page_alloc.c 127 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/debugobjects.h>
  48. #include <asm/tlbflush.h>
  49. #include <asm/div64.h>
  50. #include "internal.h"
  51. /*
  52. * Array of node states.
  53. */
  54. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  55. [N_POSSIBLE] = NODE_MASK_ALL,
  56. [N_ONLINE] = { { [0] = 1UL } },
  57. #ifndef CONFIG_NUMA
  58. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  59. #ifdef CONFIG_HIGHMEM
  60. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  61. #endif
  62. [N_CPU] = { { [0] = 1UL } },
  63. #endif /* NUMA */
  64. };
  65. EXPORT_SYMBOL(node_states);
  66. unsigned long totalram_pages __read_mostly;
  67. unsigned long totalreserve_pages __read_mostly;
  68. long nr_swap_pages;
  69. int percpu_pagelist_fraction;
  70. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  71. int pageblock_order __read_mostly;
  72. #endif
  73. static void __free_pages_ok(struct page *page, unsigned int order);
  74. /*
  75. * results with 256, 32 in the lowmem_reserve sysctl:
  76. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  77. * 1G machine -> (16M dma, 784M normal, 224M high)
  78. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  79. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  80. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  81. *
  82. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  83. * don't need any ZONE_NORMAL reservation
  84. */
  85. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  86. #ifdef CONFIG_ZONE_DMA
  87. 256,
  88. #endif
  89. #ifdef CONFIG_ZONE_DMA32
  90. 256,
  91. #endif
  92. #ifdef CONFIG_HIGHMEM
  93. 32,
  94. #endif
  95. 32,
  96. };
  97. EXPORT_SYMBOL(totalram_pages);
  98. static char * const zone_names[MAX_NR_ZONES] = {
  99. #ifdef CONFIG_ZONE_DMA
  100. "DMA",
  101. #endif
  102. #ifdef CONFIG_ZONE_DMA32
  103. "DMA32",
  104. #endif
  105. "Normal",
  106. #ifdef CONFIG_HIGHMEM
  107. "HighMem",
  108. #endif
  109. "Movable",
  110. };
  111. int min_free_kbytes = 1024;
  112. unsigned long __meminitdata nr_kernel_pages;
  113. unsigned long __meminitdata nr_all_pages;
  114. static unsigned long __meminitdata dma_reserve;
  115. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  116. /*
  117. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  118. * ranges of memory (RAM) that may be registered with add_active_range().
  119. * Ranges passed to add_active_range() will be merged if possible
  120. * so the number of times add_active_range() can be called is
  121. * related to the number of nodes and the number of holes
  122. */
  123. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  124. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  125. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  126. #else
  127. #if MAX_NUMNODES >= 32
  128. /* If there can be many nodes, allow up to 50 holes per node */
  129. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  130. #else
  131. /* By default, allow up to 256 distinct regions */
  132. #define MAX_ACTIVE_REGIONS 256
  133. #endif
  134. #endif
  135. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  136. static int __meminitdata nr_nodemap_entries;
  137. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  138. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  139. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  140. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  141. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  142. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  143. unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. EXPORT_SYMBOL(nr_node_ids);
  153. #endif
  154. int page_group_by_mobility_disabled __read_mostly;
  155. static void set_pageblock_migratetype(struct page *page, int migratetype)
  156. {
  157. set_pageblock_flags_group(page, (unsigned long)migratetype,
  158. PB_migrate, PB_migrate_end);
  159. }
  160. #ifdef CONFIG_DEBUG_VM
  161. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  162. {
  163. int ret = 0;
  164. unsigned seq;
  165. unsigned long pfn = page_to_pfn(page);
  166. do {
  167. seq = zone_span_seqbegin(zone);
  168. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  169. ret = 1;
  170. else if (pfn < zone->zone_start_pfn)
  171. ret = 1;
  172. } while (zone_span_seqretry(zone, seq));
  173. return ret;
  174. }
  175. static int page_is_consistent(struct zone *zone, struct page *page)
  176. {
  177. if (!pfn_valid_within(page_to_pfn(page)))
  178. return 0;
  179. if (zone != page_zone(page))
  180. return 0;
  181. return 1;
  182. }
  183. /*
  184. * Temporary debugging check for pages not lying within a given zone.
  185. */
  186. static int bad_range(struct zone *zone, struct page *page)
  187. {
  188. if (page_outside_zone_boundaries(zone, page))
  189. return 1;
  190. if (!page_is_consistent(zone, page))
  191. return 1;
  192. return 0;
  193. }
  194. #else
  195. static inline int bad_range(struct zone *zone, struct page *page)
  196. {
  197. return 0;
  198. }
  199. #endif
  200. static void bad_page(struct page *page)
  201. {
  202. void *pc = page_get_page_cgroup(page);
  203. printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
  204. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  205. current->comm, page, (int)(2*sizeof(unsigned long)),
  206. (unsigned long)page->flags, page->mapping,
  207. page_mapcount(page), page_count(page));
  208. if (pc) {
  209. printk(KERN_EMERG "cgroup:%p\n", pc);
  210. page_reset_bad_cgroup(page);
  211. }
  212. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  213. KERN_EMERG "Backtrace:\n");
  214. dump_stack();
  215. page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
  216. set_page_count(page, 0);
  217. reset_page_mapcount(page);
  218. page->mapping = NULL;
  219. add_taint(TAINT_BAD_PAGE);
  220. }
  221. /*
  222. * Higher-order pages are called "compound pages". They are structured thusly:
  223. *
  224. * The first PAGE_SIZE page is called the "head page".
  225. *
  226. * The remaining PAGE_SIZE pages are called "tail pages".
  227. *
  228. * All pages have PG_compound set. All pages have their ->private pointing at
  229. * the head page (even the head page has this).
  230. *
  231. * The first tail page's ->lru.next holds the address of the compound page's
  232. * put_page() function. Its ->lru.prev holds the order of allocation.
  233. * This usage means that zero-order pages may not be compound.
  234. */
  235. static void free_compound_page(struct page *page)
  236. {
  237. __free_pages_ok(page, compound_order(page));
  238. }
  239. static void prep_compound_page(struct page *page, unsigned long order)
  240. {
  241. int i;
  242. int nr_pages = 1 << order;
  243. set_compound_page_dtor(page, free_compound_page);
  244. set_compound_order(page, order);
  245. __SetPageHead(page);
  246. for (i = 1; i < nr_pages; i++) {
  247. struct page *p = page + i;
  248. __SetPageTail(p);
  249. p->first_page = page;
  250. }
  251. }
  252. static void destroy_compound_page(struct page *page, unsigned long order)
  253. {
  254. int i;
  255. int nr_pages = 1 << order;
  256. if (unlikely(compound_order(page) != order))
  257. bad_page(page);
  258. if (unlikely(!PageHead(page)))
  259. bad_page(page);
  260. __ClearPageHead(page);
  261. for (i = 1; i < nr_pages; i++) {
  262. struct page *p = page + i;
  263. if (unlikely(!PageTail(p) |
  264. (p->first_page != page)))
  265. bad_page(page);
  266. __ClearPageTail(p);
  267. }
  268. }
  269. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  270. {
  271. int i;
  272. /*
  273. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  274. * and __GFP_HIGHMEM from hard or soft interrupt context.
  275. */
  276. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  277. for (i = 0; i < (1 << order); i++)
  278. clear_highpage(page + i);
  279. }
  280. static inline void set_page_order(struct page *page, int order)
  281. {
  282. set_page_private(page, order);
  283. __SetPageBuddy(page);
  284. }
  285. static inline void rmv_page_order(struct page *page)
  286. {
  287. __ClearPageBuddy(page);
  288. set_page_private(page, 0);
  289. }
  290. /*
  291. * Locate the struct page for both the matching buddy in our
  292. * pair (buddy1) and the combined O(n+1) page they form (page).
