util.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005-2006, Devicescape Software, Inc.
  4. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  5. * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * utilities for mac80211
  12. */
  13. #include <net/mac80211.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/types.h>
  16. #include <linux/slab.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/if_arp.h>
  20. #include <linux/wireless.h>
  21. #include <linux/bitmap.h>
  22. #include <net/net_namespace.h>
  23. #include <net/cfg80211.h>
  24. #include <net/rtnetlink.h>
  25. #include "ieee80211_i.h"
  26. #include "rate.h"
  27. #include "mesh.h"
  28. #include "wme.h"
  29. /* privid for wiphys to determine whether they belong to us or not */
  30. void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
  31. /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
  32. /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
  33. const unsigned char rfc1042_header[] __aligned(2) =
  34. { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
  35. /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
  36. const unsigned char bridge_tunnel_header[] __aligned(2) =
  37. { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
  38. struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
  39. {
  40. struct ieee80211_local *local;
  41. BUG_ON(!wiphy);
  42. local = wiphy_priv(wiphy);
  43. return &local->hw;
  44. }
  45. EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
  46. u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
  47. enum nl80211_iftype type)
  48. {
  49. __le16 fc = hdr->frame_control;
  50. /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
  51. if (len < 16)
  52. return NULL;
  53. if (ieee80211_is_data(fc)) {
  54. if (len < 24) /* drop incorrect hdr len (data) */
  55. return NULL;
  56. if (ieee80211_has_a4(fc))
  57. return NULL;
  58. if (ieee80211_has_tods(fc))
  59. return hdr->addr1;
  60. if (ieee80211_has_fromds(fc))
  61. return hdr->addr2;
  62. return hdr->addr3;
  63. }
  64. if (ieee80211_is_mgmt(fc)) {
  65. if (len < 24) /* drop incorrect hdr len (mgmt) */
  66. return NULL;
  67. return hdr->addr3;
  68. }
  69. if (ieee80211_is_ctl(fc)) {
  70. if(ieee80211_is_pspoll(fc))
  71. return hdr->addr1;
  72. if (ieee80211_is_back_req(fc)) {
  73. switch (type) {
  74. case NL80211_IFTYPE_STATION:
  75. return hdr->addr2;
  76. case NL80211_IFTYPE_AP:
  77. case NL80211_IFTYPE_AP_VLAN:
  78. return hdr->addr1;
  79. default:
  80. break; /* fall through to the return */
  81. }
  82. }
  83. }
  84. return NULL;
  85. }
  86. unsigned int ieee80211_hdrlen(__le16 fc)
  87. {
  88. unsigned int hdrlen = 24;
  89. if (ieee80211_is_data(fc)) {
  90. if (ieee80211_has_a4(fc))
  91. hdrlen = 30;
  92. if (ieee80211_is_data_qos(fc))
  93. hdrlen += IEEE80211_QOS_CTL_LEN;
  94. goto out;
  95. }
  96. if (ieee80211_is_ctl(fc)) {
  97. /*
  98. * ACK and CTS are 10 bytes, all others 16. To see how
  99. * to get this condition consider
  100. * subtype mask: 0b0000000011110000 (0x00F0)
  101. * ACK subtype: 0b0000000011010000 (0x00D0)
  102. * CTS subtype: 0b0000000011000000 (0x00C0)
  103. * bits that matter: ^^^ (0x00E0)
  104. * value of those: 0b0000000011000000 (0x00C0)
  105. */
  106. if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
  107. hdrlen = 10;
  108. else
  109. hdrlen = 16;
  110. }
  111. out:
  112. return hdrlen;
  113. }
  114. EXPORT_SYMBOL(ieee80211_hdrlen);
  115. unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
  116. {
  117. const struct ieee80211_hdr *hdr = (const struct ieee80211_hdr *)skb->data;
  118. unsigned int hdrlen;
  119. if (unlikely(skb->len < 10))
  120. return 0;
  121. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  122. if (unlikely(hdrlen > skb->len))
  123. return 0;
  124. return hdrlen;
  125. }
  126. EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
  127. int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
  128. {
  129. int ae = meshhdr->flags & IEEE80211S_FLAGS_AE;
  130. /* 7.1.3.5a.2 */
  131. switch (ae) {
  132. case 0:
  133. return 6;
  134. case 1:
  135. return 12;
  136. case 2:
  137. return 18;
  138. case 3:
  139. return 24;
  140. default:
  141. return 6;
  142. }
  143. }
  144. void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
  145. {
  146. struct sk_buff *skb = tx->skb;
  147. struct ieee80211_hdr *hdr;
  148. do {
  149. hdr = (struct ieee80211_hdr *) skb->data;
  150. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  151. } while ((skb = skb->next));
  152. }
  153. int ieee80211_frame_duration(struct ieee80211_local *local, size_t len,
  154. int rate, int erp, int short_preamble)
  155. {
  156. int dur;
  157. /* calculate duration (in microseconds, rounded up to next higher
  158. * integer if it includes a fractional microsecond) to send frame of
  159. * len bytes (does not include FCS) at the given rate. Duration will
  160. * also include SIFS.
