kvm_main.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  47. #include "coalesced_mmio.h"
  48. #endif
  49. MODULE_AUTHOR("Qumranet");
  50. MODULE_LICENSE("GPL");
  51. DEFINE_SPINLOCK(kvm_lock);
  52. LIST_HEAD(vm_list);
  53. static cpumask_t cpus_hardware_enabled;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. struct dentry *kvm_debugfs_dir;
  58. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  59. unsigned long arg);
  60. bool kvm_rebooting;
  61. static inline int valid_vcpu(int n)
  62. {
  63. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  64. }
  65. /*
  66. * Switches to specified vcpu, until a matching vcpu_put()
  67. */
  68. void vcpu_load(struct kvm_vcpu *vcpu)
  69. {
  70. int cpu;
  71. mutex_lock(&vcpu->mutex);
  72. cpu = get_cpu();
  73. preempt_notifier_register(&vcpu->preempt_notifier);
  74. kvm_arch_vcpu_load(vcpu, cpu);
  75. put_cpu();
  76. }
  77. void vcpu_put(struct kvm_vcpu *vcpu)
  78. {
  79. preempt_disable();
  80. kvm_arch_vcpu_put(vcpu);
  81. preempt_notifier_unregister(&vcpu->preempt_notifier);
  82. preempt_enable();
  83. mutex_unlock(&vcpu->mutex);
  84. }
  85. static void ack_flush(void *_completed)
  86. {
  87. }
  88. void kvm_flush_remote_tlbs(struct kvm *kvm)
  89. {
  90. int i, cpu, me;
  91. cpumask_t cpus;
  92. struct kvm_vcpu *vcpu;
  93. me = get_cpu();
  94. cpus_clear(cpus);
  95. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  96. vcpu = kvm->vcpus[i];
  97. if (!vcpu)
  98. continue;
  99. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  100. continue;
  101. cpu = vcpu->cpu;
  102. if (cpu != -1 && cpu != me)
  103. cpu_set(cpu, cpus);
  104. }
  105. if (cpus_empty(cpus))
  106. goto out;
  107. ++kvm->stat.remote_tlb_flush;
  108. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  109. out:
  110. put_cpu();
  111. }
  112. void kvm_reload_remote_mmus(struct kvm *kvm)
  113. {
  114. int i, cpu, me;
  115. cpumask_t cpus;
  116. struct kvm_vcpu *vcpu;
  117. me = get_cpu();
  118. cpus_clear(cpus);
  119. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  120. vcpu = kvm->vcpus[i];
  121. if (!vcpu)
  122. continue;
  123. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  124. continue;
  125. cpu = vcpu->cpu;
  126. if (cpu != -1 && cpu != me)
  127. cpu_set(cpu, cpus);
  128. }
  129. if (cpus_empty(cpus))
  130. goto out;
  131. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  132. out:
  133. put_cpu();
  134. }
  135. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  136. {
  137. struct page *page;
  138. int r;
  139. mutex_init(&vcpu->mutex);
  140. vcpu->cpu = -1;
  141. vcpu->kvm = kvm;
  142. vcpu->vcpu_id = id;
  143. init_waitqueue_head(&vcpu->wq);
  144. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  145. if (!page) {
  146. r = -ENOMEM;
  147. goto fail;
  148. }
  149. vcpu->run = page_address(page);
  150. r = kvm_arch_vcpu_init(vcpu);
  151. if (r < 0)
  152. goto fail_free_run;
  153. return 0;
  154. fail_free_run:
  155. free_page((unsigned long)vcpu->run);
  156. fail:
  157. return r;
  158. }
  159. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  160. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  161. {
  162. kvm_arch_vcpu_uninit(vcpu);
  163. free_page((unsigned long)vcpu->run);
  164. }
  165. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  166. static struct kvm *kvm_create_vm(void)
  167. {
  168. struct kvm *kvm = kvm_arch_create_vm();
  169. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  170. struct page *page;
  171. #endif
  172. if (IS_ERR(kvm))
  173. goto out;
  174. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  175. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  176. if (!page) {
  177. kfree(kvm);
  178. return ERR_PTR(-ENOMEM);
  179. }
  180. kvm->coalesced_mmio_ring =
  181. (struct kvm_coalesced_mmio_ring *)page_address(page);
  182. #endif
  183. kvm->mm = current->mm;
  184. atomic_inc(&kvm->mm->mm_count);
  185. spin_lock_init(&kvm->mmu_lock);
  186. kvm_io_bus_init(&kvm->pio_bus);
  187. mutex_init(&kvm->lock);
  188. kvm_io_bus_init(&kvm->mmio_bus);
  189. init_rwsem(&kvm->slots_lock);
  190. atomic_set(&kvm->users_count, 1);
  191. spin_lock(&kvm_lock);
  192. list_add(&kvm->vm_list, &vm_list);
  193. spin_unlock(&kvm_lock);
  194. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  195. kvm_coalesced_mmio_init(kvm);
  196. #endif
  197. out:
  198. return kvm;
  199. }
  200. /*
  201. * Free any memory in @free but not in @dont.