  293. *
  294. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  295. * the following equation:
  296. * B2 = B1 ^ (1 << O)
  297. * For example, if the starting buddy (buddy2) is #8 its order
  298. * 1 buddy is #10:
  299. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  300. *
  301. * 2) Any buddy B will have an order O+1 parent P which
  302. * satisfies the following equation:
  303. * P = B & ~(1 << O)
  304. *
  305. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  306. */
  307. static inline struct page *
  308. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  309. {
  310. unsigned long buddy_idx = page_idx ^ (1 << order);
  311. return page + (buddy_idx - page_idx);
  312. }
  313. static inline unsigned long
  314. __find_combined_index(unsigned long page_idx, unsigned int order)
  315. {
  316. return (page_idx & ~(1 << order));
  317. }
  318. /*
  319. * This function checks whether a page is free && is the buddy
  320. * we can do coalesce a page and its buddy if
  321. * (a) the buddy is not in a hole &&
  322. * (b) the buddy is in the buddy system &&
  323. * (c) a page and its buddy have the same order &&
  324. * (d) a page and its buddy are in the same zone.
  325. *
  326. * For recording whether a page is in the buddy system, we use PG_buddy.
  327. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  328. *
  329. * For recording page's order, we use page_private(page).
  330. */
  331. static inline int page_is_buddy(struct page *page, struct page *buddy,
  332. int order)
  333. {
  334. if (!pfn_valid_within(page_to_pfn(buddy)))
  335. return 0;
  336. if (page_zone_id(page) != page_zone_id(buddy))
  337. return 0;
  338. if (PageBuddy(buddy) && page_order(buddy) == order) {
  339. BUG_ON(page_count(buddy) != 0);
  340. return 1;
  341. }
  342. return 0;
  343. }
  344. /*
  345. * Freeing function for a buddy system allocator.
  346. *
  347. * The concept of a buddy system is to maintain direct-mapped table
  348. * (containing bit values) for memory blocks of various "orders".
  349. * The bottom level table contains the map for the smallest allocatable
  350. * units of memory (here, pages), and each level above it describes
  351. * pairs of units from the levels below, hence, "buddies".
  352. * At a high level, all that happens here is marking the table entry
  353. * at the bottom level available, and propagating the changes upward
  354. * as necessary, plus some accounting needed to play nicely with other
  355. * parts of the VM system.
  356. * At each level, we keep a list of pages, which are heads of continuous
  357. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  358. * order is recorded in page_private(page) field.
  359. * So when we are allocating or freeing one, we can derive the state of the
  360. * other. That is, if we allocate a small block, and both were
  361. * free, the remainder of the region must be split into blocks.
  362. * If a block is freed, and its buddy is also free, then this
  363. * triggers coalescing into a block of larger size.
  364. *
  365. * -- wli
  366. */
  367. static inline void __free_one_page(struct page *page,
  368. struct zone *zone, unsigned int order)
  369. {
  370. unsigned long page_idx;
  371. int order_size = 1 << order;
  372. int migratetype = get_pageblock_migratetype(page);
  373. if (unlikely(PageCompound(page)))
  374. destroy_compound_page(page, order);
  375. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  376. VM_BUG_ON(page_idx & (order_size - 1));
  377. VM_BUG_ON(bad_range(zone, page));
  378. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  379. while (order < MAX_ORDER-1) {
  380. unsigned long combined_idx;
  381. struct page *buddy;
  382. buddy = __page_find_buddy(page, page_idx, order);
  383. if (!page_is_buddy(page, buddy, order))
  384. break; /* Move the buddy up one level. */
  385. list_del(&buddy->lru);
  386. zone->free_area[order].nr_free--;
  387. rmv_page_order(buddy);
  388. combined_idx = __find_combined_index(page_idx, order);
  389. page = page + (combined_idx - page_idx);
  390. page_idx = combined_idx;
  391. order++;
  392. }
  393. set_page_order(page, order);
  394. list_add(&page->lru,
  395. &zone->free_area[order].free_list[migratetype]);
  396. zone->free_area[order].nr_free++;
  397. }
  398. static inline int free_pages_check(struct page *page)
  399. {
  400. if (unlikely(page_mapcount(page) |
  401. (page->mapping != NULL) |
  402. (page_get_page_cgroup(page) != NULL) |
  403. (page_count(page) != 0) |
  404. (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
  405. bad_page(page);
  406. if (PageDirty(page))
  407. __ClearPageDirty(page);
  408. /*
  409. * For now, we report if PG_reserved was found set, but do not
  410. * clear it, and do not free the page. But we shall soon need
  411. * to do more, for when the ZERO_PAGE count wraps negative.
  412. */
  413. return PageReserved(page);
  414. }
  415. /*
  416. * Frees a list of pages.
  417. * Assumes all pages on list are in same zone, and of same order.
  418. * count is the number of pages to free.
  419. *
  420. * If the zone was previously in an "all pages pinned" state then look to
  421. * see if this freeing clears that state.
  422. *
  423. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  424. * pinned" detection logic.
  425. */
  426. static void free_pages_bulk(struct zone *zone, int count,
  427. struct list_head *list, int order)
  428. {
  429. spin_lock(&zone->lock);
  430. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  431. zone->pages_scanned = 0;
  432. while (count--) {
  433. struct page *page;
  434. VM_BUG_ON(list_empty(list));
  435. page = list_entry(list->prev, struct page, lru);
  436. /* have to delete it as __free_one_page list manipulates */
  437. list_del(&page->lru);
  438. __free_one_page(page, zone, order);
  439. }
  440. spin_unlock(&zone->lock);
  441. }
  442. static void free_one_page(struct zone *zone, struct page *page, int order)
  443. {
  444. spin_lock(&zone->lock);
  445. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  446. zone->pages_scanned = 0;
  447. __free_one_page(page, zone, order);
  448. spin_unlock(&zone->lock);
  449. }
  450. static void __free_pages_ok(struct page *page, unsigned int order)
  451. {
  452. unsigned long flags;
  453. int i;
  454. int reserved = 0;
  455. for (i = 0 ; i < (1 << order) ; ++i)
  456. reserved += free_pages_check(page + i);
  457. if (reserved)
  458. return;
  459. if (!PageHighMem(page)) {
  460. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  461. debug_check_no_obj_freed(page_address(page),
  462. PAGE_SIZE << order);
  463. }
  464. arch_free_page(page, order);
  465. kernel_map_pages(page, 1 << order, 0);
  466. local_irq_save(flags);
  467. __count_vm_events(PGFREE, 1 << order);
  468. free_one_page(page_zone(page), page, order);
  469. local_irq_restore(flags);
  470. }
  471. /*
  472. * permit the bootmem allocator to evade page validation on high-order frees
  473. */
  474. void __free_pages_bootmem(struct page *page, unsigned int order)
  475. {
  476. if (order == 0) {
  477. __ClearPageReserved(page);
  478. set_page_count(page, 0);
  479. set_page_refcounted(page);
  480. __free_page(page);
  481. } else {
  482. int loop;
  483. prefetchw(page);
  484. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  485. struct page *p = &page[loop];
  486. if (loop + 1 < BITS_PER_LONG)
  487. prefetchw(p + 1);
  488. __ClearPageReserved(p);
  489. set_page_count(p, 0);
  490. }
  491. set_page_refcounted(page);
  492. __free_pages(page, order);
  493. }
  494. }
  495. /*
  496. * The order of subdivision here is critical for the IO subsystem.
  497. * Please do not alter this order without good reasons and regression
  498. * testing. Specifically, as large blocks of memory are subdivided,
  499. * the order in which smaller blocks are delivered depends on the order
  500. * they're subdivided in this function. This is the primary factor
  501. * influencing the order in which pages are delivered to the IO
  502. * subsystem according to empirical testing, and this is also justified
  503. * by considering the behavior of a buddy system containing a single
  504. * large block of memory acted on by a series of small allocations.
  505. * This behavior is a critical factor in sglist merging's success.
  506. *
  507. * -- wli
  508. */
  509. static inline void expand(struct zone *zone, struct page *page,
  510. int low, int high, struct free_area *area,
  511. int migratetype)
  512. {
  513. unsigned long size = 1 << high;
  514. while (high > low) {
  515. area--;
  516. high--;
  517. size >>= 1;
  518. VM_BUG_ON(bad_range(zone, &page[size]));
  519. list_add(&page[size].lru, &area->free_list[migratetype]);
  520. area->nr_free++;
  521. set_page_order(&page[size], high);
  522. }
  523. }
  524. /*
  525. * This page is about to be returned from the page allocator
  526. */
  527. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  528. {
  529. if (unlikely(page_mapcount(page) |
  530. (page->mapping != NULL) |
  531. (page_get_page_cgroup(page) != NULL) |
  532. (page_count(page) != 0) |
  533. (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
  534. bad_page(page);
  535. /*
  536. * For now, we report if PG_reserved was found set, but do not
  537. * clear it, and do not allocate the page: as a safety net.
