long flags;
  6066. /* NB: An MMIO update of the plane base pointer will also
  6067. * generate a page-flip completion irq, i.e. every modeset
  6068. * is also accompanied by a spurious intel_prepare_page_flip().
  6069. */
  6070. spin_lock_irqsave(&dev->event_lock, flags);
  6071. if (intel_crtc->unpin_work)
  6072. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6073. spin_unlock_irqrestore(&dev->event_lock, flags);
  6074. }
  6075. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6076. {
  6077. /* Ensure that the work item is consistent when activating it ... */
  6078. smp_wmb();
  6079. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6080. /* and that it is marked active as soon as the irq could fire. */
  6081. smp_wmb();
  6082. }
  6083. static int intel_gen2_queue_flip(struct drm_device *dev,
  6084. struct drm_crtc *crtc,
  6085. struct drm_framebuffer *fb,
  6086. struct drm_i915_gem_object *obj)
  6087. {
  6088. struct drm_i915_private *dev_priv = dev->dev_private;
  6089. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6090. u32 flip_mask;
  6091. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6092. int ret;
  6093. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6094. if (ret)
  6095. goto err;
  6096. ret = intel_ring_begin(ring, 6);
  6097. if (ret)
  6098. goto err_unpin;
  6099. /* Can't queue multiple flips, so wait for the previous
  6100. * one to finish before executing the next.
  6101. */
  6102. if (intel_crtc->plane)
  6103. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6104. else
  6105. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6106. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6107. intel_ring_emit(ring, MI_NOOP);
  6108. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6109. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6110. intel_ring_emit(ring, fb->pitches[0]);
  6111. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6112. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6113. intel_mark_page_flip_active(intel_crtc);
  6114. intel_ring_advance(ring);
  6115. return 0;
  6116. err_unpin:
  6117. intel_unpin_fb_obj(obj);
  6118. err:
  6119. return ret;
  6120. }
  6121. static int intel_gen3_queue_flip(struct drm_device *dev,
  6122. struct drm_crtc *crtc,
  6123. struct drm_framebuffer *fb,
  6124. struct drm_i915_gem_object *obj)
  6125. {
  6126. struct drm_i915_private *dev_priv = dev->dev_private;
  6127. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6128. u32 flip_mask;
  6129. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6130. int ret;
  6131. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6132. if (ret)
  6133. goto err;
  6134. ret = intel_ring_begin(ring, 6);
  6135. if (ret)
  6136. goto err_unpin;
  6137. if (intel_crtc->plane)
  6138. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6139. else
  6140. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6141. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6142. intel_ring_emit(ring, MI_NOOP);
  6143. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6144. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6145. intel_ring_emit(ring, fb->pitches[0]);
  6146. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6147. intel_ring_emit(ring, MI_NOOP);
  6148. intel_mark_page_flip_active(intel_crtc);
  6149. intel_ring_advance(ring);
  6150. return 0;
  6151. err_unpin:
  6152. intel_unpin_fb_obj(obj);
  6153. err:
  6154. return ret;
  6155. }
  6156. static int intel_gen4_queue_flip(struct drm_device *dev,
  6157. struct drm_crtc *crtc,
  6158. struct drm_framebuffer *fb,
  6159. struct drm_i915_gem_object *obj)
  6160. {
  6161. struct drm_i915_private *dev_priv = dev->dev_private;
  6162. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6163. uint32_t pf, pipesrc;
  6164. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6165. int ret;
  6166. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6167. if (ret)
  6168. goto err;
  6169. ret = intel_ring_begin(ring, 4);
  6170. if (ret)
  6171. goto err_unpin;
  6172. /* i965+ uses the linear or tiled offsets from the
  6173. * Display Registers (which do not change across a page-flip)
  6174. * so we need only reprogram the base address.
  6175. */
  6176. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6177. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6178. intel_ring_emit(ring, fb->pitches[0]);
  6179. intel_ring_emit(ring,
  6180. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6181. obj->tiling_mode);
  6182. /* XXX Enabling the panel-fitter across page-flip is so far
  6183. * untested on non-native modes, so ignore it for now.
  6184. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6185. */
  6186. pf = 0;
  6187. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6188. intel_ring_emit(ring, pf | pipesrc);
  6189. intel_mark_page_flip_active(intel_crtc);
  6190. intel_ring_advance(ring);
  6191. return 0;
  6192. err_unpin:
  6193. intel_unpin_fb_obj(obj);
  6194. err:
  6195. return ret;
  6196. }
  6197. static int intel_gen6_queue_flip(struct drm_device *dev,
  6198. struct drm_crtc *crtc,
  6199. struct drm_framebuffer *fb,
  6200. struct drm_i915_gem_object *obj)
  6201. {
  6202. struct drm_i915_private *dev_priv = dev->dev_private;
  6203. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6204. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6205. uint32_t pf, pipesrc;
  6206. int ret;
  6207. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6208. if (ret)
  6209. goto err;
  6210. ret = intel_ring_begin(ring, 4);
  6211. if (ret)
  6212. goto err_unpin;
  6213. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6214. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6215. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6216. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6217. /* Contrary to the suggestions in the documentation,
  6218. * "Enable Panel Fitter" does not seem to be required when page
  6219. * flipping with a non-native mode, and worse causes a normal
  6220. * modeset to fail.
  6221. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6222. */
  6223. pf = 0;
  6224. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6225. intel_ring_emit(ring, pf | pipesrc);
  6226. intel_mark_page_flip_active(intel_crtc);
  6227. intel_ring_advance(ring);
  6228. return 0;
  6229. err_unpin:
  6230. intel_unpin_fb_obj(obj);
  6231. err:
  6232. return ret;
  6233. }
  6234. /*
  6235. * On gen7 we currently use the blit ring because (in early silicon at least)
  6236. * the render ring doesn't give us interrpts for page flip completion, which
  6237. * means clients will hang after the first flip is queued. Fortunately the
  6238. * blit ring generates interrupts properly, so use it instead.
  6239. */
  6240. static int intel_gen7_queue_flip(struct drm_device *dev,
  6241. struct drm_crtc *crtc,
  6242. struct drm_framebuffer *fb,
  6243. struct drm_i915_gem_object *obj)
  6244. {
  6245. struct drm_i915_private *dev_priv = dev->dev_private;
  6246. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6247. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6248. uint32_t plane_bit = 0;
  6249. int ret;
  6250. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6251. if (ret)
  6252. goto err;
  6253. switch(intel_crtc->plane) {
  6254. case PLANE_A:
  6255. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6256. break;
  6257. case PLANE_B:
  6258. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6259. break;
  6260. case PLANE_C:
  6261. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6262. break;
  6263. default:
  6264. WARN_ONCE(1, "unknown plane in flip command\n");
  6265. ret = -ENODEV;
  6266. goto err_unpin;
  6267. }
  6268. ret = intel_ring_begin(ring, 4);
  6269. if (ret)
  6270. goto err_unpin;
  6271. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6272. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6273. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6274. intel_ring_emit(ring, (MI_NOOP));
  6275. intel_mark_page_flip_active(intel_crtc);
  6276. intel_ring_advance(ring);
  6277. return 0;
  6278. err_unpin:
  6279. intel_unpin_fb_obj(obj);
  6280. err:
  6281. return ret;
  6282. }
  6283. static int intel_default_queue_flip(struct drm_device *dev,
  6284. struct drm_crtc *crtc,
  6285. struct drm_framebuffer *fb,
  6286. struct drm_i915_gem_object *obj)
  6287. {
  6288. return -ENODEV;
  6289. }
  6290. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6291. struct drm_framebuffer *fb,
  6292. struct drm_pending_vblank_event *event)
  6293. {
  6294. struct drm_device *dev = crtc->dev;
  6295. struct drm_i915_private *dev_priv = dev->dev_private;
  6296. struct drm_framebuffer *old_fb = crtc->fb;
  6297. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6298. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6299. struct intel_unpin_work *work;
  6300. unsigned long flags;
  6301. int ret;
  6302. /* Can't change pixel format via MI display flips. */
  6303. if (fb->pixel_format != crtc->fb->pixel_format)
  6304. return -EINVAL;
  6305. /*
  6306. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6307. * Note that pitch changes could also affect these register.
