process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761
  1. #include <linux/errno.h>
  2. #include <linux/kernel.h>
  3. #include <linux/mm.h>
  4. #include <linux/smp.h>
  5. #include <linux/prctl.h>
  6. #include <linux/slab.h>
  7. #include <linux/sched.h>
  8. #include <linux/module.h>
  9. #include <linux/pm.h>
  10. #include <linux/clockchips.h>
  11. #include <linux/random.h>
  12. #include <linux/user-return-notifier.h>
  13. #include <linux/dmi.h>
  14. #include <linux/utsname.h>
  15. #include <linux/stackprotector.h>
  16. #include <linux/tick.h>
  17. #include <linux/cpuidle.h>
  18. #include <trace/events/power.h>
  19. #include <linux/hw_breakpoint.h>
  20. #include <asm/cpu.h>
  21. #include <asm/apic.h>
  22. #include <asm/syscalls.h>
  23. #include <asm/idle.h>
  24. #include <asm/uaccess.h>
  25. #include <asm/i387.h>
  26. #include <asm/fpu-internal.h>
  27. #include <asm/debugreg.h>
  28. #include <asm/nmi.h>
  29. /*
  30. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  31. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  32. * so they are allowed to end up in the .data..cacheline_aligned
  33. * section. Since TSS's are completely CPU-local, we want them
  34. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  35. */
  36. DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
  37. #ifdef CONFIG_X86_64
  38. static DEFINE_PER_CPU(unsigned char, is_idle);
  39. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  40. void idle_notifier_register(struct notifier_block *n)
  41. {
  42. atomic_notifier_chain_register(&idle_notifier, n);
  43. }
  44. EXPORT_SYMBOL_GPL(idle_notifier_register);
  45. void idle_notifier_unregister(struct notifier_block *n)
  46. {
  47. atomic_notifier_chain_unregister(&idle_notifier, n);
  48. }
  49. EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  50. #endif
  51. struct kmem_cache *task_xstate_cachep;
  52. EXPORT_SYMBOL_GPL(task_xstate_cachep);
  53. /*
  54. * this gets called so that we can store lazy state into memory and copy the
  55. * current task into the new thread.
  56. */
  57. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  58. {
  59. int ret;
  60. unlazy_fpu(src);
  61. *dst = *src;
  62. if (fpu_allocated(&src->thread.fpu)) {
  63. memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
  64. ret = fpu_alloc(&dst->thread.fpu);
  65. if (ret)
  66. return ret;
  67. fpu_copy(&dst->thread.fpu, &src->thread.fpu);
  68. }
  69. return 0;
  70. }
  71. void free_thread_xstate(struct task_struct *tsk)
  72. {
  73. fpu_free(&tsk->thread.fpu);
  74. }
  75. void arch_release_task_struct(struct task_struct *tsk)
  76. {
  77. free_thread_xstate(tsk);
  78. }
  79. void arch_task_cache_init(void)
  80. {
  81. task_xstate_cachep =
  82. kmem_cache_create("task_xstate", xstate_size,
  83. __alignof__(union thread_xstate),
  84. SLAB_PANIC | SLAB_NOTRACK, NULL);
  85. }
  86. static inline void drop_fpu(struct task_struct *tsk)
  87. {
  88. /*
  89. * Forget coprocessor state..
  90. */
  91. tsk->fpu_counter = 0;
  92. clear_fpu(tsk);
  93. clear_used_math();
  94. }
  95. /*
  96. * Free current thread data structures etc..