  538. */
  539. if (PageReserved(page))
  540. return 1;
  541. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
  542. 1 << PG_referenced | 1 << PG_arch_1 |
  543. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  544. set_page_private(page, 0);
  545. set_page_refcounted(page);
  546. arch_alloc_page(page, order);
  547. kernel_map_pages(page, 1 << order, 1);
  548. if (gfp_flags & __GFP_ZERO)
  549. prep_zero_page(page, order, gfp_flags);
  550. if (order && (gfp_flags & __GFP_COMP))
  551. prep_compound_page(page, order);
  552. return 0;
  553. }
  554. /*
  555. * Go through the free lists for the given migratetype and remove
  556. * the smallest available page from the freelists
  557. */
  558. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  559. int migratetype)
  560. {
  561. unsigned int current_order;
  562. struct free_area * area;
  563. struct page *page;
  564. /* Find a page of the appropriate size in the preferred list */
  565. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  566. area = &(zone->free_area[current_order]);
  567. if (list_empty(&area->free_list[migratetype]))
  568. continue;
  569. page = list_entry(area->free_list[migratetype].next,
  570. struct page, lru);
  571. list_del(&page->lru);
  572. rmv_page_order(page);
  573. area->nr_free--;
  574. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  575. expand(zone, page, order, current_order, area, migratetype);
  576. return page;
  577. }
  578. return NULL;
  579. }
  580. /*
  581. * This array describes the order lists are fallen back to when
  582. * the free lists for the desirable migrate type are depleted
  583. */
  584. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  585. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  586. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  587. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  588. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  589. };
  590. /*
  591. * Move the free pages in a range to the free lists of the requested type.
  592. * Note that start_page and end_pages are not aligned on a pageblock
  593. * boundary. If alignment is required, use move_freepages_block()
  594. */
  595. int move_freepages(struct zone *zone,
  596. struct page *start_page, struct page *end_page,
  597. int migratetype)
  598. {
  599. struct page *page;
  600. unsigned long order;
  601. int pages_moved = 0;
  602. #ifndef CONFIG_HOLES_IN_ZONE
  603. /*
  604. * page_zone is not safe to call in this context when
  605. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  606. * anyway as we check zone boundaries in move_freepages_block().
  607. * Remove at a later date when no bug reports exist related to
  608. * grouping pages by mobility
  609. */
  610. BUG_ON(page_zone(start_page) != page_zone(end_page));
  611. #endif
  612. for (page = start_page; page <= end_page;) {
  613. if (!pfn_valid_within(page_to_pfn(page))) {
  614. page++;
  615. continue;
  616. }
  617. if (!PageBuddy(page)) {
  618. page++;
  619. continue;
  620. }
  621. order = page_order(page);
  622. list_del(&page->lru);
  623. list_add(&page->lru,
  624. &zone->free_area[order].free_list[migratetype]);
  625. page += 1 << order;
  626. pages_moved += 1 << order;
  627. }
  628. return pages_moved;
  629. }
  630. int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
  631. {
  632. unsigned long start_pfn, end_pfn;
  633. struct page *start_page, *end_page;
  634. start_pfn = page_to_pfn(page);
  635. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  636. start_page = pfn_to_page(start_pfn);
  637. end_page = start_page + pageblock_nr_pages - 1;
  638. end_pfn = start_pfn + pageblock_nr_pages - 1;
  639. /* Do not cross zone boundaries */
  640. if (start_pfn < zone->zone_start_pfn)
  641. start_page = page;
  642. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  643. return 0;
  644. return move_freepages(zone, start_page, end_page, migratetype);
  645. }
  646. /* Remove an element from the buddy allocator from the fallback list */
  647. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  648. int start_migratetype)
  649. {
  650. struct free_area * area;
  651. int current_order;
  652. struct page *page;
  653. int migratetype, i;
  654. /* Find the largest possible block of pages in the other list */
  655. for (current_order = MAX_ORDER-1; current_order >= order;
  656. --current_order) {
  657. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  658. migratetype = fallbacks[start_migratetype][i];
  659. /* MIGRATE_RESERVE handled later if necessary */
  660. if (migratetype == MIGRATE_RESERVE)
  661. continue;
  662. area = &(zone->free_area[current_order]);
  663. if (list_empty(&area->free_list[migratetype]))
  664. continue;
  665. page = list_entry(area->free_list[migratetype].next,
  666. struct page, lru);
  667. area->nr_free--;
  668. /*
  669. * If breaking a large block of pages, move all free
  670. * pages to the preferred allocation list. If falling
  671. * back for a reclaimable kernel allocation, be more
  672. * agressive about taking ownership of free pages
  673. */
  674. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  675. start_migratetype == MIGRATE_RECLAIMABLE) {
  676. unsigned long pages;
  677. pages = move_freepages_block(zone, page,
  678. start_migratetype);
  679. /* Claim the whole block if over half of it is free */
  680. if (pages >= (1 << (pageblock_order-1)))
  681. set_pageblock_migratetype(page,
  682. start_migratetype);
  683. migratetype = start_migratetype;
  684. }
  685. /* Remove the page from the freelists */
  686. list_del(&page->lru);
  687. rmv_page_order(page);
  688. __mod_zone_page_state(zone, NR_FREE_PAGES,
  689. -(1UL << order));
  690. if (current_order == pageblock_order)
  691. set_pageblock_migratetype(page,
  692. start_migratetype);
  693. expand(zone, page, order, current_order, area, migratetype);
  694. return page;
  695. }
  696. }
  697. /* Use MIGRATE_RESERVE rather than fail an allocation */
  698. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  699. }
  700. /*
  701. * Do the hard work of removing an element from the buddy allocator.
  702. * Call me with the zone->lock already held.
  703. */
  704. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  705. int migratetype)
  706. {
  707. struct page *page;
  708. page = __rmqueue_smallest(zone, order, migratetype);
  709. if (unlikely(!page))
  710. page = __rmqueue_fallback(zone, order, migratetype);
  711. return page;
  712. }
  713. /*
  714. * Obtain a specified number of elements from the buddy allocator, all under
  715. * a single hold of the lock, for efficiency. Add them to the supplied list.
  716. * Returns the number of new pages which were placed at *list.
  717. */
  718. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  719. unsigned long count, struct list_head *list,
  720. int migratetype)
  721. {
  722. int i;
  723. spin_lock(&zone->lock);
  724. for (i = 0; i < count; ++i) {
  725. struct page *page = __rmqueue(zone, order, migratetype);
  726. if (unlikely(page == NULL))
  727. break;
  728. /*
  729. * Split buddy pages returned by expand() are received here
  730. * in physical page order. The page is added to the callers and
  731. * list and the list head then moves forward. From the callers
  732. * perspective, the linked list is ordered by page number in
  733. * some conditions. This is useful for IO devices that can
  734. * merge IO requests if the physical pages are ordered
  735. * properly.
  736. */
  737. list_add(&page->lru, list);
  738. set_page_private(page, migratetype);
  739. list = &page->lru;
  740. }
  741. spin_unlock(&zone->lock);
  742. return i;
  743. }
  744. #ifdef CONFIG_NUMA
  745. /*
  746. * Called from the vmstat counter updater to drain pagesets of this
  747. * currently executing processor on remote nodes after they have
  748. * expired.
  749. *
  750. * Note that this function must be called with the thread pinned to
  751. * a single processor.
  752. */
  753. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  754. {
  755. unsigned long flags;
  756. int to_drain;
  757. local_irq_save(flags);
  758. if (pcp->count >= pcp->batch)
  759. to_drain = pcp->batch;
  760. else
  761. to_drain = pcp->count;
  762. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  763. pcp->count -= to_drain;
  764. local_irq_restore(flags);
  765. }
  766. #endif
  767. /*
  768. * Drain pages of the indicated processor.
  769. *
  770. * The processor must either be the current processor and the
  771. * thread pinned to the current processor or a processor that
  772. * is not online.