  6308. */
  6309. if (INTEL_INFO(dev)->gen > 3 &&
  6310. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6311. fb->pitches[0] != crtc->fb->pitches[0]))
  6312. return -EINVAL;
  6313. work = kzalloc(sizeof *work, GFP_KERNEL);
  6314. if (work == NULL)
  6315. return -ENOMEM;
  6316. work->event = event;
  6317. work->crtc = crtc;
  6318. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6319. INIT_WORK(&work->work, intel_unpin_work_fn);
  6320. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6321. if (ret)
  6322. goto free_work;
  6323. /* We borrow the event spin lock for protecting unpin_work */
  6324. spin_lock_irqsave(&dev->event_lock, flags);
  6325. if (intel_crtc->unpin_work) {
  6326. spin_unlock_irqrestore(&dev->event_lock, flags);
  6327. kfree(work);
  6328. drm_vblank_put(dev, intel_crtc->pipe);
  6329. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6330. return -EBUSY;
  6331. }
  6332. intel_crtc->unpin_work = work;
  6333. spin_unlock_irqrestore(&dev->event_lock, flags);
  6334. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6335. flush_workqueue(dev_priv->wq);
  6336. ret = i915_mutex_lock_interruptible(dev);
  6337. if (ret)
  6338. goto cleanup;
  6339. /* Reference the objects for the scheduled work. */
  6340. drm_gem_object_reference(&work->old_fb_obj->base);
  6341. drm_gem_object_reference(&obj->base);
  6342. crtc->fb = fb;
  6343. work->pending_flip_obj = obj;
  6344. work->enable_stall_check = true;
  6345. atomic_inc(&intel_crtc->unpin_work_count);
  6346. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6347. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6348. if (ret)
  6349. goto cleanup_pending;
  6350. intel_disable_fbc(dev);
  6351. intel_mark_fb_busy(obj);
  6352. mutex_unlock(&dev->struct_mutex);
  6353. trace_i915_flip_request(intel_crtc->plane, obj);
  6354. return 0;
  6355. cleanup_pending:
  6356. atomic_dec(&intel_crtc->unpin_work_count);
  6357. crtc->fb = old_fb;
  6358. drm_gem_object_unreference(&work->old_fb_obj->base);
  6359. drm_gem_object_unreference(&obj->base);
  6360. mutex_unlock(&dev->struct_mutex);
  6361. cleanup:
  6362. spin_lock_irqsave(&dev->event_lock, flags);
  6363. intel_crtc->unpin_work = NULL;
  6364. spin_unlock_irqrestore(&dev->event_lock, flags);
  6365. drm_vblank_put(dev, intel_crtc->pipe);
  6366. free_work:
  6367. kfree(work);
  6368. return ret;
  6369. }
  6370. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6371. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6372. .load_lut = intel_crtc_load_lut,
  6373. };
  6374. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6375. {
  6376. struct intel_encoder *other_encoder;
  6377. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6378. if (WARN_ON(!crtc))
  6379. return false;
  6380. list_for_each_entry(other_encoder,
  6381. &crtc->dev->mode_config.encoder_list,
  6382. base.head) {
  6383. if (&other_encoder->new_crtc->base != crtc ||
  6384. encoder == other_encoder)
  6385. continue;
  6386. else
  6387. return true;
  6388. }
  6389. return false;
  6390. }
  6391. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6392. struct drm_crtc *crtc)
  6393. {
  6394. struct drm_device *dev;
  6395. struct drm_crtc *tmp;
  6396. int crtc_mask = 1;
  6397. WARN(!crtc, "checking null crtc?\n");
  6398. dev = crtc->dev;
  6399. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6400. if (tmp == crtc)
  6401. break;
  6402. crtc_mask <<= 1;
  6403. }
  6404. if (encoder->possible_crtcs & crtc_mask)
  6405. return true;
  6406. return false;
  6407. }
  6408. /**
  6409. * intel_modeset_update_staged_output_state
  6410. *
  6411. * Updates the staged output configuration state, e.g. after we've read out the
  6412. * current hw state.
  6413. */
  6414. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6415. {
  6416. struct intel_encoder *encoder;
  6417. struct intel_connector *connector;
  6418. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6419. base.head) {
  6420. connector->new_encoder =
  6421. to_intel_encoder(connector->base.encoder);
  6422. }
  6423. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6424. base.head) {
  6425. encoder->new_crtc =
  6426. to_intel_crtc(encoder->base.crtc);
  6427. }
  6428. }
  6429. /**
  6430. * intel_modeset_commit_output_state
  6431. *
  6432. * This function copies the stage display pipe configuration to the real one.
  6433. */
  6434. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6435. {
  6436. struct intel_encoder *encoder;
  6437. struct intel_connector *connector;
  6438. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6439. base.head) {
  6440. connector->base.encoder = &connector->new_encoder->base;
  6441. }
  6442. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6443. base.head) {
  6444. encoder->base.crtc = &encoder->new_crtc->base;
  6445. }
  6446. }
  6447. static int
  6448. pipe_config_set_bpp(struct drm_crtc *crtc,
  6449. struct drm_framebuffer *fb,
  6450. struct intel_crtc_config *pipe_config)
  6451. {
  6452. struct drm_device *dev = crtc->dev;
  6453. struct drm_connector *connector;
  6454. int bpp;
  6455. switch (fb->pixel_format) {
  6456. case DRM_FORMAT_C8:
  6457. bpp = 8*3; /* since we go through a colormap */
  6458. break;
  6459. case DRM_FORMAT_XRGB1555:
  6460. case DRM_FORMAT_ARGB1555:
  6461. /* checked in intel_framebuffer_init already */
  6462. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6463. return -EINVAL;
  6464. case DRM_FORMAT_RGB565:
  6465. bpp = 6*3; /* min is 18bpp */
  6466. break;
  6467. case DRM_FORMAT_XBGR8888:
  6468. case DRM_FORMAT_ABGR8888:
  6469. /* checked in intel_framebuffer_init already */
  6470. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6471. return -EINVAL;
  6472. case DRM_FORMAT_XRGB8888:
  6473. case DRM_FORMAT_ARGB8888:
  6474. bpp = 8*3;
  6475. break;
  6476. case DRM_FORMAT_XRGB2101010:
  6477. case DRM_FORMAT_ARGB2101010:
  6478. case DRM_FORMAT_XBGR2101010:
  6479. case DRM_FORMAT_ABGR2101010:
  6480. /* checked in intel_framebuffer_init already */
  6481. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6482. return -EINVAL;
  6483. bpp = 10*3;
  6484. break;
  6485. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6486. default:
  6487. DRM_DEBUG_KMS("unsupported depth\n");
  6488. return -EINVAL;
  6489. }
  6490. pipe_config->pipe_bpp = bpp;
  6491. /* Clamp display bpp to EDID value */
  6492. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6493. head) {
  6494. if (connector->encoder && connector->encoder->crtc != crtc)
  6495. continue;
  6496. /* Don't use an invalid EDID bpc value */
  6497. if (connector->display_info.bpc &&
  6498. connector->display_info.bpc * 3 < bpp) {
  6499. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6500. bpp, connector->display_info.bpc*3);
  6501. pipe_config->pipe_bpp = connector->display_info.bpc*3;
  6502. }
  6503. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6504. if (connector->display_info.bpc == 0 && bpp > 24) {
  6505. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6506. bpp);
  6507. pipe_config->pipe_bpp = 24;
  6508. }
  6509. }
  6510. return bpp;
  6511. }
  6512. static struct intel_crtc_config *
  6513. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6514. struct drm_framebuffer *fb,
  6515. struct drm_display_mode *mode)
  6516. {
  6517. struct drm_device *dev = crtc->dev;
  6518. struct drm_encoder_helper_funcs *encoder_funcs;
  6519. struct intel_encoder *encoder;
  6520. struct intel_crtc_config *pipe_config;
  6521. int plane_bpp, ret = -EINVAL;
  6522. bool retry = true;
  6523. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6524. if (!pipe_config)
  6525. return ERR_PTR(-ENOMEM);
  6526. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6527. drm_mode_copy(&pipe_config->requested_mode, mode);
  6528. plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
  6529. if (plane_bpp < 0)
  6530. goto fail;
  6531. encoder_retry:
  6532. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6533. * adjust it according to limitations or connector properties, and also
  6534. * a chance to reject the mode entirely.
  6535. */
  6536. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6537. base.head) {
  6538. if (&encoder->new_crtc->base != crtc)
  6539. continue;
  6540. if (encoder->compute_config) {
  6541. if (!(encoder->compute_config(encoder, pipe_config))) {
  6542. DRM_DEBUG_KMS("Encoder config failure\n");
  6543. goto fail;
  6544. }
  6545. continue;
  6546. }
  6547. encoder_funcs = encoder->base.helper_private;
  6548. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6549. &pipe_config->requested_mode,
  6550. &pipe_config->adjusted_mode))) {
  6551. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6552. goto fail;
  6553. }
  6554. }
  6555. ret = intel_crtc_compute_config(crtc, pipe_config);
  6556. if (ret < 0) {
  6557. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6558. goto fail;
  6559. }
  6560. if (ret == RETRY) {
  6561. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6562. ret = -EINVAL;
  6563. goto fail;
  6564. }
  6565. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6566. retry = false;
  6567. goto encoder_retry;
  6568. }
  6569. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6570. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6571. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6572. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6573. return pipe_config;
  6574. fail:
  6575. kfree(pipe_config);
  6576. return ERR_PTR(ret);
  6577. }
  6578. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6579. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6580. static void
  6581. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6582. unsigned *prepare_pipes, unsigned *disable_pipes)
  6583. {
  6584. struct intel_crtc *intel_crtc;
  6585. struct drm_device *dev = crtc->dev;
  6586. struct intel_encoder *encoder;
  6587. struct intel_connector *connector;
  6588. struct drm_crtc *tmp_crtc;
  6589. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6590. /* Check which crtcs have changed outputs connected to them, these need
  6591. * to be part of the prepare_pipes mask. We don't (yet) support global
  6592. * modeset across multiple crtcs, so modeset_pipes will only have one
  6593. * bit set at most. */
  6594. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6595. base.head) {
  6596. if (connector->base.encoder == &connector->new_encoder->base)
  6597. continue;
  6598. if (connector->base.encoder) {
  6599. tmp_crtc = connector->base.encoder->crtc;
  6600. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6601. }
  6602. if (connector->new_encoder)
  6603. *prepare_pipes |=
  6604. 1 << connector->new_encoder->new_crtc->pipe;
  6605. }
  6606. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6607. base.head) {
  6608. if (encoder->base.crtc == &encoder->new_crtc->base)
  6609. continue;
  6610. if (encoder->base.crtc) {
  6611. tmp_crtc = encoder->base.crtc;
  6612. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6613. }
  6614. if (encoder->new_crtc)
  6615. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6616. }
  6617. /* Check for any pipes that will be fully disabled ... */
  6618. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6619. base.head) {
  6620. bool used = false;
  6621. /* Don't try to disable disabled crtcs. */
  6622. if (!intel_crtc->base.enabled)
  6623. continue;
  6624. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6625. base.head) {
  6626. if (encoder->new_crtc == intel_crtc)
  6627. used = true;
  6628. }
  6629. if (!used)
  6630. *disable_pipes |= 1 << intel_crtc->pipe;
  6631. }
  6632. /* set_mode is also used to update properties on life display pipes. */
  6633. intel_crtc = to_intel_crtc(crtc);
  6634. if (crtc->enabled)
  6635. *prepare_pipes |= 1 << intel_crtc->pipe;
  6636. /*
  6637. * For simplicity do a full modeset on any pipe where the output routing
  6638. * changed. We could be more clever, but that would require us to be
  6639. * more careful with calling the relevant encoder->mode_set functions.