  97. */
  98. void exit_thread(void)
  99. {
  100. struct task_struct *me = current;
  101. struct thread_struct *t = &me->thread;
  102. unsigned long *bp = t->io_bitmap_ptr;
  103. if (bp) {
  104. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  105. t->io_bitmap_ptr = NULL;
  106. clear_thread_flag(TIF_IO_BITMAP);
  107. /*
  108. * Careful, clear this in the TSS too:
  109. */
  110. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  111. t->io_bitmap_max = 0;
  112. put_cpu();
  113. kfree(bp);
  114. }
  115. drop_fpu(me);
  116. }
  117. void show_regs_common(void)
  118. {
  119. const char *vendor, *product, *board;
  120. vendor = dmi_get_system_info(DMI_SYS_VENDOR);
  121. if (!vendor)
  122. vendor = "";
  123. product = dmi_get_system_info(DMI_PRODUCT_NAME);
  124. if (!product)
  125. product = "";
  126. /* Board Name is optional */
  127. board = dmi_get_system_info(DMI_BOARD_NAME);
  128. printk(KERN_CONT "\n");
  129. printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
  130. current->pid, current->comm, print_tainted(),
  131. init_utsname()->release,
  132. (int)strcspn(init_utsname()->version, " "),
  133. init_utsname()->version);
  134. printk(KERN_CONT " %s %s", vendor, product);
  135. if (board)
  136. printk(KERN_CONT "/%s", board);
  137. printk(KERN_CONT "\n");
  138. }
  139. void flush_thread(void)
  140. {
  141. struct task_struct *tsk = current;
  142. flush_ptrace_hw_breakpoint(tsk);
  143. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  144. drop_fpu(tsk);
  145. }
  146. static void hard_disable_TSC(void)
  147. {
  148. write_cr4(read_cr4() | X86_CR4_TSD);
  149. }
  150. void disable_TSC(void)
  151. {
  152. preempt_disable();
  153. if (!test_and_set_thread_flag(TIF_NOTSC))
  154. /*
  155. * Must flip the CPU state synchronously with
  156. * TIF_NOTSC in the current running context.
  157. */
  158. hard_disable_TSC();
  159. preempt_enable();
  160. }
  161. static void hard_enable_TSC(void)
  162. {
  163. write_cr4(read_cr4() & ~X86_CR4_TSD);
  164. }
  165. static void enable_TSC(void)
  166. {
  167. preempt_disable();
  168. if (test_and_clear_thread_flag(TIF_NOTSC))
  169. /*
  170. * Must flip the CPU state synchronously with
  171. * TIF_NOTSC in the current running context.
  172. */
  173. hard_enable_TSC();
  174. preempt_enable();
  175. }
  176. int get_tsc_mode(unsigned long adr)
  177. {
  178. unsigned int val;
  179. if (test_thread_flag(TIF_NOTSC))
  180. val = PR_TSC_SIGSEGV;
  181. else
  182. val = PR_TSC_ENABLE;
  183. return put_user(val, (unsigned int __user *)adr);
  184. }
  185. int set_tsc_mode(unsigned int val)
  186. {
  187. if (val == PR_TSC_SIGSEGV)
  188. disable_TSC();
  189. else if (val == PR_TSC_ENABLE)
  190. enable_TSC();
  191. else
  192. return -EINVAL;
  193. return 0;
  194. }
  195. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  196. struct tss_struct *tss)
  197. {
  198. struct thread_struct *prev, *next;
  199. prev = &prev_p->thread;
  200. next = &next_p->thread;
  201. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  202. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  203. unsigned long debugctl = get_debugctlmsr();
  204. debugctl &= ~DEBUGCTLMSR_BTF;
  205. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  206. debugctl |= DEBUGCTLMSR_BTF;
  207. update_debugctlmsr(debugctl);
  208. }
  209. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  210. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  211. /* prev and next are different */
  212. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  213. hard_disable_TSC();
  214. else
  215. hard_enable_TSC();
  216. }
  217. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  218. /*
  219. * Copy the relevant range of the IO bitmap.
  220. * Normally this is 128 bytes or less:
  221. */
  222. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  223. max(prev->io_bitmap_max, next->io_bitmap_max));
  224. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  225. /*
  226. * Clear any possible leftover bits:
  227. */
  228. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  229. }
  230. propagate_user_return_notify(prev_p, next_p);
  231. }
  232. int sys_fork(struct pt_regs *regs)
  233. {
  234. return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
  235. }
  236. /*
  237. * This is trivial, and on the face of it looks like it
  238. * could equally well be done in user mode.
  239. *
  240. * Not so, for quite unobvious reasons - register pressure.
  241. * In user mode vfork() cannot have a stack frame, and if
  242. * done by calling the "clone()" system call directly, you
  243. * do not have enough call-clobbered registers to hold all
  244. * the information you need.
  245. */
  246. int sys_vfork(struct pt_regs *regs)
  247. {
  248. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
  249. NULL, NULL);
  250. }
  251. long
  252. sys_clone(unsigned long clone_flags, unsigned long newsp,
  253. void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
  254. {
  255. if (!newsp)
  256. newsp = regs->sp;
  257. return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
  258. }
  259. /*
  260. * This gets run with %si containing the
  261. * function to call, and %di containing
  262. * the "args".