  773. */
  774. static void drain_pages(unsigned int cpu)
  775. {
  776. unsigned long flags;
  777. struct zone *zone;
  778. for_each_zone(zone) {
  779. struct per_cpu_pageset *pset;
  780. struct per_cpu_pages *pcp;
  781. if (!populated_zone(zone))
  782. continue;
  783. pset = zone_pcp(zone, cpu);
  784. pcp = &pset->pcp;
  785. local_irq_save(flags);
  786. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  787. pcp->count = 0;
  788. local_irq_restore(flags);
  789. }
  790. }
  791. /*
  792. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  793. */
  794. void drain_local_pages(void *arg)
  795. {
  796. drain_pages(smp_processor_id());
  797. }
  798. /*
  799. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  800. */
  801. void drain_all_pages(void)
  802. {
  803. on_each_cpu(drain_local_pages, NULL, 1);
  804. }
  805. #ifdef CONFIG_HIBERNATION
  806. void mark_free_pages(struct zone *zone)
  807. {
  808. unsigned long pfn, max_zone_pfn;
  809. unsigned long flags;
  810. int order, t;
  811. struct list_head *curr;
  812. if (!zone->spanned_pages)
  813. return;
  814. spin_lock_irqsave(&zone->lock, flags);
  815. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  816. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  817. if (pfn_valid(pfn)) {
  818. struct page *page = pfn_to_page(pfn);
  819. if (!swsusp_page_is_forbidden(page))
  820. swsusp_unset_page_free(page);
  821. }
  822. for_each_migratetype_order(order, t) {
  823. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  824. unsigned long i;
  825. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  826. for (i = 0; i < (1UL << order); i++)
  827. swsusp_set_page_free(pfn_to_page(pfn + i));
  828. }
  829. }
  830. spin_unlock_irqrestore(&zone->lock, flags);
  831. }
  832. #endif /* CONFIG_PM */
  833. /*
  834. * Free a 0-order page
  835. */
  836. static void free_hot_cold_page(struct page *page, int cold)
  837. {
  838. struct zone *zone = page_zone(page);
  839. struct per_cpu_pages *pcp;
  840. unsigned long flags;
  841. if (PageAnon(page))
  842. page->mapping = NULL;
  843. if (free_pages_check(page))
  844. return;
  845. if (!PageHighMem(page)) {
  846. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  847. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  848. }
  849. arch_free_page(page, 0);
  850. kernel_map_pages(page, 1, 0);
  851. pcp = &zone_pcp(zone, get_cpu())->pcp;
  852. local_irq_save(flags);
  853. __count_vm_event(PGFREE);
  854. if (cold)
  855. list_add_tail(&page->lru, &pcp->list);
  856. else
  857. list_add(&page->lru, &pcp->list);
  858. set_page_private(page, get_pageblock_migratetype(page));
  859. pcp->count++;
  860. if (pcp->count >= pcp->high) {
  861. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  862. pcp->count -= pcp->batch;
  863. }
  864. local_irq_restore(flags);
  865. put_cpu();
  866. }
  867. void free_hot_page(struct page *page)
  868. {
  869. free_hot_cold_page(page, 0);
  870. }
  871. void free_cold_page(struct page *page)
  872. {
  873. free_hot_cold_page(page, 1);
  874. }
  875. /*
  876. * split_page takes a non-compound higher-order page, and splits it into
  877. * n (1<<order) sub-pages: page[0..n]
  878. * Each sub-page must be freed individually.
  879. *
  880. * Note: this is probably too low level an operation for use in drivers.
  881. * Please consult with lkml before using this in your driver.
  882. */
  883. void split_page(struct page *page, unsigned int order)
  884. {
  885. int i;
  886. VM_BUG_ON(PageCompound(page));
  887. VM_BUG_ON(!page_count(page));
  888. for (i = 1; i < (1 << order); i++)
  889. set_page_refcounted(page + i);
  890. }
  891. /*
  892. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  893. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  894. * or two.
  895. */
  896. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  897. struct zone *zone, int order, gfp_t gfp_flags)
  898. {
  899. unsigned long flags;
  900. struct page *page;
  901. int cold = !!(gfp_flags & __GFP_COLD);
  902. int cpu;
  903. int migratetype = allocflags_to_migratetype(gfp_flags);
  904. again:
  905. cpu = get_cpu();
  906. if (likely(order == 0)) {
  907. struct per_cpu_pages *pcp;
  908. pcp = &zone_pcp(zone, cpu)->pcp;
  909. local_irq_save(flags);
  910. if (!pcp->count) {
  911. pcp->count = rmqueue_bulk(zone, 0,
  912. pcp->batch, &pcp->list, migratetype);
  913. if (unlikely(!pcp->count))
  914. goto failed;
  915. }
  916. /* Find a page of the appropriate migrate type */
  917. if (cold) {
  918. list_for_each_entry_reverse(page, &pcp->list, lru)
  919. if (page_private(page) == migratetype)
  920. break;
  921. } else {
  922. list_for_each_entry(page, &pcp->list, lru)
  923. if (page_private(page) == migratetype)
  924. break;
  925. }
  926. /* Allocate more to the pcp list if necessary */
  927. if (unlikely(&page->lru == &pcp->list)) {
  928. pcp->count += rmqueue_bulk(zone, 0,
  929. pcp->batch, &pcp->list, migratetype);
  930. page = list_entry(pcp->list.next, struct page, lru);
  931. }
  932. list_del(&page->lru);
  933. pcp->count--;
  934. } else {
  935. spin_lock_irqsave(&zone->lock, flags);
  936. page = __rmqueue(zone, order, migratetype);
  937. spin_unlock(&zone->lock);
  938. if (!page)
  939. goto failed;
  940. }
  941. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  942. zone_statistics(preferred_zone, zone);
  943. local_irq_restore(flags);
  944. put_cpu();
  945. VM_BUG_ON(bad_range(zone, page));
  946. if (prep_new_page(page, order, gfp_flags))
  947. goto again;
  948. return page;
  949. failed:
  950. local_irq_restore(flags);
  951. put_cpu();
  952. return NULL;
  953. }
  954. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  955. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  956. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  957. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  958. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  959. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  960. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  961. #ifdef CONFIG_FAIL_PAGE_ALLOC
  962. static struct fail_page_alloc_attr {
  963. struct fault_attr attr;
  964. u32 ignore_gfp_highmem;
  965. u32 ignore_gfp_wait;
  966. u32 min_order;
  967. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  968. struct dentry *ignore_gfp_highmem_file;
  969. struct dentry *ignore_gfp_wait_file;
  970. struct dentry *min_order_file;
  971. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  972. } fail_page_alloc = {
  973. .attr = FAULT_ATTR_INITIALIZER,
  974. .ignore_gfp_wait = 1,
  975. .ignore_gfp_highmem = 1,
  976. .min_order = 1,
  977. };
  978. static int __init setup_fail_page_alloc(char *str)
  979. {
  980. return setup_fault_attr(&fail_page_alloc.attr, str);
  981. }
  982. __setup("fail_page_alloc=", setup_fail_page_alloc);
  983. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  984. {
  985. if (order < fail_page_alloc.min_order)
  986. return 0;
  987. if (gfp_mask & __GFP_NOFAIL)
  988. return 0;
  989. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  990. return 0;
  991. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  992. return 0;
  993. return should_fail(&fail_page_alloc.attr, 1 << order);
  994. }
  995. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  996. static int __init fail_page_alloc_debugfs(void)
  997. {
  998. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  999. struct dentry *dir;
  1000. int err;
  1001. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1002. "fail_page_alloc");
  1003. if (err)
  1004. return err;
  1005. dir = fail_page_alloc.attr.dentries.dir;
  1006. fail_page_alloc.ignore_gfp_wait_file =
  1007. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1008. &fail_page_alloc.ignore_gfp_wait);
  1009. fail_page_alloc.ignore_gfp_highmem_file =
  1010. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1011. &fail_page_alloc.ignore_gfp_highmem);
  1012. fail_page_alloc.min_order_file =
  1013. debugfs_create_u32("min-order", mode, dir,
  1014. &fail_page_alloc.min_order);
  1015. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1016. !fail_page_alloc.ignore_gfp_highmem_file ||
  1017. !fail_page_alloc.min_order_file) {
  1018. err = -ENOMEM;
  1019. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1020. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1021. debugfs_remove(fail_page_alloc.min_order_file);
  1022. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1023. }
  1024. return err;
  1025. }
  1026. late_initcall(fail_page_alloc_debugfs);
  1027. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1028. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1029. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1030. {
  1031. return 0;
  1032. }
  1033. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1034. /*
  1035. * Return 1 if free pages are above 'mark'. This takes into account the order
  1036. * of the allocation.