  6640. */
  6641. if (*prepare_pipes)
  6642. *modeset_pipes = *prepare_pipes;
  6643. /* ... and mask these out. */
  6644. *modeset_pipes &= ~(*disable_pipes);
  6645. *prepare_pipes &= ~(*disable_pipes);
  6646. /*
  6647. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6648. * obies this rule, but the modeset restore mode of
  6649. * intel_modeset_setup_hw_state does not.
  6650. */
  6651. *modeset_pipes &= 1 << intel_crtc->pipe;
  6652. *prepare_pipes &= 1 << intel_crtc->pipe;
  6653. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6654. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6655. }
  6656. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6657. {
  6658. struct drm_encoder *encoder;
  6659. struct drm_device *dev = crtc->dev;
  6660. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6661. if (encoder->crtc == crtc)
  6662. return true;
  6663. return false;
  6664. }
  6665. static void
  6666. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6667. {
  6668. struct intel_encoder *intel_encoder;
  6669. struct intel_crtc *intel_crtc;
  6670. struct drm_connector *connector;
  6671. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6672. base.head) {
  6673. if (!intel_encoder->base.crtc)
  6674. continue;
  6675. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6676. if (prepare_pipes & (1 << intel_crtc->pipe))
  6677. intel_encoder->connectors_active = false;
  6678. }
  6679. intel_modeset_commit_output_state(dev);
  6680. /* Update computed state. */
  6681. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6682. base.head) {
  6683. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6684. }
  6685. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6686. if (!connector->encoder || !connector->encoder->crtc)
  6687. continue;
  6688. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6689. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6690. struct drm_property *dpms_property =
  6691. dev->mode_config.dpms_property;
  6692. connector->dpms = DRM_MODE_DPMS_ON;
  6693. drm_object_property_set_value(&connector->base,
  6694. dpms_property,
  6695. DRM_MODE_DPMS_ON);
  6696. intel_encoder = to_intel_encoder(connector->encoder);
  6697. intel_encoder->connectors_active = true;
  6698. }
  6699. }
  6700. }
  6701. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6702. list_for_each_entry((intel_crtc), \
  6703. &(dev)->mode_config.crtc_list, \
  6704. base.head) \
  6705. if (mask & (1 <<(intel_crtc)->pipe))
  6706. static bool
  6707. intel_pipe_config_compare(struct intel_crtc_config *current_config,
  6708. struct intel_crtc_config *pipe_config)
  6709. {
  6710. #define PIPE_CONF_CHECK_I(name) \
  6711. if (current_config->name != pipe_config->name) { \
  6712. DRM_ERROR("mismatch in " #name " " \
  6713. "(expected %i, found %i)\n", \
  6714. current_config->name, \
  6715. pipe_config->name); \
  6716. return false; \
  6717. }
  6718. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6719. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6720. DRM_ERROR("mismatch in " #name " " \
  6721. "(expected %i, found %i)\n", \
  6722. current_config->name & (mask), \
  6723. pipe_config->name & (mask)); \
  6724. return false; \
  6725. }
  6726. PIPE_CONF_CHECK_I(has_pch_encoder);
  6727. PIPE_CONF_CHECK_I(fdi_lanes);
  6728. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6729. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6730. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6731. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6732. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6733. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6734. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6735. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6736. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6737. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6738. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6739. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6740. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6741. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6742. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6743. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6744. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6745. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6746. DRM_MODE_FLAG_INTERLACE);
  6747. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6748. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6749. #undef PIPE_CONF_CHECK_I
  6750. #undef PIPE_CONF_CHECK_FLAGS
  6751. return true;
  6752. }
  6753. void
  6754. intel_modeset_check_state(struct drm_device *dev)
  6755. {
  6756. drm_i915_private_t *dev_priv = dev->dev_private;
  6757. struct intel_crtc *crtc;
  6758. struct intel_encoder *encoder;
  6759. struct intel_connector *connector;
  6760. struct intel_crtc_config pipe_config;
  6761. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6762. base.head) {
  6763. /* This also checks the encoder/connector hw state with the
  6764. * ->get_hw_state callbacks. */
  6765. intel_connector_check_state(connector);
  6766. WARN(&connector->new_encoder->base != connector->base.encoder,
  6767. "connector's staged encoder doesn't match current encoder\n");
  6768. }
  6769. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6770. base.head) {
  6771. bool enabled = false;
  6772. bool active = false;
  6773. enum pipe pipe, tracked_pipe;
  6774. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6775. encoder->base.base.id,
  6776. drm_get_encoder_name(&encoder->base));
  6777. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6778. "encoder's stage crtc doesn't match current crtc\n");
  6779. WARN(encoder->connectors_active && !encoder->base.crtc,
  6780. "encoder's active_connectors set, but no crtc\n");
  6781. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6782. base.head) {
  6783. if (connector->base.encoder != &encoder->base)
  6784. continue;
  6785. enabled = true;
  6786. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6787. active = true;
  6788. }
  6789. WARN(!!encoder->base.crtc != enabled,
  6790. "encoder's enabled state mismatch "
  6791. "(expected %i, found %i)\n",
  6792. !!encoder->base.crtc, enabled);
  6793. WARN(active && !encoder->base.crtc,
  6794. "active encoder with no crtc\n");
  6795. WARN(encoder->connectors_active != active,
  6796. "encoder's computed active state doesn't match tracked active state "
  6797. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6798. active = encoder->get_hw_state(encoder, &pipe);
  6799. WARN(active != encoder->connectors_active,
  6800. "encoder's hw state doesn't match sw tracking "
  6801. "(expected %i, found %i)\n",
  6802. encoder->connectors_active, active);
  6803. if (!encoder->base.crtc)
  6804. continue;
  6805. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6806. WARN(active && pipe != tracked_pipe,
  6807. "active encoder's pipe doesn't match"
  6808. "(expected %i, found %i)\n",
  6809. tracked_pipe, pipe);
  6810. }
  6811. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6812. base.head) {
  6813. bool enabled = false;
  6814. bool active = false;
  6815. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6816. crtc->base.base.id);
  6817. WARN(crtc->active && !crtc->base.enabled,
  6818. "active crtc, but not enabled in sw tracking\n");
  6819. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6820. base.head) {
  6821. if (encoder->base.crtc != &crtc->base)
  6822. continue;
  6823. enabled = true;
  6824. if (encoder->connectors_active)
  6825. active = true;
  6826. }
  6827. WARN(active != crtc->active,
  6828. "crtc's computed active state doesn't match tracked active state "
  6829. "(expected %i, found %i)\n", active, crtc->active);
  6830. WARN(enabled != crtc->base.enabled,
  6831. "crtc's computed enabled state doesn't match tracked enabled state "
  6832. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6833. memset(&pipe_config, 0, sizeof(pipe_config));
  6834. pipe_config.cpu_transcoder = crtc->config.cpu_transcoder;
  6835. active = dev_priv->display.get_pipe_config(crtc,
  6836. &pipe_config);
  6837. WARN(crtc->active != active,
  6838. "crtc active state doesn't match with hw state "
  6839. "(expected %i, found %i)\n", crtc->active, active);
  6840. WARN(active &&
  6841. !intel_pipe_config_compare(&crtc->config, &pipe_config),
  6842. "pipe state doesn't match!\n");
  6843. }
  6844. }
  6845. static int __intel_set_mode(struct drm_crtc *crtc,
  6846. struct drm_display_mode *mode,
  6847. int x, int y, struct drm_framebuffer *fb)
  6848. {
  6849. struct drm_device *dev = crtc->dev;
  6850. drm_i915_private_t *dev_priv = dev->dev_private;
  6851. struct drm_display_mode *saved_mode, *saved_hwmode;
  6852. struct intel_crtc_config *pipe_config = NULL;
  6853. struct intel_crtc *intel_crtc;
  6854. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6855. int ret = 0;
  6856. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6857. if (!saved_mode)
  6858. return -ENOMEM;
  6859. saved_hwmode = saved_mode + 1;
  6860. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6861. &prepare_pipes, &disable_pipes);
  6862. *saved_hwmode = crtc->hwmode;
  6863. *saved_mode = crtc->mode;
  6864. /* Hack: Because we don't (yet) support global modeset on multiple
  6865. * crtcs, we don't keep track of the new mode for more than one crtc.
  6866. * Hence simply check whether any bit is set in modeset_pipes in all the
  6867. * pieces of code that are not yet converted to deal with mutliple crtcs
  6868. * changing their mode at the same time. */
  6869. if (modeset_pipes) {
  6870. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6871. if (IS_ERR(pipe_config)) {
  6872. ret = PTR_ERR(pipe_config);
  6873. pipe_config = NULL;
  6874. goto out;
  6875. }
  6876. }
  6877. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6878. intel_crtc_disable(&intel_crtc->base);
  6879. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6880. if (intel_crtc->base.enabled)
  6881. dev_priv->display.crtc_disable(&intel_crtc->base);
  6882. }
  6883. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6884. * to set it here already despite that we pass it down the callchain.
