xfs_log_recover.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_error.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_dinode.h"
  33. #include "xfs_inode.h"
  34. #include "xfs_inode_item.h"
  35. #include "xfs_alloc.h"
  36. #include "xfs_ialloc.h"
  37. #include "xfs_log_priv.h"
  38. #include "xfs_buf_item.h"
  39. #include "xfs_log_recover.h"
  40. #include "xfs_extfree_item.h"
  41. #include "xfs_trans_priv.h"
  42. #include "xfs_quota.h"
  43. #include "xfs_utils.h"
  44. #include "xfs_trace.h"
  45. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  46. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  47. #if defined(DEBUG)
  48. STATIC void xlog_recover_check_summary(xlog_t *);
  49. #else
  50. #define xlog_recover_check_summary(log)
  51. #endif
  52. /*
  53. * This structure is used during recovery to record the buf log items which
  54. * have been canceled and should not be replayed.
  55. */
  56. struct xfs_buf_cancel {
  57. xfs_daddr_t bc_blkno;
  58. uint bc_len;
  59. int bc_refcount;
  60. struct list_head bc_list;
  61. };
  62. /*
  63. * Sector aligned buffer routines for buffer create/read/write/access
  64. */
  65. /*
  66. * Verify the given count of basic blocks is valid number of blocks
  67. * to specify for an operation involving the given XFS log buffer.
  68. * Returns nonzero if the count is valid, 0 otherwise.
  69. */
  70. static inline int
  71. xlog_buf_bbcount_valid(
  72. xlog_t *log,
  73. int bbcount)
  74. {
  75. return bbcount > 0 && bbcount <= log->l_logBBsize;
  76. }
  77. /*
  78. * Allocate a buffer to hold log data. The buffer needs to be able
  79. * to map to a range of nbblks basic blocks at any valid (basic
  80. * block) offset within the log.
  81. */
  82. STATIC xfs_buf_t *
  83. xlog_get_bp(
  84. xlog_t *log,
  85. int nbblks)
  86. {
  87. struct xfs_buf *bp;
  88. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  89. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  90. nbblks);
  91. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  92. return NULL;
  93. }
  94. /*
  95. * We do log I/O in units of log sectors (a power-of-2
  96. * multiple of the basic block size), so we round up the
  97. * requested size to accommodate the basic blocks required
  98. * for complete log sectors.
  99. *
  100. * In addition, the buffer may be used for a non-sector-
  101. * aligned block offset, in which case an I/O of the
  102. * requested size could extend beyond the end of the
  103. * buffer. If the requested size is only 1 basic block it
  104. * will never straddle a sector boundary, so this won't be
  105. * an issue. Nor will this be a problem if the log I/O is
  106. * done in basic blocks (sector size 1). But otherwise we
  107. * extend the buffer by one extra log sector to ensure
  108. * there's space to accommodate this possibility.
  109. */
  110. if (nbblks > 1 && log->l_sectBBsize > 1)
  111. nbblks += log->l_sectBBsize;
  112. nbblks = round_up(nbblks, log->l_sectBBsize);
  113. bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
  114. if (bp)
  115. xfs_buf_unlock(bp);
  116. return bp;
  117. }
  118. STATIC void
  119. xlog_put_bp(
  120. xfs_buf_t *bp)
  121. {
  122. xfs_buf_free(bp);
  123. }
  124. /*
  125. * Return the address of the start of the given block number's data
  126. * in a log buffer. The buffer covers a log sector-aligned region.
  127. */
  128. STATIC xfs_caddr_t
  129. xlog_align(
  130. xlog_t *log,
  131. xfs_daddr_t blk_no,
  132. int nbblks,
  133. xfs_buf_t *bp)
  134. {
  135. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  136. ASSERT(offset + nbblks <= bp->b_length);
  137. return bp->b_addr + BBTOB(offset);
  138. }
  139. /*
  140. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  141. */
  142. STATIC int
  143. xlog_bread_noalign(
  144. xlog_t *log,
  145. xfs_daddr_t blk_no,
  146. int nbblks,
  147. xfs_buf_t *bp)
  148. {
  149. int error;
  150. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  151. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  152. nbblks);
  153. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  154. return EFSCORRUPTED;
  155. }
  156. blk_no = round_down(blk_no, log->l_sectBBsize);
  157. nbblks = round_up(nbblks, log->l_sectBBsize);
  158. ASSERT(nbblks > 0);
  159. ASSERT(nbblks <= bp->b_length);
  160. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  161. XFS_BUF_READ(bp);
  162. bp->b_io_length = nbblks;
  163. bp->b_error = 0;
  164. xfsbdstrat(log->l_mp, bp);
  165. error = xfs_buf_iowait(bp);
  166. if (error)
  167. xfs_buf_ioerror_alert(bp, __func__);
  168. return error;
  169. }
  170. STATIC int
  171. xlog_bread(
  172. xlog_t *log,
  173. xfs_daddr_t blk_no,
  174. int nbblks,
  175. xfs_buf_t *bp,
  176. xfs_caddr_t *offset)
  177. {
  178. int error;
  179. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  180. if (error)
  181. return error;
  182. *offset = xlog_align(log, blk_no, nbblks, bp);
  183. return 0;
  184. }
  185. /*
  186. * Read at an offset into the buffer. Returns with the buffer in it's original
  187. * state regardless of the result of the read.
  188. */
  189. STATIC int
  190. xlog_bread_offset(
  191. xlog_t *log,
  192. xfs_daddr_t blk_no, /* block to read from */
  193. int nbblks, /* blocks to read */
  194. xfs_buf_t *bp,
  195. xfs_caddr_t offset)
  196. {
  197. xfs_caddr_t orig_offset = bp->b_addr;
  198. int orig_len = BBTOB(bp->b_length);
  199. int error, error2;
  200. error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
  201. if (error)
  202. return error;
  203. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  204. /* must reset buffer pointer even on error */
  205. error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
  206. if (error)
  207. return error;
  208. return error2;
  209. }
  210. /*
  211. * Write out the buffer at the given block for the given number of blocks.
  212. * The buffer is kept locked across the write and is returned locked.
  213. * This can only be used for synchronous log writes.
  214. */
  215. STATIC int
  216. xlog_bwrite(
  217. xlog_t *log,
  218. xfs_daddr_t blk_no,
  219. int nbblks,
  220. xfs_buf_t *bp)
  221. {
  222. int error;
  223. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  224. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  225. nbblks);
  226. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  227. return EFSCORRUPTED;
  228. }
  229. blk_no = round_down(blk_no, log->l_sectBBsize);
  230. nbblks = round_up(nbblks, log->l_sectBBsize);
  231. ASSERT(nbblks > 0);
  232. ASSERT(nbblks <= bp->b_length);
  233. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  234. XFS_BUF_ZEROFLAGS(bp);
  235. xfs_buf_hold(bp);
  236. xfs_buf_lock(bp);
  237. bp->b_io_length = nbblks;
  238. bp->b_error = 0;
  239. error = xfs_bwrite(bp);
  240. if (error)
  241. xfs_buf_ioerror_alert(bp, __func__);
  242. xfs_buf_relse(bp);
  243. return error;
  244. }
  245. #ifdef DEBUG
  246. /*
  247. * dump debug superblock and log record information
  248. */
  249. STATIC void
  250. xlog_header_check_dump(
  251. xfs_mount_t *mp,
  252. xlog_rec_header_t *head)
  253. {
  254. xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
  255. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  256. xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
  257. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  258. }
  259. #else
  260. #define xlog_header_check_dump(mp, head)
  261. #endif
  262. /*
  263. * check log record header for recovery
  264. */
  265. STATIC int
  266. xlog_header_check_recover(
  267. xfs_mount_t *mp,
  268. xlog_rec_header_t *head)
  269. {
  270. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  271. /*
  272. * IRIX doesn't write the h_fmt field and leaves it zeroed
  273. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  274. * a dirty log created in IRIX.
  275. */
  276. if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
  277. xfs_warn(mp,
  278. "dirty log written in incompatible format - can't recover");
  279. xlog_header_check_dump(mp, head);
  280. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  281. XFS_ERRLEVEL_HIGH, mp);
  282. return XFS_ERROR(EFSCORRUPTED);
  283. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  284. xfs_warn(mp,
  285. "dirty log entry has mismatched uuid - can't recover");
  286. xlog_header_check_dump(mp, head);
  287. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  288. XFS_ERRLEVEL_HIGH, mp);
  289. return XFS_ERROR(EFSCORRUPTED);
  290. }
  291. return 0;
  292. }
  293. /*
  294. * read the head block of the log and check the header
  295. */
  296. STATIC int
  297. xlog_header_check_mount(
  298. xfs_mount_t *mp,
  299. xlog_rec_header_t *head)
  300. {
  301. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  302. if (uuid_is_nil(&head->h_fs_uuid)) {
  303. /*
  304. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  305. * h_fs_uuid is nil, we assume this log was last mounted
  306. * by IRIX and continue.
  307. */
  308. xfs_warn(mp, "nil uuid in log - IRIX style log");
  309. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  310. xfs_warn(mp, "log has mismatched uuid - can't recover");
  311. xlog_header_check_dump(mp, head);
  312. XFS_ERROR_REPORT("xlog_header_check_mount",
  313. XFS_ERRLEVEL_HIGH, mp);
  314. return XFS_ERROR(EFSCORRUPTED);
  315. }
  316. return 0;
  317. }
  318. STATIC void
  319. xlog_recover_iodone(
  320. struct xfs_buf *bp)
  321. {
  322. if (bp->b_error) {
  323. /*
  324. * We're not going to bother about retrying
  325. * this during recovery. One strike!
  326. */
  327. xfs_buf_ioerror_alert(bp, __func__);
  328. xfs_force_shutdown(bp->b_target->bt_mount,
  329. SHUTDOWN_META_IO_ERROR);
  330. }
  331. bp->b_iodone = NULL;
  332. xfs_buf_ioend(bp, 0);
  333. }
  334. /*
  335. * This routine finds (to an approximation) the first block in the physical
  336. * log which contains the given cycle. It uses a binary search algorithm.
  337. * Note that the algorithm can not be perfect because the disk will not
  338. * necessarily be perfect.
  339. */
  340. STATIC int
  341. xlog_find_cycle_start(
  342. xlog_t *log,
  343. xfs_buf_t *bp,
  344. xfs_daddr_t first_blk,
  345. xfs_daddr_t *last_blk,
  346. uint cycle)
  347. {
  348. xfs_caddr_t offset;
  349. xfs_daddr_t mid_blk;
  350. xfs_daddr_t end_blk;
  351. uint mid_cycle;
  352. int error;
  353. end_blk = *last_blk;
  354. mid_blk = BLK_AVG(first_blk, end_blk);
  355. while (mid_blk != first_blk && mid_blk != end_blk) {
  356. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  357. if (error)
  358. return error;
  359. mid_cycle = xlog_get_cycle(offset);
  360. if (mid_cycle == cycle)
  361. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  362. else
  363. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  364. mid_blk = BLK_AVG(first_blk, end_blk);
  365. }
  366. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  367. (mid_blk == end_blk && mid_blk-1 == first_blk));
  368. *last_blk = end_blk;
  369. return 0;
  370. }
  371. /*
  372. * Check that a range of blocks does not contain stop_on_cycle_no.
  373. * Fill in *new_blk with the block offset where such a block is
  374. * found, or with -1 (an invalid block number) if there is no such
  375. * block in the range. The scan needs to occur from front to back
  376. * and the pointer into the region must be updated since a later
  377. * routine will need to perform another test.
  378. */
  379. STATIC int
  380. xlog_find_verify_cycle(
  381. xlog_t *log,
  382. xfs_daddr_t start_blk,
  383. int nbblks,
  384. uint stop_on_cycle_no,
  385. xfs_daddr_t *new_blk)
  386. {
  387. xfs_daddr_t i, j;
  388. uint cycle;
  389. xfs_buf_t *bp;
  390. xfs_daddr_t bufblks;
  391. xfs_caddr_t buf = NULL;
  392. int error = 0;
  393. /*
  394. * Greedily allocate a buffer big enough to handle the full
  395. * range of basic blocks we'll be examining. If that fails,
  396. * try a smaller size. We need to be able to read at least
  397. * a log sector, or we're out of luck.
  398. */
  399. bufblks = 1 << ffs(nbblks);
  400. while (bufblks > log->l_logBBsize)
  401. bufblks >>= 1;
  402. while (!(bp = xlog_get_bp(log, bufblks))) {
  403. bufblks >>= 1;
  404. if (bufblks < log->l_sectBBsize)
  405. return ENOMEM;
  406. }
  407. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  408. int bcount;
  409. bcount = min(bufblks, (start_blk + nbblks - i));
  410. error = xlog_bread(log, i, bcount, bp, &buf);
  411. if (error)
  412. goto out;
  413. for (j = 0; j < bcount; j++) {
  414. cycle = xlog_get_cycle(buf);
  415. if (cycle == stop_on_cycle_no) {
  416. *new_blk = i+j;
  417. goto out;
  418. }
  419. buf += BBSIZE;
  420. }
  421. }
  422. *new_blk = -1;
  423. out:
  424. xlog_put_bp(bp);
  425. return error;
  426. }
  427. /*
  428. * Potentially backup over partial log record write.
  429. *
  430. * In the typical case, last_blk is the number of the block directly after
  431. * a good log record. Therefore, we subtract one to get the block number
  432. * of the last block in the given buffer. extra_bblks contains the number
  433. * of blocks we would have read on a previous read. This happens when the
  434. * last log record is split over the end of the physical log.
  435. *
  436. * extra_bblks is the number of blocks potentially verified on a previous
  437. * call to this routine.
  438. */
  439. STATIC int
  440. xlog_find_verify_log_record(
  441. xlog_t *log,
  442. xfs_daddr_t start_blk,
  443. xfs_daddr_t *last_blk,
  444. int extra_bblks)
  445. {
  446. xfs_daddr_t i;
  447. xfs_buf_t *bp;
  448. xfs_caddr_t offset = NULL;
  449. xlog_rec_header_t *head = NULL;
  450. int error = 0;
  451. int smallmem = 0;
  452. int num_blks = *last_blk - start_blk;
  453. int xhdrs;
  454. ASSERT(start_blk != 0 || *last_blk != start_blk);
  455. if (!(bp = xlog_get_bp(log, num_blks))) {
  456. if (!(bp = xlog_get_bp(log, 1)))
  457. return ENOMEM;
  458. smallmem = 1;
  459. } else {
  460. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  461. if (error)
  462. goto out;
  463. offset += ((num_blks - 1) << BBSHIFT);
  464. }
  465. for (i = (*last_blk) - 1; i >= 0; i--) {
  466. if (i < start_blk) {
  467. /* valid log record not found */
  468. xfs_warn(log->l_mp,
  469. "Log inconsistent (didn't find previous header)");
  470. ASSERT(0);
  471. error = XFS_ERROR(EIO);
  472. goto out;
  473. }
  474. if (smallmem) {
  475. error = xlog_bread(log, i, 1, bp, &offset);
  476. if (error)
  477. goto out;
  478. }
  479. head = (xlog_rec_header_t *)offset;
  480. if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
  481. break;
  482. if (!smallmem)
  483. offset -= BBSIZE;
  484. }
  485. /*
  486. * We hit the beginning of the physical log & still no header. Return
  487. * to caller. If caller can handle a return of -1, then this routine
  488. * will be called again for the end of the physical log.