  1037. */
  1038. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1039. int classzone_idx, int alloc_flags)
  1040. {
  1041. /* free_pages my go negative - that's OK */
  1042. long min = mark;
  1043. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1044. int o;
  1045. if (alloc_flags & ALLOC_HIGH)
  1046. min -= min / 2;
  1047. if (alloc_flags & ALLOC_HARDER)
  1048. min -= min / 4;
  1049. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1050. return 0;
  1051. for (o = 0; o < order; o++) {
  1052. /* At the next order, this order's pages become unavailable */
  1053. free_pages -= z->free_area[o].nr_free << o;
  1054. /* Require fewer higher order pages to be free */
  1055. min >>= 1;
  1056. if (free_pages <= min)
  1057. return 0;
  1058. }
  1059. return 1;
  1060. }
  1061. #ifdef CONFIG_NUMA
  1062. /*
  1063. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1064. * skip over zones that are not allowed by the cpuset, or that have
  1065. * been recently (in last second) found to be nearly full. See further
  1066. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1067. * that have to skip over a lot of full or unallowed zones.
  1068. *
  1069. * If the zonelist cache is present in the passed in zonelist, then
  1070. * returns a pointer to the allowed node mask (either the current
  1071. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1072. *
  1073. * If the zonelist cache is not available for this zonelist, does
  1074. * nothing and returns NULL.
  1075. *
  1076. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1077. * a second since last zap'd) then we zap it out (clear its bits.)
  1078. *
  1079. * We hold off even calling zlc_setup, until after we've checked the
  1080. * first zone in the zonelist, on the theory that most allocations will
  1081. * be satisfied from that first zone, so best to examine that zone as
  1082. * quickly as we can.
  1083. */
  1084. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1085. {
  1086. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1087. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1088. zlc = zonelist->zlcache_ptr;
  1089. if (!zlc)
  1090. return NULL;
  1091. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1092. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1093. zlc->last_full_zap = jiffies;
  1094. }
  1095. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1096. &cpuset_current_mems_allowed :
  1097. &node_states[N_HIGH_MEMORY];
  1098. return allowednodes;
  1099. }
  1100. /*
  1101. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1102. * if it is worth looking at further for free memory:
  1103. * 1) Check that the zone isn't thought to be full (doesn't have its
  1104. * bit set in the zonelist_cache fullzones BITMAP).
  1105. * 2) Check that the zones node (obtained from the zonelist_cache
  1106. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1107. * Return true (non-zero) if zone is worth looking at further, or
  1108. * else return false (zero) if it is not.
  1109. *
  1110. * This check -ignores- the distinction between various watermarks,
  1111. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1112. * found to be full for any variation of these watermarks, it will
  1113. * be considered full for up to one second by all requests, unless
  1114. * we are so low on memory on all allowed nodes that we are forced
  1115. * into the second scan of the zonelist.
  1116. *
  1117. * In the second scan we ignore this zonelist cache and exactly
  1118. * apply the watermarks to all zones, even it is slower to do so.
  1119. * We are low on memory in the second scan, and should leave no stone
  1120. * unturned looking for a free page.
  1121. */
  1122. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1123. nodemask_t *allowednodes)
  1124. {
  1125. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1126. int i; /* index of *z in zonelist zones */
  1127. int n; /* node that zone *z is on */
  1128. zlc = zonelist->zlcache_ptr;
  1129. if (!zlc)
  1130. return 1;
  1131. i = z - zonelist->_zonerefs;
  1132. n = zlc->z_to_n[i];
  1133. /* This zone is worth trying if it is allowed but not full */
  1134. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1135. }
  1136. /*
  1137. * Given 'z' scanning a zonelist, set the corresponding bit in
  1138. * zlc->fullzones, so that subsequent attempts to allocate a page
  1139. * from that zone don't waste time re-examining it.
  1140. */
  1141. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1142. {
  1143. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1144. int i; /* index of *z in zonelist zones */
  1145. zlc = zonelist->zlcache_ptr;
  1146. if (!zlc)
  1147. return;
  1148. i = z - zonelist->_zonerefs;
  1149. set_bit(i, zlc->fullzones);
  1150. }
  1151. #else /* CONFIG_NUMA */
  1152. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1153. {
  1154. return NULL;
  1155. }
  1156. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1157. nodemask_t *allowednodes)
  1158. {
  1159. return 1;
  1160. }
  1161. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1162. {
  1163. }
  1164. #endif /* CONFIG_NUMA */
  1165. /*
  1166. * get_page_from_freelist goes through the zonelist trying to allocate
  1167. * a page.
  1168. */
  1169. static struct page *
  1170. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1171. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1172. {
  1173. struct zoneref *z;
  1174. struct page *page = NULL;
  1175. int classzone_idx;
  1176. struct zone *zone, *preferred_zone;
  1177. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1178. int zlc_active = 0; /* set if using zonelist_cache */
  1179. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1180. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1181. &preferred_zone);
  1182. if (!preferred_zone)
  1183. return NULL;
  1184. classzone_idx = zone_idx(preferred_zone);
  1185. zonelist_scan:
  1186. /*
  1187. * Scan zonelist, looking for a zone with enough free.
  1188. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1189. */
  1190. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1191. high_zoneidx, nodemask) {
  1192. if (NUMA_BUILD && zlc_active &&
  1193. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1194. continue;
  1195. if ((alloc_flags & ALLOC_CPUSET) &&
  1196. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1197. goto try_next_zone;
  1198. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1199. unsigned long mark;
  1200. if (alloc_flags & ALLOC_WMARK_MIN)
  1201. mark = zone->pages_min;
  1202. else if (alloc_flags & ALLOC_WMARK_LOW)
  1203. mark = zone->pages_low;
  1204. else
  1205. mark = zone->pages_high;
  1206. if (!zone_watermark_ok(zone, order, mark,
  1207. classzone_idx, alloc_flags)) {
  1208. if (!zone_reclaim_mode ||
  1209. !zone_reclaim(zone, gfp_mask, order))
  1210. goto this_zone_full;
  1211. }
  1212. }
  1213. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1214. if (page)
  1215. break;
  1216. this_zone_full:
  1217. if (NUMA_BUILD)
  1218. zlc_mark_zone_full(zonelist, z);
  1219. try_next_zone:
  1220. if (NUMA_BUILD && !did_zlc_setup) {
  1221. /* we do zlc_setup after the first zone is tried */
  1222. allowednodes = zlc_setup(zonelist, alloc_flags);
  1223. zlc_active = 1;
  1224. did_zlc_setup = 1;
  1225. }
  1226. }
  1227. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1228. /* Disable zlc cache for second zonelist scan */
  1229. zlc_active = 0;
  1230. goto zonelist_scan;
  1231. }
  1232. return page;
  1233. }
  1234. /*
  1235. * This is the 'heart' of the zoned buddy allocator.
  1236. */
  1237. static struct page *
  1238. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1239. struct zonelist *zonelist, nodemask_t *nodemask)
  1240. {
  1241. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1242. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1243. struct zoneref *z;
  1244. struct zone *zone;
  1245. struct page *page;
  1246. struct reclaim_state reclaim_state;
  1247. struct task_struct *p = current;
  1248. int do_retry;
  1249. int alloc_flags;
  1250. unsigned long did_some_progress;
  1251. unsigned long pages_reclaimed = 0;
  1252. might_sleep_if(wait);
  1253. if (should_fail_alloc_page(gfp_mask, order))
  1254. return NULL;
  1255. restart:
  1256. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1257. if (unlikely(!z->zone)) {
  1258. /*
  1259. * Happens if we have an empty zonelist as a result of
  1260. * GFP_THISNODE being used on a memoryless node
  1261. */
  1262. return NULL;
  1263. }
  1264. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1265. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1266. if (page)
  1267. goto got_pg;
  1268. /*
  1269. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1270. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1271. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1272. * using a larger set of nodes after it has established that the
  1273. * allowed per node queues are empty and that nodes are
  1274. * over allocated.