  202. */
  203. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  204. struct kvm_memory_slot *dont)
  205. {
  206. if (!dont || free->rmap != dont->rmap)
  207. vfree(free->rmap);
  208. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  209. vfree(free->dirty_bitmap);
  210. if (!dont || free->lpage_info != dont->lpage_info)
  211. vfree(free->lpage_info);
  212. free->npages = 0;
  213. free->dirty_bitmap = NULL;
  214. free->rmap = NULL;
  215. free->lpage_info = NULL;
  216. }
  217. void kvm_free_physmem(struct kvm *kvm)
  218. {
  219. int i;
  220. for (i = 0; i < kvm->nmemslots; ++i)
  221. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  222. }
  223. static void kvm_destroy_vm(struct kvm *kvm)
  224. {
  225. struct mm_struct *mm = kvm->mm;
  226. spin_lock(&kvm_lock);
  227. list_del(&kvm->vm_list);
  228. spin_unlock(&kvm_lock);
  229. kvm_io_bus_destroy(&kvm->pio_bus);
  230. kvm_io_bus_destroy(&kvm->mmio_bus);
  231. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  232. if (kvm->coalesced_mmio_ring != NULL)
  233. free_page((unsigned long)kvm->coalesced_mmio_ring);
  234. #endif
  235. kvm_arch_destroy_vm(kvm);
  236. mmdrop(mm);
  237. }
  238. void kvm_get_kvm(struct kvm *kvm)
  239. {
  240. atomic_inc(&kvm->users_count);
  241. }
  242. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  243. void kvm_put_kvm(struct kvm *kvm)
  244. {
  245. if (atomic_dec_and_test(&kvm->users_count))
  246. kvm_destroy_vm(kvm);
  247. }
  248. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  249. static int kvm_vm_release(struct inode *inode, struct file *filp)
  250. {
  251. struct kvm *kvm = filp->private_data;
  252. kvm_put_kvm(kvm);
  253. return 0;
  254. }
  255. /*
  256. * Allocate some memory and give it an address in the guest physical address
  257. * space.
  258. *
  259. * Discontiguous memory is allowed, mostly for framebuffers.
  260. *
  261. * Must be called holding mmap_sem for write.
  262. */
  263. int __kvm_set_memory_region(struct kvm *kvm,
  264. struct kvm_userspace_memory_region *mem,
  265. int user_alloc)
  266. {
  267. int r;
  268. gfn_t base_gfn;
  269. unsigned long npages;
  270. unsigned long i;
  271. struct kvm_memory_slot *memslot;
  272. struct kvm_memory_slot old, new;
  273. r = -EINVAL;
  274. /* General sanity checks */
  275. if (mem->memory_size & (PAGE_SIZE - 1))
  276. goto out;
  277. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  278. goto out;
  279. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  280. goto out;
  281. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  282. goto out;
  283. memslot = &kvm->memslots[mem->slot];
  284. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  285. npages = mem->memory_size >> PAGE_SHIFT;
  286. if (!npages)
  287. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  288. new = old = *memslot;
  289. new.base_gfn = base_gfn;
  290. new.npages = npages;
  291. new.flags = mem->flags;
  292. /* Disallow changing a memory slot's size. */
  293. r = -EINVAL;
  294. if (npages && old.npages && npages != old.npages)
  295. goto out_free;
  296. /* Check for overlaps */
  297. r = -EEXIST;
  298. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  299. struct kvm_memory_slot *s = &kvm->memslots[i];
  300. if (s == memslot)
  301. continue;
  302. if (!((base_gfn + npages <= s->base_gfn) ||
  303. (base_gfn >= s->base_gfn + s->npages)))
  304. goto out_free;
  305. }
  306. /* Free page dirty bitmap if unneeded */
  307. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  308. new.dirty_bitmap = NULL;
  309. r = -ENOMEM;
  310. /* Allocate if a slot is being created */
  311. #ifndef CONFIG_S390
  312. if (npages && !new.rmap) {
  313. new.rmap = vmalloc(npages * sizeof(struct page *));
  314. if (!new.rmap)
  315. goto out_free;
  316. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  317. new.user_alloc = user_alloc;
  318. new.userspace_addr = mem->userspace_addr;
  319. }
  320. if (npages && !new.lpage_info) {
  321. int largepages = npages / KVM_PAGES_PER_HPAGE;
  322. if (npages % KVM_PAGES_PER_HPAGE)
  323. largepages++;
  324. if (base_gfn % KVM_PAGES_PER_HPAGE)
  325. largepages++;
  326. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  327. if (!new.lpage_info)
  328. goto out_free;
  329. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  330. if (base_gfn % KVM_PAGES_PER_HPAGE)
  331. new.lpage_info[0].write_count = 1;
  332. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  333. new.lpage_info[largepages-1].write_count = 1;
  334. }
  335. /* Allocate page dirty bitmap if needed */
  336. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  337. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  338. new.dirty_bitmap = vmalloc(dirty_bytes);
  339. if (!new.dirty_bitmap)
  340. goto out_free;
  341. memset(new.dirty_bitmap, 0, dirty_bytes);
  342. }
  343. #endif /* not defined CONFIG_S390 */
  344. if (mem->slot >= kvm->nmemslots)
  345. kvm->nmemslots = mem->slot + 1;
  346. if (!npages)
  347. kvm_arch_flush_shadow(kvm);
  348. *memslot = new;
  349. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  350. if (r) {
  351. *memslot = old;
  352. goto out_free;
  353. }
  354. kvm_free_physmem_slot(&old, &new);
  355. return 0;
  356. out_free:
  357. kvm_free_physmem_slot(&new, &old);
  358. out:
  359. return r;
  360. }
  361. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  362. int kvm_set_memory_region(struct kvm *kvm,
  363. struct kvm_userspace_memory_region *mem,
  364. int user_alloc)
  365. {
  366. int r;
  367. down_write(&kvm->slots_lock);
  368. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  369. up_write(&kvm->slots_lock);
