security.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* Boot-time LSM user choice */
  19. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
  20. /* things that live in capability.c */
  21. extern struct security_operations default_security_ops;
  22. extern void security_fixup_ops(struct security_operations *ops);
  23. struct security_operations *security_ops; /* Initialized to NULL */
  24. /* amount of vm to protect from userspace access */
  25. unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
  26. static inline int verify(struct security_operations *ops)
  27. {
  28. /* verify the security_operations structure exists */
  29. if (!ops)
  30. return -EINVAL;
  31. security_fixup_ops(ops);
  32. return 0;
  33. }
  34. static void __init do_security_initcalls(void)
  35. {
  36. initcall_t *call;
  37. call = __security_initcall_start;
  38. while (call < __security_initcall_end) {
  39. (*call) ();
  40. call++;
  41. }
  42. }
  43. /**
  44. * security_init - initializes the security framework
  45. *
  46. * This should be called early in the kernel initialization sequence.
  47. */
  48. int __init security_init(void)
  49. {
  50. printk(KERN_INFO "Security Framework initialized\n");
  51. security_fixup_ops(&default_security_ops);
  52. security_ops = &default_security_ops;
  53. do_security_initcalls();
  54. return 0;
  55. }
  56. /* Save user chosen LSM */
  57. static int __init choose_lsm(char *str)
  58. {
  59. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  60. return 1;
  61. }
  62. __setup("security=", choose_lsm);
  63. /**
  64. * security_module_enable - Load given security module on boot ?
  65. * @ops: a pointer to the struct security_operations that is to be checked.
  66. *
  67. * Each LSM must pass this method before registering its own operations
  68. * to avoid security registration races. This method may also be used
  69. * to check if your LSM is currently loaded during kernel initialization.
  70. *
  71. * Return true if:
  72. * -The passed LSM is the one chosen by user at boot time,
  73. * -or user didsn't specify a specific LSM and we're the first to ask
  74. * for registeration permissoin,
  75. * -or the passed LSM is currently loaded.
  76. * Otherwise, return false.
  77. */
  78. int __init security_module_enable(struct security_operations *ops)
  79. {
  80. if (!*chosen_lsm)
  81. strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
  82. else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
  83. return 0;
  84. return 1;
  85. }
  86. /**
  87. * register_security - registers a security framework with the kernel
  88. * @ops: a pointer to the struct security_options that is to be registered
  89. *
  90. * This function is to allow a security module to register itself with the
  91. * kernel security subsystem. Some rudimentary checking is done on the @ops
  92. * value passed to this function. You'll need to check first if your LSM
  93. * is allowed to register its @ops by calling security_module_enable(@ops).
  94. *
  95. * If there is already a security module registered with the kernel,
  96. * an error will be returned. Otherwise 0 is returned on success.
  97. */
  98. int register_security(struct security_operations *ops)
  99. {
  100. if (verify(ops)) {
  101. printk(KERN_DEBUG "%s could not verify "
  102. "security_operations structure.\n", __func__);
  103. return -EINVAL;
  104. }
  105. if (security_ops != &default_security_ops)
  106. return -EAGAIN;
  107. security_ops = ops;
  108. return 0;
  109. }
  110. /* Security operations */
  111. int security_ptrace(struct task_struct *parent, struct task_struct *child,
  112. unsigned int mode)
  113. {
  114. return security_ops->ptrace(parent, child, mode);
  115. }
  116. int security_capget(struct task_struct *target,
  117. kernel_cap_t *effective,
  118. kernel_cap_t *inheritable,
  119. kernel_cap_t *permitted)
  120. {
  121. return security_ops->capget(target, effective, inheritable, permitted);
  122. }
  123. int security_capset_check(struct task_struct *target,
  124. kernel_cap_t *effective,
  125. kernel_cap_t *inheritable,
  126. kernel_cap_t *permitted)
  127. {
  128. return security_ops->capset_check(target, effective, inheritable, permitted);
  129. }
  130. void security_capset_set(struct task_struct *target,
  131. kernel_cap_t *effective,
  132. kernel_cap_t *inheritable,
  133. kernel_cap_t *permitted)
  134. {
  135. security_ops->capset_set(target, effective, inheritable, permitted);
  136. }
  137. int security_capable(struct task_struct *tsk, int cap)
  138. {