  1275. */
  1276. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1277. goto nopage;
  1278. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1279. wakeup_kswapd(zone, order);
  1280. /*
  1281. * OK, we're below the kswapd watermark and have kicked background
  1282. * reclaim. Now things get more complex, so set up alloc_flags according
  1283. * to how we want to proceed.
  1284. *
  1285. * The caller may dip into page reserves a bit more if the caller
  1286. * cannot run direct reclaim, or if the caller has realtime scheduling
  1287. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1288. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1289. */
  1290. alloc_flags = ALLOC_WMARK_MIN;
  1291. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1292. alloc_flags |= ALLOC_HARDER;
  1293. if (gfp_mask & __GFP_HIGH)
  1294. alloc_flags |= ALLOC_HIGH;
  1295. if (wait)
  1296. alloc_flags |= ALLOC_CPUSET;
  1297. /*
  1298. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1299. * coming from realtime tasks go deeper into reserves.
  1300. *
  1301. * This is the last chance, in general, before the goto nopage.
  1302. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1303. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1304. */
  1305. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1306. high_zoneidx, alloc_flags);
  1307. if (page)
  1308. goto got_pg;
  1309. /* This allocation should allow future memory freeing. */
  1310. rebalance:
  1311. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1312. && !in_interrupt()) {
  1313. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1314. nofail_alloc:
  1315. /* go through the zonelist yet again, ignoring mins */
  1316. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1317. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1318. if (page)
  1319. goto got_pg;
  1320. if (gfp_mask & __GFP_NOFAIL) {
  1321. congestion_wait(WRITE, HZ/50);
  1322. goto nofail_alloc;
  1323. }
  1324. }
  1325. goto nopage;
  1326. }
  1327. /* Atomic allocations - we can't balance anything */
  1328. if (!wait)
  1329. goto nopage;
  1330. cond_resched();
  1331. /* We now go into synchronous reclaim */
  1332. cpuset_memory_pressure_bump();
  1333. p->flags |= PF_MEMALLOC;
  1334. reclaim_state.reclaimed_slab = 0;
  1335. p->reclaim_state = &reclaim_state;
  1336. did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
  1337. p->reclaim_state = NULL;
  1338. p->flags &= ~PF_MEMALLOC;
  1339. cond_resched();
  1340. if (order != 0)
  1341. drain_all_pages();
  1342. if (likely(did_some_progress)) {
  1343. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1344. zonelist, high_zoneidx, alloc_flags);
  1345. if (page)
  1346. goto got_pg;
  1347. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1348. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1349. schedule_timeout_uninterruptible(1);
  1350. goto restart;
  1351. }
  1352. /*
  1353. * Go through the zonelist yet one more time, keep
  1354. * very high watermark here, this is only to catch
  1355. * a parallel oom killing, we must fail if we're still
  1356. * under heavy pressure.
  1357. */
  1358. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1359. order, zonelist, high_zoneidx,
  1360. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1361. if (page) {
  1362. clear_zonelist_oom(zonelist, gfp_mask);
  1363. goto got_pg;
  1364. }
  1365. /* The OOM killer will not help higher order allocs so fail */
  1366. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1367. clear_zonelist_oom(zonelist, gfp_mask);
  1368. goto nopage;
  1369. }
  1370. out_of_memory(zonelist, gfp_mask, order);
  1371. clear_zonelist_oom(zonelist, gfp_mask);
  1372. goto restart;
  1373. }
  1374. /*
  1375. * Don't let big-order allocations loop unless the caller explicitly
  1376. * requests that. Wait for some write requests to complete then retry.
  1377. *
  1378. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1379. * means __GFP_NOFAIL, but that may not be true in other
  1380. * implementations.
  1381. *
  1382. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1383. * specified, then we retry until we no longer reclaim any pages
  1384. * (above), or we've reclaimed an order of pages at least as
  1385. * large as the allocation's order. In both cases, if the
  1386. * allocation still fails, we stop retrying.
  1387. */
  1388. pages_reclaimed += did_some_progress;
  1389. do_retry = 0;
  1390. if (!(gfp_mask & __GFP_NORETRY)) {
  1391. if (order <= PAGE_ALLOC_COSTLY_ORDER) {
  1392. do_retry = 1;
  1393. } else {
  1394. if (gfp_mask & __GFP_REPEAT &&
  1395. pages_reclaimed < (1 << order))
  1396. do_retry = 1;
  1397. }
  1398. if (gfp_mask & __GFP_NOFAIL)
  1399. do_retry = 1;
  1400. }
  1401. if (do_retry) {
  1402. congestion_wait(WRITE, HZ/50);
  1403. goto rebalance;
  1404. }
  1405. nopage:
  1406. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1407. printk(KERN_WARNING "%s: page allocation failure."
  1408. " order:%d, mode:0x%x\n",
  1409. p->comm, order, gfp_mask);
  1410. dump_stack();
  1411. show_mem();
  1412. }
  1413. got_pg:
  1414. return page;
  1415. }
  1416. struct page *
  1417. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1418. struct zonelist *zonelist)
  1419. {
  1420. return __alloc_pages_internal(gfp_mask, order, zonelist, NULL);
  1421. }
  1422. struct page *
  1423. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1424. struct zonelist *zonelist, nodemask_t *nodemask)
  1425. {
  1426. return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask);
  1427. }
  1428. EXPORT_SYMBOL(__alloc_pages);
  1429. /*
  1430. * Common helper functions.
  1431. */
  1432. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1433. {
  1434. struct page * page;
  1435. page = alloc_pages(gfp_mask, order);
  1436. if (!page)
  1437. return 0;
  1438. return (unsigned long) page_address(page);
  1439. }
  1440. EXPORT_SYMBOL(__get_free_pages);
  1441. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1442. {
  1443. struct page * page;
  1444. /*
  1445. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1446. * a highmem page
  1447. */
  1448. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1449. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1450. if (page)
  1451. return (unsigned long) page_address(page);
  1452. return 0;
  1453. }
  1454. EXPORT_SYMBOL(get_zeroed_page);
  1455. void __pagevec_free(struct pagevec *pvec)
  1456. {
  1457. int i = pagevec_count(pvec);
  1458. while (--i >= 0)
  1459. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1460. }
  1461. void __free_pages(struct page *page, unsigned int order)
  1462. {
  1463. if (put_page_testzero(page)) {
  1464. if (order == 0)
  1465. free_hot_page(page);
  1466. else
  1467. __free_pages_ok(page, order);
  1468. }
  1469. }
  1470. EXPORT_SYMBOL(__free_pages);
  1471. void free_pages(unsigned long addr, unsigned int order)
  1472. {
  1473. if (addr != 0) {
  1474. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1475. __free_pages(virt_to_page((void *)addr), order);
  1476. }
  1477. }
  1478. EXPORT_SYMBOL(free_pages);
  1479. static unsigned int nr_free_zone_pages(int offset)
  1480. {
  1481. struct zoneref *z;
  1482. struct zone *zone;
  1483. /* Just pick one node, since fallback list is circular */
  1484. unsigned int sum = 0;
  1485. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1486. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1487. unsigned long size = zone->present_pages;
  1488. unsigned long high = zone->pages_high;
  1489. if (size > high)
  1490. sum += size - high;
  1491. }
  1492. return sum;
  1493. }
  1494. /*
  1495. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1496. */
  1497. unsigned int nr_free_buffer_pages(void)
  1498. {
  1499. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1500. }
  1501. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1502. /*
  1503. * Amount of free RAM allocatable within all zones
  1504. */
  1505. unsigned int nr_free_pagecache_pages(void)
  1506. {
  1507. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1508. }
  1509. static inline void show_node(struct zone *zone)
  1510. {
  1511. if (NUMA_BUILD)
  1512. printk("Node %d ", zone_to_nid(zone));
  1513. }
  1514. void si_meminfo(struct sysinfo *val)
  1515. {
  1516. val->totalram = totalram_pages;
  1517. val->sharedram = 0;
  1518. val->freeram = global_page_state(NR_FREE_PAGES);
  1519. val->bufferram = nr_blockdev_pages();
  1520. val->totalhigh = totalhigh_pages;
  1521. val->freehigh = nr_free_highpages();
  1522. val->mem_unit = PAGE_SIZE;
  1523. }
  1524. EXPORT_SYMBOL(si_meminfo);
  1525. #ifdef CONFIG_NUMA
  1526. void si_meminfo_node(struct sysinfo *val, int nid)
  1527. {
  1528. pg_data_t *pgdat = NODE_DATA(nid);
  1529. val->totalram = pgdat->node_present_pages;
  1530. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1531. #ifdef CONFIG_HIGHMEM
  1532. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1533. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1534. NR_FREE_PAGES);
  1535. #else
  1536. val->totalhigh = 0;
  1537. val->freehigh = 0;
  1538. #endif
  1539. val->mem_unit = PAGE_SIZE;
  1540. }
  1541. #endif
  1542. #define K(x) ((x) << (PAGE_SHIFT-10))
  1543. /*
  1544. * Show free area list (used inside shift_scroll-lock stuff)
  1545. * We also calculate the percentage fragmentation. We do this by counting the
  1546. * memory on each free list with the exception of the first item on the list.