  263. */
  264. extern void kernel_thread_helper(void);
  265. /*
  266. * Create a kernel thread
  267. */
  268. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  269. {
  270. struct pt_regs regs;
  271. memset(&regs, 0, sizeof(regs));
  272. regs.si = (unsigned long) fn;
  273. regs.di = (unsigned long) arg;
  274. #ifdef CONFIG_X86_32
  275. regs.ds = __USER_DS;
  276. regs.es = __USER_DS;
  277. regs.fs = __KERNEL_PERCPU;
  278. regs.gs = __KERNEL_STACK_CANARY;
  279. #else
  280. regs.ss = __KERNEL_DS;
  281. #endif
  282. regs.orig_ax = -1;
  283. regs.ip = (unsigned long) kernel_thread_helper;
  284. regs.cs = __KERNEL_CS | get_kernel_rpl();
  285. regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
  286. /* Ok, create the new process.. */
  287. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  288. }
  289. EXPORT_SYMBOL(kernel_thread);
  290. /*
  291. * sys_execve() executes a new program.
  292. */
  293. long sys_execve(const char __user *name,
  294. const char __user *const __user *argv,
  295. const char __user *const __user *envp, struct pt_regs *regs)
  296. {
  297. long error;
  298. char *filename;
  299. filename = getname(name);
  300. error = PTR_ERR(filename);
  301. if (IS_ERR(filename))
  302. return error;
  303. error = do_execve(filename, argv, envp, regs);
  304. #ifdef CONFIG_X86_32
  305. if (error == 0) {
  306. /* Make sure we don't return using sysenter.. */
  307. set_thread_flag(TIF_IRET);
  308. }
  309. #endif
  310. putname(filename);
  311. return error;
  312. }
  313. /*
  314. * Idle related variables and functions
  315. */
  316. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  317. EXPORT_SYMBOL(boot_option_idle_override);
  318. /*
  319. * Powermanagement idle function, if any..
  320. */
  321. void (*pm_idle)(void);
  322. #ifdef CONFIG_APM_MODULE
  323. EXPORT_SYMBOL(pm_idle);
  324. #endif
  325. static inline int hlt_use_halt(void)
  326. {
  327. return 1;
  328. }
  329. #ifndef CONFIG_SMP
  330. static inline void play_dead(void)
  331. {
  332. BUG();
  333. }
  334. #endif
  335. #ifdef CONFIG_X86_64
  336. void enter_idle(void)
  337. {
  338. this_cpu_write(is_idle, 1);
  339. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  340. }
  341. static void __exit_idle(void)
  342. {
  343. if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
  344. return;
  345. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  346. }
  347. /* Called from interrupts to signify idle end */
  348. void exit_idle(void)
  349. {
  350. /* idle loop has pid 0 */
  351. if (current->pid)
  352. return;
  353. __exit_idle();
  354. }
  355. #endif
  356. /*
  357. * The idle thread. There's no useful work to be
  358. * done, so just try to conserve power and have a
  359. * low exit latency (ie sit in a loop waiting for
  360. * somebody to say that they'd like to reschedule)
  361. */
  362. void cpu_idle(void)
  363. {
  364. /*
  365. * If we're the non-boot CPU, nothing set the stack canary up
  366. * for us. CPU0 already has it initialized but no harm in
  367. * doing it again. This is a good place for updating it, as
  368. * we wont ever return from this function (so the invalid
  369. * canaries already on the stack wont ever trigger).
  370. */
  371. boot_init_stack_canary();
  372. current_thread_info()->status |= TS_POLLING;
  373. while (1) {
  374. tick_nohz_idle_enter();
  375. while (!need_resched()) {
  376. rmb();
  377. if (cpu_is_offline(smp_processor_id()))
  378. play_dead();
  379. /*
  380. * Idle routines should keep interrupts disabled
  381. * from here on, until they go to idle.
  382. * Otherwise, idle callbacks can misfire.