  489. */
  490. if (i == -1) {
  491. error = -1;
  492. goto out;
  493. }
  494. /*
  495. * We have the final block of the good log (the first block
  496. * of the log record _before_ the head. So we check the uuid.
  497. */
  498. if ((error = xlog_header_check_mount(log->l_mp, head)))
  499. goto out;
  500. /*
  501. * We may have found a log record header before we expected one.
  502. * last_blk will be the 1st block # with a given cycle #. We may end
  503. * up reading an entire log record. In this case, we don't want to
  504. * reset last_blk. Only when last_blk points in the middle of a log
  505. * record do we update last_blk.
  506. */
  507. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  508. uint h_size = be32_to_cpu(head->h_size);
  509. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  510. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  511. xhdrs++;
  512. } else {
  513. xhdrs = 1;
  514. }
  515. if (*last_blk - i + extra_bblks !=
  516. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  517. *last_blk = i;
  518. out:
  519. xlog_put_bp(bp);
  520. return error;
  521. }
  522. /*
  523. * Head is defined to be the point of the log where the next log write
  524. * write could go. This means that incomplete LR writes at the end are
  525. * eliminated when calculating the head. We aren't guaranteed that previous
  526. * LR have complete transactions. We only know that a cycle number of
  527. * current cycle number -1 won't be present in the log if we start writing
  528. * from our current block number.
  529. *
  530. * last_blk contains the block number of the first block with a given
  531. * cycle number.
  532. *
  533. * Return: zero if normal, non-zero if error.
  534. */
  535. STATIC int
  536. xlog_find_head(
  537. xlog_t *log,
  538. xfs_daddr_t *return_head_blk)
  539. {
  540. xfs_buf_t *bp;
  541. xfs_caddr_t offset;
  542. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  543. int num_scan_bblks;
  544. uint first_half_cycle, last_half_cycle;
  545. uint stop_on_cycle;
  546. int error, log_bbnum = log->l_logBBsize;
  547. /* Is the end of the log device zeroed? */
  548. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  549. *return_head_blk = first_blk;
  550. /* Is the whole lot zeroed? */
  551. if (!first_blk) {
  552. /* Linux XFS shouldn't generate totally zeroed logs -
  553. * mkfs etc write a dummy unmount record to a fresh
  554. * log so we can store the uuid in there
  555. */
  556. xfs_warn(log->l_mp, "totally zeroed log");
  557. }
  558. return 0;
  559. } else if (error) {
  560. xfs_warn(log->l_mp, "empty log check failed");
  561. return error;
  562. }
  563. first_blk = 0; /* get cycle # of 1st block */
  564. bp = xlog_get_bp(log, 1);
  565. if (!bp)
  566. return ENOMEM;
  567. error = xlog_bread(log, 0, 1, bp, &offset);
  568. if (error)
  569. goto bp_err;
  570. first_half_cycle = xlog_get_cycle(offset);
  571. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  572. error = xlog_bread(log, last_blk, 1, bp, &offset);
  573. if (error)
  574. goto bp_err;
  575. last_half_cycle = xlog_get_cycle(offset);
  576. ASSERT(last_half_cycle != 0);
  577. /*
  578. * If the 1st half cycle number is equal to the last half cycle number,
  579. * then the entire log is stamped with the same cycle number. In this
  580. * case, head_blk can't be set to zero (which makes sense). The below
  581. * math doesn't work out properly with head_blk equal to zero. Instead,
  582. * we set it to log_bbnum which is an invalid block number, but this
  583. * value makes the math correct. If head_blk doesn't changed through
  584. * all the tests below, *head_blk is set to zero at the very end rather
  585. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  586. * in a circular file.
  587. */
  588. if (first_half_cycle == last_half_cycle) {
  589. /*
  590. * In this case we believe that the entire log should have
  591. * cycle number last_half_cycle. We need to scan backwards
  592. * from the end verifying that there are no holes still
  593. * containing last_half_cycle - 1. If we find such a hole,
  594. * then the start of that hole will be the new head. The
  595. * simple case looks like
  596. * x | x ... | x - 1 | x
  597. * Another case that fits this picture would be
  598. * x | x + 1 | x ... | x
  599. * In this case the head really is somewhere at the end of the
  600. * log, as one of the latest writes at the beginning was
  601. * incomplete.
  602. * One more case is
  603. * x | x + 1 | x ... | x - 1 | x
  604. * This is really the combination of the above two cases, and
  605. * the head has to end up at the start of the x-1 hole at the
  606. * end of the log.
  607. *
  608. * In the 256k log case, we will read from the beginning to the
  609. * end of the log and search for cycle numbers equal to x-1.
  610. * We don't worry about the x+1 blocks that we encounter,
  611. * because we know that they cannot be the head since the log
  612. * started with x.
  613. */
  614. head_blk = log_bbnum;
  615. stop_on_cycle = last_half_cycle - 1;
  616. } else {
  617. /*
  618. * In this case we want to find the first block with cycle
  619. * number matching last_half_cycle. We expect the log to be
  620. * some variation on
  621. * x + 1 ... | x ... | x
  622. * The first block with cycle number x (last_half_cycle) will
  623. * be where the new head belongs. First we do a binary search
  624. * for the first occurrence of last_half_cycle. The binary
  625. * search may not be totally accurate, so then we scan back
  626. * from there looking for occurrences of last_half_cycle before
  627. * us. If that backwards scan wraps around the beginning of
  628. * the log, then we look for occurrences of last_half_cycle - 1
  629. * at the end of the log. The cases we're looking for look
  630. * like
  631. * v binary search stopped here
  632. * x + 1 ... | x | x + 1 | x ... | x
  633. * ^ but we want to locate this spot
  634. * or
  635. * <---------> less than scan distance
  636. * x + 1 ... | x ... | x - 1 | x
  637. * ^ we want to locate this spot
  638. */
  639. stop_on_cycle = last_half_cycle;
  640. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  641. &head_blk, last_half_cycle)))
  642. goto bp_err;
  643. }
  644. /*
  645. * Now validate the answer. Scan back some number of maximum possible
  646. * blocks and make sure each one has the expected cycle number. The
  647. * maximum is determined by the total possible amount of buffering
  648. * in the in-core log. The following number can be made tighter if
  649. * we actually look at the block size of the filesystem.
  650. */
  651. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  652. if (head_blk >= num_scan_bblks) {
  653. /*
  654. * We are guaranteed that the entire check can be performed
  655. * in one buffer.
  656. */
  657. start_blk = head_blk - num_scan_bblks;
  658. if ((error = xlog_find_verify_cycle(log,
  659. start_blk, num_scan_bblks,
  660. stop_on_cycle, &new_blk)))
  661. goto bp_err;
  662. if (new_blk != -1)
  663. head_blk = new_blk;
  664. } else { /* need to read 2 parts of log */
  665. /*
  666. * We are going to scan backwards in the log in two parts.
  667. * First we scan the physical end of the log. In this part
  668. * of the log, we are looking for blocks with cycle number
  669. * last_half_cycle - 1.
  670. * If we find one, then we know that the log starts there, as
  671. * we've found a hole that didn't get written in going around
  672. * the end of the physical log. The simple case for this is
  673. * x + 1 ... | x ... | x - 1 | x
  674. * <---------> less than scan distance
  675. * If all of the blocks at the end of the log have cycle number
  676. * last_half_cycle, then we check the blocks at the start of
  677. * the log looking for occurrences of last_half_cycle. If we
  678. * find one, then our current estimate for the location of the
  679. * first occurrence of last_half_cycle is wrong and we move
  680. * back to the hole we've found. This case looks like
  681. * x + 1 ... | x | x + 1 | x ...
  682. * ^ binary search stopped here
  683. * Another case we need to handle that only occurs in 256k
  684. * logs is
  685. * x + 1 ... | x ... | x+1 | x ...
  686. * ^ binary search stops here
  687. * In a 256k log, the scan at the end of the log will see the
  688. * x + 1 blocks. We need to skip past those since that is
  689. * certainly not the head of the log. By searching for
  690. * last_half_cycle-1 we accomplish that.
  691. */
  692. ASSERT(head_blk <= INT_MAX &&
  693. (xfs_daddr_t) num_scan_bblks >= head_blk);
  694. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  695. if ((error = xlog_find_verify_cycle(log, start_blk,
  696. num_scan_bblks - (int)head_blk,
  697. (stop_on_cycle - 1), &new_blk)))
  698. goto bp_err;
  699. if (new_blk != -1) {
  700. head_blk = new_blk;
  701. goto validate_head;
  702. }
  703. /*
  704. * Scan beginning of log now. The last part of the physical
  705. * log is good. This scan needs to verify that it doesn't find
  706. * the last_half_cycle.
  707. */
  708. start_blk = 0;
  709. ASSERT(head_blk <= INT_MAX);
  710. if ((error = xlog_find_verify_cycle(log,
  711. start_blk, (int)head_blk,
  712. stop_on_cycle, &new_blk)))
  713. goto bp_err;
  714. if (new_blk != -1)
  715. head_blk = new_blk;
  716. }
  717. validate_head:
  718. /*
  719. * Now we need to make sure head_blk is not pointing to a block in
  720. * the middle of a log record.
  721. */
  722. num_scan_bblks = XLOG_REC_SHIFT(log);
  723. if (head_blk >= num_scan_bblks) {
  724. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  725. /* start ptr at last block ptr before head_blk */
  726. if ((error = xlog_find_verify_log_record(log, start_blk,
  727. &head_blk, 0)) == -1) {
  728. error = XFS_ERROR(EIO);
  729. goto bp_err;
  730. } else if (error)
  731. goto bp_err;
  732. } else {
  733. start_blk = 0;
  734. ASSERT(head_blk <= INT_MAX);
  735. if ((error = xlog_find_verify_log_record(log, start_blk,
  736. &head_blk, 0)) == -1) {
  737. /* We hit the beginning of the log during our search */
  738. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  739. new_blk = log_bbnum;
  740. ASSERT(start_blk <= INT_MAX &&
  741. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  742. ASSERT(head_blk <= INT_MAX);
  743. if ((error = xlog_find_verify_log_record(log,
  744. start_blk, &new_blk,
  745. (int)head_blk)) == -1) {
  746. error = XFS_ERROR(EIO);
  747. goto bp_err;
  748. } else if (error)
  749. goto bp_err;
  750. if (new_blk != log_bbnum)
  751. head_blk = new_blk;
  752. } else if (error)
  753. goto bp_err;
  754. }
  755. xlog_put_bp(bp);
  756. if (head_blk == log_bbnum)
  757. *return_head_blk = 0;
  758. else
  759. *return_head_blk = head_blk;
  760. /*
  761. * When returning here, we have a good block number. Bad block
  762. * means that during a previous crash, we didn't have a clean break
  763. * from cycle number N to cycle number N-1. In this case, we need
  764. * to find the first block with cycle number N-1.
  765. */
  766. return 0;
  767. bp_err:
  768. xlog_put_bp(bp);
  769. if (error)
  770. xfs_warn(log->l_mp, "failed to find log head");
  771. return error;
  772. }
  773. /*
  774. * Find the sync block number or the tail of the log.
  775. *
  776. * This will be the block number of the last record to have its
  777. * associated buffers synced to disk. Every log record header has
  778. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  779. * to get a sync block number. The only concern is to figure out which
  780. * log record header to believe.
  781. *
  782. * The following algorithm uses the log record header with the largest
  783. * lsn. The entire log record does not need to be valid. We only care
  784. * that the header is valid.
  785. *
  786. * We could speed up search by using current head_blk buffer, but it is not
  787. * available.
  788. */
  789. STATIC int
  790. xlog_find_tail(
  791. xlog_t *log,
  792. xfs_daddr_t *head_blk,
  793. xfs_daddr_t *tail_blk)
  794. {
  795. xlog_rec_header_t *rhead;
  796. xlog_op_header_t *op_head;
  797. xfs_caddr_t offset = NULL;
  798. xfs_buf_t *bp;
  799. int error, i, found;
  800. xfs_daddr_t umount_data_blk;
  801. xfs_daddr_t after_umount_blk;
  802. xfs_lsn_t tail_lsn;
  803. int hblks;
  804. found = 0;
  805. /*
  806. * Find previous log record
  807. */
  808. if ((error = xlog_find_head(log, head_blk)))
  809. return error;
  810. bp = xlog_get_bp(log, 1);
  811. if (!bp)
  812. return ENOMEM;
  813. if (*head_blk == 0) { /* special case */
  814. error = xlog_bread(log, 0, 1, bp, &offset);
  815. if (error)
  816. goto done;
  817. if (xlog_get_cycle(offset) == 0) {
  818. *tail_blk = 0;
  819. /* leave all other log inited values alone */
  820. goto done;
  821. }
  822. }
  823. /*
  824. * Search backwards looking for log record header block
  825. */
  826. ASSERT(*head_blk < INT_MAX);
  827. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  828. error = xlog_bread(log, i, 1, bp, &offset);
  829. if (error)
  830. goto done;
  831. if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  832. found = 1;
  833. break;
  834. }
  835. }
  836. /*
  837. * If we haven't found the log record header block, start looking
  838. * again from the end of the physical log. XXXmiken: There should be
  839. * a check here to make sure we didn't search more than N blocks in
  840. * the previous code.
  841. */
  842. if (!found) {
  843. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  844. error = xlog_bread(log, i, 1, bp, &offset);
  845. if (error)
  846. goto done;
  847. if (*(__be32 *)offset ==
  848. cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  849. found = 2;
  850. break;
  851. }
  852. }
  853. }
  854. if (!found) {
  855. xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
  856. ASSERT(0);
  857. return XFS_ERROR(EIO);
  858. }
  859. /* find blk_no of tail of log */
  860. rhead = (xlog_rec_header_t *)offset;
  861. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  862. /*
  863. * Reset log values according to the state of the log when we
  864. * crashed. In the case where head_blk == 0, we bump curr_cycle
  865. * one because the next write starts a new cycle rather than
  866. * continuing the cycle of the last good log record. At this
  867. * point we have guaranteed that all partial log records have been
  868. * accounted for. Therefore, we know that the last good log record
  869. * written was complete and ended exactly on the end boundary
  870. * of the physical log.
  871. */
  872. log->l_prev_block = i;
  873. log->l_curr_block = (int)*head_blk;
  874. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  875. if (found == 2)
  876. log->l_curr_cycle++;
  877. atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
  878. atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
  879. xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
  880. BBTOB(log->l_curr_block));
  881. xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
  882. BBTOB(log->l_curr_block));
  883. /*
  884. * Look for unmount record. If we find it, then we know there
  885. * was a clean unmount. Since 'i' could be the last block in
  886. * the physical log, we convert to a log block before comparing
  887. * to the head_blk.
  888. *
  889. * Save the current tail lsn to use to pass to
  890. * xlog_clear_stale_blocks() below. We won't want to clear the
  891. * unmount record if there is one, so we pass the lsn of the
  892. * unmount record rather than the block after it.