  6885. */
  6886. if (modeset_pipes) {
  6887. enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
  6888. crtc->mode = *mode;
  6889. /* mode_set/enable/disable functions rely on a correct pipe
  6890. * config. */
  6891. to_intel_crtc(crtc)->config = *pipe_config;
  6892. to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
  6893. }
  6894. /* Only after disabling all output pipelines that will be changed can we
  6895. * update the the output configuration. */
  6896. intel_modeset_update_state(dev, prepare_pipes);
  6897. if (dev_priv->display.modeset_global_resources)
  6898. dev_priv->display.modeset_global_resources(dev);
  6899. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6900. * on the DPLL.
  6901. */
  6902. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6903. ret = intel_crtc_mode_set(&intel_crtc->base,
  6904. x, y, fb);
  6905. if (ret)
  6906. goto done;
  6907. }
  6908. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6909. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6910. dev_priv->display.crtc_enable(&intel_crtc->base);
  6911. if (modeset_pipes) {
  6912. /* Store real post-adjustment hardware mode. */
  6913. crtc->hwmode = pipe_config->adjusted_mode;
  6914. /* Calculate and store various constants which
  6915. * are later needed by vblank and swap-completion
  6916. * timestamping. They are derived from true hwmode.
  6917. */
  6918. drm_calc_timestamping_constants(crtc);
  6919. }
  6920. /* FIXME: add subpixel order */
  6921. done:
  6922. if (ret && crtc->enabled) {
  6923. crtc->hwmode = *saved_hwmode;
  6924. crtc->mode = *saved_mode;
  6925. }
  6926. out:
  6927. kfree(pipe_config);
  6928. kfree(saved_mode);
  6929. return ret;
  6930. }
  6931. int intel_set_mode(struct drm_crtc *crtc,
  6932. struct drm_display_mode *mode,
  6933. int x, int y, struct drm_framebuffer *fb)
  6934. {
  6935. int ret;
  6936. ret = __intel_set_mode(crtc, mode, x, y, fb);
  6937. if (ret == 0)
  6938. intel_modeset_check_state(crtc->dev);
  6939. return ret;
  6940. }
  6941. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  6942. {
  6943. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  6944. }
  6945. #undef for_each_intel_crtc_masked
  6946. static void intel_set_config_free(struct intel_set_config *config)
  6947. {
  6948. if (!config)
  6949. return;
  6950. kfree(config->save_connector_encoders);
  6951. kfree(config->save_encoder_crtcs);
  6952. kfree(config);
  6953. }
  6954. static int intel_set_config_save_state(struct drm_device *dev,
  6955. struct intel_set_config *config)
  6956. {
  6957. struct drm_encoder *encoder;
  6958. struct drm_connector *connector;
  6959. int count;
  6960. config->save_encoder_crtcs =
  6961. kcalloc(dev->mode_config.num_encoder,
  6962. sizeof(struct drm_crtc *), GFP_KERNEL);
  6963. if (!config->save_encoder_crtcs)
  6964. return -ENOMEM;
  6965. config->save_connector_encoders =
  6966. kcalloc(dev->mode_config.num_connector,
  6967. sizeof(struct drm_encoder *), GFP_KERNEL);
  6968. if (!config->save_connector_encoders)
  6969. return -ENOMEM;
  6970. /* Copy data. Note that driver private data is not affected.
  6971. * Should anything bad happen only the expected state is
  6972. * restored, not the drivers personal bookkeeping.
  6973. */
  6974. count = 0;
  6975. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6976. config->save_encoder_crtcs[count++] = encoder->crtc;
  6977. }
  6978. count = 0;
  6979. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6980. config->save_connector_encoders[count++] = connector->encoder;
  6981. }
  6982. return 0;
  6983. }
  6984. static void intel_set_config_restore_state(struct drm_device *dev,
  6985. struct intel_set_config *config)
  6986. {
  6987. struct intel_encoder *encoder;
  6988. struct intel_connector *connector;
  6989. int count;
  6990. count = 0;
  6991. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6992. encoder->new_crtc =
  6993. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6994. }
  6995. count = 0;
  6996. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6997. connector->new_encoder =
  6998. to_intel_encoder(config->save_connector_encoders[count++]);
  6999. }
  7000. }
  7001. static void
  7002. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7003. struct intel_set_config *config)
  7004. {
  7005. /* We should be able to check here if the fb has the same properties
  7006. * and then just flip_or_move it */
  7007. if (set->crtc->fb != set->fb) {
  7008. /* If we have no fb then treat it as a full mode set */
  7009. if (set->crtc->fb == NULL) {
  7010. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7011. config->mode_changed = true;
  7012. } else if (set->fb == NULL) {
  7013. config->mode_changed = true;
  7014. } else if (set->fb->pixel_format !=
  7015. set->crtc->fb->pixel_format) {
  7016. config->mode_changed = true;
  7017. } else
  7018. config->fb_changed = true;
  7019. }
  7020. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7021. config->fb_changed = true;
  7022. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7023. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7024. drm_mode_debug_printmodeline(&set->crtc->mode);
  7025. drm_mode_debug_printmodeline(set->mode);
  7026. config->mode_changed = true;
  7027. }
  7028. }
  7029. static int
  7030. intel_modeset_stage_output_state(struct drm_device *dev,
  7031. struct drm_mode_set *set,
  7032. struct intel_set_config *config)
  7033. {
  7034. struct drm_crtc *new_crtc;
  7035. struct intel_connector *connector;
  7036. struct intel_encoder *encoder;
  7037. int count, ro;
  7038. /* The upper layers ensure that we either disable a crtc or have a list
  7039. * of connectors. For paranoia, double-check this. */
  7040. WARN_ON(!set->fb && (set->num_connectors != 0));
  7041. WARN_ON(set->fb && (set->num_connectors == 0));
  7042. count = 0;
  7043. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7044. base.head) {
  7045. /* Otherwise traverse passed in connector list and get encoders
  7046. * for them. */
  7047. for (ro = 0; ro < set->num_connectors; ro++) {
  7048. if (set->connectors[ro] == &connector->base) {
  7049. connector->new_encoder = connector->encoder;
  7050. break;
  7051. }
  7052. }
  7053. /* If we disable the crtc, disable all its connectors. Also, if
  7054. * the connector is on the changing crtc but not on the new
  7055. * connector list, disable it. */
  7056. if ((!set->fb || ro == set->num_connectors) &&
  7057. connector->base.encoder &&
  7058. connector->base.encoder->crtc == set->crtc) {
  7059. connector->new_encoder = NULL;
  7060. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7061. connector->base.base.id,
  7062. drm_get_connector_name(&connector->base));
  7063. }
  7064. if (&connector->new_encoder->base != connector->base.encoder) {
  7065. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7066. config->mode_changed = true;
  7067. }
  7068. }
  7069. /* connector->new_encoder is now updated for all connectors. */
  7070. /* Update crtc of enabled connectors. */
  7071. count = 0;
  7072. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7073. base.head) {
  7074. if (!connector->new_encoder)
  7075. continue;
  7076. new_crtc = connector->new_encoder->base.crtc;
  7077. for (ro = 0; ro < set->num_connectors; ro++) {
  7078. if (set->connectors[ro] == &connector->base)
  7079. new_crtc = set->crtc;
  7080. }
  7081. /* Make sure the new CRTC will work with the encoder */
  7082. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7083. new_crtc)) {
  7084. return -EINVAL;
  7085. }
  7086. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7087. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7088. connector->base.base.id,
  7089. drm_get_connector_name(&connector->base),
  7090. new_crtc->base.id);
  7091. }
  7092. /* Check for any encoders that needs to be disabled. */
  7093. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7094. base.head) {
  7095. list_for_each_entry(connector,
  7096. &dev->mode_config.connector_list,
  7097. base.head) {
  7098. if (connector->new_encoder == encoder) {
  7099. WARN_ON(!connector->new_encoder->new_crtc);
  7100. goto next_encoder;
  7101. }
  7102. }
  7103. encoder->new_crtc = NULL;
  7104. next_encoder:
  7105. /* Only now check for crtc changes so we don't miss encoders
  7106. * that will be disabled. */
  7107. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7108. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7109. config->mode_changed = true;
  7110. }
  7111. }
  7112. /* Now we've also updated encoder->new_crtc for all encoders. */
  7113. return 0;
  7114. }
  7115. static int intel_crtc_set_config(struct drm_mode_set *set)
  7116. {
  7117. struct drm_device *dev;
  7118. struct drm_mode_set save_set;
  7119. struct intel_set_config *config;
  7120. int ret;
  7121. BUG_ON(!set);
  7122. BUG_ON(!set->crtc);
  7123. BUG_ON(!set->crtc->helper_private);
  7124. /* Enforce sane interface api - has been abused by the fb helper. */
  7125. BUG_ON(!set->mode && set->fb);
  7126. BUG_ON(set->fb && set->num_connectors == 0);
  7127. if (set->fb) {
  7128. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7129. set->crtc->base.id, set->fb->base.id,
  7130. (int)set->num_connectors, set->x, set->y);
  7131. } else {
  7132. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7133. }
  7134. dev = set->crtc->dev;
  7135. ret = -ENOMEM;
  7136. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7137. if (!config)
  7138. goto out_config;
  7139. ret = intel_set_config_save_state(dev, config);
  7140. if (ret)
  7141. goto out_config;
  7142. save_set.crtc = set->crtc;
  7143. save_set.mode = &set->crtc->mode;
  7144. save_set.x = set->crtc->x;
  7145. save_set.y = set->crtc->y;
  7146. save_set.fb = set->crtc->fb;
  7147. /* Compute whether we need a full modeset, only an fb base update or no
  7148. * change at all. In the future we might also check whether only the
  7149. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7150. * such cases. */
  7151. intel_set_config_compute_mode_changes(set, config);
  7152. ret = intel_modeset_stage_output_state(dev, set, config);
  7153. if (ret)
  7154. goto fail;
  7155. if (config->mode_changed) {
  7156. if (set->mode) {
  7157. DRM_DEBUG_KMS("attempting to set mode from"
  7158. " userspace\n");
  7159. drm_mode_debug_printmodeline(set->mode);
  7160. }
  7161. ret = intel_set_mode(set->crtc, set->mode,