  161. *
  162. * rate is in 100 kbps, so divident is multiplied by 10 in the
  163. * DIV_ROUND_UP() operations.
  164. */
  165. if (local->hw.conf.channel->band == IEEE80211_BAND_5GHZ || erp) {
  166. /*
  167. * OFDM:
  168. *
  169. * N_DBPS = DATARATE x 4
  170. * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
  171. * (16 = SIGNAL time, 6 = tail bits)
  172. * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
  173. *
  174. * T_SYM = 4 usec
  175. * 802.11a - 17.5.2: aSIFSTime = 16 usec
  176. * 802.11g - 19.8.4: aSIFSTime = 10 usec +
  177. * signal ext = 6 usec
  178. */
  179. dur = 16; /* SIFS + signal ext */
  180. dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
  181. dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
  182. dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
  183. 4 * rate); /* T_SYM x N_SYM */
  184. } else {
  185. /*
  186. * 802.11b or 802.11g with 802.11b compatibility:
  187. * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
  188. * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
  189. *
  190. * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
  191. * aSIFSTime = 10 usec
  192. * aPreambleLength = 144 usec or 72 usec with short preamble
  193. * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
  194. */
  195. dur = 10; /* aSIFSTime = 10 usec */
  196. dur += short_preamble ? (72 + 24) : (144 + 48);
  197. dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
  198. }
  199. return dur;
  200. }
  201. /* Exported duration function for driver use */
  202. __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
  203. struct ieee80211_vif *vif,
  204. size_t frame_len,
  205. struct ieee80211_rate *rate)
  206. {
  207. struct ieee80211_local *local = hw_to_local(hw);
  208. struct ieee80211_sub_if_data *sdata;
  209. u16 dur;
  210. int erp;
  211. bool short_preamble = false;
  212. erp = 0;
  213. if (vif) {
  214. sdata = vif_to_sdata(vif);
  215. short_preamble = sdata->vif.bss_conf.use_short_preamble;
  216. if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
  217. erp = rate->flags & IEEE80211_RATE_ERP_G;
  218. }
  219. dur = ieee80211_frame_duration(local, frame_len, rate->bitrate, erp,
  220. short_preamble);
  221. return cpu_to_le16(dur);
  222. }
  223. EXPORT_SYMBOL(ieee80211_generic_frame_duration);
  224. __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
  225. struct ieee80211_vif *vif, size_t frame_len,
  226. const struct ieee80211_tx_info *frame_txctl)
  227. {
  228. struct ieee80211_local *local = hw_to_local(hw);
  229. struct ieee80211_rate *rate;
  230. struct ieee80211_sub_if_data *sdata;
  231. bool short_preamble;
  232. int erp;
  233. u16 dur;
  234. struct ieee80211_supported_band *sband;
  235. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  236. short_preamble = false;
  237. rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
  238. erp = 0;
  239. if (vif) {
  240. sdata = vif_to_sdata(vif);
  241. short_preamble = sdata->vif.bss_conf.use_short_preamble;
  242. if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
  243. erp = rate->flags & IEEE80211_RATE_ERP_G;
  244. }
  245. /* CTS duration */
  246. dur = ieee80211_frame_duration(local, 10, rate->bitrate,
  247. erp, short_preamble);
  248. /* Data frame duration */
  249. dur += ieee80211_frame_duration(local, frame_len, rate->bitrate,
  250. erp, short_preamble);
  251. /* ACK duration */
  252. dur += ieee80211_frame_duration(local, 10, rate->bitrate,
  253. erp, short_preamble);
  254. return cpu_to_le16(dur);
  255. }
  256. EXPORT_SYMBOL(ieee80211_rts_duration);
  257. __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
  258. struct ieee80211_vif *vif,