  383. */
  384. local_touch_nmi();
  385. local_irq_disable();
  386. enter_idle();
  387. /* Don't trace irqs off for idle */
  388. stop_critical_timings();
  389. /* enter_idle() needs rcu for notifiers */
  390. rcu_idle_enter();
  391. if (cpuidle_idle_call())
  392. pm_idle();
  393. rcu_idle_exit();
  394. start_critical_timings();
  395. /* In many cases the interrupt that ended idle
  396. has already called exit_idle. But some idle
  397. loops can be woken up without interrupt. */
  398. __exit_idle();
  399. }
  400. tick_nohz_idle_exit();
  401. preempt_enable_no_resched();
  402. schedule();
  403. preempt_disable();
  404. }
  405. }
  406. /*
  407. * We use this if we don't have any better
  408. * idle routine..
  409. */
  410. void default_idle(void)
  411. {
  412. if (hlt_use_halt()) {
  413. trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
  414. trace_cpu_idle_rcuidle(1, smp_processor_id());
  415. current_thread_info()->status &= ~TS_POLLING;
  416. /*
  417. * TS_POLLING-cleared state must be visible before we
  418. * test NEED_RESCHED:
  419. */
  420. smp_mb();
  421. if (!need_resched())
  422. safe_halt(); /* enables interrupts racelessly */
  423. else
  424. local_irq_enable();
  425. current_thread_info()->status |= TS_POLLING;
  426. trace_power_end_rcuidle(smp_processor_id());
  427. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  428. } else {
  429. local_irq_enable();
  430. /* loop is done by the caller */
  431. cpu_relax();
  432. }
  433. }
  434. #ifdef CONFIG_APM_MODULE
  435. EXPORT_SYMBOL(default_idle);
  436. #endif
  437. bool set_pm_idle_to_default(void)
  438. {
  439. bool ret = !!pm_idle;
  440. pm_idle = default_idle;
  441. return ret;
  442. }
  443. void stop_this_cpu(void *dummy)
  444. {
  445. local_irq_disable();
  446. /*
  447. * Remove this CPU:
  448. */
  449. set_cpu_online(smp_processor_id(), false);
  450. disable_local_APIC();
  451. for (;;) {
  452. if (hlt_works(smp_processor_id()))
  453. halt();
  454. }
  455. }
  456. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  457. static void mwait_idle(void)
  458. {
  459. if (!need_resched()) {
  460. trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
  461. trace_cpu_idle_rcuidle(1, smp_processor_id());
  462. if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
  463. clflush((void *)&current_thread_info()->flags);
  464. __monitor((void *)&current_thread_info()->flags, 0, 0);
  465. smp_mb();
  466. if (!need_resched())
  467. __sti_mwait(0, 0);
  468. else
  469. local_irq_enable();
  470. trace_power_end_rcuidle(smp_processor_id());
  471. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  472. } else
  473. local_irq_enable();
  474. }
  475. /*
  476. * On SMP it's slightly faster (but much more power-consuming!)
  477. * to poll the ->work.need_resched flag instead of waiting for the
  478. * cross-CPU IPI to arrive. Use this option with caution.
  479. */
  480. static void poll_idle(void)
  481. {
  482. trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
  483. trace_cpu_idle_rcuidle(0, smp_processor_id());
  484. local_irq_enable();
  485. while (!need_resched())
  486. cpu_relax();
  487. trace_power_end_rcuidle(smp_processor_id());
  488. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  489. }
  490. /*
  491. * mwait selection logic:
  492. *
  493. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  494. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  495. * then depend on a clock divisor and current Pstate of the core. If
  496. * all cores of a processor are in halt state (C1) the processor can
  497. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  498. * happen.
  499. *
  500. * idle=mwait overrides this decision and forces the usage of mwait.