  7162. set->x, set->y, set->fb);
  7163. if (ret) {
  7164. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  7165. set->crtc->base.id, ret);
  7166. goto fail;
  7167. }
  7168. } else if (config->fb_changed) {
  7169. intel_crtc_wait_for_pending_flips(set->crtc);
  7170. ret = intel_pipe_set_base(set->crtc,
  7171. set->x, set->y, set->fb);
  7172. }
  7173. intel_set_config_free(config);
  7174. return 0;
  7175. fail:
  7176. intel_set_config_restore_state(dev, config);
  7177. /* Try to restore the config */
  7178. if (config->mode_changed &&
  7179. intel_set_mode(save_set.crtc, save_set.mode,
  7180. save_set.x, save_set.y, save_set.fb))
  7181. DRM_ERROR("failed to restore config after modeset failure\n");
  7182. out_config:
  7183. intel_set_config_free(config);
  7184. return ret;
  7185. }
  7186. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7187. .cursor_set = intel_crtc_cursor_set,
  7188. .cursor_move = intel_crtc_cursor_move,
  7189. .gamma_set = intel_crtc_gamma_set,
  7190. .set_config = intel_crtc_set_config,
  7191. .destroy = intel_crtc_destroy,
  7192. .page_flip = intel_crtc_page_flip,
  7193. };
  7194. static void intel_cpu_pll_init(struct drm_device *dev)
  7195. {
  7196. if (HAS_DDI(dev))
  7197. intel_ddi_pll_init(dev);
  7198. }
  7199. static void intel_pch_pll_init(struct drm_device *dev)
  7200. {
  7201. drm_i915_private_t *dev_priv = dev->dev_private;
  7202. int i;
  7203. if (dev_priv->num_pch_pll == 0) {
  7204. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7205. return;
  7206. }
  7207. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7208. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7209. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7210. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7211. }
  7212. }
  7213. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7214. {
  7215. drm_i915_private_t *dev_priv = dev->dev_private;
  7216. struct intel_crtc *intel_crtc;
  7217. int i;
  7218. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7219. if (intel_crtc == NULL)
  7220. return;
  7221. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7222. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7223. for (i = 0; i < 256; i++) {
  7224. intel_crtc->lut_r[i] = i;
  7225. intel_crtc->lut_g[i] = i;
  7226. intel_crtc->lut_b[i] = i;
  7227. }
  7228. /* Swap pipes & planes for FBC on pre-965 */
  7229. intel_crtc->pipe = pipe;
  7230. intel_crtc->plane = pipe;
  7231. intel_crtc->config.cpu_transcoder = pipe;
  7232. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7233. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7234. intel_crtc->plane = !pipe;
  7235. }
  7236. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7237. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7238. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7239. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7240. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7241. }
  7242. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7243. struct drm_file *file)
  7244. {
  7245. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7246. struct drm_mode_object *drmmode_obj;
  7247. struct intel_crtc *crtc;
  7248. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7249. return -ENODEV;
  7250. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7251. DRM_MODE_OBJECT_CRTC);
  7252. if (!drmmode_obj) {
  7253. DRM_ERROR("no such CRTC id\n");
  7254. return -EINVAL;
  7255. }
  7256. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7257. pipe_from_crtc_id->pipe = crtc->pipe;
  7258. return 0;
  7259. }
  7260. static int intel_encoder_clones(struct intel_encoder *encoder)
  7261. {
  7262. struct drm_device *dev = encoder->base.dev;
  7263. struct intel_encoder *source_encoder;
  7264. int index_mask = 0;
  7265. int entry = 0;
  7266. list_for_each_entry(source_encoder,
  7267. &dev->mode_config.encoder_list, base.head) {
  7268. if (encoder == source_encoder)
  7269. index_mask |= (1 << entry);
  7270. /* Intel hw has only one MUX where enocoders could be cloned. */
  7271. if (encoder->cloneable && source_encoder->cloneable)
  7272. index_mask |= (1 << entry);
  7273. entry++;
  7274. }
  7275. return index_mask;
  7276. }
  7277. static bool has_edp_a(struct drm_device *dev)
  7278. {
  7279. struct drm_i915_private *dev_priv = dev->dev_private;
  7280. if (!IS_MOBILE(dev))
  7281. return false;
  7282. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7283. return false;
  7284. if (IS_GEN5(dev) &&
  7285. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7286. return false;
  7287. return true;
  7288. }
  7289. static void intel_setup_outputs(struct drm_device *dev)
  7290. {
  7291. struct drm_i915_private *dev_priv = dev->dev_private;
  7292. struct intel_encoder *encoder;
  7293. bool dpd_is_edp = false;
  7294. bool has_lvds;
  7295. has_lvds = intel_lvds_init(dev);
  7296. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7297. /* disable the panel fitter on everything but LVDS */
  7298. I915_WRITE(PFIT_CONTROL, 0);
  7299. }
  7300. if (!IS_ULT(dev))
  7301. intel_crt_init(dev);
  7302. if (HAS_DDI(dev)) {
  7303. int found;
  7304. /* Haswell uses DDI functions to detect digital outputs */
  7305. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7306. /* DDI A only supports eDP */
  7307. if (found)
  7308. intel_ddi_init(dev, PORT_A);
  7309. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7310. * register */
  7311. found = I915_READ(SFUSE_STRAP);
  7312. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7313. intel_ddi_init(dev, PORT_B);
  7314. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7315. intel_ddi_init(dev, PORT_C);
  7316. if (found & SFUSE_STRAP_DDID_DETECTED)
  7317. intel_ddi_init(dev, PORT_D);
  7318. } else if (HAS_PCH_SPLIT(dev)) {
  7319. int found;
  7320. dpd_is_edp = intel_dpd_is_edp(dev);
  7321. if (has_edp_a(dev))
  7322. intel_dp_init(dev, DP_A, PORT_A);
  7323. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7324. /* PCH SDVOB multiplex with HDMIB */
  7325. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7326. if (!found)
  7327. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7328. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7329. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7330. }
  7331. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7332. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7333. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7334. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7335. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7336. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7337. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7338. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7339. } else if (IS_VALLEYVIEW(dev)) {
  7340. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7341. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7342. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7343. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7344. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7345. PORT_B);
  7346. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7347. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7348. }
  7349. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7350. bool found = false;
  7351. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7352. DRM_DEBUG_KMS("probing SDVOB\n");
  7353. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7354. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7355. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7356. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7357. }
  7358. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  7359. DRM_DEBUG_KMS("probing DP_B\n");
  7360. intel_dp_init(dev, DP_B, PORT_B);
  7361. }
  7362. }
  7363. /* Before G4X SDVOC doesn't have its own detect register */
  7364. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7365. DRM_DEBUG_KMS("probing SDVOC\n");
  7366. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7367. }
  7368. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7369. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7370. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7371. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7372. }
  7373. if (SUPPORTS_INTEGRATED_DP(dev)) {
  7374. DRM_DEBUG_KMS("probing DP_C\n");
  7375. intel_dp_init(dev, DP_C, PORT_C);
  7376. }
  7377. }
  7378. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7379. (I915_READ(DP_D) & DP_DETECTED)) {
  7380. DRM_DEBUG_KMS("probing DP_D\n");
  7381. intel_dp_init(dev, DP_D, PORT_D);
  7382. }
  7383. } else if (IS_GEN2(dev))
  7384. intel_dvo_init(dev);
  7385. if (SUPPORTS_TV(dev))
  7386. intel_tv_init(dev);
  7387. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7388. encoder->base.possible_crtcs = encoder->crtc_mask;
  7389. encoder->base.possible_clones =
  7390. intel_encoder_clones(encoder);
  7391. }
  7392. intel_init_pch_refclk(dev);
  7393. drm_helper_move_panel_connectors_to_head(dev);
  7394. }
  7395. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7396. {
  7397. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7398. drm_framebuffer_cleanup(fb);
  7399. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7400. kfree(intel_fb);
  7401. }
  7402. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7403. struct drm_file *file,
  7404. unsigned int *handle)
  7405. {
  7406. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7407. struct drm_i915_gem_object *obj = intel_fb->obj;
  7408. return drm_gem_handle_create(file, &obj->base, handle);
  7409. }
  7410. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7411. .destroy = intel_user_framebuffer_destroy,
  7412. .create_handle = intel_user_framebuffer_create_handle,
  7413. };
  7414. int intel_framebuffer_init(struct drm_device *dev,
  7415. struct intel_framebuffer *intel_fb,
  7416. struct drm_mode_fb_cmd2 *mode_cmd,
  7417. struct drm_i915_gem_object *obj)
  7418. {
  7419. int ret;
  7420. if (obj->tiling_mode == I915_TILING_Y) {
  7421. DRM_DEBUG("hardware does not support tiling Y\n");
  7422. return -EINVAL;
  7423. }
  7424. if (mode_cmd->pitches[0] & 63) {
  7425. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7426. mode_cmd->pitches[0]);
  7427. return -EINVAL;
  7428. }
  7429. /* FIXME <= Gen4 stride limits are bit unclear */
  7430. if (mode_cmd->pitches[0] > 32768) {