  259. size_t frame_len,
  260. const struct ieee80211_tx_info *frame_txctl)
  261. {
  262. struct ieee80211_local *local = hw_to_local(hw);
  263. struct ieee80211_rate *rate;
  264. struct ieee80211_sub_if_data *sdata;
  265. bool short_preamble;
  266. int erp;
  267. u16 dur;
  268. struct ieee80211_supported_band *sband;
  269. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  270. short_preamble = false;
  271. rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
  272. erp = 0;
  273. if (vif) {
  274. sdata = vif_to_sdata(vif);
  275. short_preamble = sdata->vif.bss_conf.use_short_preamble;
  276. if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
  277. erp = rate->flags & IEEE80211_RATE_ERP_G;
  278. }
  279. /* Data frame duration */
  280. dur = ieee80211_frame_duration(local, frame_len, rate->bitrate,
  281. erp, short_preamble);
  282. if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
  283. /* ACK duration */
  284. dur += ieee80211_frame_duration(local, 10, rate->bitrate,
  285. erp, short_preamble);
  286. }
  287. return cpu_to_le16(dur);
  288. }
  289. EXPORT_SYMBOL(ieee80211_ctstoself_duration);
  290. static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
  291. enum queue_stop_reason reason)
  292. {
  293. struct ieee80211_local *local = hw_to_local(hw);
  294. if (queue >= hw->queues) {
  295. if (local->ampdu_ac_queue[queue - hw->queues] < 0)
  296. return;
  297. /*
  298. * for virtual aggregation queues, we need to refcount the
  299. * internal mac80211 disable (multiple times!), keep track of
  300. * driver disable _and_ make sure the regular queue is
  301. * actually enabled.
  302. */
  303. if (reason == IEEE80211_QUEUE_STOP_REASON_AGGREGATION)
  304. local->amdpu_ac_stop_refcnt[queue - hw->queues]--;
  305. else
  306. __clear_bit(reason, &local->queue_stop_reasons[queue]);
  307. if (local->queue_stop_reasons[queue] ||
  308. local->amdpu_ac_stop_refcnt[queue - hw->queues])
  309. return;
  310. /* now go on to treat the corresponding regular queue */
  311. queue = local->ampdu_ac_queue[queue - hw->queues];
  312. reason = IEEE80211_QUEUE_STOP_REASON_AGGREGATION;
  313. }
  314. __clear_bit(reason, &local->queue_stop_reasons[queue]);
  315. if (local->queue_stop_reasons[queue] != 0)
  316. /* someone still has this queue stopped */
  317. return;
  318. if (test_bit(queue, local->queues_pending)) {
  319. set_bit(queue, local->queues_pending_run);
  320. tasklet_schedule(&local->tx_pending_tasklet);
  321. } else {
  322. netif_wake_subqueue(local->mdev, queue);
  323. }
  324. }
  325. void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
  326. enum queue_stop_reason reason)
  327. {
  328. struct ieee80211_local *local = hw_to_local(hw);
  329. unsigned long flags;
  330. spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
  331. __ieee80211_wake_queue(hw, queue, reason);
  332. spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
  333. }
  334. void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
  335. {
  336. ieee80211_wake_queue_by_reason(hw, queue,
  337. IEEE80211_QUEUE_STOP_REASON_DRIVER);
  338. }
  339. EXPORT_SYMBOL(ieee80211_wake_queue);
  340. static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
  341. enum queue_stop_reason reason)
  342. {
  343. struct ieee80211_local *local = hw_to_local(hw);
  344. if (queue >= hw->queues) {
  345. if (local->ampdu_ac_queue[queue - hw->queues] < 0)
  346. return;
  347. /*
  348. * for virtual aggregation queues, we need to refcount the
  349. * internal mac80211 disable (multiple times!), keep track of
  350. * driver disable _and_ make sure the regular queue is
  351. * actually enabled.