  139. return security_ops->capable(tsk, cap);
  140. }
  141. int security_acct(struct file *file)
  142. {
  143. return security_ops->acct(file);
  144. }
  145. int security_sysctl(struct ctl_table *table, int op)
  146. {
  147. return security_ops->sysctl(table, op);
  148. }
  149. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  150. {
  151. return security_ops->quotactl(cmds, type, id, sb);
  152. }
  153. int security_quota_on(struct dentry *dentry)
  154. {
  155. return security_ops->quota_on(dentry);
  156. }
  157. int security_syslog(int type)
  158. {
  159. return security_ops->syslog(type);
  160. }
  161. int security_settime(struct timespec *ts, struct timezone *tz)
  162. {
  163. return security_ops->settime(ts, tz);
  164. }
  165. int security_vm_enough_memory(long pages)
  166. {
  167. return security_ops->vm_enough_memory(current->mm, pages);
  168. }
  169. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  170. {
  171. return security_ops->vm_enough_memory(mm, pages);
  172. }
  173. int security_bprm_alloc(struct linux_binprm *bprm)
  174. {
  175. return security_ops->bprm_alloc_security(bprm);
  176. }
  177. void security_bprm_free(struct linux_binprm *bprm)
  178. {
  179. security_ops->bprm_free_security(bprm);
  180. }
  181. void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
  182. {
  183. security_ops->bprm_apply_creds(bprm, unsafe);
  184. }
  185. void security_bprm_post_apply_creds(struct linux_binprm *bprm)
  186. {
  187. security_ops->bprm_post_apply_creds(bprm);
  188. }
  189. int security_bprm_set(struct linux_binprm *bprm)
  190. {
  191. return security_ops->bprm_set_security(bprm);
  192. }
  193. int security_bprm_check(struct linux_binprm *bprm)
  194. {
  195. return security_ops->bprm_check_security(bprm);
  196. }
  197. int security_bprm_secureexec(struct linux_binprm *bprm)
  198. {
  199. return security_ops->bprm_secureexec(bprm);
  200. }
  201. int security_sb_alloc(struct super_block *sb)
  202. {
  203. return security_ops->sb_alloc_security(sb);
  204. }
  205. void security_sb_free(struct super_block *sb)
  206. {
  207. security_ops->sb_free_security(sb);
  208. }
  209. int security_sb_copy_data(char *orig, char *copy)
  210. {
  211. return security_ops->sb_copy_data(orig, copy);
  212. }
  213. EXPORT_SYMBOL(security_sb_copy_data);
  214. int security_sb_kern_mount(struct super_block *sb, void *data)
  215. {
  216. return security_ops->sb_kern_mount(sb, data);
  217. }
  218. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  219. {
  220. return security_ops->sb_show_options(m, sb);
  221. }
  222. int security_sb_statfs(struct dentry *dentry)
  223. {
  224. return security_ops->sb_statfs(dentry);
  225. }
  226. int security_sb_mount(char *dev_name, struct path *path,
  227. char *type, unsigned long flags, void *data)
  228. {
  229. return security_ops->sb_mount(dev_name, path, type, flags, data);
  230. }
  231. int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
  232. {
  233. return security_ops->sb_check_sb(mnt, path);
  234. }
  235. int security_sb_umount(struct vfsmount *mnt, int flags)
  236. {
  237. return security_ops->sb_umount(mnt, flags);
  238. }
  239. void security_sb_umount_close(struct vfsmount *mnt)
  240. {
  241. security_ops->sb_umount_close(mnt);
  242. }
  243. void security_sb_umount_busy(struct vfsmount *mnt)
  244. {
  245. security_ops->sb_umount_busy(mnt);
  246. }
  247. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  248. {
  249. security_ops->sb_post_remount(mnt, flags, data);
  250. }
  251. void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
  252. {
  253. security_ops->sb_post_addmount(mnt, mountpoint);
  254. }
  255. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  256. {
  257. return security_ops->sb_pivotroot(old_path, new_path);
  258. }
  259. void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
  260. {
  261. security_ops->sb_post_pivotroot(old_path, new_path);
  262. }
  263. int security_sb_set_mnt_opts(struct super_block *sb,
  264. struct security_mnt_opts *opts)
  265. {
  266. return security_ops->sb_set_mnt_opts(sb, opts);
  267. }
  268. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  269. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  270. struct super_block *newsb)
  271. {
  272. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  273. }
  274. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  275. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  276. {
  277. return security_ops->sb_parse_opts_str(options, opts);
  278. }
  279. EXPORT_SYMBOL(security_sb_parse_opts_str);