  370. return r;
  371. }
  372. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  373. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  374. struct
  375. kvm_userspace_memory_region *mem,
  376. int user_alloc)
  377. {
  378. if (mem->slot >= KVM_MEMORY_SLOTS)
  379. return -EINVAL;
  380. return kvm_set_memory_region(kvm, mem, user_alloc);
  381. }
  382. int kvm_get_dirty_log(struct kvm *kvm,
  383. struct kvm_dirty_log *log, int *is_dirty)
  384. {
  385. struct kvm_memory_slot *memslot;
  386. int r, i;
  387. int n;
  388. unsigned long any = 0;
  389. r = -EINVAL;
  390. if (log->slot >= KVM_MEMORY_SLOTS)
  391. goto out;
  392. memslot = &kvm->memslots[log->slot];
  393. r = -ENOENT;
  394. if (!memslot->dirty_bitmap)
  395. goto out;
  396. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  397. for (i = 0; !any && i < n/sizeof(long); ++i)
  398. any = memslot->dirty_bitmap[i];
  399. r = -EFAULT;
  400. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  401. goto out;
  402. if (any)
  403. *is_dirty = 1;
  404. r = 0;
  405. out:
  406. return r;
  407. }
  408. int is_error_page(struct page *page)
  409. {
  410. return page == bad_page;
  411. }
  412. EXPORT_SYMBOL_GPL(is_error_page);
  413. int is_error_pfn(pfn_t pfn)
  414. {
  415. return pfn == bad_pfn;
  416. }
  417. EXPORT_SYMBOL_GPL(is_error_pfn);
  418. static inline unsigned long bad_hva(void)
  419. {
  420. return PAGE_OFFSET;
  421. }
  422. int kvm_is_error_hva(unsigned long addr)
  423. {
  424. return addr == bad_hva();
  425. }
  426. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  427. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  428. {
  429. int i;
  430. for (i = 0; i < kvm->nmemslots; ++i) {
  431. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  432. if (gfn >= memslot->base_gfn
  433. && gfn < memslot->base_gfn + memslot->npages)
  434. return memslot;
  435. }
  436. return NULL;
  437. }
  438. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  439. {
  440. gfn = unalias_gfn(kvm, gfn);
  441. return __gfn_to_memslot(kvm, gfn);
  442. }
  443. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  444. {
  445. int i;
  446. gfn = unalias_gfn(kvm, gfn);
  447. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  448. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  449. if (gfn >= memslot->base_gfn
  450. && gfn < memslot->base_gfn + memslot->npages)
  451. return 1;
  452. }
  453. return 0;
  454. }
  455. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  456. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  457. {
  458. struct kvm_memory_slot *slot;
  459. gfn = unalias_gfn(kvm, gfn);
  460. slot = __gfn_to_memslot(kvm, gfn);
  461. if (!slot)
  462. return bad_hva();
  463. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  464. }
  465. EXPORT_SYMBOL_GPL(gfn_to_hva);
  466. /*
  467. * Requires current->mm->mmap_sem to be held
  468. */
  469. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  470. {
  471. struct page *page[1];
  472. unsigned long addr;
  473. int npages;
  474. pfn_t pfn;
  475. might_sleep();
  476. addr = gfn_to_hva(kvm, gfn);
  477. if (kvm_is_error_hva(addr)) {
  478. get_page(bad_page);
  479. return page_to_pfn(bad_page);
  480. }
  481. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  482. NULL);
  483. if (unlikely(npages != 1)) {
  484. struct vm_area_struct *vma;
  485. vma = find_vma(current->mm, addr);
  486. if (vma == NULL || addr < vma->vm_start ||
  487. !(vma->vm_flags & VM_PFNMAP)) {
  488. get_page(bad_page);
  489. return page_to_pfn(bad_page);
  490. }
  491. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  492. BUG_ON(pfn_valid(pfn));
  493. } else
  494. pfn = page_to_pfn(page[0]);
  495. return pfn;
  496. }
  497. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  498. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  499. {
  500. pfn_t pfn;
  501. pfn = gfn_to_pfn(kvm, gfn);
  502. if (pfn_valid(pfn))
  503. return pfn_to_page(pfn);
  504. WARN_ON(!pfn_valid(pfn));
  505. get_page(bad_page);
  506. return bad_page;
  507. }
  508. EXPORT_SYMBOL_GPL(gfn_to_page);
  509. void kvm_release_page_clean(struct page *page)
  510. {
  511. kvm_release_pfn_clean(page_to_pfn(page));
  512. }
  513. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  514. void kvm_release_pfn_clean(pfn_t pfn)
  515. {
  516. if (pfn_valid(pfn))
  517. put_page(pfn_to_page(pfn));
  518. }
  519. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  520. void kvm_release_page_dirty(struct page *page)
  521. {
  522. kvm_release_pfn_dirty(page_to_pfn(page));
  523. }
  524. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  525. void kvm_release_pfn_dirty(pfn_t pfn)
  526. {
  527. kvm_set_pfn_dirty(pfn);
  528. kvm_release_pfn_clean(pfn);
  529. }
  530. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  531. void kvm_set_page_dirty(struct page *page)
  532. {
  533. kvm_set_pfn_dirty(page_to_pfn(page));
  534. }
  535. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  536. void kvm_set_pfn_dirty(pfn_t pfn)
  537. {
  538. if (pfn_valid(pfn)) {
  539. struct page *page = pfn_to_page(pfn);
  540. if (!PageReserved(page))
  541. SetPageDirty(page);
  542. }
  543. }
  544. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  545. void kvm_set_pfn_accessed(pfn_t pfn)
  546. {
  547. if (pfn_valid(pfn))
  548. mark_page_accessed(pfn_to_page(pfn));
  549. }
  550. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  551. void kvm_get_pfn(pfn_t pfn)
  552. {
  553. if (pfn_valid(pfn))
  554. get_page(pfn_to_page(pfn));
  555. }
  556. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  557. static int next_segment(unsigned long len, int offset)