  893. */
  894. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  895. int h_size = be32_to_cpu(rhead->h_size);
  896. int h_version = be32_to_cpu(rhead->h_version);
  897. if ((h_version & XLOG_VERSION_2) &&
  898. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  899. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  900. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  901. hblks++;
  902. } else {
  903. hblks = 1;
  904. }
  905. } else {
  906. hblks = 1;
  907. }
  908. after_umount_blk = (i + hblks + (int)
  909. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  910. tail_lsn = atomic64_read(&log->l_tail_lsn);
  911. if (*head_blk == after_umount_blk &&
  912. be32_to_cpu(rhead->h_num_logops) == 1) {
  913. umount_data_blk = (i + hblks) % log->l_logBBsize;
  914. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  915. if (error)
  916. goto done;
  917. op_head = (xlog_op_header_t *)offset;
  918. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  919. /*
  920. * Set tail and last sync so that newly written
  921. * log records will point recovery to after the
  922. * current unmount record.
  923. */
  924. xlog_assign_atomic_lsn(&log->l_tail_lsn,
  925. log->l_curr_cycle, after_umount_blk);
  926. xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
  927. log->l_curr_cycle, after_umount_blk);
  928. *tail_blk = after_umount_blk;
  929. /*
  930. * Note that the unmount was clean. If the unmount
  931. * was not clean, we need to know this to rebuild the
  932. * superblock counters from the perag headers if we
  933. * have a filesystem using non-persistent counters.
  934. */
  935. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  936. }
  937. }
  938. /*
  939. * Make sure that there are no blocks in front of the head
  940. * with the same cycle number as the head. This can happen
  941. * because we allow multiple outstanding log writes concurrently,
  942. * and the later writes might make it out before earlier ones.
  943. *
  944. * We use the lsn from before modifying it so that we'll never
  945. * overwrite the unmount record after a clean unmount.
  946. *
  947. * Do this only if we are going to recover the filesystem
  948. *
  949. * NOTE: This used to say "if (!readonly)"
  950. * However on Linux, we can & do recover a read-only filesystem.
  951. * We only skip recovery if NORECOVERY is specified on mount,
  952. * in which case we would not be here.
  953. *
  954. * But... if the -device- itself is readonly, just skip this.
  955. * We can't recover this device anyway, so it won't matter.
  956. */
  957. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  958. error = xlog_clear_stale_blocks(log, tail_lsn);
  959. done:
  960. xlog_put_bp(bp);
  961. if (error)
  962. xfs_warn(log->l_mp, "failed to locate log tail");
  963. return error;
  964. }
  965. /*
  966. * Is the log zeroed at all?
  967. *
  968. * The last binary search should be changed to perform an X block read
  969. * once X becomes small enough. You can then search linearly through
  970. * the X blocks. This will cut down on the number of reads we need to do.
  971. *
  972. * If the log is partially zeroed, this routine will pass back the blkno
  973. * of the first block with cycle number 0. It won't have a complete LR
  974. * preceding it.
  975. *
  976. * Return:
  977. * 0 => the log is completely written to
  978. * -1 => use *blk_no as the first block of the log
  979. * >0 => error has occurred
  980. */
  981. STATIC int
  982. xlog_find_zeroed(
  983. xlog_t *log,
  984. xfs_daddr_t *blk_no)
  985. {
  986. xfs_buf_t *bp;
  987. xfs_caddr_t offset;
  988. uint first_cycle, last_cycle;
  989. xfs_daddr_t new_blk, last_blk, start_blk;
  990. xfs_daddr_t num_scan_bblks;
  991. int error, log_bbnum = log->l_logBBsize;
  992. *blk_no = 0;
  993. /* check totally zeroed log */
  994. bp = xlog_get_bp(log, 1);
  995. if (!bp)
  996. return ENOMEM;
  997. error = xlog_bread(log, 0, 1, bp, &offset);
  998. if (error)
  999. goto bp_err;
  1000. first_cycle = xlog_get_cycle(offset);
  1001. if (first_cycle == 0) { /* completely zeroed log */
  1002. *blk_no = 0;
  1003. xlog_put_bp(bp);
  1004. return -1;
  1005. }
  1006. /* check partially zeroed log */
  1007. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  1008. if (error)
  1009. goto bp_err;
  1010. last_cycle = xlog_get_cycle(offset);
  1011. if (last_cycle != 0) { /* log completely written to */
  1012. xlog_put_bp(bp);
  1013. return 0;
  1014. } else if (first_cycle != 1) {
  1015. /*
  1016. * If the cycle of the last block is zero, the cycle of
  1017. * the first block must be 1. If it's not, maybe we're
  1018. * not looking at a log... Bail out.
  1019. */
  1020. xfs_warn(log->l_mp,
  1021. "Log inconsistent or not a log (last==0, first!=1)");
  1022. return XFS_ERROR(EINVAL);
  1023. }
  1024. /* we have a partially zeroed log */
  1025. last_blk = log_bbnum-1;
  1026. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1027. goto bp_err;
  1028. /*
  1029. * Validate the answer. Because there is no way to guarantee that
  1030. * the entire log is made up of log records which are the same size,
  1031. * we scan over the defined maximum blocks. At this point, the maximum
  1032. * is not chosen to mean anything special. XXXmiken
  1033. */
  1034. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1035. ASSERT(num_scan_bblks <= INT_MAX);
  1036. if (last_blk < num_scan_bblks)
  1037. num_scan_bblks = last_blk;
  1038. start_blk = last_blk - num_scan_bblks;
  1039. /*
  1040. * We search for any instances of cycle number 0 that occur before
  1041. * our current estimate of the head. What we're trying to detect is
  1042. * 1 ... | 0 | 1 | 0...
  1043. * ^ binary search ends here
  1044. */
  1045. if ((error = xlog_find_verify_cycle(log, start_blk,
  1046. (int)num_scan_bblks, 0, &new_blk)))
  1047. goto bp_err;
  1048. if (new_blk != -1)
  1049. last_blk = new_blk;
  1050. /*
  1051. * Potentially backup over partial log record write. We don't need
  1052. * to search the end of the log because we know it is zero.
  1053. */
  1054. if ((error = xlog_find_verify_log_record(log, start_blk,
  1055. &last_blk, 0)) == -1) {
  1056. error = XFS_ERROR(EIO);
  1057. goto bp_err;
  1058. } else if (error)
  1059. goto bp_err;
  1060. *blk_no = last_blk;
  1061. bp_err:
  1062. xlog_put_bp(bp);
  1063. if (error)
  1064. return error;
  1065. return -1;
  1066. }
  1067. /*
  1068. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1069. * to initialize a buffer full of empty log record headers and write
  1070. * them into the log.
  1071. */
  1072. STATIC void
  1073. xlog_add_record(
  1074. xlog_t *log,
  1075. xfs_caddr_t buf,
  1076. int cycle,
  1077. int block,
  1078. int tail_cycle,
  1079. int tail_block)
  1080. {
  1081. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1082. memset(buf, 0, BBSIZE);
  1083. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1084. recp->h_cycle = cpu_to_be32(cycle);
  1085. recp->h_version = cpu_to_be32(
  1086. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1087. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1088. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1089. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1090. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1091. }
  1092. STATIC int
  1093. xlog_write_log_records(
  1094. xlog_t *log,
  1095. int cycle,
  1096. int start_block,
  1097. int blocks,
  1098. int tail_cycle,
  1099. int tail_block)
  1100. {
  1101. xfs_caddr_t offset;
  1102. xfs_buf_t *bp;
  1103. int balign, ealign;
  1104. int sectbb = log->l_sectBBsize;
  1105. int end_block = start_block + blocks;
  1106. int bufblks;
  1107. int error = 0;
  1108. int i, j = 0;
  1109. /*
  1110. * Greedily allocate a buffer big enough to handle the full
  1111. * range of basic blocks to be written. If that fails, try
  1112. * a smaller size. We need to be able to write at least a
  1113. * log sector, or we're out of luck.
  1114. */
  1115. bufblks = 1 << ffs(blocks);
  1116. while (bufblks > log->l_logBBsize)
  1117. bufblks >>= 1;
  1118. while (!(bp = xlog_get_bp(log, bufblks))) {
  1119. bufblks >>= 1;
  1120. if (bufblks < sectbb)
  1121. return ENOMEM;
  1122. }
  1123. /* We may need to do a read at the start to fill in part of
  1124. * the buffer in the starting sector not covered by the first
  1125. * write below.
  1126. */
  1127. balign = round_down(start_block, sectbb);
  1128. if (balign != start_block) {
  1129. error = xlog_bread_noalign(log, start_block, 1, bp);
  1130. if (error)
  1131. goto out_put_bp;
  1132. j = start_block - balign;
  1133. }
  1134. for (i = start_block; i < end_block; i += bufblks) {
  1135. int bcount, endcount;
  1136. bcount = min(bufblks, end_block - start_block);
  1137. endcount = bcount - j;
  1138. /* We may need to do a read at the end to fill in part of
  1139. * the buffer in the final sector not covered by the write.
  1140. * If this is the same sector as the above read, skip it.
  1141. */
  1142. ealign = round_down(end_block, sectbb);
  1143. if (j == 0 && (start_block + endcount > ealign)) {
  1144. offset = bp->b_addr + BBTOB(ealign - start_block);
  1145. error = xlog_bread_offset(log, ealign, sectbb,
  1146. bp, offset);
  1147. if (error)
  1148. break;
  1149. }
  1150. offset = xlog_align(log, start_block, endcount, bp);
  1151. for (; j < endcount; j++) {
  1152. xlog_add_record(log, offset, cycle, i+j,
  1153. tail_cycle, tail_block);
  1154. offset += BBSIZE;
  1155. }
  1156. error = xlog_bwrite(log, start_block, endcount, bp);
  1157. if (error)
  1158. break;
  1159. start_block += endcount;
  1160. j = 0;
  1161. }
  1162. out_put_bp:
  1163. xlog_put_bp(bp);
  1164. return error;
  1165. }
  1166. /*
  1167. * This routine is called to blow away any incomplete log writes out
  1168. * in front of the log head. We do this so that we won't become confused
  1169. * if we come up, write only a little bit more, and then crash again.
  1170. * If we leave the partial log records out there, this situation could
  1171. * cause us to think those partial writes are valid blocks since they
  1172. * have the current cycle number. We get rid of them by overwriting them
  1173. * with empty log records with the old cycle number rather than the
  1174. * current one.
  1175. *
  1176. * The tail lsn is passed in rather than taken from
  1177. * the log so that we will not write over the unmount record after a
  1178. * clean unmount in a 512 block log. Doing so would leave the log without
  1179. * any valid log records in it until a new one was written. If we crashed
  1180. * during that time we would not be able to recover.
  1181. */
  1182. STATIC int
  1183. xlog_clear_stale_blocks(
  1184. xlog_t *log,
  1185. xfs_lsn_t tail_lsn)
  1186. {
  1187. int tail_cycle, head_cycle;
  1188. int tail_block, head_block;
  1189. int tail_distance, max_distance;
  1190. int distance;
  1191. int error;
  1192. tail_cycle = CYCLE_LSN(tail_lsn);
  1193. tail_block = BLOCK_LSN(tail_lsn);
  1194. head_cycle = log->l_curr_cycle;
  1195. head_block = log->l_curr_block;
  1196. /*
  1197. * Figure out the distance between the new head of the log
  1198. * and the tail. We want to write over any blocks beyond the
  1199. * head that we may have written just before the crash, but
  1200. * we don't want to overwrite the tail of the log.
  1201. */
  1202. if (head_cycle == tail_cycle) {
  1203. /*
  1204. * The tail is behind the head in the physical log,
  1205. * so the distance from the head to the tail is the
  1206. * distance from the head to the end of the log plus
  1207. * the distance from the beginning of the log to the
  1208. * tail.
  1209. */
  1210. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1211. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1212. XFS_ERRLEVEL_LOW, log->l_mp);
  1213. return XFS_ERROR(EFSCORRUPTED);
  1214. }
  1215. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1216. } else {
  1217. /*
  1218. * The head is behind the tail in the physical log,
  1219. * so the distance from the head to the tail is just
  1220. * the tail block minus the head block.
  1221. */
  1222. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1223. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1224. XFS_ERRLEVEL_LOW, log->l_mp);
  1225. return XFS_ERROR(EFSCORRUPTED);
  1226. }
  1227. tail_distance = tail_block - head_block;
  1228. }
  1229. /*
  1230. * If the head is right up against the tail, we can't clear
  1231. * anything.
  1232. */
  1233. if (tail_distance <= 0) {
  1234. ASSERT(tail_distance == 0);
  1235. return 0;
  1236. }
  1237. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1238. /*
  1239. * Take the smaller of the maximum amount of outstanding I/O
  1240. * we could have and the distance to the tail to clear out.
  1241. * We take the smaller so that we don't overwrite the tail and
  1242. * we don't waste all day writing from the head to the tail
  1243. * for no reason.
  1244. */
  1245. max_distance = MIN(max_distance, tail_distance);
  1246. if ((head_block + max_distance) <= log->l_logBBsize) {
  1247. /*
  1248. * We can stomp all the blocks we need to without
  1249. * wrapping around the end of the log. Just do it
  1250. * in a single write. Use the cycle number of the
  1251. * current cycle minus one so that the log will look like:
  1252. * n ... | n - 1 ...
  1253. */
  1254. error = xlog_write_log_records(log, (head_cycle - 1),
  1255. head_block, max_distance, tail_cycle,
  1256. tail_block);
  1257. if (error)
  1258. return error;
  1259. } else {
  1260. /*
  1261. * We need to wrap around the end of the physical log in
  1262. * order to clear all the blocks. Do it in two separate
  1263. * I/Os. The first write should be from the head to the
  1264. * end of the physical log, and it should use the current
  1265. * cycle number minus one just like above.
  1266. */
  1267. distance = log->l_logBBsize - head_block;
  1268. error = xlog_write_log_records(log, (head_cycle - 1),
  1269. head_block, distance, tail_cycle,
  1270. tail_block);
  1271. if (error)
  1272. return error;
  1273. /*
  1274. * Now write the blocks at the start of the physical log.
  1275. * This writes the remainder of the blocks we want to clear.
  1276. * It uses the current cycle number since we're now on the
  1277. * same cycle as the head so that we get:
  1278. * n ... n ... | n - 1 ...