  280. int security_inode_alloc(struct inode *inode)
  281. {
  282. inode->i_security = NULL;
  283. return security_ops->inode_alloc_security(inode);
  284. }
  285. void security_inode_free(struct inode *inode)
  286. {
  287. security_ops->inode_free_security(inode);
  288. }
  289. int security_inode_init_security(struct inode *inode, struct inode *dir,
  290. char **name, void **value, size_t *len)
  291. {
  292. if (unlikely(IS_PRIVATE(inode)))
  293. return -EOPNOTSUPP;
  294. return security_ops->inode_init_security(inode, dir, name, value, len);
  295. }
  296. EXPORT_SYMBOL(security_inode_init_security);
  297. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  298. {
  299. if (unlikely(IS_PRIVATE(dir)))
  300. return 0;
  301. return security_ops->inode_create(dir, dentry, mode);
  302. }
  303. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  304. struct dentry *new_dentry)
  305. {
  306. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  307. return 0;
  308. return security_ops->inode_link(old_dentry, dir, new_dentry);
  309. }
  310. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  311. {
  312. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  313. return 0;
  314. return security_ops->inode_unlink(dir, dentry);
  315. }
  316. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  317. const char *old_name)
  318. {
  319. if (unlikely(IS_PRIVATE(dir)))
  320. return 0;
  321. return security_ops->inode_symlink(dir, dentry, old_name);
  322. }
  323. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  324. {
  325. if (unlikely(IS_PRIVATE(dir)))
  326. return 0;
  327. return security_ops->inode_mkdir(dir, dentry, mode);
  328. }
  329. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  330. {
  331. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  332. return 0;
  333. return security_ops->inode_rmdir(dir, dentry);
  334. }
  335. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  336. {
  337. if (unlikely(IS_PRIVATE(dir)))
  338. return 0;
  339. return security_ops->inode_mknod(dir, dentry, mode, dev);
  340. }
  341. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  342. struct inode *new_dir, struct dentry *new_dentry)
  343. {
  344. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  345. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  346. return 0;
  347. return security_ops->inode_rename(old_dir, old_dentry,
  348. new_dir, new_dentry);
  349. }
  350. int security_inode_readlink(struct dentry *dentry)
  351. {
  352. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  353. return 0;
  354. return security_ops->inode_readlink(dentry);
  355. }
  356. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  357. {
  358. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  359. return 0;
  360. return security_ops->inode_follow_link(dentry, nd);
  361. }
  362. int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
  363. {
  364. if (unlikely(IS_PRIVATE(inode)))
  365. return 0;
  366. return security_ops->inode_permission(inode, mask, nd);
  367. }
  368. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  369. {
  370. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  371. return 0;
  372. return security_ops->inode_setattr(dentry, attr);
  373. }
  374. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  375. {
  376. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  377. return 0;
  378. return security_ops->inode_getattr(mnt, dentry);
  379. }
  380. void security_inode_delete(struct inode *inode)
  381. {
  382. if (unlikely(IS_PRIVATE(inode)))
  383. return;
  384. security_ops->inode_delete(inode);
  385. }
  386. int security_inode_setxattr(struct dentry *dentry, const char *name,
  387. const void *value, size_t size, int flags)
  388. {
  389. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  390. return 0;
  391. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  392. }
  393. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  394. const void *value, size_t size, int flags)
  395. {
  396. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  397. return;
  398. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  399. }
  400. int security_inode_getxattr(struct dentry *dentry, const char *name)
  401. {
  402. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  403. return 0;
  404. return security_ops->inode_getxattr(dentry, name);
  405. }
  406. int security_inode_listxattr(struct dentry *dentry)
  407. {
  408. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  409. return 0;
  410. return security_ops->inode_listxattr(dentry);