  558. {
  559. if (len > PAGE_SIZE - offset)
  560. return PAGE_SIZE - offset;
  561. else
  562. return len;
  563. }
  564. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  565. int len)
  566. {
  567. int r;
  568. unsigned long addr;
  569. addr = gfn_to_hva(kvm, gfn);
  570. if (kvm_is_error_hva(addr))
  571. return -EFAULT;
  572. r = copy_from_user(data, (void __user *)addr + offset, len);
  573. if (r)
  574. return -EFAULT;
  575. return 0;
  576. }
  577. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  578. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  579. {
  580. gfn_t gfn = gpa >> PAGE_SHIFT;
  581. int seg;
  582. int offset = offset_in_page(gpa);
  583. int ret;
  584. while ((seg = next_segment(len, offset)) != 0) {
  585. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  586. if (ret < 0)
  587. return ret;
  588. offset = 0;
  589. len -= seg;
  590. data += seg;
  591. ++gfn;
  592. }
  593. return 0;
  594. }
  595. EXPORT_SYMBOL_GPL(kvm_read_guest);
  596. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  597. unsigned long len)
  598. {
  599. int r;
  600. unsigned long addr;
  601. gfn_t gfn = gpa >> PAGE_SHIFT;
  602. int offset = offset_in_page(gpa);
  603. addr = gfn_to_hva(kvm, gfn);
  604. if (kvm_is_error_hva(addr))
  605. return -EFAULT;
  606. pagefault_disable();
  607. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  608. pagefault_enable();
  609. if (r)
  610. return -EFAULT;
  611. return 0;
  612. }
  613. EXPORT_SYMBOL(kvm_read_guest_atomic);
  614. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  615. int offset, int len)
  616. {
  617. int r;
  618. unsigned long addr;
  619. addr = gfn_to_hva(kvm, gfn);
  620. if (kvm_is_error_hva(addr))
  621. return -EFAULT;
  622. r = copy_to_user((void __user *)addr + offset, data, len);
  623. if (r)
  624. return -EFAULT;
  625. mark_page_dirty(kvm, gfn);
  626. return 0;
  627. }
  628. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  629. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  630. unsigned long len)
  631. {
  632. gfn_t gfn = gpa >> PAGE_SHIFT;
  633. int seg;
  634. int offset = offset_in_page(gpa);
  635. int ret;
  636. while ((seg = next_segment(len, offset)) != 0) {
  637. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  638. if (ret < 0)
  639. return ret;
  640. offset = 0;
  641. len -= seg;
  642. data += seg;
  643. ++gfn;
  644. }
  645. return 0;
  646. }
  647. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  648. {
  649. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  650. }
  651. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  652. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  653. {
  654. gfn_t gfn = gpa >> PAGE_SHIFT;
  655. int seg;
  656. int offset = offset_in_page(gpa);
  657. int ret;
  658. while ((seg = next_segment(len, offset)) != 0) {
  659. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  660. if (ret < 0)
  661. return ret;
  662. offset = 0;
  663. len -= seg;
  664. ++gfn;
  665. }
  666. return 0;
  667. }
  668. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  669. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  670. {
  671. struct kvm_memory_slot *memslot;
  672. gfn = unalias_gfn(kvm, gfn);
  673. memslot = __gfn_to_memslot(kvm, gfn);
  674. if (memslot && memslot->dirty_bitmap) {
  675. unsigned long rel_gfn = gfn - memslot->base_gfn;
  676. /* avoid RMW */
  677. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  678. set_bit(rel_gfn, memslot->dirty_bitmap);
  679. }
  680. }
  681. /*
  682. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  683. */
  684. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  685. {
  686. DEFINE_WAIT(wait);
  687. for (;;) {
  688. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  689. if (kvm_cpu_has_interrupt(vcpu))
  690. break;
  691. if (kvm_cpu_has_pending_timer(vcpu))
  692. break;
  693. if (kvm_arch_vcpu_runnable(vcpu))
  694. break;
  695. if (signal_pending(current))
  696. break;
  697. vcpu_put(vcpu);
  698. schedule();
  699. vcpu_load(vcpu);
  700. }
  701. finish_wait(&vcpu->wq, &wait);
  702. }
  703. void kvm_resched(struct kvm_vcpu *vcpu)
  704. {
  705. if (!need_resched())
  706. return;
  707. cond_resched();
  708. }
  709. EXPORT_SYMBOL_GPL(kvm_resched);
  710. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  711. {
  712. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  713. struct page *page;
  714. if (vmf->pgoff == 0)
  715. page = virt_to_page(vcpu->run);
  716. #ifdef CONFIG_X86
  717. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  718. page = virt_to_page(vcpu->arch.pio_data);
  719. #endif
  720. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  721. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  722. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  723. #endif
  724. else
  725. return VM_FAULT_SIGBUS;
  726. get_page(page);
  727. vmf->page = page;
  728. return 0;
  729. }
  730. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  731. .fault = kvm_vcpu_fault,
  732. };
  733. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  734. {
  735. vma->vm_ops = &kvm_vcpu_vm_ops;
  736. return 0;
  737. }
  738. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  739. {
  740. struct kvm_vcpu *vcpu = filp->private_data;
  741. kvm_put_kvm(vcpu->kvm);
  742. return 0;
  743. }
  744. static const struct file_operations kvm_vcpu_fops = {
  745. .release = kvm_vcpu_release,
  746. .unlocked_ioctl = kvm_vcpu_ioctl,
  747. .compat_ioctl = kvm_vcpu_ioctl,
  748. .mmap = kvm_vcpu_mmap,
  749. };
  750. /*
  751. * Allocates an inode for the vcpu.