  352. */
  353. if (reason == IEEE80211_QUEUE_STOP_REASON_AGGREGATION)
  354. local->amdpu_ac_stop_refcnt[queue - hw->queues]++;
  355. else
  356. __set_bit(reason, &local->queue_stop_reasons[queue]);
  357. /* now go on to treat the corresponding regular queue */
  358. queue = local->ampdu_ac_queue[queue - hw->queues];
  359. reason = IEEE80211_QUEUE_STOP_REASON_AGGREGATION;
  360. }
  361. __set_bit(reason, &local->queue_stop_reasons[queue]);
  362. netif_stop_subqueue(local->mdev, queue);
  363. }
  364. void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
  365. enum queue_stop_reason reason)
  366. {
  367. struct ieee80211_local *local = hw_to_local(hw);
  368. unsigned long flags;
  369. spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
  370. __ieee80211_stop_queue(hw, queue, reason);
  371. spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
  372. }
  373. void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
  374. {
  375. ieee80211_stop_queue_by_reason(hw, queue,
  376. IEEE80211_QUEUE_STOP_REASON_DRIVER);
  377. }
  378. EXPORT_SYMBOL(ieee80211_stop_queue);
  379. void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
  380. enum queue_stop_reason reason)
  381. {
  382. struct ieee80211_local *local = hw_to_local(hw);
  383. unsigned long flags;
  384. int i;
  385. spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
  386. for (i = 0; i < hw->queues; i++)
  387. __ieee80211_stop_queue(hw, i, reason);
  388. spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
  389. }
  390. void ieee80211_stop_queues(struct ieee80211_hw *hw)
  391. {
  392. ieee80211_stop_queues_by_reason(hw,
  393. IEEE80211_QUEUE_STOP_REASON_DRIVER);
  394. }
  395. EXPORT_SYMBOL(ieee80211_stop_queues);
  396. int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
  397. {
  398. struct ieee80211_local *local = hw_to_local(hw);
  399. unsigned long flags;
  400. if (queue >= hw->queues) {
  401. spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
  402. queue = local->ampdu_ac_queue[queue - hw->queues];
  403. spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
  404. if (queue < 0)
  405. return true;
  406. }
  407. return __netif_subqueue_stopped(local->mdev, queue);
  408. }
  409. EXPORT_SYMBOL(ieee80211_queue_stopped);
  410. void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
  411. enum queue_stop_reason reason)
  412. {
  413. struct ieee80211_local *local = hw_to_local(hw);
  414. unsigned long flags;
  415. int i;
  416. spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
  417. for (i = 0; i < hw->queues + hw->ampdu_queues; i++)
  418. __ieee80211_wake_queue(hw, i, reason);
  419. spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
  420. }
  421. void ieee80211_wake_queues(struct ieee80211_hw *hw)
  422. {
  423. ieee80211_wake_queues_by_reason(hw, IEEE80211_QUEUE_STOP_REASON_DRIVER);
  424. }
  425. EXPORT_SYMBOL(ieee80211_wake_queues);
  426. void ieee80211_iterate_active_interfaces(
  427. struct ieee80211_hw *hw,
  428. void (*iterator)(void *data, u8 *mac,
  429. struct ieee80211_vif *vif),
  430. void *data)
  431. {
  432. struct ieee80211_local *local = hw_to_local(hw);
  433. struct ieee80211_sub_if_data *sdata;
  434. mutex_lock(&local->iflist_mtx);