  1279. * ^^^^^ blocks we're writing
  1280. */
  1281. distance = max_distance - (log->l_logBBsize - head_block);
  1282. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1283. tail_cycle, tail_block);
  1284. if (error)
  1285. return error;
  1286. }
  1287. return 0;
  1288. }
  1289. /******************************************************************************
  1290. *
  1291. * Log recover routines
  1292. *
  1293. ******************************************************************************
  1294. */
  1295. STATIC xlog_recover_t *
  1296. xlog_recover_find_tid(
  1297. struct hlist_head *head,
  1298. xlog_tid_t tid)
  1299. {
  1300. xlog_recover_t *trans;
  1301. struct hlist_node *n;
  1302. hlist_for_each_entry(trans, n, head, r_list) {
  1303. if (trans->r_log_tid == tid)
  1304. return trans;
  1305. }
  1306. return NULL;
  1307. }
  1308. STATIC void
  1309. xlog_recover_new_tid(
  1310. struct hlist_head *head,
  1311. xlog_tid_t tid,
  1312. xfs_lsn_t lsn)
  1313. {
  1314. xlog_recover_t *trans;
  1315. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1316. trans->r_log_tid = tid;
  1317. trans->r_lsn = lsn;
  1318. INIT_LIST_HEAD(&trans->r_itemq);
  1319. INIT_HLIST_NODE(&trans->r_list);
  1320. hlist_add_head(&trans->r_list, head);
  1321. }
  1322. STATIC void
  1323. xlog_recover_add_item(
  1324. struct list_head *head)
  1325. {
  1326. xlog_recover_item_t *item;
  1327. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1328. INIT_LIST_HEAD(&item->ri_list);
  1329. list_add_tail(&item->ri_list, head);
  1330. }
  1331. STATIC int
  1332. xlog_recover_add_to_cont_trans(
  1333. struct log *log,
  1334. xlog_recover_t *trans,
  1335. xfs_caddr_t dp,
  1336. int len)
  1337. {
  1338. xlog_recover_item_t *item;
  1339. xfs_caddr_t ptr, old_ptr;
  1340. int old_len;
  1341. if (list_empty(&trans->r_itemq)) {
  1342. /* finish copying rest of trans header */
  1343. xlog_recover_add_item(&trans->r_itemq);
  1344. ptr = (xfs_caddr_t) &trans->r_theader +
  1345. sizeof(xfs_trans_header_t) - len;
  1346. memcpy(ptr, dp, len); /* d, s, l */
  1347. return 0;
  1348. }
  1349. /* take the tail entry */
  1350. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1351. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1352. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1353. ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
  1354. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1355. item->ri_buf[item->ri_cnt-1].i_len += len;
  1356. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1357. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1358. return 0;
  1359. }
  1360. /*
  1361. * The next region to add is the start of a new region. It could be
  1362. * a whole region or it could be the first part of a new region. Because
  1363. * of this, the assumption here is that the type and size fields of all
  1364. * format structures fit into the first 32 bits of the structure.
  1365. *
  1366. * This works because all regions must be 32 bit aligned. Therefore, we
  1367. * either have both fields or we have neither field. In the case we have
  1368. * neither field, the data part of the region is zero length. We only have
  1369. * a log_op_header and can throw away the header since a new one will appear
  1370. * later. If we have at least 4 bytes, then we can determine how many regions
  1371. * will appear in the current log item.
  1372. */
  1373. STATIC int
  1374. xlog_recover_add_to_trans(
  1375. struct log *log,
  1376. xlog_recover_t *trans,
  1377. xfs_caddr_t dp,
  1378. int len)
  1379. {
  1380. xfs_inode_log_format_t *in_f; /* any will do */
  1381. xlog_recover_item_t *item;
  1382. xfs_caddr_t ptr;
  1383. if (!len)
  1384. return 0;
  1385. if (list_empty(&trans->r_itemq)) {
  1386. /* we need to catch log corruptions here */
  1387. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1388. xfs_warn(log->l_mp, "%s: bad header magic number",
  1389. __func__);
  1390. ASSERT(0);
  1391. return XFS_ERROR(EIO);
  1392. }
  1393. if (len == sizeof(xfs_trans_header_t))
  1394. xlog_recover_add_item(&trans->r_itemq);
  1395. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1396. return 0;
  1397. }
  1398. ptr = kmem_alloc(len, KM_SLEEP);
  1399. memcpy(ptr, dp, len);
  1400. in_f = (xfs_inode_log_format_t *)ptr;
  1401. /* take the tail entry */
  1402. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1403. if (item->ri_total != 0 &&
  1404. item->ri_total == item->ri_cnt) {
  1405. /* tail item is in use, get a new one */
  1406. xlog_recover_add_item(&trans->r_itemq);
  1407. item = list_entry(trans->r_itemq.prev,
  1408. xlog_recover_item_t, ri_list);
  1409. }
  1410. if (item->ri_total == 0) { /* first region to be added */
  1411. if (in_f->ilf_size == 0 ||
  1412. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1413. xfs_warn(log->l_mp,
  1414. "bad number of regions (%d) in inode log format",
  1415. in_f->ilf_size);
  1416. ASSERT(0);
  1417. return XFS_ERROR(EIO);
  1418. }
  1419. item->ri_total = in_f->ilf_size;
  1420. item->ri_buf =
  1421. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1422. KM_SLEEP);
  1423. }
  1424. ASSERT(item->ri_total > item->ri_cnt);
  1425. /* Description region is ri_buf[0] */
  1426. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1427. item->ri_buf[item->ri_cnt].i_len = len;
  1428. item->ri_cnt++;
  1429. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1430. return 0;
  1431. }
  1432. /*
  1433. * Sort the log items in the transaction. Cancelled buffers need
  1434. * to be put first so they are processed before any items that might
  1435. * modify the buffers. If they are cancelled, then the modifications
  1436. * don't need to be replayed.
  1437. */
  1438. STATIC int
  1439. xlog_recover_reorder_trans(
  1440. struct log *log,
  1441. xlog_recover_t *trans,
  1442. int pass)
  1443. {
  1444. xlog_recover_item_t *item, *n;
  1445. LIST_HEAD(sort_list);
  1446. list_splice_init(&trans->r_itemq, &sort_list);
  1447. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1448. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1449. switch (ITEM_TYPE(item)) {
  1450. case XFS_LI_BUF:
  1451. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1452. trace_xfs_log_recover_item_reorder_head(log,
  1453. trans, item, pass);
  1454. list_move(&item->ri_list, &trans->r_itemq);
  1455. break;
  1456. }
  1457. case XFS_LI_INODE:
  1458. case XFS_LI_DQUOT:
  1459. case XFS_LI_QUOTAOFF:
  1460. case XFS_LI_EFD:
  1461. case XFS_LI_EFI:
  1462. trace_xfs_log_recover_item_reorder_tail(log,
  1463. trans, item, pass);
  1464. list_move_tail(&item->ri_list, &trans->r_itemq);
  1465. break;
  1466. default:
  1467. xfs_warn(log->l_mp,
  1468. "%s: unrecognized type of log operation",
  1469. __func__);
  1470. ASSERT(0);
  1471. return XFS_ERROR(EIO);
  1472. }
  1473. }
  1474. ASSERT(list_empty(&sort_list));
  1475. return 0;
  1476. }
  1477. /*
  1478. * Build up the table of buf cancel records so that we don't replay
  1479. * cancelled data in the second pass. For buffer records that are
  1480. * not cancel records, there is nothing to do here so we just return.
  1481. *
  1482. * If we get a cancel record which is already in the table, this indicates
  1483. * that the buffer was cancelled multiple times. In order to ensure
  1484. * that during pass 2 we keep the record in the table until we reach its
  1485. * last occurrence in the log, we keep a reference count in the cancel
  1486. * record in the table to tell us how many times we expect to see this
  1487. * record during the second pass.
  1488. */
  1489. STATIC int
  1490. xlog_recover_buffer_pass1(
  1491. struct log *log,
  1492. xlog_recover_item_t *item)
  1493. {
  1494. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1495. struct list_head *bucket;
  1496. struct xfs_buf_cancel *bcp;
  1497. /*
  1498. * If this isn't a cancel buffer item, then just return.
  1499. */
  1500. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1501. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1502. return 0;
  1503. }
  1504. /*
  1505. * Insert an xfs_buf_cancel record into the hash table of them.
  1506. * If there is already an identical record, bump its reference count.
  1507. */
  1508. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1509. list_for_each_entry(bcp, bucket, bc_list) {
  1510. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1511. bcp->bc_len == buf_f->blf_len) {
  1512. bcp->bc_refcount++;
  1513. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1514. return 0;
  1515. }
  1516. }
  1517. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1518. bcp->bc_blkno = buf_f->blf_blkno;
  1519. bcp->bc_len = buf_f->blf_len;
  1520. bcp->bc_refcount = 1;
  1521. list_add_tail(&bcp->bc_list, bucket);
  1522. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1523. return 0;
  1524. }
  1525. /*
  1526. * Check to see whether the buffer being recovered has a corresponding
  1527. * entry in the buffer cancel record table. If it does then return 1
  1528. * so that it will be cancelled, otherwise return 0. If the buffer is
  1529. * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
  1530. * the refcount on the entry in the table and remove it from the table
  1531. * if this is the last reference.
  1532. *
  1533. * We remove the cancel record from the table when we encounter its
  1534. * last occurrence in the log so that if the same buffer is re-used
  1535. * again after its last cancellation we actually replay the changes
  1536. * made at that point.
  1537. */
  1538. STATIC int
  1539. xlog_check_buffer_cancelled(
  1540. struct log *log,
  1541. xfs_daddr_t blkno,
  1542. uint len,
  1543. ushort flags)
  1544. {
  1545. struct list_head *bucket;
  1546. struct xfs_buf_cancel *bcp;
  1547. if (log->l_buf_cancel_table == NULL) {
  1548. /*
  1549. * There is nothing in the table built in pass one,
  1550. * so this buffer must not be cancelled.
  1551. */
  1552. ASSERT(!(flags & XFS_BLF_CANCEL));
  1553. return 0;
  1554. }
  1555. /*
  1556. * Search for an entry in the cancel table that matches our buffer.
  1557. */
  1558. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1559. list_for_each_entry(bcp, bucket, bc_list) {
  1560. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1561. goto found;
  1562. }
  1563. /*
  1564. * We didn't find a corresponding entry in the table, so return 0 so
  1565. * that the buffer is NOT cancelled.
  1566. */
  1567. ASSERT(!(flags & XFS_BLF_CANCEL));
  1568. return 0;
  1569. found:
  1570. /*
  1571. * We've go a match, so return 1 so that the recovery of this buffer
  1572. * is cancelled. If this buffer is actually a buffer cancel log
  1573. * item, then decrement the refcount on the one in the table and
  1574. * remove it if this is the last reference.
  1575. */
  1576. if (flags & XFS_BLF_CANCEL) {
  1577. if (--bcp->bc_refcount == 0) {
  1578. list_del(&bcp->bc_list);
  1579. kmem_free(bcp);
  1580. }
  1581. }
  1582. return 1;
  1583. }
  1584. /*
  1585. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1586. * data which should be recovered is that which corresponds to the
  1587. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1588. * data for the inodes is always logged through the inodes themselves rather
  1589. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1590. *
  1591. * The only time when buffers full of inodes are fully recovered is when the
  1592. * buffer is full of newly allocated inodes. In this case the buffer will
  1593. * not be marked as an inode buffer and so will be sent to
  1594. * xlog_recover_do_reg_buffer() below during recovery.
  1595. */
  1596. STATIC int
  1597. xlog_recover_do_inode_buffer(
  1598. struct xfs_mount *mp,
  1599. xlog_recover_item_t *item,
  1600. struct xfs_buf *bp,
  1601. xfs_buf_log_format_t *buf_f)
  1602. {
  1603. int i;
  1604. int item_index = 0;
  1605. int bit = 0;
  1606. int nbits = 0;
  1607. int reg_buf_offset = 0;
  1608. int reg_buf_bytes = 0;
  1609. int next_unlinked_offset;
  1610. int inodes_per_buf;
  1611. xfs_agino_t *logged_nextp;
  1612. xfs_agino_t *buffer_nextp;
  1613. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1614. inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
  1615. for (i = 0; i < inodes_per_buf; i++) {
  1616. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1617. offsetof(xfs_dinode_t, di_next_unlinked);
  1618. while (next_unlinked_offset >=
  1619. (reg_buf_offset + reg_buf_bytes)) {
  1620. /*
  1621. * The next di_next_unlinked field is beyond
  1622. * the current logged region. Find the next
  1623. * logged region that contains or is beyond
  1624. * the current di_next_unlinked field.
  1625. */
  1626. bit += nbits;
  1627. bit = xfs_next_bit(buf_f->blf_data_map,
  1628. buf_f->blf_map_size, bit);
  1629. /*
  1630. * If there are no more logged regions in the
  1631. * buffer, then we're done.
  1632. */
  1633. if (bit == -1)
  1634. return 0;
  1635. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1636. buf_f->blf_map_size, bit);
  1637. ASSERT(nbits > 0);
  1638. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1639. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1640. item_index++;
  1641. }
  1642. /*
  1643. * If the current logged region starts after the current
  1644. * di_next_unlinked field, then move on to the next
  1645. * di_next_unlinked field.
  1646. */
  1647. if (next_unlinked_offset < reg_buf_offset)
  1648. continue;
  1649. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1650. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1651. ASSERT((reg_buf_offset + reg_buf_bytes) <=
  1652. BBTOB(bp->b_io_length));
  1653. /*
  1654. * The current logged region contains a copy of the
  1655. * current di_next_unlinked field. Extract its value
  1656. * and copy it to the buffer copy.
  1657. */
  1658. logged_nextp = item->ri_buf[item_index].i_addr +
  1659. next_unlinked_offset - reg_buf_offset;
  1660. if (unlikely(*logged_nextp == 0)) {
  1661. xfs_alert(mp,
  1662. "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
  1663. "Trying to replay bad (0) inode di_next_unlinked field.",
  1664. item, bp);
  1665. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1666. XFS_ERRLEVEL_LOW, mp);
  1667. return XFS_ERROR(EFSCORRUPTED);
  1668. }
  1669. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1670. next_unlinked_offset);
  1671. *buffer_nextp = *logged_nextp;
  1672. }
  1673. return 0;
  1674. }
  1675. /*
  1676. * Perform a 'normal' buffer recovery. Each logged region of the
  1677. * buffer should be copied over the corresponding region in the
  1678. * given buffer. The bitmap in the buf log format structure indicates
  1679. * where to place the logged data.
  1680. */
  1681. STATIC void
  1682. xlog_recover_do_reg_buffer(
  1683. struct xfs_mount *mp,
  1684. xlog_recover_item_t *item,
  1685. struct xfs_buf *bp,
  1686. xfs_buf_log_format_t *buf_f)
  1687. {
  1688. int i;
  1689. int bit;
  1690. int nbits;
  1691. int error;
  1692. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1693. bit = 0;
  1694. i = 1; /* 0 is the buf format structure */
  1695. while (1) {
  1696. bit = xfs_next_bit(buf_f->blf_data_map,
  1697. buf_f->blf_map_size, bit);
  1698. if (bit == -1)
  1699. break;
  1700. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1701. buf_f->blf_map_size, bit);
  1702. ASSERT(nbits > 0);
  1703. ASSERT(item->ri_buf[i].i_addr != NULL);
  1704. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  1705. ASSERT(BBTOB(bp->b_io_length) >=
  1706. ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
  1707. /*
  1708. * Do a sanity check if this is a dquot buffer. Just checking
  1709. * the first dquot in the buffer should do. XXXThis is
  1710. * probably a good thing to do for other buf types also.
  1711. */
  1712. error = 0;
  1713. if (buf_f->blf_flags &
  1714. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1715. if (item->ri_buf[i].i_addr == NULL) {
  1716. xfs_alert(mp,
  1717. "XFS: NULL dquot in %s.", __func__);
  1718. goto next;
  1719. }
  1720. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1721. xfs_alert(mp,
  1722. "XFS: dquot too small (%d) in %s.",
  1723. item->ri_buf[i].i_len, __func__);
  1724. goto next;
  1725. }
  1726. error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
  1727. -1, 0, XFS_QMOPT_DOWARN,
  1728. "dquot_buf_recover");
  1729. if (error)
  1730. goto next;
  1731. }
  1732. memcpy(xfs_buf_offset(bp,
  1733. (uint)bit << XFS_BLF_SHIFT), /* dest */
  1734. item->ri_buf[i].i_addr, /* source */
  1735. nbits<<XFS_BLF_SHIFT); /* length */
  1736. next:
  1737. i++;
  1738. bit += nbits;
  1739. }
  1740. /* Shouldn't be any more regions */
  1741. ASSERT(i == item->ri_total);
  1742. }
  1743. /*
  1744. * Do some primitive error checking on ondisk dquot data structures.