  411. }
  412. int security_inode_removexattr(struct dentry *dentry, const char *name)
  413. {
  414. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  415. return 0;
  416. return security_ops->inode_removexattr(dentry, name);
  417. }
  418. int security_inode_need_killpriv(struct dentry *dentry)
  419. {
  420. return security_ops->inode_need_killpriv(dentry);
  421. }
  422. int security_inode_killpriv(struct dentry *dentry)
  423. {
  424. return security_ops->inode_killpriv(dentry);
  425. }
  426. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  427. {
  428. if (unlikely(IS_PRIVATE(inode)))
  429. return 0;
  430. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  431. }
  432. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  433. {
  434. if (unlikely(IS_PRIVATE(inode)))
  435. return 0;
  436. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  437. }
  438. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  439. {
  440. if (unlikely(IS_PRIVATE(inode)))
  441. return 0;
  442. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  443. }
  444. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  445. {
  446. security_ops->inode_getsecid(inode, secid);
  447. }
  448. int security_file_permission(struct file *file, int mask)
  449. {
  450. return security_ops->file_permission(file, mask);
  451. }
  452. int security_file_alloc(struct file *file)
  453. {
  454. return security_ops->file_alloc_security(file);
  455. }
  456. void security_file_free(struct file *file)
  457. {
  458. security_ops->file_free_security(file);
  459. }
  460. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  461. {
  462. return security_ops->file_ioctl(file, cmd, arg);
  463. }
  464. int security_file_mmap(struct file *file, unsigned long reqprot,
  465. unsigned long prot, unsigned long flags,
  466. unsigned long addr, unsigned long addr_only)
  467. {
  468. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  469. }
  470. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  471. unsigned long prot)
  472. {
  473. return security_ops->file_mprotect(vma, reqprot, prot);
  474. }
  475. int security_file_lock(struct file *file, unsigned int cmd)
  476. {
  477. return security_ops->file_lock(file, cmd);
  478. }
  479. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  480. {
  481. return security_ops->file_fcntl(file, cmd, arg);
  482. }
  483. int security_file_set_fowner(struct file *file)
  484. {
  485. return security_ops->file_set_fowner(file);
  486. }
  487. int security_file_send_sigiotask(struct task_struct *tsk,
  488. struct fown_struct *fown, int sig)
  489. {
  490. return security_ops->file_send_sigiotask(tsk, fown, sig);
  491. }
  492. int security_file_receive(struct file *file)
  493. {
  494. return security_ops->file_receive(file);
  495. }
  496. int security_dentry_open(struct file *file)
  497. {
  498. return security_ops->dentry_open(file);
  499. }
  500. int security_task_create(unsigned long clone_flags)
  501. {
  502. return security_ops->task_create(clone_flags);
  503. }
  504. int security_task_alloc(struct task_struct *p)
  505. {
  506. return security_ops->task_alloc_security(p);
  507. }
  508. void security_task_free(struct task_struct *p)
  509. {
  510. security_ops->task_free_security(p);
  511. }
  512. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  513. {
  514. return security_ops->task_setuid(id0, id1, id2, flags);
  515. }
  516. int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
  517. uid_t old_suid, int flags)
  518. {
  519. return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
  520. }
  521. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  522. {
  523. return security_ops->task_setgid(id0, id1, id2, flags);
  524. }
  525. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  526. {
  527. return security_ops->task_setpgid(p, pgid);
  528. }
  529. int security_task_getpgid(struct task_struct *p)
  530. {
  531. return security_ops->task_getpgid(p);
  532. }
  533. int security_task_getsid(struct task_struct *p)
  534. {
  535. return security_ops->task_getsid(p);
  536. }
  537. void security_task_getsecid(struct task_struct *p, u32 *secid)
  538. {
  539. security_ops->task_getsecid(p, secid);
  540. }
  541. EXPORT_SYMBOL(security_task_getsecid);
  542. int security_task_setgroups(struct group_info *group_info)
  543. {
  544. return security_ops->task_setgroups(group_info);
  545. }
  546. int security_task_setnice(struct task_struct *p, int nice)
  547. {
  548. return security_ops->task_setnice(p, nice);
  549. }