  1547. */
  1548. void show_free_areas(void)
  1549. {
  1550. int cpu;
  1551. struct zone *zone;
  1552. for_each_zone(zone) {
  1553. if (!populated_zone(zone))
  1554. continue;
  1555. show_node(zone);
  1556. printk("%s per-cpu:\n", zone->name);
  1557. for_each_online_cpu(cpu) {
  1558. struct per_cpu_pageset *pageset;
  1559. pageset = zone_pcp(zone, cpu);
  1560. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1561. cpu, pageset->pcp.high,
  1562. pageset->pcp.batch, pageset->pcp.count);
  1563. }
  1564. }
  1565. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1566. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1567. global_page_state(NR_ACTIVE),
  1568. global_page_state(NR_INACTIVE),
  1569. global_page_state(NR_FILE_DIRTY),
  1570. global_page_state(NR_WRITEBACK),
  1571. global_page_state(NR_UNSTABLE_NFS),
  1572. global_page_state(NR_FREE_PAGES),
  1573. global_page_state(NR_SLAB_RECLAIMABLE) +
  1574. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1575. global_page_state(NR_FILE_MAPPED),
  1576. global_page_state(NR_PAGETABLE),
  1577. global_page_state(NR_BOUNCE));
  1578. for_each_zone(zone) {
  1579. int i;
  1580. if (!populated_zone(zone))
  1581. continue;
  1582. show_node(zone);
  1583. printk("%s"
  1584. " free:%lukB"
  1585. " min:%lukB"
  1586. " low:%lukB"
  1587. " high:%lukB"
  1588. " active:%lukB"
  1589. " inactive:%lukB"
  1590. " present:%lukB"
  1591. " pages_scanned:%lu"
  1592. " all_unreclaimable? %s"
  1593. "\n",
  1594. zone->name,
  1595. K(zone_page_state(zone, NR_FREE_PAGES)),
  1596. K(zone->pages_min),
  1597. K(zone->pages_low),
  1598. K(zone->pages_high),
  1599. K(zone_page_state(zone, NR_ACTIVE)),
  1600. K(zone_page_state(zone, NR_INACTIVE)),
  1601. K(zone->present_pages),
  1602. zone->pages_scanned,
  1603. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1604. );
  1605. printk("lowmem_reserve[]:");
  1606. for (i = 0; i < MAX_NR_ZONES; i++)
  1607. printk(" %lu", zone->lowmem_reserve[i]);
  1608. printk("\n");
  1609. }
  1610. for_each_zone(zone) {
  1611. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1612. if (!populated_zone(zone))
  1613. continue;
  1614. show_node(zone);
  1615. printk("%s: ", zone->name);
  1616. spin_lock_irqsave(&zone->lock, flags);
  1617. for (order = 0; order < MAX_ORDER; order++) {
  1618. nr[order] = zone->free_area[order].nr_free;
  1619. total += nr[order] << order;
  1620. }
  1621. spin_unlock_irqrestore(&zone->lock, flags);
  1622. for (order = 0; order < MAX_ORDER; order++)
  1623. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1624. printk("= %lukB\n", K(total));
  1625. }
  1626. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1627. show_swap_cache_info();
  1628. }
  1629. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1630. {
  1631. zoneref->zone = zone;
  1632. zoneref->zone_idx = zone_idx(zone);
  1633. }
  1634. /*
  1635. * Builds allocation fallback zone lists.
  1636. *
  1637. * Add all populated zones of a node to the zonelist.
  1638. */
  1639. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1640. int nr_zones, enum zone_type zone_type)
  1641. {
  1642. struct zone *zone;
  1643. BUG_ON(zone_type >= MAX_NR_ZONES);
  1644. zone_type++;
  1645. do {
  1646. zone_type--;
  1647. zone = pgdat->node_zones + zone_type;
  1648. if (populated_zone(zone)) {
  1649. zoneref_set_zone(zone,
  1650. &zonelist->_zonerefs[nr_zones++]);
  1651. check_highest_zone(zone_type);
  1652. }
  1653. } while (zone_type);
  1654. return nr_zones;
  1655. }
  1656. /*
  1657. * zonelist_order:
  1658. * 0 = automatic detection of better ordering.
  1659. * 1 = order by ([node] distance, -zonetype)
  1660. * 2 = order by (-zonetype, [node] distance)
  1661. *
  1662. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1663. * the same zonelist. So only NUMA can configure this param.
  1664. */
  1665. #define ZONELIST_ORDER_DEFAULT 0
  1666. #define ZONELIST_ORDER_NODE 1
  1667. #define ZONELIST_ORDER_ZONE 2
  1668. /* zonelist order in the kernel.
  1669. * set_zonelist_order() will set this to NODE or ZONE.
  1670. */
  1671. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1672. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1673. #ifdef CONFIG_NUMA
  1674. /* The value user specified ....changed by config */
  1675. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1676. /* string for sysctl */
  1677. #define NUMA_ZONELIST_ORDER_LEN 16
  1678. char numa_zonelist_order[16] = "default";
  1679. /*
  1680. * interface for configure zonelist ordering.
  1681. * command line option "numa_zonelist_order"
  1682. * = "[dD]efault - default, automatic configuration.
  1683. * = "[nN]ode - order by node locality, then by zone within node
  1684. * = "[zZ]one - order by zone, then by locality within zone
  1685. */
  1686. static int __parse_numa_zonelist_order(char *s)
  1687. {
  1688. if (*s == 'd' || *s == 'D') {
  1689. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1690. } else if (*s == 'n' || *s == 'N') {
  1691. user_zonelist_order = ZONELIST_ORDER_NODE;
  1692. } else if (*s == 'z' || *s == 'Z') {
  1693. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1694. } else {
  1695. printk(KERN_WARNING
  1696. "Ignoring invalid numa_zonelist_order value: "
  1697. "%s\n", s);
  1698. return -EINVAL;
  1699. }
  1700. return 0;
  1701. }
  1702. static __init int setup_numa_zonelist_order(char *s)
  1703. {
  1704. if (s)
  1705. return __parse_numa_zonelist_order(s);
  1706. return 0;
  1707. }
  1708. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1709. /*
  1710. * sysctl handler for numa_zonelist_order
  1711. */
  1712. int numa_zonelist_order_handler(ctl_table *table, int write,
  1713. struct file *file, void __user *buffer, size_t *length,
  1714. loff_t *ppos)
  1715. {
  1716. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1717. int ret;
  1718. if (write)
  1719. strncpy(saved_string, (char*)table->data,
  1720. NUMA_ZONELIST_ORDER_LEN);
  1721. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1722. if (ret)
  1723. return ret;
  1724. if (write) {
  1725. int oldval = user_zonelist_order;
  1726. if (__parse_numa_zonelist_order((char*)table->data)) {
  1727. /*
  1728. * bogus value. restore saved string
  1729. */
  1730. strncpy((char*)table->data, saved_string,
  1731. NUMA_ZONELIST_ORDER_LEN);
  1732. user_zonelist_order = oldval;
  1733. } else if (oldval != user_zonelist_order)
  1734. build_all_zonelists();
  1735. }
  1736. return 0;
  1737. }
  1738. #define MAX_NODE_LOAD (num_online_nodes())
  1739. static int node_load[MAX_NUMNODES];
  1740. /**
  1741. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1742. * @node: node whose fallback list we're appending
  1743. * @used_node_mask: nodemask_t of already used nodes
  1744. *
  1745. * We use a number of factors to determine which is the next node that should
  1746. * appear on a given node's fallback list. The node should not have appeared
  1747. * already in @node's fallback list, and it should be the next closest node
  1748. * according to the distance array (which contains arbitrary distance values
  1749. * from each node to each node in the system), and should also prefer nodes
  1750. * with no CPUs, since presumably they'll have very little allocation pressure
  1751. * on them otherwise.