  501. */
  502. #define MWAIT_INFO 0x05
  503. #define MWAIT_ECX_EXTENDED_INFO 0x01
  504. #define MWAIT_EDX_C1 0xf0
  505. int mwait_usable(const struct cpuinfo_x86 *c)
  506. {
  507. u32 eax, ebx, ecx, edx;
  508. /* Use mwait if idle=mwait boot option is given */
  509. if (boot_option_idle_override == IDLE_FORCE_MWAIT)
  510. return 1;
  511. /*
  512. * Any idle= boot option other than idle=mwait means that we must not
  513. * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
  514. */
  515. if (boot_option_idle_override != IDLE_NO_OVERRIDE)
  516. return 0;
  517. if (c->cpuid_level < MWAIT_INFO)
  518. return 0;
  519. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  520. /* Check, whether EDX has extended info about MWAIT */
  521. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  522. return 1;
  523. /*
  524. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  525. * C1 supports MWAIT
  526. */
  527. return (edx & MWAIT_EDX_C1);
  528. }
  529. bool amd_e400_c1e_detected;
  530. EXPORT_SYMBOL(amd_e400_c1e_detected);
  531. static cpumask_var_t amd_e400_c1e_mask;
  532. void amd_e400_remove_cpu(int cpu)
  533. {
  534. if (amd_e400_c1e_mask != NULL)
  535. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  536. }
  537. /*
  538. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  539. * pending message MSR. If we detect C1E, then we handle it the same
  540. * way as C3 power states (local apic timer and TSC stop)
  541. */
  542. static void amd_e400_idle(void)
  543. {
  544. if (need_resched())
  545. return;
  546. if (!amd_e400_c1e_detected) {
  547. u32 lo, hi;
  548. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  549. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  550. amd_e400_c1e_detected = true;
  551. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  552. mark_tsc_unstable("TSC halt in AMD C1E");
  553. printk(KERN_INFO "System has AMD C1E enabled\n");
  554. }
  555. }
  556. if (amd_e400_c1e_detected) {
  557. int cpu = smp_processor_id();
  558. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  559. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  560. /*
  561. * Force broadcast so ACPI can not interfere.
  562. */
  563. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  564. &cpu);
  565. printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
  566. cpu);
  567. }
  568. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  569. default_idle();
  570. /*
  571. * The switch back from broadcast mode needs to be
  572. * called with interrupts disabled.
  573. */
  574. local_irq_disable();
  575. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  576. local_irq_enable();
  577. } else
  578. default_idle();
  579. }
  580. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  581. {
  582. #ifdef CONFIG_SMP
  583. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  584. printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
  585. " performance may degrade.\n");
  586. }
  587. #endif
  588. if (pm_idle)
  589. return;
  590. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  591. /*
  592. * One CPU supports mwait => All CPUs supports mwait
  593. */
  594. printk(KERN_INFO "using mwait in idle threads.\n");
  595. pm_idle = mwait_idle;
  596. } else if (cpu_has_amd_erratum(amd_erratum_400)) {
  597. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  598. printk(KERN_INFO "using AMD E400 aware idle routine\n");
  599. pm_idle = amd_e400_idle;
  600. } else
  601. pm_idle = default_idle;
  602. }
  603. void __init init_amd_e400_c1e_mask(void)
  604. {
  605. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  606. if (pm_idle == amd_e400_idle)
  607. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  608. }
  609. static int __init idle_setup(char *str)
  610. {
  611. if (!str)
  612. return -EINVAL;
  613. if (!strcmp(str, "poll")) {
  614. printk("using polling idle threads.\n");
  615. pm_idle = poll_idle;
  616. boot_option_idle_override = IDLE_POLL;
  617. } else if (!strcmp(str, "mwait")) {
  618. boot_option_idle_override = IDLE_FORCE_MWAIT;
  619. WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
  620. } else if (!strcmp(str, "halt")) {
  621. /*
  622. * When the boot option of idle=halt is added, halt is
  623. * forced to be used for CPU idle. In such case CPU C2/C3
  624. * won't be used again.
  625. * To continue to load the CPU idle driver, don't touch
  626. * the boot_option_idle_override.
  627. */
  628. pm_idle = default_idle;
  629. boot_option_idle_override = IDLE_HALT;
  630. } else if (!strcmp(str, "nomwait")) {
  631. /*
  632. * If the boot option of "idle=nomwait" is added,
  633. * it means that mwait will be disabled for CPU C2/C3
  634. * states. In such case it won't touch the variable
  635. * of boot_option_idle_override.
  636. */
  637. boot_option_idle_override = IDLE_NOMWAIT;
  638. } else
  639. return -1;
  640. return 0;
  641. }
  642. early_param("idle", idle_setup);
  643. unsigned long arch_align_stack(unsigned long sp)
  644. {
  645. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  646. sp -= get_random_int() % 8192;
  647. return sp & ~0xf;
  648. }
  649. unsigned long arch_randomize_brk(struct mm_struct *mm)
  650. {
  651. unsigned long range_end = mm->brk + 0x02000000;
  652. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  653. }