  550. int security_task_setioprio(struct task_struct *p, int ioprio)
  551. {
  552. return security_ops->task_setioprio(p, ioprio);
  553. }
  554. int security_task_getioprio(struct task_struct *p)
  555. {
  556. return security_ops->task_getioprio(p);
  557. }
  558. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  559. {
  560. return security_ops->task_setrlimit(resource, new_rlim);
  561. }
  562. int security_task_setscheduler(struct task_struct *p,
  563. int policy, struct sched_param *lp)
  564. {
  565. return security_ops->task_setscheduler(p, policy, lp);
  566. }
  567. int security_task_getscheduler(struct task_struct *p)
  568. {
  569. return security_ops->task_getscheduler(p);
  570. }
  571. int security_task_movememory(struct task_struct *p)
  572. {
  573. return security_ops->task_movememory(p);
  574. }
  575. int security_task_kill(struct task_struct *p, struct siginfo *info,
  576. int sig, u32 secid)
  577. {
  578. return security_ops->task_kill(p, info, sig, secid);
  579. }
  580. int security_task_wait(struct task_struct *p)
  581. {
  582. return security_ops->task_wait(p);
  583. }
  584. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  585. unsigned long arg4, unsigned long arg5, long *rc_p)
  586. {
  587. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
  588. }
  589. void security_task_reparent_to_init(struct task_struct *p)
  590. {
  591. security_ops->task_reparent_to_init(p);
  592. }
  593. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  594. {
  595. security_ops->task_to_inode(p, inode);
  596. }
  597. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  598. {
  599. return security_ops->ipc_permission(ipcp, flag);
  600. }
  601. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  602. {
  603. security_ops->ipc_getsecid(ipcp, secid);
  604. }
  605. int security_msg_msg_alloc(struct msg_msg *msg)
  606. {
  607. return security_ops->msg_msg_alloc_security(msg);
  608. }
  609. void security_msg_msg_free(struct msg_msg *msg)
  610. {
  611. security_ops->msg_msg_free_security(msg);
  612. }
  613. int security_msg_queue_alloc(struct msg_queue *msq)
  614. {
  615. return security_ops->msg_queue_alloc_security(msq);
  616. }
  617. void security_msg_queue_free(struct msg_queue *msq)
  618. {
  619. security_ops->msg_queue_free_security(msq);
  620. }
  621. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  622. {
  623. return security_ops->msg_queue_associate(msq, msqflg);
  624. }
  625. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  626. {
  627. return security_ops->msg_queue_msgctl(msq, cmd);
  628. }
  629. int security_msg_queue_msgsnd(struct msg_queue *msq,
  630. struct msg_msg *msg, int msqflg)
  631. {
  632. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  633. }
  634. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  635. struct task_struct *target, long type, int mode)
  636. {
  637. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  638. }
  639. int security_shm_alloc(struct shmid_kernel *shp)
  640. {
  641. return security_ops->shm_alloc_security(shp);
  642. }
  643. void security_shm_free(struct shmid_kernel *shp)
  644. {
  645. security_ops->shm_free_security(shp);
  646. }
  647. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  648. {
  649. return security_ops->shm_associate(shp, shmflg);
  650. }
  651. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  652. {
  653. return security_ops->shm_shmctl(shp, cmd);
  654. }
  655. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  656. {
  657. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  658. }
  659. int security_sem_alloc(struct sem_array *sma)
  660. {
  661. return security_ops->sem_alloc_security(sma);
  662. }
  663. void security_sem_free(struct sem_array *sma)
  664. {
  665. security_ops->sem_free_security(sma);
  666. }
  667. int security_sem_associate(struct sem_array *sma, int semflg)
  668. {
  669. return security_ops->sem_associate(sma, semflg);
  670. }
  671. int security_sem_semctl(struct sem_array *sma, int cmd)
  672. {
  673. return security_ops->sem_semctl(sma, cmd);
  674. }
  675. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  676. unsigned nsops, int alter)
  677. {
  678. return security_ops->sem_semop(sma, sops, nsops, alter);
  679. }
  680. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  681. {
  682. if (unlikely(inode && IS_PRIVATE(inode)))
  683. return;
  684. security_ops->d_instantiate(dentry, inode);
  685. }
  686. EXPORT_SYMBOL(security_d_instantiate);
  687. int security_getprocattr(struct task_struct *p, char *name, char **value)
  688. {