  7431. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7432. mode_cmd->pitches[0]);
  7433. return -EINVAL;
  7434. }
  7435. if (obj->tiling_mode != I915_TILING_NONE &&
  7436. mode_cmd->pitches[0] != obj->stride) {
  7437. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7438. mode_cmd->pitches[0], obj->stride);
  7439. return -EINVAL;
  7440. }
  7441. /* Reject formats not supported by any plane early. */
  7442. switch (mode_cmd->pixel_format) {
  7443. case DRM_FORMAT_C8:
  7444. case DRM_FORMAT_RGB565:
  7445. case DRM_FORMAT_XRGB8888:
  7446. case DRM_FORMAT_ARGB8888:
  7447. break;
  7448. case DRM_FORMAT_XRGB1555:
  7449. case DRM_FORMAT_ARGB1555:
  7450. if (INTEL_INFO(dev)->gen > 3) {
  7451. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7452. return -EINVAL;
  7453. }
  7454. break;
  7455. case DRM_FORMAT_XBGR8888:
  7456. case DRM_FORMAT_ABGR8888:
  7457. case DRM_FORMAT_XRGB2101010:
  7458. case DRM_FORMAT_ARGB2101010:
  7459. case DRM_FORMAT_XBGR2101010:
  7460. case DRM_FORMAT_ABGR2101010:
  7461. if (INTEL_INFO(dev)->gen < 4) {
  7462. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7463. return -EINVAL;
  7464. }
  7465. break;
  7466. case DRM_FORMAT_YUYV:
  7467. case DRM_FORMAT_UYVY:
  7468. case DRM_FORMAT_YVYU:
  7469. case DRM_FORMAT_VYUY:
  7470. if (INTEL_INFO(dev)->gen < 5) {
  7471. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7472. return -EINVAL;
  7473. }
  7474. break;
  7475. default:
  7476. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7477. return -EINVAL;
  7478. }
  7479. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7480. if (mode_cmd->offsets[0] != 0)
  7481. return -EINVAL;
  7482. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7483. intel_fb->obj = obj;
  7484. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7485. if (ret) {
  7486. DRM_ERROR("framebuffer init failed %d\n", ret);
  7487. return ret;
  7488. }
  7489. return 0;
  7490. }
  7491. static struct drm_framebuffer *
  7492. intel_user_framebuffer_create(struct drm_device *dev,
  7493. struct drm_file *filp,
  7494. struct drm_mode_fb_cmd2 *mode_cmd)
  7495. {
  7496. struct drm_i915_gem_object *obj;
  7497. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7498. mode_cmd->handles[0]));
  7499. if (&obj->base == NULL)
  7500. return ERR_PTR(-ENOENT);
  7501. return intel_framebuffer_create(dev, mode_cmd, obj);
  7502. }
  7503. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7504. .fb_create = intel_user_framebuffer_create,
  7505. .output_poll_changed = intel_fb_output_poll_changed,
  7506. };
  7507. /* Set up chip specific display functions */
  7508. static void intel_init_display(struct drm_device *dev)
  7509. {
  7510. struct drm_i915_private *dev_priv = dev->dev_private;
  7511. if (HAS_DDI(dev)) {
  7512. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7513. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7514. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7515. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7516. dev_priv->display.off = haswell_crtc_off;
  7517. dev_priv->display.update_plane = ironlake_update_plane;
  7518. } else if (HAS_PCH_SPLIT(dev)) {
  7519. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7520. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7521. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7522. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7523. dev_priv->display.off = ironlake_crtc_off;
  7524. dev_priv->display.update_plane = ironlake_update_plane;
  7525. } else if (IS_VALLEYVIEW(dev)) {
  7526. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7527. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7528. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7529. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7530. dev_priv->display.off = i9xx_crtc_off;
  7531. dev_priv->display.update_plane = i9xx_update_plane;
  7532. } else {
  7533. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7534. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7535. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7536. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7537. dev_priv->display.off = i9xx_crtc_off;
  7538. dev_priv->display.update_plane = i9xx_update_plane;
  7539. }
  7540. /* Returns the core display clock speed */
  7541. if (IS_VALLEYVIEW(dev))
  7542. dev_priv->display.get_display_clock_speed =
  7543. valleyview_get_display_clock_speed;
  7544. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7545. dev_priv->display.get_display_clock_speed =
  7546. i945_get_display_clock_speed;
  7547. else if (IS_I915G(dev))
  7548. dev_priv->display.get_display_clock_speed =
  7549. i915_get_display_clock_speed;
  7550. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7551. dev_priv->display.get_display_clock_speed =
  7552. i9xx_misc_get_display_clock_speed;
  7553. else if (IS_I915GM(dev))
  7554. dev_priv->display.get_display_clock_speed =
  7555. i915gm_get_display_clock_speed;
  7556. else if (IS_I865G(dev))
  7557. dev_priv->display.get_display_clock_speed =
  7558. i865_get_display_clock_speed;
  7559. else if (IS_I85X(dev))
  7560. dev_priv->display.get_display_clock_speed =
  7561. i855_get_display_clock_speed;
  7562. else /* 852, 830 */
  7563. dev_priv->display.get_display_clock_speed =
  7564. i830_get_display_clock_speed;
  7565. if (HAS_PCH_SPLIT(dev)) {
  7566. if (IS_GEN5(dev)) {
  7567. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7568. dev_priv->display.write_eld = ironlake_write_eld;
  7569. } else if (IS_GEN6(dev)) {
  7570. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7571. dev_priv->display.write_eld = ironlake_write_eld;
  7572. } else if (IS_IVYBRIDGE(dev)) {
  7573. /* FIXME: detect B0+ stepping and use auto training */
  7574. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7575. dev_priv->display.write_eld = ironlake_write_eld;
  7576. dev_priv->display.modeset_global_resources =
  7577. ivb_modeset_global_resources;
  7578. } else if (IS_HASWELL(dev)) {
  7579. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7580. dev_priv->display.write_eld = haswell_write_eld;
  7581. dev_priv->display.modeset_global_resources =
  7582. haswell_modeset_global_resources;
  7583. }
  7584. } else if (IS_G4X(dev)) {
  7585. dev_priv->display.write_eld = g4x_write_eld;
  7586. }
  7587. /* Default just returns -ENODEV to indicate unsupported */
  7588. dev_priv->display.queue_flip = intel_default_queue_flip;
  7589. switch (INTEL_INFO(dev)->gen) {
  7590. case 2:
  7591. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7592. break;
  7593. case 3:
  7594. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7595. break;
  7596. case 4:
  7597. case 5:
  7598. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7599. break;
  7600. case 6:
  7601. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7602. break;
  7603. case 7:
  7604. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7605. break;
  7606. }
  7607. }
  7608. /*
  7609. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7610. * resume, or other times. This quirk makes sure that's the case for
  7611. * affected systems.
  7612. */
  7613. static void quirk_pipea_force(struct drm_device *dev)
  7614. {
  7615. struct drm_i915_private *dev_priv = dev->dev_private;
  7616. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7617. DRM_INFO("applying pipe a force quirk\n");
  7618. }
  7619. /*
  7620. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7621. */
  7622. static void quirk_ssc_force_disable(struct drm_device *dev)
  7623. {
  7624. struct drm_i915_private *dev_priv = dev->dev_private;
  7625. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7626. DRM_INFO("applying lvds SSC disable quirk\n");
  7627. }
  7628. /*
  7629. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7630. * brightness value
  7631. */
  7632. static void quirk_invert_brightness(struct drm_device *dev)
  7633. {
  7634. struct drm_i915_private *dev_priv = dev->dev_private;
  7635. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7636. DRM_INFO("applying inverted panel brightness quirk\n");
  7637. }
  7638. struct intel_quirk {
  7639. int device;
  7640. int subsystem_vendor;
  7641. int subsystem_device;
  7642. void (*hook)(struct drm_device *dev);
  7643. };
  7644. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7645. struct intel_dmi_quirk {
  7646. void (*hook)(struct drm_device *dev);
  7647. const struct dmi_system_id (*dmi_id_list)[];
  7648. };
  7649. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7650. {
  7651. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7652. return 1;
  7653. }
  7654. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7655. {
  7656. .dmi_id_list = &(const struct dmi_system_id[]) {
  7657. {
  7658. .callback = intel_dmi_reverse_brightness,
  7659. .ident = "NCR Corporation",
  7660. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7661. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7662. },
  7663. },
  7664. { } /* terminating entry */
  7665. },
  7666. .hook = quirk_invert_brightness,
  7667. },
  7668. };
  7669. static struct intel_quirk intel_quirks[] = {
  7670. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7671. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7672. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7673. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7674. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7675. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7676. /* 830/845 need to leave pipe A & dpll A up */
  7677. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7678. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7679. /* Lenovo U160 cannot use SSC on LVDS */
  7680. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7681. /* Sony Vaio Y cannot use SSC on LVDS */
  7682. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7683. /* Acer Aspire 5734Z must invert backlight brightness */
  7684. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7685. /* Acer/eMachines G725 */
  7686. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7687. /* Acer/eMachines e725 */
  7688. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7689. /* Acer/Packard Bell NCL20 */
  7690. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7691. /* Acer Aspire 4736Z */
  7692. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7693. };
  7694. static void intel_init_quirks(struct drm_device *dev)