  1745. */
  1746. int
  1747. xfs_qm_dqcheck(
  1748. struct xfs_mount *mp,
  1749. xfs_disk_dquot_t *ddq,
  1750. xfs_dqid_t id,
  1751. uint type, /* used only when IO_dorepair is true */
  1752. uint flags,
  1753. char *str)
  1754. {
  1755. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1756. int errs = 0;
  1757. /*
  1758. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1759. * 1. If we crash while deleting the quotainode(s), and those blks got
  1760. * used for user data. This is because we take the path of regular
  1761. * file deletion; however, the size field of quotainodes is never
  1762. * updated, so all the tricks that we play in itruncate_finish
  1763. * don't quite matter.
  1764. *
  1765. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1766. * But the allocation will be replayed so we'll end up with an
  1767. * uninitialized quota block.
  1768. *
  1769. * This is all fine; things are still consistent, and we haven't lost
  1770. * any quota information. Just don't complain about bad dquot blks.
  1771. */
  1772. if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
  1773. if (flags & XFS_QMOPT_DOWARN)
  1774. xfs_alert(mp,
  1775. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1776. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1777. errs++;
  1778. }
  1779. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1780. if (flags & XFS_QMOPT_DOWARN)
  1781. xfs_alert(mp,
  1782. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1783. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1784. errs++;
  1785. }
  1786. if (ddq->d_flags != XFS_DQ_USER &&
  1787. ddq->d_flags != XFS_DQ_PROJ &&
  1788. ddq->d_flags != XFS_DQ_GROUP) {
  1789. if (flags & XFS_QMOPT_DOWARN)
  1790. xfs_alert(mp,
  1791. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1792. str, id, ddq->d_flags);
  1793. errs++;
  1794. }
  1795. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1796. if (flags & XFS_QMOPT_DOWARN)
  1797. xfs_alert(mp,
  1798. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1799. "0x%x expected, found id 0x%x",
  1800. str, ddq, id, be32_to_cpu(ddq->d_id));
  1801. errs++;
  1802. }
  1803. if (!errs && ddq->d_id) {
  1804. if (ddq->d_blk_softlimit &&
  1805. be64_to_cpu(ddq->d_bcount) >
  1806. be64_to_cpu(ddq->d_blk_softlimit)) {
  1807. if (!ddq->d_btimer) {
  1808. if (flags & XFS_QMOPT_DOWARN)
  1809. xfs_alert(mp,
  1810. "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
  1811. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1812. errs++;
  1813. }
  1814. }
  1815. if (ddq->d_ino_softlimit &&
  1816. be64_to_cpu(ddq->d_icount) >
  1817. be64_to_cpu(ddq->d_ino_softlimit)) {
  1818. if (!ddq->d_itimer) {
  1819. if (flags & XFS_QMOPT_DOWARN)
  1820. xfs_alert(mp,
  1821. "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
  1822. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1823. errs++;
  1824. }
  1825. }
  1826. if (ddq->d_rtb_softlimit &&
  1827. be64_to_cpu(ddq->d_rtbcount) >
  1828. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1829. if (!ddq->d_rtbtimer) {
  1830. if (flags & XFS_QMOPT_DOWARN)
  1831. xfs_alert(mp,
  1832. "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
  1833. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1834. errs++;
  1835. }
  1836. }
  1837. }
  1838. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1839. return errs;
  1840. if (flags & XFS_QMOPT_DOWARN)
  1841. xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
  1842. /*
  1843. * Typically, a repair is only requested by quotacheck.
  1844. */
  1845. ASSERT(id != -1);
  1846. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1847. memset(d, 0, sizeof(xfs_dqblk_t));
  1848. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1849. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1850. d->dd_diskdq.d_flags = type;
  1851. d->dd_diskdq.d_id = cpu_to_be32(id);
  1852. return errs;
  1853. }
  1854. /*
  1855. * Perform a dquot buffer recovery.
  1856. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1857. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1858. * Else, treat it as a regular buffer and do recovery.
  1859. */
  1860. STATIC void
  1861. xlog_recover_do_dquot_buffer(
  1862. xfs_mount_t *mp,
  1863. xlog_t *log,
  1864. xlog_recover_item_t *item,
  1865. xfs_buf_t *bp,
  1866. xfs_buf_log_format_t *buf_f)
  1867. {
  1868. uint type;
  1869. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  1870. /*
  1871. * Filesystems are required to send in quota flags at mount time.
  1872. */
  1873. if (mp->m_qflags == 0) {
  1874. return;
  1875. }
  1876. type = 0;
  1877. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  1878. type |= XFS_DQ_USER;
  1879. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  1880. type |= XFS_DQ_PROJ;
  1881. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  1882. type |= XFS_DQ_GROUP;
  1883. /*
  1884. * This type of quotas was turned off, so ignore this buffer
  1885. */
  1886. if (log->l_quotaoffs_flag & type)
  1887. return;
  1888. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1889. }
  1890. /*
  1891. * This routine replays a modification made to a buffer at runtime.
  1892. * There are actually two types of buffer, regular and inode, which
  1893. * are handled differently. Inode buffers are handled differently
  1894. * in that we only recover a specific set of data from them, namely
  1895. * the inode di_next_unlinked fields. This is because all other inode
  1896. * data is actually logged via inode records and any data we replay
  1897. * here which overlaps that may be stale.
  1898. *
  1899. * When meta-data buffers are freed at run time we log a buffer item
  1900. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  1901. * of the buffer in the log should not be replayed at recovery time.
  1902. * This is so that if the blocks covered by the buffer are reused for
  1903. * file data before we crash we don't end up replaying old, freed
  1904. * meta-data into a user's file.
  1905. *
  1906. * To handle the cancellation of buffer log items, we make two passes
  1907. * over the log during recovery. During the first we build a table of
  1908. * those buffers which have been cancelled, and during the second we
  1909. * only replay those buffers which do not have corresponding cancel
  1910. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1911. * for more details on the implementation of the table of cancel records.
  1912. */
  1913. STATIC int
  1914. xlog_recover_buffer_pass2(
  1915. xlog_t *log,
  1916. struct list_head *buffer_list,
  1917. xlog_recover_item_t *item)
  1918. {
  1919. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1920. xfs_mount_t *mp = log->l_mp;
  1921. xfs_buf_t *bp;
  1922. int error;
  1923. uint buf_flags;
  1924. /*
  1925. * In this pass we only want to recover all the buffers which have
  1926. * not been cancelled and are not cancellation buffers themselves.
  1927. */
  1928. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  1929. buf_f->blf_len, buf_f->blf_flags)) {
  1930. trace_xfs_log_recover_buf_cancel(log, buf_f);
  1931. return 0;
  1932. }
  1933. trace_xfs_log_recover_buf_recover(log, buf_f);
  1934. buf_flags = 0;
  1935. if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
  1936. buf_flags |= XBF_UNMAPPED;
  1937. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  1938. buf_flags);
  1939. if (!bp)
  1940. return XFS_ERROR(ENOMEM);
  1941. error = bp->b_error;
  1942. if (error) {
  1943. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
  1944. xfs_buf_relse(bp);
  1945. return error;
  1946. }
  1947. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  1948. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  1949. } else if (buf_f->blf_flags &
  1950. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1951. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  1952. } else {
  1953. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1954. }
  1955. if (error)
  1956. return XFS_ERROR(error);
  1957. /*
  1958. * Perform delayed write on the buffer. Asynchronous writes will be
  1959. * slower when taking into account all the buffers to be flushed.
  1960. *
  1961. * Also make sure that only inode buffers with good sizes stay in
  1962. * the buffer cache. The kernel moves inodes in buffers of 1 block
  1963. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  1964. * buffers in the log can be a different size if the log was generated
  1965. * by an older kernel using unclustered inode buffers or a newer kernel
  1966. * running with a different inode cluster size. Regardless, if the
  1967. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  1968. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  1969. * the buffer out of the buffer cache so that the buffer won't
  1970. * overlap with future reads of those inodes.
  1971. */
  1972. if (XFS_DINODE_MAGIC ==
  1973. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  1974. (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
  1975. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  1976. xfs_buf_stale(bp);
  1977. error = xfs_bwrite(bp);
  1978. } else {
  1979. ASSERT(bp->b_target->bt_mount == mp);
  1980. bp->b_iodone = xlog_recover_iodone;
  1981. xfs_buf_delwri_queue(bp, buffer_list);
  1982. }
  1983. xfs_buf_relse(bp);
  1984. return error;
  1985. }
  1986. STATIC int
  1987. xlog_recover_inode_pass2(
  1988. xlog_t *log,
  1989. struct list_head *buffer_list,
  1990. xlog_recover_item_t *item)
  1991. {
  1992. xfs_inode_log_format_t *in_f;
  1993. xfs_mount_t *mp = log->l_mp;
  1994. xfs_buf_t *bp;
  1995. xfs_dinode_t *dip;
  1996. int len;
  1997. xfs_caddr_t src;
  1998. xfs_caddr_t dest;
  1999. int error;
  2000. int attr_index;
  2001. uint fields;
  2002. xfs_icdinode_t *dicp;
  2003. int need_free = 0;
  2004. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2005. in_f = item->ri_buf[0].i_addr;
  2006. } else {
  2007. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2008. need_free = 1;
  2009. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2010. if (error)
  2011. goto error;
  2012. }
  2013. /*
  2014. * Inode buffers can be freed, look out for it,
  2015. * and do not replay the inode.
  2016. */
  2017. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2018. in_f->ilf_len, 0)) {
  2019. error = 0;
  2020. trace_xfs_log_recover_inode_cancel(log, in_f);
  2021. goto error;
  2022. }
  2023. trace_xfs_log_recover_inode_recover(log, in_f);
  2024. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0);
  2025. if (!bp) {
  2026. error = ENOMEM;
  2027. goto error;
  2028. }
  2029. error = bp->b_error;
  2030. if (error) {
  2031. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
  2032. xfs_buf_relse(bp);
  2033. goto error;
  2034. }
  2035. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2036. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2037. /*
  2038. * Make sure the place we're flushing out to really looks
  2039. * like an inode!
  2040. */
  2041. if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
  2042. xfs_buf_relse(bp);
  2043. xfs_alert(mp,
  2044. "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
  2045. __func__, dip, bp, in_f->ilf_ino);
  2046. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2047. XFS_ERRLEVEL_LOW, mp);
  2048. error = EFSCORRUPTED;
  2049. goto error;
  2050. }
  2051. dicp = item->ri_buf[1].i_addr;
  2052. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2053. xfs_buf_relse(bp);
  2054. xfs_alert(mp,
  2055. "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2056. __func__, item, in_f->ilf_ino);
  2057. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2058. XFS_ERRLEVEL_LOW, mp);
  2059. error = EFSCORRUPTED;
  2060. goto error;
  2061. }
  2062. /* Skip replay when the on disk inode is newer than the log one */
  2063. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2064. /*
  2065. * Deal with the wrap case, DI_MAX_FLUSH is less
  2066. * than smaller numbers
  2067. */
  2068. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2069. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2070. /* do nothing */
  2071. } else {
  2072. xfs_buf_relse(bp);
  2073. trace_xfs_log_recover_inode_skip(log, in_f);
  2074. error = 0;
  2075. goto error;
  2076. }
  2077. }
  2078. /* Take the opportunity to reset the flush iteration count */
  2079. dicp->di_flushiter = 0;
  2080. if (unlikely(S_ISREG(dicp->di_mode))) {
  2081. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2082. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2083. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2084. XFS_ERRLEVEL_LOW, mp, dicp);
  2085. xfs_buf_relse(bp);
  2086. xfs_alert(mp,
  2087. "%s: Bad regular inode log record, rec ptr 0x%p, "
  2088. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2089. __func__, item, dip, bp, in_f->ilf_ino);
  2090. error = EFSCORRUPTED;
  2091. goto error;
  2092. }
  2093. } else if (unlikely(S_ISDIR(dicp->di_mode))) {
  2094. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2095. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2096. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2097. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2098. XFS_ERRLEVEL_LOW, mp, dicp);
  2099. xfs_buf_relse(bp);
  2100. xfs_alert(mp,
  2101. "%s: Bad dir inode log record, rec ptr 0x%p, "
  2102. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2103. __func__, item, dip, bp, in_f->ilf_ino);
  2104. error = EFSCORRUPTED;
  2105. goto error;
  2106. }
  2107. }
  2108. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2109. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2110. XFS_ERRLEVEL_LOW, mp, dicp);
  2111. xfs_buf_relse(bp);
  2112. xfs_alert(mp,
  2113. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2114. "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2115. __func__, item, dip, bp, in_f->ilf_ino,
  2116. dicp->di_nextents + dicp->di_anextents,
  2117. dicp->di_nblocks);
  2118. error = EFSCORRUPTED;
  2119. goto error;
  2120. }
  2121. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2122. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2123. XFS_ERRLEVEL_LOW, mp, dicp);
  2124. xfs_buf_relse(bp);
  2125. xfs_alert(mp,
  2126. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2127. "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
  2128. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2129. error = EFSCORRUPTED;
  2130. goto error;
  2131. }
  2132. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2133. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2134. XFS_ERRLEVEL_LOW, mp, dicp);
  2135. xfs_buf_relse(bp);
  2136. xfs_alert(mp,
  2137. "%s: Bad inode log record length %d, rec ptr 0x%p",
  2138. __func__, item->ri_buf[1].i_len, item);
  2139. error = EFSCORRUPTED;
  2140. goto error;
  2141. }
  2142. /* The core is in in-core format */
  2143. xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
  2144. /* the rest is in on-disk format */
  2145. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2146. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2147. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2148. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2149. }
  2150. fields = in_f->ilf_fields;
  2151. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2152. case XFS_ILOG_DEV:
  2153. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2154. break;
  2155. case XFS_ILOG_UUID:
  2156. memcpy(XFS_DFORK_DPTR(dip),
  2157. &in_f->ilf_u.ilfu_uuid,
  2158. sizeof(uuid_t));
  2159. break;
  2160. }
  2161. if (in_f->ilf_size == 2)
  2162. goto write_inode_buffer;
  2163. len = item->ri_buf[2].i_len;
  2164. src = item->ri_buf[2].i_addr;
  2165. ASSERT(in_f->ilf_size <= 4);
  2166. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2167. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2168. (len == in_f->ilf_dsize));
  2169. switch (fields & XFS_ILOG_DFORK) {
  2170. case XFS_ILOG_DDATA:
  2171. case XFS_ILOG_DEXT:
  2172. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2173. break;
  2174. case XFS_ILOG_DBROOT:
  2175. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2176. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2177. XFS_DFORK_DSIZE(dip, mp));
  2178. break;
  2179. default:
  2180. /*
  2181. * There are no data fork flags set.