  752. */
  753. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  754. {
  755. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu);
  756. if (fd < 0)
  757. kvm_put_kvm(vcpu->kvm);
  758. return fd;
  759. }
  760. /*
  761. * Creates some virtual cpus. Good luck creating more than one.
  762. */
  763. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  764. {
  765. int r;
  766. struct kvm_vcpu *vcpu;
  767. if (!valid_vcpu(n))
  768. return -EINVAL;
  769. vcpu = kvm_arch_vcpu_create(kvm, n);
  770. if (IS_ERR(vcpu))
  771. return PTR_ERR(vcpu);
  772. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  773. r = kvm_arch_vcpu_setup(vcpu);
  774. if (r)
  775. goto vcpu_destroy;
  776. mutex_lock(&kvm->lock);
  777. if (kvm->vcpus[n]) {
  778. r = -EEXIST;
  779. mutex_unlock(&kvm->lock);
  780. goto vcpu_destroy;
  781. }
  782. kvm->vcpus[n] = vcpu;
  783. mutex_unlock(&kvm->lock);
  784. /* Now it's all set up, let userspace reach it */
  785. kvm_get_kvm(kvm);
  786. r = create_vcpu_fd(vcpu);
  787. if (r < 0)
  788. goto unlink;
  789. return r;
  790. unlink:
  791. mutex_lock(&kvm->lock);
  792. kvm->vcpus[n] = NULL;
  793. mutex_unlock(&kvm->lock);
  794. vcpu_destroy:
  795. kvm_arch_vcpu_destroy(vcpu);
  796. return r;
  797. }
  798. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  799. {
  800. if (sigset) {
  801. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  802. vcpu->sigset_active = 1;
  803. vcpu->sigset = *sigset;
  804. } else
  805. vcpu->sigset_active = 0;
  806. return 0;
  807. }
  808. static long kvm_vcpu_ioctl(struct file *filp,
  809. unsigned int ioctl, unsigned long arg)
  810. {
  811. struct kvm_vcpu *vcpu = filp->private_data;
  812. void __user *argp = (void __user *)arg;
  813. int r;
  814. if (vcpu->kvm->mm != current->mm)
  815. return -EIO;
  816. switch (ioctl) {
  817. case KVM_RUN:
  818. r = -EINVAL;
  819. if (arg)
  820. goto out;
  821. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  822. break;
  823. case KVM_GET_REGS: {
  824. struct kvm_regs *kvm_regs;
  825. r = -ENOMEM;
  826. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  827. if (!kvm_regs)
  828. goto out;
  829. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  830. if (r)
  831. goto out_free1;
  832. r = -EFAULT;
  833. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  834. goto out_free1;
  835. r = 0;
  836. out_free1:
  837. kfree(kvm_regs);
  838. break;
  839. }
  840. case KVM_SET_REGS: {
  841. struct kvm_regs *kvm_regs;
  842. r = -ENOMEM;
  843. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  844. if (!kvm_regs)
  845. goto out;
  846. r = -EFAULT;
  847. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  848. goto out_free2;
  849. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  850. if (r)
  851. goto out_free2;
  852. r = 0;
  853. out_free2:
  854. kfree(kvm_regs);
  855. break;
  856. }
  857. case KVM_GET_SREGS: {
  858. struct kvm_sregs kvm_sregs;
  859. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  860. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  861. if (r)
  862. goto out;
  863. r = -EFAULT;
  864. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  865. goto out;
  866. r = 0;
  867. break;
  868. }
  869. case KVM_SET_SREGS: {
  870. struct kvm_sregs kvm_sregs;
  871. r = -EFAULT;
  872. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  873. goto out;
  874. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  875. if (r)
  876. goto out;
  877. r = 0;
  878. break;
  879. }
  880. case KVM_GET_MP_STATE: {
  881. struct kvm_mp_state mp_state;
  882. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  883. if (r)
  884. goto out;
  885. r = -EFAULT;
  886. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  887. goto out;
  888. r = 0;
  889. break;
  890. }
  891. case KVM_SET_MP_STATE: {
  892. struct kvm_mp_state mp_state;
  893. r = -EFAULT;
  894. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  895. goto out;
  896. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  897. if (r)
  898. goto out;
  899. r = 0;
  900. break;
  901. }
  902. case KVM_TRANSLATE: {
  903. struct kvm_translation tr;
  904. r = -EFAULT;
  905. if (copy_from_user(&tr, argp, sizeof tr))
  906. goto out;
  907. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  908. if (r)
  909. goto out;
  910. r = -EFAULT;
  911. if (copy_to_user(argp, &tr, sizeof tr))
  912. goto out;
  913. r = 0;
  914. break;
  915. }
  916. case KVM_DEBUG_GUEST: {
  917. struct kvm_debug_guest dbg;
  918. r = -EFAULT;
  919. if (copy_from_user(&dbg, argp, sizeof dbg))
  920. goto out;
  921. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  922. if (r)
  923. goto out;
  924. r = 0;
  925. break;
  926. }
  927. case KVM_SET_SIGNAL_MASK: {
  928. struct kvm_signal_mask __user *sigmask_arg = argp;