  689. return security_ops->getprocattr(p, name, value);
  690. }
  691. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  692. {
  693. return security_ops->setprocattr(p, name, value, size);
  694. }
  695. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  696. {
  697. return security_ops->netlink_send(sk, skb);
  698. }
  699. int security_netlink_recv(struct sk_buff *skb, int cap)
  700. {
  701. return security_ops->netlink_recv(skb, cap);
  702. }
  703. EXPORT_SYMBOL(security_netlink_recv);
  704. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  705. {
  706. return security_ops->secid_to_secctx(secid, secdata, seclen);
  707. }
  708. EXPORT_SYMBOL(security_secid_to_secctx);
  709. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  710. {
  711. return security_ops->secctx_to_secid(secdata, seclen, secid);
  712. }
  713. EXPORT_SYMBOL(security_secctx_to_secid);
  714. void security_release_secctx(char *secdata, u32 seclen)
  715. {
  716. security_ops->release_secctx(secdata, seclen);
  717. }
  718. EXPORT_SYMBOL(security_release_secctx);
  719. #ifdef CONFIG_SECURITY_NETWORK
  720. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  721. struct sock *newsk)
  722. {
  723. return security_ops->unix_stream_connect(sock, other, newsk);
  724. }
  725. EXPORT_SYMBOL(security_unix_stream_connect);
  726. int security_unix_may_send(struct socket *sock, struct socket *other)
  727. {
  728. return security_ops->unix_may_send(sock, other);
  729. }
  730. EXPORT_SYMBOL(security_unix_may_send);
  731. int security_socket_create(int family, int type, int protocol, int kern)
  732. {
  733. return security_ops->socket_create(family, type, protocol, kern);
  734. }
  735. int security_socket_post_create(struct socket *sock, int family,
  736. int type, int protocol, int kern)
  737. {
  738. return security_ops->socket_post_create(sock, family, type,
  739. protocol, kern);
  740. }
  741. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  742. {
  743. return security_ops->socket_bind(sock, address, addrlen);
  744. }
  745. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  746. {
  747. return security_ops->socket_connect(sock, address, addrlen);
  748. }
  749. int security_socket_listen(struct socket *sock, int backlog)
  750. {
  751. return security_ops->socket_listen(sock, backlog);
  752. }
  753. int security_socket_accept(struct socket *sock, struct socket *newsock)
  754. {
  755. return security_ops->socket_accept(sock, newsock);
  756. }
  757. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  758. {
  759. security_ops->socket_post_accept(sock, newsock);
  760. }
  761. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  762. {
  763. return security_ops->socket_sendmsg(sock, msg, size);
  764. }
  765. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  766. int size, int flags)
  767. {
  768. return security_ops->socket_recvmsg(sock, msg, size, flags);
  769. }
  770. int security_socket_getsockname(struct socket *sock)
  771. {
  772. return security_ops->socket_getsockname(sock);
  773. }
  774. int security_socket_getpeername(struct socket *sock)
  775. {
  776. return security_ops->socket_getpeername(sock);
  777. }
  778. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  779. {
  780. return security_ops->socket_getsockopt(sock, level, optname);
  781. }
  782. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  783. {
  784. return security_ops->socket_setsockopt(sock, level, optname);
  785. }
  786. int security_socket_shutdown(struct socket *sock, int how)
  787. {
  788. return security_ops->socket_shutdown(sock, how);
  789. }
  790. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  791. {
  792. return security_ops->socket_sock_rcv_skb(sk, skb);
  793. }
  794. EXPORT_SYMBOL(security_sock_rcv_skb);
  795. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  796. int __user *optlen, unsigned len)
  797. {
  798. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  799. }
  800. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  801. {
  802. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  803. }
  804. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  805. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  806. {
  807. return security_ops->sk_alloc_security(sk, family, priority);
  808. }
  809. void security_sk_free(struct sock *sk)
  810. {
  811. security_ops->sk_free_security(sk);
  812. }
  813. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  814. {
  815. security_ops->sk_clone_security(sk, newsk);
  816. }
  817. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  818. {