  2182. */
  2183. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2184. break;
  2185. }
  2186. /*
  2187. * If we logged any attribute data, recover it. There may or
  2188. * may not have been any other non-core data logged in this
  2189. * transaction.
  2190. */
  2191. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2192. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2193. attr_index = 3;
  2194. } else {
  2195. attr_index = 2;
  2196. }
  2197. len = item->ri_buf[attr_index].i_len;
  2198. src = item->ri_buf[attr_index].i_addr;
  2199. ASSERT(len == in_f->ilf_asize);
  2200. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2201. case XFS_ILOG_ADATA:
  2202. case XFS_ILOG_AEXT:
  2203. dest = XFS_DFORK_APTR(dip);
  2204. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2205. memcpy(dest, src, len);
  2206. break;
  2207. case XFS_ILOG_ABROOT:
  2208. dest = XFS_DFORK_APTR(dip);
  2209. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2210. len, (xfs_bmdr_block_t*)dest,
  2211. XFS_DFORK_ASIZE(dip, mp));
  2212. break;
  2213. default:
  2214. xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
  2215. ASSERT(0);
  2216. xfs_buf_relse(bp);
  2217. error = EIO;
  2218. goto error;
  2219. }
  2220. }
  2221. write_inode_buffer:
  2222. ASSERT(bp->b_target->bt_mount == mp);
  2223. bp->b_iodone = xlog_recover_iodone;
  2224. xfs_buf_delwri_queue(bp, buffer_list);
  2225. xfs_buf_relse(bp);
  2226. error:
  2227. if (need_free)
  2228. kmem_free(in_f);
  2229. return XFS_ERROR(error);
  2230. }
  2231. /*
  2232. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2233. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2234. * of that type.
  2235. */
  2236. STATIC int
  2237. xlog_recover_quotaoff_pass1(
  2238. xlog_t *log,
  2239. xlog_recover_item_t *item)
  2240. {
  2241. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2242. ASSERT(qoff_f);
  2243. /*
  2244. * The logitem format's flag tells us if this was user quotaoff,
  2245. * group/project quotaoff or both.
  2246. */
  2247. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2248. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2249. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2250. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2251. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2252. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2253. return (0);
  2254. }
  2255. /*
  2256. * Recover a dquot record
  2257. */
  2258. STATIC int
  2259. xlog_recover_dquot_pass2(
  2260. xlog_t *log,
  2261. struct list_head *buffer_list,
  2262. xlog_recover_item_t *item)
  2263. {
  2264. xfs_mount_t *mp = log->l_mp;
  2265. xfs_buf_t *bp;
  2266. struct xfs_disk_dquot *ddq, *recddq;
  2267. int error;
  2268. xfs_dq_logformat_t *dq_f;
  2269. uint type;
  2270. /*
  2271. * Filesystems are required to send in quota flags at mount time.
  2272. */
  2273. if (mp->m_qflags == 0)
  2274. return (0);
  2275. recddq = item->ri_buf[1].i_addr;
  2276. if (recddq == NULL) {
  2277. xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
  2278. return XFS_ERROR(EIO);
  2279. }
  2280. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2281. xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
  2282. item->ri_buf[1].i_len, __func__);
  2283. return XFS_ERROR(EIO);
  2284. }
  2285. /*
  2286. * This type of quotas was turned off, so ignore this record.
  2287. */
  2288. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2289. ASSERT(type);
  2290. if (log->l_quotaoffs_flag & type)
  2291. return (0);
  2292. /*
  2293. * At this point we know that quota was _not_ turned off.
  2294. * Since the mount flags are not indicating to us otherwise, this
  2295. * must mean that quota is on, and the dquot needs to be replayed.
  2296. * Remember that we may not have fully recovered the superblock yet,
  2297. * so we can't do the usual trick of looking at the SB quota bits.
  2298. *
  2299. * The other possibility, of course, is that the quota subsystem was
  2300. * removed since the last mount - ENOSYS.
  2301. */
  2302. dq_f = item->ri_buf[0].i_addr;
  2303. ASSERT(dq_f);
  2304. error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2305. "xlog_recover_dquot_pass2 (log copy)");
  2306. if (error)
  2307. return XFS_ERROR(EIO);
  2308. ASSERT(dq_f->qlf_len == 1);
  2309. error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
  2310. XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp);
  2311. if (error)
  2312. return error;
  2313. ASSERT(bp);
  2314. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2315. /*
  2316. * At least the magic num portion should be on disk because this
  2317. * was among a chunk of dquots created earlier, and we did some
  2318. * minimal initialization then.
  2319. */
  2320. error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2321. "xlog_recover_dquot_pass2");
  2322. if (error) {
  2323. xfs_buf_relse(bp);
  2324. return XFS_ERROR(EIO);
  2325. }
  2326. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2327. ASSERT(dq_f->qlf_size == 2);
  2328. ASSERT(bp->b_target->bt_mount == mp);
  2329. bp->b_iodone = xlog_recover_iodone;
  2330. xfs_buf_delwri_queue(bp, buffer_list);
  2331. xfs_buf_relse(bp);
  2332. return (0);
  2333. }
  2334. /*
  2335. * This routine is called to create an in-core extent free intent
  2336. * item from the efi format structure which was logged on disk.
  2337. * It allocates an in-core efi, copies the extents from the format
  2338. * structure into it, and adds the efi to the AIL with the given
  2339. * LSN.
  2340. */
  2341. STATIC int
  2342. xlog_recover_efi_pass2(
  2343. xlog_t *log,
  2344. xlog_recover_item_t *item,
  2345. xfs_lsn_t lsn)
  2346. {
  2347. int error;
  2348. xfs_mount_t *mp = log->l_mp;
  2349. xfs_efi_log_item_t *efip;
  2350. xfs_efi_log_format_t *efi_formatp;
  2351. efi_formatp = item->ri_buf[0].i_addr;
  2352. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2353. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2354. &(efip->efi_format)))) {
  2355. xfs_efi_item_free(efip);
  2356. return error;
  2357. }
  2358. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2359. spin_lock(&log->l_ailp->xa_lock);
  2360. /*
  2361. * xfs_trans_ail_update() drops the AIL lock.
  2362. */
  2363. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2364. return 0;
  2365. }
  2366. /*
  2367. * This routine is called when an efd format structure is found in
  2368. * a committed transaction in the log. It's purpose is to cancel
  2369. * the corresponding efi if it was still in the log. To do this
  2370. * it searches the AIL for the efi with an id equal to that in the
  2371. * efd format structure. If we find it, we remove the efi from the
  2372. * AIL and free it.
  2373. */
  2374. STATIC int
  2375. xlog_recover_efd_pass2(
  2376. xlog_t *log,
  2377. xlog_recover_item_t *item)
  2378. {
  2379. xfs_efd_log_format_t *efd_formatp;
  2380. xfs_efi_log_item_t *efip = NULL;
  2381. xfs_log_item_t *lip;
  2382. __uint64_t efi_id;
  2383. struct xfs_ail_cursor cur;
  2384. struct xfs_ail *ailp = log->l_ailp;
  2385. efd_formatp = item->ri_buf[0].i_addr;
  2386. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2387. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2388. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2389. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2390. efi_id = efd_formatp->efd_efi_id;
  2391. /*
  2392. * Search for the efi with the id in the efd format structure
  2393. * in the AIL.
  2394. */
  2395. spin_lock(&ailp->xa_lock);
  2396. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2397. while (lip != NULL) {
  2398. if (lip->li_type == XFS_LI_EFI) {
  2399. efip = (xfs_efi_log_item_t *)lip;
  2400. if (efip->efi_format.efi_id == efi_id) {
  2401. /*
  2402. * xfs_trans_ail_delete() drops the
  2403. * AIL lock.
  2404. */
  2405. xfs_trans_ail_delete(ailp, lip,
  2406. SHUTDOWN_CORRUPT_INCORE);
  2407. xfs_efi_item_free(efip);
  2408. spin_lock(&ailp->xa_lock);
  2409. break;
  2410. }
  2411. }
  2412. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2413. }
  2414. xfs_trans_ail_cursor_done(ailp, &cur);
  2415. spin_unlock(&ailp->xa_lock);
  2416. return 0;
  2417. }
  2418. /*
  2419. * Free up any resources allocated by the transaction
  2420. *
  2421. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2422. */
  2423. STATIC void
  2424. xlog_recover_free_trans(
  2425. struct xlog_recover *trans)
  2426. {
  2427. xlog_recover_item_t *item, *n;
  2428. int i;
  2429. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2430. /* Free the regions in the item. */
  2431. list_del(&item->ri_list);
  2432. for (i = 0; i < item->ri_cnt; i++)
  2433. kmem_free(item->ri_buf[i].i_addr);
  2434. /* Free the item itself */
  2435. kmem_free(item->ri_buf);
  2436. kmem_free(item);
  2437. }
  2438. /* Free the transaction recover structure */
  2439. kmem_free(trans);
  2440. }
  2441. STATIC int
  2442. xlog_recover_commit_pass1(
  2443. struct log *log,
  2444. struct xlog_recover *trans,
  2445. xlog_recover_item_t *item)
  2446. {
  2447. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  2448. switch (ITEM_TYPE(item)) {
  2449. case XFS_LI_BUF:
  2450. return xlog_recover_buffer_pass1(log, item);
  2451. case XFS_LI_QUOTAOFF:
  2452. return xlog_recover_quotaoff_pass1(log, item);
  2453. case XFS_LI_INODE:
  2454. case XFS_LI_EFI:
  2455. case XFS_LI_EFD:
  2456. case XFS_LI_DQUOT:
  2457. /* nothing to do in pass 1 */
  2458. return 0;
  2459. default:
  2460. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2461. __func__, ITEM_TYPE(item));
  2462. ASSERT(0);
  2463. return XFS_ERROR(EIO);
  2464. }
  2465. }
  2466. STATIC int
  2467. xlog_recover_commit_pass2(
  2468. struct log *log,
  2469. struct xlog_recover *trans,
  2470. struct list_head *buffer_list,
  2471. xlog_recover_item_t *item)
  2472. {
  2473. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  2474. switch (ITEM_TYPE(item)) {
  2475. case XFS_LI_BUF:
  2476. return xlog_recover_buffer_pass2(log, buffer_list, item);
  2477. case XFS_LI_INODE:
  2478. return xlog_recover_inode_pass2(log, buffer_list, item);
  2479. case XFS_LI_EFI:
  2480. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  2481. case XFS_LI_EFD:
  2482. return xlog_recover_efd_pass2(log, item);
  2483. case XFS_LI_DQUOT:
  2484. return xlog_recover_dquot_pass2(log, buffer_list, item);
  2485. case XFS_LI_QUOTAOFF:
  2486. /* nothing to do in pass2 */
  2487. return 0;
  2488. default:
  2489. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2490. __func__, ITEM_TYPE(item));
  2491. ASSERT(0);
  2492. return XFS_ERROR(EIO);
  2493. }
  2494. }
  2495. /*
  2496. * Perform the transaction.
  2497. *
  2498. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2499. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2500. */
  2501. STATIC int
  2502. xlog_recover_commit_trans(
  2503. struct log *log,
  2504. struct xlog_recover *trans,
  2505. int pass)
  2506. {
  2507. int error = 0, error2;
  2508. xlog_recover_item_t *item;
  2509. LIST_HEAD (buffer_list);
  2510. hlist_del(&trans->r_list);
  2511. error = xlog_recover_reorder_trans(log, trans, pass);
  2512. if (error)
  2513. return error;
  2514. list_for_each_entry(item, &trans->r_itemq, ri_list) {
  2515. switch (pass) {
  2516. case XLOG_RECOVER_PASS1:
  2517. error = xlog_recover_commit_pass1(log, trans, item);
  2518. break;
  2519. case XLOG_RECOVER_PASS2:
  2520. error = xlog_recover_commit_pass2(log, trans,
  2521. &buffer_list, item);
  2522. break;
  2523. default:
  2524. ASSERT(0);
  2525. }
  2526. if (error)
  2527. goto out;
  2528. }
  2529. xlog_recover_free_trans(trans);
  2530. out:
  2531. error2 = xfs_buf_delwri_submit(&buffer_list);
  2532. return error ? error : error2;
  2533. }
  2534. STATIC int
  2535. xlog_recover_unmount_trans(
  2536. struct log *log,
  2537. xlog_recover_t *trans)
  2538. {
  2539. /* Do nothing now */
  2540. xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
  2541. return 0;
  2542. }
  2543. /*
  2544. * There are two valid states of the r_state field. 0 indicates that the
  2545. * transaction structure is in a normal state. We have either seen the
  2546. * start of the transaction or the last operation we added was not a partial
  2547. * operation. If the last operation we added to the transaction was a
  2548. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2549. *
  2550. * NOTE: skip LRs with 0 data length.
  2551. */
  2552. STATIC int
  2553. xlog_recover_process_data(
  2554. xlog_t *log,
  2555. struct hlist_head rhash[],
  2556. xlog_rec_header_t *rhead,
  2557. xfs_caddr_t dp,
  2558. int pass)
  2559. {
  2560. xfs_caddr_t lp;
  2561. int num_logops;
  2562. xlog_op_header_t *ohead;
  2563. xlog_recover_t *trans;
  2564. xlog_tid_t tid;
  2565. int error;
  2566. unsigned long hash;
  2567. uint flags;
  2568. lp = dp + be32_to_cpu(rhead->h_len);
  2569. num_logops = be32_to_cpu(rhead->h_num_logops);
  2570. /* check the log format matches our own - else we can't recover */
  2571. if (xlog_header_check_recover(log->l_mp, rhead))
  2572. return (XFS_ERROR(EIO));
  2573. while ((dp < lp) && num_logops) {
  2574. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2575. ohead = (xlog_op_header_t *)dp;
  2576. dp += sizeof(xlog_op_header_t);
  2577. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2578. ohead->oh_clientid != XFS_LOG) {
  2579. xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
  2580. __func__, ohead->oh_clientid);
  2581. ASSERT(0);
  2582. return (XFS_ERROR(EIO));
  2583. }
  2584. tid = be32_to_cpu(ohead->oh_tid);
  2585. hash = XLOG_RHASH(tid);
  2586. trans = xlog_recover_find_tid(&rhash[hash], tid);
  2587. if (trans == NULL) { /* not found; add new tid */
  2588. if (ohead->oh_flags & XLOG_START_TRANS)
  2589. xlog_recover_new_tid(&rhash[hash], tid,
  2590. be64_to_cpu(rhead->h_lsn));
  2591. } else {
  2592. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2593. xfs_warn(log->l_mp, "%s: bad length 0x%x",
  2594. __func__, be32_to_cpu(ohead->oh_len));
  2595. WARN_ON(1);
  2596. return (XFS_ERROR(EIO));
  2597. }
  2598. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2599. if (flags & XLOG_WAS_CONT_TRANS)
  2600. flags &= ~XLOG_CONTINUE_TRANS;
  2601. switch (flags) {
  2602. case XLOG_COMMIT_TRANS:
  2603. error = xlog_recover_commit_trans(log,
  2604. trans, pass);
  2605. break;
  2606. case XLOG_UNMOUNT_TRANS:
  2607. error = xlog_recover_unmount_trans(log, trans);
  2608. break;
  2609. case XLOG_WAS_CONT_TRANS:
  2610. error = xlog_recover_add_to_cont_trans(log,
  2611. trans, dp,
  2612. be32_to_cpu(ohead->oh_len));
  2613. break;
  2614. case XLOG_START_TRANS:
  2615. xfs_warn(log->l_mp, "%s: bad transaction",
  2616. __func__);
  2617. ASSERT(0);
  2618. error = XFS_ERROR(EIO);
  2619. break;
  2620. case 0:
  2621. case XLOG_CONTINUE_TRANS:
  2622. error = xlog_recover_add_to_trans(log, trans,
  2623. dp, be32_to_cpu(ohead->oh_len));
  2624. break;
  2625. default:
  2626. xfs_warn(log->l_mp, "%s: bad flag 0x%x",
  2627. __func__, flags);
  2628. ASSERT(0);
  2629. error = XFS_ERROR(EIO);
  2630. break;
  2631. }
  2632. if (error)
  2633. return error;
  2634. }
  2635. dp += be32_to_cpu(ohead->oh_len);
  2636. num_logops--;
  2637. }
  2638. return 0;
  2639. }
  2640. /*
  2641. * Process an extent free intent item that was recovered from
  2642. * the log. We need to free the extents that it describes.