  435. list_for_each_entry(sdata, &local->interfaces, list) {
  436. switch (sdata->vif.type) {
  437. case __NL80211_IFTYPE_AFTER_LAST:
  438. case NL80211_IFTYPE_UNSPECIFIED:
  439. case NL80211_IFTYPE_MONITOR:
  440. case NL80211_IFTYPE_AP_VLAN:
  441. continue;
  442. case NL80211_IFTYPE_AP:
  443. case NL80211_IFTYPE_STATION:
  444. case NL80211_IFTYPE_ADHOC:
  445. case NL80211_IFTYPE_WDS:
  446. case NL80211_IFTYPE_MESH_POINT:
  447. break;
  448. }
  449. if (netif_running(sdata->dev))
  450. iterator(data, sdata->dev->dev_addr,
  451. &sdata->vif);
  452. }
  453. mutex_unlock(&local->iflist_mtx);
  454. }
  455. EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
  456. void ieee80211_iterate_active_interfaces_atomic(
  457. struct ieee80211_hw *hw,
  458. void (*iterator)(void *data, u8 *mac,
  459. struct ieee80211_vif *vif),
  460. void *data)
  461. {
  462. struct ieee80211_local *local = hw_to_local(hw);
  463. struct ieee80211_sub_if_data *sdata;
  464. rcu_read_lock();
  465. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  466. switch (sdata->vif.type) {
  467. case __NL80211_IFTYPE_AFTER_LAST:
  468. case NL80211_IFTYPE_UNSPECIFIED:
  469. case NL80211_IFTYPE_MONITOR:
  470. case NL80211_IFTYPE_AP_VLAN:
  471. continue;
  472. case NL80211_IFTYPE_AP:
  473. case NL80211_IFTYPE_STATION:
  474. case NL80211_IFTYPE_ADHOC:
  475. case NL80211_IFTYPE_WDS:
  476. case NL80211_IFTYPE_MESH_POINT:
  477. break;
  478. }
  479. if (netif_running(sdata->dev))
  480. iterator(data, sdata->dev->dev_addr,
  481. &sdata->vif);
  482. }
  483. rcu_read_unlock();
  484. }
  485. EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
  486. void ieee802_11_parse_elems(u8 *start, size_t len,
  487. struct ieee802_11_elems *elems)
  488. {
  489. size_t left = len;
  490. u8 *pos = start;
  491. memset(elems, 0, sizeof(*elems));
  492. elems->ie_start = start;
  493. elems->total_len = len;
  494. while (left >= 2) {
  495. u8 id, elen;
  496. id = *pos++;
  497. elen = *pos++;
  498. left -= 2;
  499. if (elen > left)
  500. return;
  501. switch (id) {
  502. case WLAN_EID_SSID:
  503. elems->ssid = pos;
  504. elems->ssid_len = elen;
  505. break;
  506. case WLAN_EID_SUPP_RATES:
  507. elems->supp_rates = pos;
  508. elems->supp_rates_len = elen;
  509. break;
  510. case WLAN_EID_FH_PARAMS:
  511. elems->fh_params = pos;
  512. elems->fh_params_len = elen;
  513. break;
  514. case WLAN_EID_DS_PARAMS:
  515. elems->ds_params = pos;
  516. elems->ds_params_len = elen;
  517. break;
  518. case WLAN_EID_CF_PARAMS:
  519. elems->cf_params = pos;
  520. elems->cf_params_len = elen;
  521. break;
  522. case WLAN_EID_TIM:
  523. elems->tim = pos;
  524. elems->tim_len = elen;
  525. break;
  526. case WLAN_EID_IBSS_PARAMS:
  527. elems->ibss_params = pos;
  528. elems->ibss_params_len = elen;
  529. break;
  530. case WLAN_EID_CHALLENGE:
  531. elems->challenge = pos;
  532. elems->challenge_len = elen;
  533. break;
  534. case WLAN_EID_WPA:
  535. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  536. pos[2] == 0xf2) {
  537. /* Microsoft OUI (00:50:F2) */
  538. if (pos[3] == 1) {
  539. /* OUI Type 1 - WPA IE */
  540. elems->wpa = pos;
  541. elems->wpa_len = elen;
  542. } else if (elen >= 5 && pos[3] == 2) {
  543. if (pos[4] == 0) {