  929. struct kvm_signal_mask kvm_sigmask;
  930. sigset_t sigset, *p;
  931. p = NULL;
  932. if (argp) {
  933. r = -EFAULT;
  934. if (copy_from_user(&kvm_sigmask, argp,
  935. sizeof kvm_sigmask))
  936. goto out;
  937. r = -EINVAL;
  938. if (kvm_sigmask.len != sizeof sigset)
  939. goto out;
  940. r = -EFAULT;
  941. if (copy_from_user(&sigset, sigmask_arg->sigset,
  942. sizeof sigset))
  943. goto out;
  944. p = &sigset;
  945. }
  946. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  947. break;
  948. }
  949. case KVM_GET_FPU: {
  950. struct kvm_fpu fpu;
  951. memset(&fpu, 0, sizeof fpu);
  952. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  953. if (r)
  954. goto out;
  955. r = -EFAULT;
  956. if (copy_to_user(argp, &fpu, sizeof fpu))
  957. goto out;
  958. r = 0;
  959. break;
  960. }
  961. case KVM_SET_FPU: {
  962. struct kvm_fpu fpu;
  963. r = -EFAULT;
  964. if (copy_from_user(&fpu, argp, sizeof fpu))
  965. goto out;
  966. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  967. if (r)
  968. goto out;
  969. r = 0;
  970. break;
  971. }
  972. default:
  973. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  974. }
  975. out:
  976. return r;
  977. }
  978. static long kvm_vm_ioctl(struct file *filp,
  979. unsigned int ioctl, unsigned long arg)
  980. {
  981. struct kvm *kvm = filp->private_data;
  982. void __user *argp = (void __user *)arg;
  983. int r;
  984. if (kvm->mm != current->mm)
  985. return -EIO;
  986. switch (ioctl) {
  987. case KVM_CREATE_VCPU:
  988. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  989. if (r < 0)
  990. goto out;
  991. break;
  992. case KVM_SET_USER_MEMORY_REGION: {
  993. struct kvm_userspace_memory_region kvm_userspace_mem;
  994. r = -EFAULT;
  995. if (copy_from_user(&kvm_userspace_mem, argp,
  996. sizeof kvm_userspace_mem))
  997. goto out;
  998. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  999. if (r)
  1000. goto out;
  1001. break;
  1002. }
  1003. case KVM_GET_DIRTY_LOG: {
  1004. struct kvm_dirty_log log;
  1005. r = -EFAULT;
  1006. if (copy_from_user(&log, argp, sizeof log))
  1007. goto out;
  1008. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1009. if (r)
  1010. goto out;
  1011. break;
  1012. }
  1013. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1014. case KVM_REGISTER_COALESCED_MMIO: {
  1015. struct kvm_coalesced_mmio_zone zone;
  1016. r = -EFAULT;
  1017. if (copy_from_user(&zone, argp, sizeof zone))
  1018. goto out;
  1019. r = -ENXIO;
  1020. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1021. if (r)
  1022. goto out;
  1023. r = 0;
  1024. break;
  1025. }
  1026. case KVM_UNREGISTER_COALESCED_MMIO: {
  1027. struct kvm_coalesced_mmio_zone zone;
  1028. r = -EFAULT;
  1029. if (copy_from_user(&zone, argp, sizeof zone))
  1030. goto out;
  1031. r = -ENXIO;
  1032. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1033. if (r)
  1034. goto out;
  1035. r = 0;
  1036. break;
  1037. }
  1038. #endif
  1039. default:
  1040. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1041. }
  1042. out:
  1043. return r;
  1044. }
  1045. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1046. {
  1047. struct kvm *kvm = vma->vm_file->private_data;
  1048. struct page *page;
  1049. if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
  1050. return VM_FAULT_SIGBUS;
  1051. page = gfn_to_page(kvm, vmf->pgoff);
  1052. if (is_error_page(page)) {
  1053. kvm_release_page_clean(page);
  1054. return VM_FAULT_SIGBUS;
  1055. }
  1056. vmf->page = page;
  1057. return 0;
  1058. }
  1059. static struct vm_operations_struct kvm_vm_vm_ops = {
  1060. .fault = kvm_vm_fault,
  1061. };
  1062. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1063. {
  1064. vma->vm_ops = &kvm_vm_vm_ops;
  1065. return 0;
  1066. }
  1067. static const struct file_operations kvm_vm_fops = {
  1068. .release = kvm_vm_release,
  1069. .unlocked_ioctl = kvm_vm_ioctl,
  1070. .compat_ioctl = kvm_vm_ioctl,
  1071. .mmap = kvm_vm_mmap,
  1072. };
  1073. static int kvm_dev_ioctl_create_vm(void)
  1074. {
  1075. int fd;
  1076. struct kvm *kvm;
  1077. kvm = kvm_create_vm();
  1078. if (IS_ERR(kvm))
  1079. return PTR_ERR(kvm);
  1080. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm);
  1081. if (fd < 0)
  1082. kvm_put_kvm(kvm);
  1083. return fd;
  1084. }
  1085. static long kvm_dev_ioctl(struct file *filp,
  1086. unsigned int ioctl, unsigned long arg)
  1087. {
  1088. long r = -EINVAL;
  1089. switch (ioctl) {
  1090. case KVM_GET_API_VERSION:
  1091. r = -EINVAL;
  1092. if (arg)
  1093. goto out;
  1094. r = KVM_API_VERSION;
  1095. break;
  1096. case KVM_CREATE_VM:
  1097. r = -EINVAL;
  1098. if (arg)
  1099. goto out;
  1100. r = kvm_dev_ioctl_create_vm();
  1101. break;
  1102. case KVM_CHECK_EXTENSION:
  1103. r = kvm_dev_ioctl_check_extension(arg);
  1104. break;
  1105. case KVM_GET_VCPU_MMAP_SIZE:
  1106. r = -EINVAL;
  1107. if (arg)
  1108. goto out;
  1109. r = PAGE_SIZE; /* struct kvm_run */
  1110. #ifdef CONFIG_X86
  1111. r += PAGE_SIZE; /* pio data page */
  1112. #endif
  1113. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1114. r += PAGE_SIZE; /* coalesced mmio ring page */
  1115. #endif
  1116. break;
  1117. case KVM_TRACE_ENABLE:
  1118. case KVM_TRACE_PAUSE:
  1119. case KVM_TRACE_DISABLE:
  1120. r = kvm_trace_ioctl(ioctl, arg);
  1121. break;
  1122. default:
  1123. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1124. }
  1125. out:
  1126. return r;
  1127. }
  1128. static struct file_operations kvm_chardev_ops = {
  1129. .unlocked_ioctl = kvm_dev_ioctl,
  1130. .compat_ioctl = kvm_dev_ioctl,
  1131. };
  1132. static struct miscdevice kvm_dev = {
  1133. KVM_MINOR,
  1134. "kvm",
  1135. &kvm_chardev_ops,
  1136. };
  1137. static void hardware_enable(void *junk)
  1138. {
  1139. int cpu = raw_smp_processor_id();
  1140. if (cpu_isset(cpu, cpus_hardware_enabled))
  1141. return;
  1142. cpu_set(cpu, cpus_hardware_enabled);
  1143. kvm_arch_hardware_enable(NULL);
  1144. }
  1145. static void hardware_disable(void *junk)
  1146. {
  1147. int cpu = raw_smp_processor_id();
  1148. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1149. return;
  1150. cpu_clear(cpu, cpus_hardware_enabled);
  1151. kvm_arch_hardware_disable(NULL);
  1152. }
  1153. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1154. void *v)
  1155. {
  1156. int cpu = (long)v;
  1157. val &= ~CPU_TASKS_FROZEN;
  1158. switch (val) {
  1159. case CPU_DYING:
  1160. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1161. cpu);
  1162. hardware_disable(NULL);
  1163. break;
  1164. case CPU_UP_CANCELED:
  1165. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1166. cpu);
  1167. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1168. break;
  1169. case CPU_ONLINE:
  1170. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1171. cpu);
  1172. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1173. break;
  1174. }
  1175. return NOTIFY_OK;
  1176. }
  1177. asmlinkage void kvm_handle_fault_on_reboot(void)
  1178. {
  1179. if (kvm_rebooting)
  1180. /* spin while reset goes on */
  1181. while (true)
  1182. ;
  1183. /* Fault while not rebooting. We want the trace. */
  1184. BUG();
  1185. }
  1186. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1187. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1188. void *v)
  1189. {
  1190. if (val == SYS_RESTART) {
  1191. /*
  1192. * Some (well, at least mine) BIOSes hang on reboot if
  1193. * in vmx root mode.
  1194. */
  1195. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1196. kvm_rebooting = true;
  1197. on_each_cpu(hardware_disable, NULL, 1);
  1198. }
  1199. return NOTIFY_OK;
  1200. }
  1201. static struct notifier_block kvm_reboot_notifier = {
  1202. .notifier_call = kvm_reboot,
  1203. .priority = 0,
  1204. };
  1205. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1206. {
  1207. memset(bus, 0, sizeof(*bus));
  1208. }
  1209. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1210. {
  1211. int i;
  1212. for (i = 0; i < bus->dev_count; i++) {
  1213. struct kvm_io_device *pos = bus->devs[i];
  1214. kvm_iodevice_destructor(pos);
  1215. }
  1216. }
  1217. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1218. gpa_t addr, int len, int is_write)
  1219. {
  1220. int i;
  1221. for (i = 0; i < bus->dev_count; i++) {
  1222. struct kvm_io_device *pos = bus->devs[i];
  1223. if (pos->in_range(pos, addr, len, is_write))
  1224. return pos;
  1225. }
  1226. return NULL;
  1227. }
  1228. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1229. {
  1230. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1231. bus->devs[bus->dev_count++] = dev;
  1232. }
  1233. static struct notifier_block kvm_cpu_notifier = {
  1234. .notifier_call = kvm_cpu_hotplug,
  1235. .priority = 20, /* must be > scheduler priority */
  1236. };
  1237. static int vm_stat_get(void *_offset, u64 *val)
  1238. {
  1239. unsigned offset = (long)_offset;
  1240. struct kvm *kvm;
  1241. *val = 0;
  1242. spin_lock(&kvm_lock);
  1243. list_for_each_entry(kvm, &vm_list, vm_list)
  1244. *val += *(u32 *)((void *)kvm + offset);
  1245. spin_unlock(&kvm_lock);
  1246. return 0;
  1247. }
  1248. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1249. static int vcpu_stat_get(void *_offset, u64 *val)
  1250. {
  1251. unsigned offset = (long)_offset;
  1252. struct kvm *kvm;
  1253. struct kvm_vcpu *vcpu;
  1254. int i;
  1255. *val = 0;
  1256. spin_lock(&kvm_lock);
  1257. list_for_each_entry(kvm, &vm_list, vm_list)
  1258. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1259. vcpu = kvm->vcpus[i];