  2643. */
  2644. STATIC int
  2645. xlog_recover_process_efi(
  2646. xfs_mount_t *mp,
  2647. xfs_efi_log_item_t *efip)
  2648. {
  2649. xfs_efd_log_item_t *efdp;
  2650. xfs_trans_t *tp;
  2651. int i;
  2652. int error = 0;
  2653. xfs_extent_t *extp;
  2654. xfs_fsblock_t startblock_fsb;
  2655. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  2656. /*
  2657. * First check the validity of the extents described by the
  2658. * EFI. If any are bad, then assume that all are bad and
  2659. * just toss the EFI.
  2660. */
  2661. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2662. extp = &(efip->efi_format.efi_extents[i]);
  2663. startblock_fsb = XFS_BB_TO_FSB(mp,
  2664. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2665. if ((startblock_fsb == 0) ||
  2666. (extp->ext_len == 0) ||
  2667. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2668. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2669. /*
  2670. * This will pull the EFI from the AIL and
  2671. * free the memory associated with it.
  2672. */
  2673. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2674. return XFS_ERROR(EIO);
  2675. }
  2676. }
  2677. tp = xfs_trans_alloc(mp, 0);
  2678. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2679. if (error)
  2680. goto abort_error;
  2681. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2682. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2683. extp = &(efip->efi_format.efi_extents[i]);
  2684. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2685. if (error)
  2686. goto abort_error;
  2687. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2688. extp->ext_len);
  2689. }
  2690. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  2691. error = xfs_trans_commit(tp, 0);
  2692. return error;
  2693. abort_error:
  2694. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2695. return error;
  2696. }
  2697. /*
  2698. * When this is called, all of the EFIs which did not have
  2699. * corresponding EFDs should be in the AIL. What we do now
  2700. * is free the extents associated with each one.
  2701. *
  2702. * Since we process the EFIs in normal transactions, they
  2703. * will be removed at some point after the commit. This prevents
  2704. * us from just walking down the list processing each one.
  2705. * We'll use a flag in the EFI to skip those that we've already
  2706. * processed and use the AIL iteration mechanism's generation
  2707. * count to try to speed this up at least a bit.
  2708. *
  2709. * When we start, we know that the EFIs are the only things in
  2710. * the AIL. As we process them, however, other items are added
  2711. * to the AIL. Since everything added to the AIL must come after
  2712. * everything already in the AIL, we stop processing as soon as
  2713. * we see something other than an EFI in the AIL.
  2714. */
  2715. STATIC int
  2716. xlog_recover_process_efis(
  2717. xlog_t *log)
  2718. {
  2719. xfs_log_item_t *lip;
  2720. xfs_efi_log_item_t *efip;
  2721. int error = 0;
  2722. struct xfs_ail_cursor cur;
  2723. struct xfs_ail *ailp;
  2724. ailp = log->l_ailp;
  2725. spin_lock(&ailp->xa_lock);
  2726. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2727. while (lip != NULL) {
  2728. /*
  2729. * We're done when we see something other than an EFI.
  2730. * There should be no EFIs left in the AIL now.
  2731. */
  2732. if (lip->li_type != XFS_LI_EFI) {
  2733. #ifdef DEBUG
  2734. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2735. ASSERT(lip->li_type != XFS_LI_EFI);
  2736. #endif
  2737. break;
  2738. }
  2739. /*
  2740. * Skip EFIs that we've already processed.
  2741. */
  2742. efip = (xfs_efi_log_item_t *)lip;
  2743. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  2744. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2745. continue;
  2746. }
  2747. spin_unlock(&ailp->xa_lock);
  2748. error = xlog_recover_process_efi(log->l_mp, efip);
  2749. spin_lock(&ailp->xa_lock);
  2750. if (error)
  2751. goto out;
  2752. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2753. }
  2754. out:
  2755. xfs_trans_ail_cursor_done(ailp, &cur);
  2756. spin_unlock(&ailp->xa_lock);
  2757. return error;
  2758. }
  2759. /*
  2760. * This routine performs a transaction to null out a bad inode pointer
  2761. * in an agi unlinked inode hash bucket.
  2762. */
  2763. STATIC void
  2764. xlog_recover_clear_agi_bucket(
  2765. xfs_mount_t *mp,
  2766. xfs_agnumber_t agno,
  2767. int bucket)
  2768. {
  2769. xfs_trans_t *tp;
  2770. xfs_agi_t *agi;
  2771. xfs_buf_t *agibp;
  2772. int offset;
  2773. int error;
  2774. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2775. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2776. 0, 0, 0);
  2777. if (error)
  2778. goto out_abort;
  2779. error = xfs_read_agi(mp, tp, agno, &agibp);
  2780. if (error)
  2781. goto out_abort;
  2782. agi = XFS_BUF_TO_AGI(agibp);
  2783. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2784. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2785. (sizeof(xfs_agino_t) * bucket);
  2786. xfs_trans_log_buf(tp, agibp, offset,
  2787. (offset + sizeof(xfs_agino_t) - 1));
  2788. error = xfs_trans_commit(tp, 0);
  2789. if (error)
  2790. goto out_error;
  2791. return;
  2792. out_abort:
  2793. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2794. out_error:
  2795. xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
  2796. return;
  2797. }
  2798. STATIC xfs_agino_t
  2799. xlog_recover_process_one_iunlink(
  2800. struct xfs_mount *mp,
  2801. xfs_agnumber_t agno,
  2802. xfs_agino_t agino,
  2803. int bucket)
  2804. {
  2805. struct xfs_buf *ibp;
  2806. struct xfs_dinode *dip;
  2807. struct xfs_inode *ip;
  2808. xfs_ino_t ino;
  2809. int error;
  2810. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2811. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  2812. if (error)
  2813. goto fail;
  2814. /*
  2815. * Get the on disk inode to find the next inode in the bucket.
  2816. */
  2817. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, 0);
  2818. if (error)
  2819. goto fail_iput;
  2820. ASSERT(ip->i_d.di_nlink == 0);
  2821. ASSERT(ip->i_d.di_mode != 0);
  2822. /* setup for the next pass */
  2823. agino = be32_to_cpu(dip->di_next_unlinked);
  2824. xfs_buf_relse(ibp);
  2825. /*
  2826. * Prevent any DMAPI event from being sent when the reference on
  2827. * the inode is dropped.
  2828. */
  2829. ip->i_d.di_dmevmask = 0;
  2830. IRELE(ip);
  2831. return agino;
  2832. fail_iput:
  2833. IRELE(ip);
  2834. fail:
  2835. /*
  2836. * We can't read in the inode this bucket points to, or this inode
  2837. * is messed up. Just ditch this bucket of inodes. We will lose
  2838. * some inodes and space, but at least we won't hang.
  2839. *
  2840. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2841. * clear the inode pointer in the bucket.
  2842. */
  2843. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2844. return NULLAGINO;
  2845. }
  2846. /*
  2847. * xlog_iunlink_recover
  2848. *
  2849. * This is called during recovery to process any inodes which
  2850. * we unlinked but not freed when the system crashed. These
  2851. * inodes will be on the lists in the AGI blocks. What we do
  2852. * here is scan all the AGIs and fully truncate and free any
  2853. * inodes found on the lists. Each inode is removed from the
  2854. * lists when it has been fully truncated and is freed. The
  2855. * freeing of the inode and its removal from the list must be
  2856. * atomic.
  2857. */
  2858. STATIC void
  2859. xlog_recover_process_iunlinks(
  2860. xlog_t *log)
  2861. {
  2862. xfs_mount_t *mp;
  2863. xfs_agnumber_t agno;
  2864. xfs_agi_t *agi;
  2865. xfs_buf_t *agibp;
  2866. xfs_agino_t agino;
  2867. int bucket;
  2868. int error;
  2869. uint mp_dmevmask;
  2870. mp = log->l_mp;
  2871. /*
  2872. * Prevent any DMAPI event from being sent while in this function.
  2873. */
  2874. mp_dmevmask = mp->m_dmevmask;
  2875. mp->m_dmevmask = 0;
  2876. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2877. /*
  2878. * Find the agi for this ag.
  2879. */
  2880. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2881. if (error) {
  2882. /*
  2883. * AGI is b0rked. Don't process it.
  2884. *
  2885. * We should probably mark the filesystem as corrupt
  2886. * after we've recovered all the ag's we can....
  2887. */
  2888. continue;
  2889. }
  2890. /*
  2891. * Unlock the buffer so that it can be acquired in the normal
  2892. * course of the transaction to truncate and free each inode.
  2893. * Because we are not racing with anyone else here for the AGI
  2894. * buffer, we don't even need to hold it locked to read the
  2895. * initial unlinked bucket entries out of the buffer. We keep
  2896. * buffer reference though, so that it stays pinned in memory
  2897. * while we need the buffer.
  2898. */
  2899. agi = XFS_BUF_TO_AGI(agibp);
  2900. xfs_buf_unlock(agibp);
  2901. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2902. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2903. while (agino != NULLAGINO) {
  2904. agino = xlog_recover_process_one_iunlink(mp,
  2905. agno, agino, bucket);
  2906. }
  2907. }
  2908. xfs_buf_rele(agibp);
  2909. }
  2910. mp->m_dmevmask = mp_dmevmask;
  2911. }
  2912. #ifdef DEBUG
  2913. STATIC void
  2914. xlog_pack_data_checksum(
  2915. xlog_t *log,
  2916. xlog_in_core_t *iclog,
  2917. int size)
  2918. {
  2919. int i;
  2920. __be32 *up;
  2921. uint chksum = 0;
  2922. up = (__be32 *)iclog->ic_datap;
  2923. /* divide length by 4 to get # words */
  2924. for (i = 0; i < (size >> 2); i++) {
  2925. chksum ^= be32_to_cpu(*up);
  2926. up++;
  2927. }
  2928. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  2929. }
  2930. #else
  2931. #define xlog_pack_data_checksum(log, iclog, size)
  2932. #endif
  2933. /*
  2934. * Stamp cycle number in every block
  2935. */
  2936. void
  2937. xlog_pack_data(
  2938. xlog_t *log,
  2939. xlog_in_core_t *iclog,
  2940. int roundoff)
  2941. {
  2942. int i, j, k;
  2943. int size = iclog->ic_offset + roundoff;
  2944. __be32 cycle_lsn;
  2945. xfs_caddr_t dp;
  2946. xlog_pack_data_checksum(log, iclog, size);
  2947. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  2948. dp = iclog->ic_datap;
  2949. for (i = 0; i < BTOBB(size) &&
  2950. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2951. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  2952. *(__be32 *)dp = cycle_lsn;
  2953. dp += BBSIZE;
  2954. }
  2955. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2956. xlog_in_core_2_t *xhdr = iclog->ic_data;
  2957. for ( ; i < BTOBB(size); i++) {
  2958. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2959. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2960. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  2961. *(__be32 *)dp = cycle_lsn;
  2962. dp += BBSIZE;
  2963. }
  2964. for (i = 1; i < log->l_iclog_heads; i++) {
  2965. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  2966. }
  2967. }
  2968. }
  2969. STATIC void
  2970. xlog_unpack_data(
  2971. xlog_rec_header_t *rhead,
  2972. xfs_caddr_t dp,
  2973. xlog_t *log)
  2974. {
  2975. int i, j, k;
  2976. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  2977. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2978. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  2979. dp += BBSIZE;
  2980. }
  2981. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2982. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  2983. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  2984. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2985. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2986. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  2987. dp += BBSIZE;
  2988. }
  2989. }
  2990. }
  2991. STATIC int
  2992. xlog_valid_rec_header(
  2993. xlog_t *log,
  2994. xlog_rec_header_t *rhead,
  2995. xfs_daddr_t blkno)
  2996. {
  2997. int hlen;
  2998. if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
  2999. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3000. XFS_ERRLEVEL_LOW, log->l_mp);
  3001. return XFS_ERROR(EFSCORRUPTED);
  3002. }
  3003. if (unlikely(
  3004. (!rhead->h_version ||
  3005. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3006. xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
  3007. __func__, be32_to_cpu(rhead->h_version));
  3008. return XFS_ERROR(EIO);
  3009. }
  3010. /* LR body must have data or it wouldn't have been written */
  3011. hlen = be32_to_cpu(rhead->h_len);
  3012. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3013. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3014. XFS_ERRLEVEL_LOW, log->l_mp);
  3015. return XFS_ERROR(EFSCORRUPTED);
  3016. }
  3017. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3018. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3019. XFS_ERRLEVEL_LOW, log->l_mp);
  3020. return XFS_ERROR(EFSCORRUPTED);
  3021. }
  3022. return 0;
  3023. }
  3024. /*
  3025. * Read the log from tail to head and process the log records found.
  3026. * Handle the two cases where the tail and head are in the same cycle
  3027. * and where the active portion of the log wraps around the end of
  3028. * the physical log separately. The pass parameter is passed through
  3029. * to the routines called to process the data and is not looked at
  3030. * here.
  3031. */
  3032. STATIC int
  3033. xlog_do_recovery_pass(
  3034. xlog_t *log,
  3035. xfs_daddr_t head_blk,
  3036. xfs_daddr_t tail_blk,
  3037. int pass)
  3038. {
  3039. xlog_rec_header_t *rhead;
  3040. xfs_daddr_t blk_no;
  3041. xfs_caddr_t offset;
  3042. xfs_buf_t *hbp, *dbp;
  3043. int error = 0, h_size;
  3044. int bblks, split_bblks;
  3045. int hblks, split_hblks, wrapped_hblks;
  3046. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3047. ASSERT(head_blk != tail_blk);
  3048. /*
  3049. * Read the header of the tail block and get the iclog buffer size from
  3050. * h_size. Use this to tell how many sectors make up the log header.
  3051. */
  3052. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3053. /*
  3054. * When using variable length iclogs, read first sector of
  3055. * iclog header and extract the header size from it. Get a
  3056. * new hbp that is the correct size.