  544. elems->wmm_info = pos;
  545. elems->wmm_info_len = elen;
  546. } else if (pos[4] == 1) {
  547. elems->wmm_param = pos;
  548. elems->wmm_param_len = elen;
  549. }
  550. }
  551. }
  552. break;
  553. case WLAN_EID_RSN:
  554. elems->rsn = pos;
  555. elems->rsn_len = elen;
  556. break;
  557. case WLAN_EID_ERP_INFO:
  558. elems->erp_info = pos;
  559. elems->erp_info_len = elen;
  560. break;
  561. case WLAN_EID_EXT_SUPP_RATES:
  562. elems->ext_supp_rates = pos;
  563. elems->ext_supp_rates_len = elen;
  564. break;
  565. case WLAN_EID_HT_CAPABILITY:
  566. if (elen >= sizeof(struct ieee80211_ht_cap))
  567. elems->ht_cap_elem = (void *)pos;
  568. break;
  569. case WLAN_EID_HT_INFORMATION:
  570. if (elen >= sizeof(struct ieee80211_ht_info))
  571. elems->ht_info_elem = (void *)pos;
  572. break;
  573. case WLAN_EID_MESH_ID:
  574. elems->mesh_id = pos;
  575. elems->mesh_id_len = elen;
  576. break;
  577. case WLAN_EID_MESH_CONFIG:
  578. elems->mesh_config = pos;
  579. elems->mesh_config_len = elen;
  580. break;
  581. case WLAN_EID_PEER_LINK:
  582. elems->peer_link = pos;
  583. elems->peer_link_len = elen;
  584. break;
  585. case WLAN_EID_PREQ:
  586. elems->preq = pos;
  587. elems->preq_len = elen;
  588. break;
  589. case WLAN_EID_PREP:
  590. elems->prep = pos;
  591. elems->prep_len = elen;
  592. break;
  593. case WLAN_EID_PERR:
  594. elems->perr = pos;
  595. elems->perr_len = elen;
  596. break;
  597. case WLAN_EID_CHANNEL_SWITCH:
  598. elems->ch_switch_elem = pos;
  599. elems->ch_switch_elem_len = elen;
  600. break;
  601. case WLAN_EID_QUIET:
  602. if (!elems->quiet_elem) {
  603. elems->quiet_elem = pos;
  604. elems->quiet_elem_len = elen;
  605. }
  606. elems->num_of_quiet_elem++;
  607. break;
  608. case WLAN_EID_COUNTRY:
  609. elems->country_elem = pos;
  610. elems->country_elem_len = elen;
  611. break;
  612. case WLAN_EID_PWR_CONSTRAINT:
  613. elems->pwr_constr_elem = pos;
  614. elems->pwr_constr_elem_len = elen;
  615. break;
  616. case WLAN_EID_TIMEOUT_INTERVAL:
  617. elems->timeout_int = pos;
  618. elems->timeout_int_len = elen;
  619. break;
  620. default:
  621. break;
  622. }
  623. left -= elen;
  624. pos += elen;
  625. }
  626. }
  627. void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata)
  628. {
  629. struct ieee80211_local *local = sdata->local;
  630. struct ieee80211_tx_queue_params qparam;
  631. int i;
  632. if (!local->ops->conf_tx)
  633. return;
  634. memset(&qparam, 0, sizeof(qparam));
  635. qparam.aifs = 2;
  636. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  637. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  638. qparam.cw_min = 31;
  639. else
  640. qparam.cw_min = 15;
  641. qparam.cw_max = 1023;
  642. qparam.txop = 0;
  643. for (i = 0; i < local_to_hw(local)->queues; i++)
  644. local->ops->conf_tx(local_to_hw(local), i, &qparam);
  645. }
  646. void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
  647. const size_t supp_rates_len,
  648. const u8 *supp_rates)
  649. {
  650. struct ieee80211_local *local = sdata->local;
  651. int i, have_higher_than_11mbit = 0;
  652. /* cf. IEEE 802.11 9.2.12 */
  653. for (i = 0; i < supp_rates_len; i++)
  654. if ((supp_rates[i] & 0x7f) * 5 > 110)
  655. have_higher_than_11mbit = 1;