  819. security_ops->sk_getsecid(sk, &fl->secid);
  820. }
  821. EXPORT_SYMBOL(security_sk_classify_flow);
  822. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  823. {
  824. security_ops->req_classify_flow(req, fl);
  825. }
  826. EXPORT_SYMBOL(security_req_classify_flow);
  827. void security_sock_graft(struct sock *sk, struct socket *parent)
  828. {
  829. security_ops->sock_graft(sk, parent);
  830. }
  831. EXPORT_SYMBOL(security_sock_graft);
  832. int security_inet_conn_request(struct sock *sk,
  833. struct sk_buff *skb, struct request_sock *req)
  834. {
  835. return security_ops->inet_conn_request(sk, skb, req);
  836. }
  837. EXPORT_SYMBOL(security_inet_conn_request);
  838. void security_inet_csk_clone(struct sock *newsk,
  839. const struct request_sock *req)
  840. {
  841. security_ops->inet_csk_clone(newsk, req);
  842. }
  843. void security_inet_conn_established(struct sock *sk,
  844. struct sk_buff *skb)
  845. {
  846. security_ops->inet_conn_established(sk, skb);
  847. }
  848. #endif /* CONFIG_SECURITY_NETWORK */
  849. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  850. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  851. {
  852. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  853. }
  854. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  855. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  856. struct xfrm_sec_ctx **new_ctxp)
  857. {
  858. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  859. }
  860. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  861. {
  862. security_ops->xfrm_policy_free_security(ctx);
  863. }
  864. EXPORT_SYMBOL(security_xfrm_policy_free);
  865. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  866. {
  867. return security_ops->xfrm_policy_delete_security(ctx);
  868. }
  869. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  870. {
  871. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  872. }
  873. EXPORT_SYMBOL(security_xfrm_state_alloc);
  874. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  875. struct xfrm_sec_ctx *polsec, u32 secid)
  876. {
  877. if (!polsec)
  878. return 0;
  879. /*
  880. * We want the context to be taken from secid which is usually
  881. * from the sock.
  882. */
  883. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  884. }
  885. int security_xfrm_state_delete(struct xfrm_state *x)
  886. {
  887. return security_ops->xfrm_state_delete_security(x);
  888. }
  889. EXPORT_SYMBOL(security_xfrm_state_delete);
  890. void security_xfrm_state_free(struct xfrm_state *x)
  891. {
  892. security_ops->xfrm_state_free_security(x);
  893. }
  894. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  895. {
  896. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  897. }
  898. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  899. struct xfrm_policy *xp, struct flowi *fl)
  900. {
  901. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  902. }
  903. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  904. {
  905. return security_ops->xfrm_decode_session(skb, secid, 1);
  906. }
  907. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  908. {
  909. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  910. BUG_ON(rc);
  911. }
  912. EXPORT_SYMBOL(security_skb_classify_flow);
  913. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  914. #ifdef CONFIG_KEYS
  915. int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
  916. {
  917. return security_ops->key_alloc(key, tsk, flags);
  918. }
  919. void security_key_free(struct key *key)
  920. {
  921. security_ops->key_free(key);
  922. }
  923. int security_key_permission(key_ref_t key_ref,
  924. struct task_struct *context, key_perm_t perm)
  925. {
  926. return security_ops->key_permission(key_ref, context, perm);
  927. }
  928. int security_key_getsecurity(struct key *key, char **_buffer)
  929. {
  930. return security_ops->key_getsecurity(key, _buffer);
  931. }
  932. #endif /* CONFIG_KEYS */
  933. #ifdef CONFIG_AUDIT
  934. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  935. {
  936. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  937. }
  938. int security_audit_rule_known(struct audit_krule *krule)
  939. {
  940. return security_ops->audit_rule_known(krule);
  941. }
  942. void security_audit_rule_free(void *lsmrule)
  943. {
  944. security_ops->audit_rule_free(lsmrule);
  945. }
  946. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  947. struct audit_context *actx)
  948. {
  949. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  950. }
  951. #endif /* CONFIG_AUDIT */