  1260. if (vcpu)
  1261. *val += *(u32 *)((void *)vcpu + offset);
  1262. }
  1263. spin_unlock(&kvm_lock);
  1264. return 0;
  1265. }
  1266. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1267. static struct file_operations *stat_fops[] = {
  1268. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1269. [KVM_STAT_VM] = &vm_stat_fops,
  1270. };
  1271. static void kvm_init_debug(void)
  1272. {
  1273. struct kvm_stats_debugfs_item *p;
  1274. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1275. for (p = debugfs_entries; p->name; ++p)
  1276. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1277. (void *)(long)p->offset,
  1278. stat_fops[p->kind]);
  1279. }
  1280. static void kvm_exit_debug(void)
  1281. {
  1282. struct kvm_stats_debugfs_item *p;
  1283. for (p = debugfs_entries; p->name; ++p)
  1284. debugfs_remove(p->dentry);
  1285. debugfs_remove(kvm_debugfs_dir);
  1286. }
  1287. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1288. {
  1289. hardware_disable(NULL);
  1290. return 0;
  1291. }
  1292. static int kvm_resume(struct sys_device *dev)
  1293. {
  1294. hardware_enable(NULL);
  1295. return 0;
  1296. }
  1297. static struct sysdev_class kvm_sysdev_class = {
  1298. .name = "kvm",
  1299. .suspend = kvm_suspend,
  1300. .resume = kvm_resume,
  1301. };
  1302. static struct sys_device kvm_sysdev = {
  1303. .id = 0,
  1304. .cls = &kvm_sysdev_class,
  1305. };
  1306. struct page *bad_page;
  1307. pfn_t bad_pfn;
  1308. static inline
  1309. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1310. {
  1311. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1312. }
  1313. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1314. {
  1315. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1316. kvm_arch_vcpu_load(vcpu, cpu);
  1317. }
  1318. static void kvm_sched_out(struct preempt_notifier *pn,
  1319. struct task_struct *next)
  1320. {
  1321. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1322. kvm_arch_vcpu_put(vcpu);
  1323. }
  1324. int kvm_init(void *opaque, unsigned int vcpu_size,
  1325. struct module *module)
  1326. {
  1327. int r;
  1328. int cpu;
  1329. kvm_init_debug();
  1330. r = kvm_arch_init(opaque);
  1331. if (r)
  1332. goto out_fail;
  1333. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1334. if (bad_page == NULL) {
  1335. r = -ENOMEM;
  1336. goto out;
  1337. }
  1338. bad_pfn = page_to_pfn(bad_page);
  1339. r = kvm_arch_hardware_setup();
  1340. if (r < 0)
  1341. goto out_free_0;
  1342. for_each_online_cpu(cpu) {
  1343. smp_call_function_single(cpu,
  1344. kvm_arch_check_processor_compat,
  1345. &r, 1);
  1346. if (r < 0)
  1347. goto out_free_1;
  1348. }
  1349. on_each_cpu(hardware_enable, NULL, 1);
  1350. r = register_cpu_notifier(&kvm_cpu_notifier);
  1351. if (r)
  1352. goto out_free_2;
  1353. register_reboot_notifier(&kvm_reboot_notifier);
  1354. r = sysdev_class_register(&kvm_sysdev_class);
  1355. if (r)
  1356. goto out_free_3;
  1357. r = sysdev_register(&kvm_sysdev);
  1358. if (r)
  1359. goto out_free_4;
  1360. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1361. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1362. __alignof__(struct kvm_vcpu),
  1363. 0, NULL);
  1364. if (!kvm_vcpu_cache) {
  1365. r = -ENOMEM;
  1366. goto out_free_5;
  1367. }
  1368. kvm_chardev_ops.owner = module;
  1369. r = misc_register(&kvm_dev);
  1370. if (r) {
  1371. printk(KERN_ERR "kvm: misc device register failed\n");
  1372. goto out_free;
  1373. }
  1374. kvm_preempt_ops.sched_in = kvm_sched_in;
  1375. kvm_preempt_ops.sched_out = kvm_sched_out;
  1376. return 0;
  1377. out_free:
  1378. kmem_cache_destroy(kvm_vcpu_cache);
  1379. out_free_5:
  1380. sysdev_unregister(&kvm_sysdev);
  1381. out_free_4:
  1382. sysdev_class_unregister(&kvm_sysdev_class);
  1383. out_free_3:
  1384. unregister_reboot_notifier(&kvm_reboot_notifier);
  1385. unregister_cpu_notifier(&kvm_cpu_notifier);
  1386. out_free_2:
  1387. on_each_cpu(hardware_disable, NULL, 1);
  1388. out_free_1:
  1389. kvm_arch_hardware_unsetup();
  1390. out_free_0:
  1391. __free_page(bad_page);
  1392. out:
  1393. kvm_arch_exit();
  1394. kvm_exit_debug();
  1395. out_fail:
  1396. return r;
  1397. }
  1398. EXPORT_SYMBOL_GPL(kvm_init);
  1399. void kvm_exit(void)
  1400. {
  1401. kvm_trace_cleanup();
  1402. misc_deregister(&kvm_dev);
  1403. kmem_cache_destroy(kvm_vcpu_cache);
  1404. sysdev_unregister(&kvm_sysdev);
  1405. sysdev_class_unregister(&kvm_sysdev_class);
  1406. unregister_reboot_notifier(&kvm_reboot_notifier);
  1407. unregister_cpu_notifier(&kvm_cpu_notifier);
  1408. on_each_cpu(hardware_disable, NULL, 1);
  1409. kvm_arch_hardware_unsetup();
  1410. kvm_arch_exit();
  1411. kvm_exit_debug();
  1412. __free_page(bad_page);
  1413. }
  1414. EXPORT_SYMBOL_GPL(kvm_exit);