  656. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  657. have_higher_than_11mbit)
  658. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  659. else
  660. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  661. ieee80211_set_wmm_default(sdata);
  662. }
  663. void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb,
  664. int encrypt)
  665. {
  666. skb->dev = sdata->local->mdev;
  667. skb_set_mac_header(skb, 0);
  668. skb_set_network_header(skb, 0);
  669. skb_set_transport_header(skb, 0);
  670. skb->iif = sdata->dev->ifindex;
  671. skb->do_not_encrypt = !encrypt;
  672. dev_queue_xmit(skb);
  673. }
  674. int ieee80211_set_freq(struct ieee80211_sub_if_data *sdata, int freqMHz)
  675. {
  676. int ret = -EINVAL;
  677. struct ieee80211_channel *chan;
  678. struct ieee80211_local *local = sdata->local;
  679. chan = ieee80211_get_channel(local->hw.wiphy, freqMHz);
  680. if (chan && !(chan->flags & IEEE80211_CHAN_DISABLED)) {
  681. if (sdata->vif.type == NL80211_IFTYPE_ADHOC &&
  682. chan->flags & IEEE80211_CHAN_NO_IBSS)
  683. return ret;
  684. local->oper_channel = chan;
  685. local->oper_channel_type = NL80211_CHAN_NO_HT;
  686. if (local->sw_scanning || local->hw_scanning)
  687. ret = 0;
  688. else
  689. ret = ieee80211_hw_config(
  690. local, IEEE80211_CONF_CHANGE_CHANNEL);
  691. }
  692. return ret;
  693. }
  694. u32 ieee80211_mandatory_rates(struct ieee80211_local *local,
  695. enum ieee80211_band band)
  696. {
  697. struct ieee80211_supported_band *sband;
  698. struct ieee80211_rate *bitrates;
  699. u32 mandatory_rates;
  700. enum ieee80211_rate_flags mandatory_flag;
  701. int i;
  702. sband = local->hw.wiphy->bands[band];
  703. if (!sband) {
  704. WARN_ON(1);
  705. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  706. }
  707. if (band == IEEE80211_BAND_2GHZ)
  708. mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  709. else
  710. mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  711. bitrates = sband->bitrates;
  712. mandatory_rates = 0;
  713. for (i = 0; i < sband->n_bitrates; i++)
  714. if (bitrates[i].flags & mandatory_flag)
  715. mandatory_rates |= BIT(i);
  716. return mandatory_rates;
  717. }
  718. void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
  719. u16 transaction, u16 auth_alg,
  720. u8 *extra, size_t extra_len,
  721. const u8 *bssid, int encrypt)
  722. {
  723. struct ieee80211_local *local = sdata->local;
  724. struct sk_buff *skb;
  725. struct ieee80211_mgmt *mgmt;
  726. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  727. sizeof(*mgmt) + 6 + extra_len);
  728. if (!skb) {
  729. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  730. "frame\n", sdata->dev->name);
  731. return;
  732. }
  733. skb_reserve(skb, local->hw.extra_tx_headroom);
  734. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  735. memset(mgmt, 0, 24 + 6);
  736. mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
  737. IEEE80211_STYPE_AUTH);
  738. if (encrypt)
  739. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  740. memcpy(mgmt->da, bssid, ETH_ALEN);
  741. memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN);
  742. memcpy(mgmt->bssid, bssid, ETH_ALEN);
  743. mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