  7695. {
  7696. struct pci_dev *d = dev->pdev;
  7697. int i;
  7698. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7699. struct intel_quirk *q = &intel_quirks[i];
  7700. if (d->device == q->device &&
  7701. (d->subsystem_vendor == q->subsystem_vendor ||
  7702. q->subsystem_vendor == PCI_ANY_ID) &&
  7703. (d->subsystem_device == q->subsystem_device ||
  7704. q->subsystem_device == PCI_ANY_ID))
  7705. q->hook(dev);
  7706. }
  7707. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7708. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7709. intel_dmi_quirks[i].hook(dev);
  7710. }
  7711. }
  7712. /* Disable the VGA plane that we never use */
  7713. static void i915_disable_vga(struct drm_device *dev)
  7714. {
  7715. struct drm_i915_private *dev_priv = dev->dev_private;
  7716. u8 sr1;
  7717. u32 vga_reg = i915_vgacntrl_reg(dev);
  7718. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7719. outb(SR01, VGA_SR_INDEX);
  7720. sr1 = inb(VGA_SR_DATA);
  7721. outb(sr1 | 1<<5, VGA_SR_DATA);
  7722. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7723. udelay(300);
  7724. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7725. POSTING_READ(vga_reg);
  7726. }
  7727. void intel_modeset_init_hw(struct drm_device *dev)
  7728. {
  7729. intel_init_power_well(dev);
  7730. intel_prepare_ddi(dev);
  7731. intel_init_clock_gating(dev);
  7732. mutex_lock(&dev->struct_mutex);
  7733. intel_enable_gt_powersave(dev);
  7734. mutex_unlock(&dev->struct_mutex);
  7735. }
  7736. void intel_modeset_init(struct drm_device *dev)
  7737. {
  7738. struct drm_i915_private *dev_priv = dev->dev_private;
  7739. int i, j, ret;
  7740. drm_mode_config_init(dev);
  7741. dev->mode_config.min_width = 0;
  7742. dev->mode_config.min_height = 0;
  7743. dev->mode_config.preferred_depth = 24;
  7744. dev->mode_config.prefer_shadow = 1;
  7745. dev->mode_config.funcs = &intel_mode_funcs;
  7746. intel_init_quirks(dev);
  7747. intel_init_pm(dev);
  7748. if (INTEL_INFO(dev)->num_pipes == 0)
  7749. return;
  7750. intel_init_display(dev);
  7751. if (IS_GEN2(dev)) {
  7752. dev->mode_config.max_width = 2048;
  7753. dev->mode_config.max_height = 2048;
  7754. } else if (IS_GEN3(dev)) {
  7755. dev->mode_config.max_width = 4096;
  7756. dev->mode_config.max_height = 4096;
  7757. } else {
  7758. dev->mode_config.max_width = 8192;
  7759. dev->mode_config.max_height = 8192;
  7760. }
  7761. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7762. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7763. INTEL_INFO(dev)->num_pipes,
  7764. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7765. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7766. intel_crtc_init(dev, i);
  7767. for (j = 0; j < dev_priv->num_plane; j++) {
  7768. ret = intel_plane_init(dev, i, j);
  7769. if (ret)
  7770. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7771. pipe_name(i), sprite_name(i, j), ret);
  7772. }
  7773. }
  7774. intel_cpu_pll_init(dev);
  7775. intel_pch_pll_init(dev);
  7776. /* Just disable it once at startup */
  7777. i915_disable_vga(dev);
  7778. intel_setup_outputs(dev);
  7779. /* Just in case the BIOS is doing something questionable. */
  7780. intel_disable_fbc(dev);
  7781. }
  7782. static void
  7783. intel_connector_break_all_links(struct intel_connector *connector)
  7784. {
  7785. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7786. connector->base.encoder = NULL;
  7787. connector->encoder->connectors_active = false;
  7788. connector->encoder->base.crtc = NULL;
  7789. }
  7790. static void intel_enable_pipe_a(struct drm_device *dev)
  7791. {
  7792. struct intel_connector *connector;
  7793. struct drm_connector *crt = NULL;
  7794. struct intel_load_detect_pipe load_detect_temp;
  7795. /* We can't just switch on the pipe A, we need to set things up with a
  7796. * proper mode and output configuration. As a gross hack, enable pipe A
  7797. * by enabling the load detect pipe once. */
  7798. list_for_each_entry(connector,
  7799. &dev->mode_config.connector_list,
  7800. base.head) {
  7801. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7802. crt = &connector->base;
  7803. break;
  7804. }
  7805. }
  7806. if (!crt)
  7807. return;
  7808. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7809. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7810. }
  7811. static bool
  7812. intel_check_plane_mapping(struct intel_crtc *crtc)
  7813. {
  7814. struct drm_device *dev = crtc->base.dev;
  7815. struct drm_i915_private *dev_priv = dev->dev_private;
  7816. u32 reg, val;
  7817. if (INTEL_INFO(dev)->num_pipes == 1)
  7818. return true;
  7819. reg = DSPCNTR(!crtc->plane);
  7820. val = I915_READ(reg);
  7821. if ((val & DISPLAY_PLANE_ENABLE) &&
  7822. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7823. return false;
  7824. return true;
  7825. }
  7826. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7827. {
  7828. struct drm_device *dev = crtc->base.dev;
  7829. struct drm_i915_private *dev_priv = dev->dev_private;
  7830. u32 reg;
  7831. /* Clear any frame start delays used for debugging left by the BIOS */
  7832. reg = PIPECONF(crtc->config.cpu_transcoder);
  7833. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7834. /* We need to sanitize the plane -> pipe mapping first because this will
  7835. * disable the crtc (and hence change the state) if it is wrong. Note
  7836. * that gen4+ has a fixed plane -> pipe mapping. */
  7837. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7838. struct intel_connector *connector;
  7839. bool plane;
  7840. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7841. crtc->base.base.id);
  7842. /* Pipe has the wrong plane attached and the plane is active.
  7843. * Temporarily change the plane mapping and disable everything
  7844. * ... */
  7845. plane = crtc->plane;
  7846. crtc->plane = !plane;
  7847. dev_priv->display.crtc_disable(&crtc->base);
  7848. crtc->plane = plane;
  7849. /* ... and break all links. */
  7850. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7851. base.head) {
  7852. if (connector->encoder->base.crtc != &crtc->base)
  7853. continue;
  7854. intel_connector_break_all_links(connector);
  7855. }
  7856. WARN_ON(crtc->active);
  7857. crtc->base.enabled = false;
  7858. }
  7859. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7860. crtc->pipe == PIPE_A && !crtc->active) {
  7861. /* BIOS forgot to enable pipe A, this mostly happens after
  7862. * resume. Force-enable the pipe to fix this, the update_dpms
  7863. * call below we restore the pipe to the right state, but leave
  7864. * the required bits on. */
  7865. intel_enable_pipe_a(dev);
  7866. }
  7867. /* Adjust the state of the output pipe according to whether we
  7868. * have active connectors/encoders. */
  7869. intel_crtc_update_dpms(&crtc->base);
  7870. if (crtc->active != crtc->base.enabled) {
  7871. struct intel_encoder *encoder;
  7872. /* This can happen either due to bugs in the get_hw_state
  7873. * functions or because the pipe is force-enabled due to the
  7874. * pipe A quirk. */
  7875. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7876. crtc->base.base.id,
  7877. crtc->base.enabled ? "enabled" : "disabled",
  7878. crtc->active ? "enabled" : "disabled");
  7879. crtc->base.enabled = crtc->active;
  7880. /* Because we only establish the connector -> encoder ->
  7881. * crtc links if something is active, this means the
  7882. * crtc is now deactivated. Break the links. connector
  7883. * -> encoder links are only establish when things are
  7884. * actually up, hence no need to break them. */
  7885. WARN_ON(crtc->active);
  7886. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7887. WARN_ON(encoder->connectors_active);
  7888. encoder->base.crtc = NULL;
  7889. }
  7890. }
  7891. }
  7892. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7893. {
  7894. struct intel_connector *connector;
  7895. struct drm_device *dev = encoder->base.dev;
  7896. /* We need to check both for a crtc link (meaning that the
  7897. * encoder is active and trying to read from a pipe) and the
  7898. * pipe itself being active. */
  7899. bool has_active_crtc = encoder->base.crtc &&
  7900. to_intel_crtc(encoder->base.crtc)->active;
  7901. if (encoder->connectors_active && !has_active_crtc) {
  7902. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7903. encoder->base.base.id,
  7904. drm_get_encoder_name(&encoder->base));
  7905. /* Connector is active, but has no active pipe. This is
  7906. * fallout from our resume register restoring. Disable
  7907. * the encoder manually again. */
  7908. if (encoder->base.crtc) {
  7909. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7910. encoder->base.base.id,
  7911. drm_get_encoder_name(&encoder->base));
  7912. encoder->disable(encoder);
  7913. }
  7914. /* Inconsistent output/port/pipe state happens presumably due to
  7915. * a bug in one of the get_hw_state functions. Or someplace else
  7916. * in our code, like the register restore mess on resume. Clamp
  7917. * things to off as a safer default. */
  7918. list_for_each_entry(connector,
  7919. &dev->mode_config.connector_list,
  7920. base.head) {
  7921. if (connector->encoder != encoder)
  7922. continue;
  7923. intel_connector_break_all_links(connector);
  7924. }
  7925. }
  7926. /* Enabled encoders without active connectors will be fixed in
  7927. * the crtc fixup. */
  7928. }
  7929. void i915_redisable_vga(struct drm_device *dev)
  7930. {
  7931. struct drm_i915_private *dev_priv = dev->dev_private;
  7932. u32 vga_reg = i915_vgacntrl_reg(dev);
  7933. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  7934. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  7935. i915_disable_vga(dev);
  7936. }
  7937. }
  7938. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7939. * and i915 state tracking structures. */
  7940. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7941. bool force_restore)
  7942. {
  7943. struct drm_i915_private *dev_priv = dev->dev_private;
  7944. enum pipe pipe;
  7945. u32 tmp;
  7946. struct drm_plane *plane;
  7947. struct intel_crtc *crtc;
  7948. struct intel_encoder *encoder;
  7949. struct intel_connector *connector;
  7950. if (HAS_DDI(dev)) {
  7951. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7952. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7953. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7954. case TRANS_DDI_EDP_INPUT_A_ON:
  7955. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7956. pipe = PIPE_A;
  7957. break;
  7958. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7959. pipe = PIPE_B;
  7960. break;
  7961. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7962. pipe = PIPE_C;
  7963. break;
  7964. default:
  7965. /* A bogus value has been programmed, disable
  7966. * the transcoder */
  7967. WARN(1, "Bogus eDP source %08x\n", tmp);
  7968. intel_ddi_disable_transcoder_func(dev_priv,
  7969. TRANSCODER_EDP);
  7970. goto setup_pipes;
  7971. }
  7972. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7973. crtc->config.cpu_transcoder = TRANSCODER_EDP;
  7974. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7975. pipe_name(pipe));
  7976. }
  7977. }
  7978. setup_pipes:
  7979. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7980. base.head) {
  7981. enum transcoder tmp = crtc->config.cpu_transcoder;
  7982. memset(&crtc->config, 0, sizeof(crtc->config));
  7983. crtc->config.cpu_transcoder = tmp;
  7984. crtc->active = dev_priv->display.get_pipe_config(crtc,
  7985. &crtc->config);
  7986. crtc->base.enabled = crtc->active;
  7987. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7988. crtc->base.base.id,
  7989. crtc->active ? "enabled" : "disabled");
  7990. }
  7991. if (HAS_DDI(dev))
  7992. intel_ddi_setup_hw_pll_state(dev);
  7993. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7994. base.head) {
  7995. pipe = 0;
  7996. if (encoder->get_hw_state(encoder, &pipe)) {
  7997. encoder->base.crtc =
  7998. dev_priv->pipe_to_crtc_mapping[pipe];
  7999. } else {
  8000. encoder->base.crtc = NULL;
  8001. }
  8002. encoder->connectors_active = false;
  8003. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8004. encoder->base.base.id,
  8005. drm_get_encoder_name(&encoder->base),
  8006. encoder->base.crtc ? "enabled" : "disabled",
  8007. pipe);
  8008. }
  8009. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8010. base.head) {
  8011. if (connector->get_hw_state(connector)) {
  8012. connector->base.dpms = DRM_MODE_DPMS_ON;
  8013. connector->encoder->connectors_active = true;
  8014. connector->base.encoder = &connector->encoder->base;
  8015. } else {
  8016. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8017. connector->base.encoder = NULL;
  8018. }
  8019. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8020. connector->base.base.id,
  8021. drm_get_connector_name(&connector->base),
  8022. connector->base.encoder ? "enabled" : "disabled");
  8023. }
  8024. /* HW state is read out, now we need to sanitize this mess. */
  8025. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8026. base.head) {
  8027. intel_sanitize_encoder(encoder);
  8028. }
  8029. for_each_pipe(pipe) {
  8030. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8031. intel_sanitize_crtc(crtc);
  8032. }
  8033. if (force_restore) {
  8034. /*
  8035. * We need to use raw interfaces for restoring state to avoid
  8036. * checking (bogus) intermediate states.
  8037. */
  8038. for_each_pipe(pipe) {
  8039. struct drm_crtc *crtc =
  8040. dev_priv->pipe_to_crtc_mapping[pipe];
  8041. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8042. crtc->fb);
  8043. }
  8044. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8045. intel_plane_restore(plane);
  8046. i915_redisable_vga(dev);
  8047. } else {
  8048. intel_modeset_update_staged_output_state(dev);
  8049. }
  8050. intel_modeset_check_state(dev);
  8051. drm_mode_config_reset(dev);
  8052. }
  8053. void intel_modeset_gem_init(struct drm_device *dev)
  8054. {
  8055. intel_modeset_init_hw(dev);
  8056. intel_setup_overlay(dev);
  8057. intel_modeset_setup_hw_state(dev, false);
  8058. }
  8059. void intel_modeset_cleanup(struct drm_device *dev)
  8060. {
  8061. struct drm_i915_private *dev_priv = dev->dev_private;
  8062. struct drm_crtc *crtc;
  8063. struct intel_crtc *intel_crtc;
  8064. /*
  8065. * Interrupts and polling as the first thing to avoid creating havoc.
  8066. * Too much stuff here (turning of rps, connectors, ...) would
  8067. * experience fancy races otherwise.
  8068. */
  8069. drm_irq_uninstall(dev);
  8070. cancel_work_sync(&dev_priv->hotplug_work);
  8071. /*
  8072. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8073. * poll handlers. Hence disable polling after hpd handling is shut down.
  8074. */
  8075. drm_kms_helper_poll_fini(dev);
  8076. mutex_lock(&dev->struct_mutex);
  8077. intel_unregister_dsm_handler();
  8078. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8079. /* Skip inactive CRTCs */
  8080. if (!crtc->fb)
  8081. continue;
  8082. intel_crtc = to_intel_crtc(crtc);
  8083. intel_increase_pllclock(crtc);
  8084. }
  8085. intel_disable_fbc(dev);
  8086. intel_disable_gt_powersave(dev);
  8087. ironlake_teardown_rc6(dev);
  8088. mutex_unlock(&dev->struct_mutex);
  8089. /* flush any delayed tasks or pending work */
  8090. flush_scheduled_work();
  8091. /* destroy backlight, if any, before the connectors */
  8092. intel_panel_destroy_backlight(dev);
  8093. drm_mode_config_cleanup(dev);
  8094. intel_cleanup_overlay(dev);
  8095. }
  8096. /*
  8097. * Return which encoder is currently attached for connector.
  8098. */
  8099. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8100. {
  8101. return &intel_attached_encoder(connector)->base;
  8102. }
  8103. void intel_connector_attach_encoder(struct intel_connector *connector,
  8104. struct intel_encoder *encoder)
  8105. {
  8106. connector->encoder = encoder;
  8107. drm_mode_connector_attach_encoder(&connector->base,
  8108. &encoder->base);
  8109. }
  8110. /*
  8111. * set vga decode state - true == enable VGA decode
  8112. */
  8113. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8114. {
  8115. struct drm_i915_private *dev_priv = dev->dev_private;
  8116. u16 gmch_ctrl;
  8117. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8118. if (state)
  8119. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8120. else
  8121. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8122. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8123. return 0;
  8124. }
  8125. #ifdef CONFIG_DEBUG_FS
  8126. #include <linux/seq_file.h>
  8127. struct intel_display_error_state {
  8128. struct intel_cursor_error_state {
  8129. u32 control;
  8130. u32 position;
  8131. u32 base;
  8132. u32 size;
  8133. } cursor[I915_MAX_PIPES];
  8134. struct intel_pipe_error_state {
  8135. u32 conf;
  8136. u32 source;
  8137. u32 htotal;
  8138. u32 hblank;
  8139. u32 hsync;
  8140. u32 vtotal;
  8141. u32 vblank;
  8142. u32 vsync;
  8143. } pipe[I915_MAX_PIPES];
  8144. struct intel_plane_error_state {
  8145. u32 control;
  8146. u32 stride;
  8147. u32 size;
  8148. u32 pos;
  8149. u32 addr;
  8150. u32 surface;
  8151. u32 tile_offset;
  8152. } plane[I915_MAX_PIPES];
  8153. };
  8154. struct intel_display_error_state *
  8155. intel_display_capture_error_state(struct drm_device *dev)
  8156. {
  8157. drm_i915_private_t *dev_priv = dev->dev_private;
  8158. struct intel_display_error_state *error;
  8159. enum transcoder cpu_transcoder;
  8160. int i;
  8161. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8162. if (error == NULL)
  8163. return NULL;
  8164. for_each_pipe(i) {
  8165. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8166. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8167. error->cursor[i].control = I915_READ(CURCNTR(i));
  8168. error->cursor[i].position = I915_READ(CURPOS(i));
  8169. error->cursor[i].base = I915_READ(CURBASE(i));
  8170. } else {
  8171. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8172. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8173. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8174. }
  8175. error->plane[i].control = I915_READ(DSPCNTR(i));
  8176. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8177. if (INTEL_INFO(dev)->gen <= 3) {
  8178. error->plane[i].size = I915_READ(DSPSIZE(i));
  8179. error->plane[i].pos = I915_READ(DSPPOS(i));
  8180. }
  8181. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8182. error->plane[i].addr = I915_READ(DSPADDR(i));
  8183. if (INTEL_INFO(dev)->gen >= 4) {
  8184. error->plane[i].surface = I915_READ(DSPSURF(i));
  8185. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8186. }
  8187. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8188. error->pipe[i].source = I915_READ(PIPESRC(i));
  8189. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8190. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8191. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8192. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8193. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8194. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8195. }
  8196. return error;
  8197. }
  8198. void
  8199. intel_display_print_error_state(struct seq_file *m,
  8200. struct drm_device *dev,
  8201. struct intel_display_error_state *error)
  8202. {
  8203. int i;
  8204. seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8205. for_each_pipe(i) {
  8206. seq_printf(m, "Pipe [%d]:\n", i);
  8207. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8208. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8209. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8210. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8211. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8212. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8213. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8214. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8215. seq_printf(m, "Plane [%d]:\n", i);
  8216. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8217. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8218. if (INTEL_INFO(dev)->gen <= 3) {
  8219. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8220. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  8221. }
  8222. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8223. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8224. if (INTEL_INFO(dev)->gen >= 4) {
  8225. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8226. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8227. }
  8228. seq_printf(m, "Cursor [%d]:\n", i);
  8229. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8230. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  8231. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8232. }
  8233. }
  8234. #endif