  3057. */
  3058. hbp = xlog_get_bp(log, 1);
  3059. if (!hbp)
  3060. return ENOMEM;
  3061. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3062. if (error)
  3063. goto bread_err1;
  3064. rhead = (xlog_rec_header_t *)offset;
  3065. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3066. if (error)
  3067. goto bread_err1;
  3068. h_size = be32_to_cpu(rhead->h_size);
  3069. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3070. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3071. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3072. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3073. hblks++;
  3074. xlog_put_bp(hbp);
  3075. hbp = xlog_get_bp(log, hblks);
  3076. } else {
  3077. hblks = 1;
  3078. }
  3079. } else {
  3080. ASSERT(log->l_sectBBsize == 1);
  3081. hblks = 1;
  3082. hbp = xlog_get_bp(log, 1);
  3083. h_size = XLOG_BIG_RECORD_BSIZE;
  3084. }
  3085. if (!hbp)
  3086. return ENOMEM;
  3087. dbp = xlog_get_bp(log, BTOBB(h_size));
  3088. if (!dbp) {
  3089. xlog_put_bp(hbp);
  3090. return ENOMEM;
  3091. }
  3092. memset(rhash, 0, sizeof(rhash));
  3093. if (tail_blk <= head_blk) {
  3094. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3095. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3096. if (error)
  3097. goto bread_err2;
  3098. rhead = (xlog_rec_header_t *)offset;
  3099. error = xlog_valid_rec_header(log, rhead, blk_no);
  3100. if (error)
  3101. goto bread_err2;
  3102. /* blocks in data section */
  3103. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3104. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3105. &offset);
  3106. if (error)
  3107. goto bread_err2;
  3108. xlog_unpack_data(rhead, offset, log);
  3109. if ((error = xlog_recover_process_data(log,
  3110. rhash, rhead, offset, pass)))
  3111. goto bread_err2;
  3112. blk_no += bblks + hblks;
  3113. }
  3114. } else {
  3115. /*
  3116. * Perform recovery around the end of the physical log.
  3117. * When the head is not on the same cycle number as the tail,
  3118. * we can't do a sequential recovery as above.
  3119. */
  3120. blk_no = tail_blk;
  3121. while (blk_no < log->l_logBBsize) {
  3122. /*
  3123. * Check for header wrapping around physical end-of-log
  3124. */
  3125. offset = hbp->b_addr;
  3126. split_hblks = 0;
  3127. wrapped_hblks = 0;
  3128. if (blk_no + hblks <= log->l_logBBsize) {
  3129. /* Read header in one read */
  3130. error = xlog_bread(log, blk_no, hblks, hbp,
  3131. &offset);
  3132. if (error)
  3133. goto bread_err2;
  3134. } else {
  3135. /* This LR is split across physical log end */
  3136. if (blk_no != log->l_logBBsize) {
  3137. /* some data before physical log end */
  3138. ASSERT(blk_no <= INT_MAX);
  3139. split_hblks = log->l_logBBsize - (int)blk_no;
  3140. ASSERT(split_hblks > 0);
  3141. error = xlog_bread(log, blk_no,
  3142. split_hblks, hbp,
  3143. &offset);
  3144. if (error)
  3145. goto bread_err2;
  3146. }
  3147. /*
  3148. * Note: this black magic still works with
  3149. * large sector sizes (non-512) only because:
  3150. * - we increased the buffer size originally
  3151. * by 1 sector giving us enough extra space
  3152. * for the second read;
  3153. * - the log start is guaranteed to be sector
  3154. * aligned;
  3155. * - we read the log end (LR header start)
  3156. * _first_, then the log start (LR header end)
  3157. * - order is important.
  3158. */
  3159. wrapped_hblks = hblks - split_hblks;
  3160. error = xlog_bread_offset(log, 0,
  3161. wrapped_hblks, hbp,
  3162. offset + BBTOB(split_hblks));
  3163. if (error)
  3164. goto bread_err2;
  3165. }
  3166. rhead = (xlog_rec_header_t *)offset;
  3167. error = xlog_valid_rec_header(log, rhead,
  3168. split_hblks ? blk_no : 0);
  3169. if (error)
  3170. goto bread_err2;
  3171. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3172. blk_no += hblks;
  3173. /* Read in data for log record */
  3174. if (blk_no + bblks <= log->l_logBBsize) {
  3175. error = xlog_bread(log, blk_no, bblks, dbp,
  3176. &offset);
  3177. if (error)
  3178. goto bread_err2;
  3179. } else {
  3180. /* This log record is split across the
  3181. * physical end of log */
  3182. offset = dbp->b_addr;
  3183. split_bblks = 0;
  3184. if (blk_no != log->l_logBBsize) {
  3185. /* some data is before the physical
  3186. * end of log */
  3187. ASSERT(!wrapped_hblks);
  3188. ASSERT(blk_no <= INT_MAX);
  3189. split_bblks =
  3190. log->l_logBBsize - (int)blk_no;
  3191. ASSERT(split_bblks > 0);
  3192. error = xlog_bread(log, blk_no,
  3193. split_bblks, dbp,
  3194. &offset);
  3195. if (error)
  3196. goto bread_err2;
  3197. }
  3198. /*
  3199. * Note: this black magic still works with
  3200. * large sector sizes (non-512) only because:
  3201. * - we increased the buffer size originally
  3202. * by 1 sector giving us enough extra space
  3203. * for the second read;
  3204. * - the log start is guaranteed to be sector
  3205. * aligned;
  3206. * - we read the log end (LR header start)
  3207. * _first_, then the log start (LR header end)
  3208. * - order is important.
  3209. */
  3210. error = xlog_bread_offset(log, 0,
  3211. bblks - split_bblks, hbp,
  3212. offset + BBTOB(split_bblks));
  3213. if (error)
  3214. goto bread_err2;
  3215. }
  3216. xlog_unpack_data(rhead, offset, log);
  3217. if ((error = xlog_recover_process_data(log, rhash,
  3218. rhead, offset, pass)))
  3219. goto bread_err2;
  3220. blk_no += bblks;
  3221. }
  3222. ASSERT(blk_no >= log->l_logBBsize);
  3223. blk_no -= log->l_logBBsize;
  3224. /* read first part of physical log */
  3225. while (blk_no < head_blk) {
  3226. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3227. if (error)
  3228. goto bread_err2;
  3229. rhead = (xlog_rec_header_t *)offset;
  3230. error = xlog_valid_rec_header(log, rhead, blk_no);
  3231. if (error)
  3232. goto bread_err2;
  3233. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3234. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3235. &offset);
  3236. if (error)
  3237. goto bread_err2;
  3238. xlog_unpack_data(rhead, offset, log);
  3239. if ((error = xlog_recover_process_data(log, rhash,
  3240. rhead, offset, pass)))
  3241. goto bread_err2;
  3242. blk_no += bblks + hblks;
  3243. }
  3244. }
  3245. bread_err2:
  3246. xlog_put_bp(dbp);
  3247. bread_err1:
  3248. xlog_put_bp(hbp);
  3249. return error;
  3250. }
  3251. /*
  3252. * Do the recovery of the log. We actually do this in two phases.
  3253. * The two passes are necessary in order to implement the function
  3254. * of cancelling a record written into the log. The first pass
  3255. * determines those things which have been cancelled, and the
  3256. * second pass replays log items normally except for those which
  3257. * have been cancelled. The handling of the replay and cancellations
  3258. * takes place in the log item type specific routines.
  3259. *
  3260. * The table of items which have cancel records in the log is allocated
  3261. * and freed at this level, since only here do we know when all of
  3262. * the log recovery has been completed.
  3263. */
  3264. STATIC int
  3265. xlog_do_log_recovery(
  3266. xlog_t *log,
  3267. xfs_daddr_t head_blk,
  3268. xfs_daddr_t tail_blk)
  3269. {
  3270. int error, i;
  3271. ASSERT(head_blk != tail_blk);
  3272. /*
  3273. * First do a pass to find all of the cancelled buf log items.
  3274. * Store them in the buf_cancel_table for use in the second pass.
  3275. */
  3276. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3277. sizeof(struct list_head),
  3278. KM_SLEEP);
  3279. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3280. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3281. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3282. XLOG_RECOVER_PASS1);
  3283. if (error != 0) {
  3284. kmem_free(log->l_buf_cancel_table);
  3285. log->l_buf_cancel_table = NULL;
  3286. return error;
  3287. }
  3288. /*
  3289. * Then do a second pass to actually recover the items in the log.
  3290. * When it is complete free the table of buf cancel items.
  3291. */
  3292. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3293. XLOG_RECOVER_PASS2);
  3294. #ifdef DEBUG
  3295. if (!error) {
  3296. int i;
  3297. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3298. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3299. }
  3300. #endif /* DEBUG */
  3301. kmem_free(log->l_buf_cancel_table);
  3302. log->l_buf_cancel_table = NULL;
  3303. return error;
  3304. }
  3305. /*
  3306. * Do the actual recovery
  3307. */
  3308. STATIC int
  3309. xlog_do_recover(
  3310. xlog_t *log,
  3311. xfs_daddr_t head_blk,
  3312. xfs_daddr_t tail_blk)
  3313. {
  3314. int error;
  3315. xfs_buf_t *bp;
  3316. xfs_sb_t *sbp;
  3317. /*
  3318. * First replay the images in the log.
  3319. */
  3320. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3321. if (error)
  3322. return error;
  3323. /*
  3324. * If IO errors happened during recovery, bail out.
  3325. */
  3326. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3327. return (EIO);
  3328. }
  3329. /*
  3330. * We now update the tail_lsn since much of the recovery has completed
  3331. * and there may be space available to use. If there were no extent
  3332. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3333. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3334. * lsn of the last known good LR on disk. If there are extent frees
  3335. * or iunlinks they will have some entries in the AIL; so we look at
  3336. * the AIL to determine how to set the tail_lsn.
  3337. */
  3338. xlog_assign_tail_lsn(log->l_mp);
  3339. /*
  3340. * Now that we've finished replaying all buffer and inode
  3341. * updates, re-read in the superblock.
  3342. */
  3343. bp = xfs_getsb(log->l_mp, 0);
  3344. XFS_BUF_UNDONE(bp);
  3345. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3346. XFS_BUF_READ(bp);
  3347. XFS_BUF_UNASYNC(bp);
  3348. xfsbdstrat(log->l_mp, bp);
  3349. error = xfs_buf_iowait(bp);
  3350. if (error) {
  3351. xfs_buf_ioerror_alert(bp, __func__);
  3352. ASSERT(0);
  3353. xfs_buf_relse(bp);
  3354. return error;
  3355. }
  3356. /* Convert superblock from on-disk format */
  3357. sbp = &log->l_mp->m_sb;
  3358. xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp));
  3359. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3360. ASSERT(xfs_sb_good_version(sbp));
  3361. xfs_buf_relse(bp);
  3362. /* We've re-read the superblock so re-initialize per-cpu counters */
  3363. xfs_icsb_reinit_counters(log->l_mp);
  3364. xlog_recover_check_summary(log);
  3365. /* Normal transactions can now occur */
  3366. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3367. return 0;
  3368. }
  3369. /*
  3370. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3371. *
  3372. * Return error or zero.
  3373. */
  3374. int
  3375. xlog_recover(
  3376. xlog_t *log)
  3377. {
  3378. xfs_daddr_t head_blk, tail_blk;
  3379. int error;
  3380. /* find the tail of the log */
  3381. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3382. return error;
  3383. if (tail_blk != head_blk) {
  3384. /* There used to be a comment here:
  3385. *
  3386. * disallow recovery on read-only mounts. note -- mount
  3387. * checks for ENOSPC and turns it into an intelligent
  3388. * error message.
  3389. * ...but this is no longer true. Now, unless you specify
  3390. * NORECOVERY (in which case this function would never be
  3391. * called), we just go ahead and recover. We do this all
  3392. * under the vfs layer, so we can get away with it unless
  3393. * the device itself is read-only, in which case we fail.
  3394. */
  3395. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3396. return error;
  3397. }
  3398. xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
  3399. log->l_mp->m_logname ? log->l_mp->m_logname
  3400. : "internal");
  3401. error = xlog_do_recover(log, head_blk, tail_blk);
  3402. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3403. }
  3404. return error;
  3405. }
  3406. /*
  3407. * In the first part of recovery we replay inodes and buffers and build
  3408. * up the list of extent free items which need to be processed. Here
  3409. * we process the extent free items and clean up the on disk unlinked
  3410. * inode lists. This is separated from the first part of recovery so
  3411. * that the root and real-time bitmap inodes can be read in from disk in
  3412. * between the two stages. This is necessary so that we can free space
  3413. * in the real-time portion of the file system.
  3414. */
  3415. int
  3416. xlog_recover_finish(
  3417. xlog_t *log)
  3418. {
  3419. /*
  3420. * Now we're ready to do the transactions needed for the
  3421. * rest of recovery. Start with completing all the extent
  3422. * free intent records and then process the unlinked inode
  3423. * lists. At this point, we essentially run in normal mode
  3424. * except that we're still performing recovery actions
  3425. * rather than accepting new requests.
  3426. */
  3427. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3428. int error;
  3429. error = xlog_recover_process_efis(log);
  3430. if (error) {
  3431. xfs_alert(log->l_mp, "Failed to recover EFIs");
  3432. return error;
  3433. }
  3434. /*
  3435. * Sync the log to get all the EFIs out of the AIL.
  3436. * This isn't absolutely necessary, but it helps in
  3437. * case the unlink transactions would have problems
  3438. * pushing the EFIs out of the way.
  3439. */
  3440. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  3441. xlog_recover_process_iunlinks(log);
  3442. xlog_recover_check_summary(log);
  3443. xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
  3444. log->l_mp->m_logname ? log->l_mp->m_logname
  3445. : "internal");
  3446. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3447. } else {
  3448. xfs_info(log->l_mp, "Ending clean mount");
  3449. }
  3450. return 0;
  3451. }
  3452. #if defined(DEBUG)
  3453. /*
  3454. * Read all of the agf and agi counters and check that they
  3455. * are consistent with the superblock counters.
  3456. */
  3457. void
  3458. xlog_recover_check_summary(
  3459. xlog_t *log)
  3460. {
  3461. xfs_mount_t *mp;
  3462. xfs_agf_t *agfp;
  3463. xfs_buf_t *agfbp;
  3464. xfs_buf_t *agibp;
  3465. xfs_agnumber_t agno;
  3466. __uint64_t freeblks;
  3467. __uint64_t itotal;
  3468. __uint64_t ifree;
  3469. int error;
  3470. mp = log->l_mp;
  3471. freeblks = 0LL;
  3472. itotal = 0LL;
  3473. ifree = 0LL;
  3474. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3475. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3476. if (error) {
  3477. xfs_alert(mp, "%s agf read failed agno %d error %d",
  3478. __func__, agno, error);
  3479. } else {
  3480. agfp = XFS_BUF_TO_AGF(agfbp);
  3481. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3482. be32_to_cpu(agfp->agf_flcount);
  3483. xfs_buf_relse(agfbp);
  3484. }
  3485. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3486. if (error) {
  3487. xfs_alert(mp, "%s agi read failed agno %d error %d",
  3488. __func__, agno, error);
  3489. } else {
  3490. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3491. itotal += be32_to_cpu(agi->agi_count);
  3492. ifree += be32_to_cpu(agi->agi_freecount);
  3493. xfs_buf_relse(agibp);
  3494. }
  3495. }
  3496. }
  3497. #endif /* DEBUG */