  744. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  745. mgmt->u.auth.status_code = cpu_to_le16(0);
  746. if (extra)
  747. memcpy(skb_put(skb, extra_len), extra, extra_len);
  748. ieee80211_tx_skb(sdata, skb, encrypt);
  749. }
  750. void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
  751. u8 *ssid, size_t ssid_len,
  752. u8 *ie, size_t ie_len)
  753. {
  754. struct ieee80211_local *local = sdata->local;
  755. struct ieee80211_supported_band *sband;
  756. struct sk_buff *skb;
  757. struct ieee80211_mgmt *mgmt;
  758. u8 *pos, *supp_rates, *esupp_rates = NULL;
  759. int i;
  760. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200 +
  761. ie_len);
  762. if (!skb) {
  763. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  764. "request\n", sdata->dev->name);
  765. return;
  766. }
  767. skb_reserve(skb, local->hw.extra_tx_headroom);
  768. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  769. memset(mgmt, 0, 24);
  770. mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
  771. IEEE80211_STYPE_PROBE_REQ);
  772. memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN);
  773. if (dst) {
  774. memcpy(mgmt->da, dst, ETH_ALEN);
  775. memcpy(mgmt->bssid, dst, ETH_ALEN);
  776. } else {
  777. memset(mgmt->da, 0xff, ETH_ALEN);
  778. memset(mgmt->bssid, 0xff, ETH_ALEN);
  779. }
  780. pos = skb_put(skb, 2 + ssid_len);
  781. *pos++ = WLAN_EID_SSID;
  782. *pos++ = ssid_len;
  783. memcpy(pos, ssid, ssid_len);
  784. supp_rates = skb_put(skb, 2);
  785. supp_rates[0] = WLAN_EID_SUPP_RATES;
  786. supp_rates[1] = 0;
  787. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  788. for (i = 0; i < sband->n_bitrates; i++) {
  789. struct ieee80211_rate *rate = &sband->bitrates[i];
  790. if (esupp_rates) {
  791. pos = skb_put(skb, 1);
  792. esupp_rates[1]++;
  793. } else if (supp_rates[1] == 8) {
  794. esupp_rates = skb_put(skb, 3);
  795. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  796. esupp_rates[1] = 1;
  797. pos = &esupp_rates[2];
  798. } else {
  799. pos = skb_put(skb, 1);
  800. supp_rates[1]++;
  801. }
  802. *pos = rate->bitrate / 5;
  803. }
  804. if (ie)
  805. memcpy(skb_put(skb, ie_len), ie, ie_len);
  806. ieee80211_tx_skb(sdata, skb, 0);
  807. }
  808. u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
  809. struct ieee802_11_elems *elems,
  810. enum ieee80211_band band)
  811. {
  812. struct ieee80211_supported_band *sband;
  813. struct ieee80211_rate *bitrates;
  814. size_t num_rates;
  815. u32 supp_rates;
  816. int i, j;
  817. sband = local->hw.wiphy->bands[band];
  818. if (!sband) {
  819. WARN_ON(1);
  820. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  821. }
  822. bitrates = sband->bitrates;
  823. num_rates = sband->n_bitrates;
  824. supp_rates = 0;
  825. for (i = 0; i < elems->supp_rates_len +
  826. elems->ext_supp_rates_len; i++) {
  827. u8 rate = 0;
  828. int own_rate;
  829. if (i < elems->supp_rates_len)
  830. rate = elems->supp_rates[i];
  831. else if (elems->ext_supp_rates)
  832. rate = elems->ext_supp_rates
  833. [i - elems->supp_rates_len];
  834. own_rate = 5 * (rate & 0x7f);
  835. for (j = 0; j < num_rates; j++)
  836. if (bitrates[j].bitrate == own_rate)
  837. supp_rates |= BIT(j);
  838. }
  839. return supp_rates;
  840. }