  1752. * It returns -1 if no node is found.
  1753. */
  1754. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1755. {
  1756. int n, val;
  1757. int min_val = INT_MAX;
  1758. int best_node = -1;
  1759. node_to_cpumask_ptr(tmp, 0);
  1760. /* Use the local node if we haven't already */
  1761. if (!node_isset(node, *used_node_mask)) {
  1762. node_set(node, *used_node_mask);
  1763. return node;
  1764. }
  1765. for_each_node_state(n, N_HIGH_MEMORY) {
  1766. /* Don't want a node to appear more than once */
  1767. if (node_isset(n, *used_node_mask))
  1768. continue;
  1769. /* Use the distance array to find the distance */
  1770. val = node_distance(node, n);
  1771. /* Penalize nodes under us ("prefer the next node") */
  1772. val += (n < node);
  1773. /* Give preference to headless and unused nodes */
  1774. node_to_cpumask_ptr_next(tmp, n);
  1775. if (!cpus_empty(*tmp))
  1776. val += PENALTY_FOR_NODE_WITH_CPUS;
  1777. /* Slight preference for less loaded node */
  1778. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1779. val += node_load[n];
  1780. if (val < min_val) {
  1781. min_val = val;
  1782. best_node = n;
  1783. }
  1784. }
  1785. if (best_node >= 0)
  1786. node_set(best_node, *used_node_mask);
  1787. return best_node;
  1788. }
  1789. /*
  1790. * Build zonelists ordered by node and zones within node.
  1791. * This results in maximum locality--normal zone overflows into local
  1792. * DMA zone, if any--but risks exhausting DMA zone.
  1793. */
  1794. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1795. {
  1796. int j;
  1797. struct zonelist *zonelist;
  1798. zonelist = &pgdat->node_zonelists[0];
  1799. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1800. ;
  1801. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1802. MAX_NR_ZONES - 1);
  1803. zonelist->_zonerefs[j].zone = NULL;
  1804. zonelist->_zonerefs[j].zone_idx = 0;
  1805. }
  1806. /*
  1807. * Build gfp_thisnode zonelists
  1808. */
  1809. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1810. {
  1811. int j;
  1812. struct zonelist *zonelist;
  1813. zonelist = &pgdat->node_zonelists[1];
  1814. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1815. zonelist->_zonerefs[j].zone = NULL;
  1816. zonelist->_zonerefs[j].zone_idx = 0;
  1817. }
  1818. /*
  1819. * Build zonelists ordered by zone and nodes within zones.
  1820. * This results in conserving DMA zone[s] until all Normal memory is
  1821. * exhausted, but results in overflowing to remote node while memory
  1822. * may still exist in local DMA zone.
  1823. */
  1824. static int node_order[MAX_NUMNODES];
  1825. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1826. {
  1827. int pos, j, node;
  1828. int zone_type; /* needs to be signed */
  1829. struct zone *z;
  1830. struct zonelist *zonelist;
  1831. zonelist = &pgdat->node_zonelists[0];
  1832. pos = 0;
  1833. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1834. for (j = 0; j < nr_nodes; j++) {
  1835. node = node_order[j];
  1836. z = &NODE_DATA(node)->node_zones[zone_type];
  1837. if (populated_zone(z)) {
  1838. zoneref_set_zone(z,
  1839. &zonelist->_zonerefs[pos++]);
  1840. check_highest_zone(zone_type);
  1841. }
  1842. }
  1843. }
  1844. zonelist->_zonerefs[pos].zone = NULL;
  1845. zonelist->_zonerefs[pos].zone_idx = 0;
  1846. }
  1847. static int default_zonelist_order(void)
  1848. {
  1849. int nid, zone_type;
  1850. unsigned long low_kmem_size,total_size;
  1851. struct zone *z;
  1852. int average_size;
  1853. /*
  1854. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1855. * If they are really small and used heavily, the system can fall
  1856. * into OOM very easily.
  1857. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1858. */
  1859. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1860. low_kmem_size = 0;
  1861. total_size = 0;
  1862. for_each_online_node(nid) {
  1863. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1864. z = &NODE_DATA(nid)->node_zones[zone_type];
  1865. if (populated_zone(z)) {
  1866. if (zone_type < ZONE_NORMAL)
  1867. low_kmem_size += z->present_pages;
  1868. total_size += z->present_pages;
  1869. }
  1870. }
  1871. }
  1872. if (!low_kmem_size || /* there are no DMA area. */
  1873. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1874. return ZONELIST_ORDER_NODE;
  1875. /*
  1876. * look into each node's config.
  1877. * If there is a node whose DMA/DMA32 memory is very big area on
  1878. * local memory, NODE_ORDER may be suitable.
  1879. */
  1880. average_size = total_size /
  1881. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1882. for_each_online_node(nid) {
  1883. low_kmem_size = 0;
  1884. total_size = 0;
  1885. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1886. z = &NODE_DATA(nid)->node_zones[zone_type];
  1887. if (populated_zone(z)) {
  1888. if (zone_type < ZONE_NORMAL)
  1889. low_kmem_size += z->present_pages;
  1890. total_size += z->present_pages;
  1891. }
  1892. }
  1893. if (low_kmem_size &&
  1894. total_size > average_size && /* ignore small node */
  1895. low_kmem_size > total_size * 70/100)
  1896. return ZONELIST_ORDER_NODE;
  1897. }
  1898. return ZONELIST_ORDER_ZONE;
  1899. }
  1900. static void set_zonelist_order(void)
  1901. {
  1902. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1903. current_zonelist_order = default_zonelist_order();
  1904. else
  1905. current_zonelist_order = user_zonelist_order;
  1906. }
  1907. static void build_zonelists(pg_data_t *pgdat)
  1908. {
  1909. int j, node, load;
  1910. enum zone_type i;
  1911. nodemask_t used_mask;
  1912. int local_node, prev_node;
  1913. struct zonelist *zonelist;
  1914. int order = current_zonelist_order;
  1915. /* initialize zonelists */
  1916. for (i = 0; i < MAX_ZONELISTS; i++) {
  1917. zonelist = pgdat->node_zonelists + i;
  1918. zonelist->_zonerefs[0].zone = NULL;
  1919. zonelist->_zonerefs[0].zone_idx = 0;
  1920. }
  1921. /* NUMA-aware ordering of nodes */
  1922. local_node = pgdat->node_id;
  1923. load = num_online_nodes();
  1924. prev_node = local_node;
  1925. nodes_clear(used_mask);
  1926. memset(node_load, 0, sizeof(node_load));
  1927. memset(node_order, 0, sizeof(node_order));
  1928. j = 0;
  1929. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1930. int distance = node_distance(local_node, node);
  1931. /*
  1932. * If another node is sufficiently far away then it is better
  1933. * to reclaim pages in a zone before going off node.
  1934. */
  1935. if (distance > RECLAIM_DISTANCE)
  1936. zone_reclaim_mode = 1;
  1937. /*
  1938. * We don't want to pressure a particular node.
  1939. * So adding penalty to the first node in same
  1940. * distance group to make it round-robin.
  1941. */
  1942. if (distance != node_distance(local_node, prev_node))
  1943. node_load[node] = load;
  1944. prev_node = node;
  1945. load--;
  1946. if (order == ZONELIST_ORDER_NODE)
  1947. build_zonelists_in_node_order(pgdat, node);
  1948. else
  1949. node_order[j++] = node; /* remember order */
  1950. }
  1951. if (order == ZONELIST_ORDER_ZONE) {
  1952. /* calculate node order -- i.e., DMA last! */
  1953. build_zonelists_in_zone_order(pgdat, j);
  1954. }
  1955. build_thisnode_zonelists(pgdat);
  1956. }
  1957. /* Construct the zonelist performance cache - see further mmzone.h */
  1958. static void build_zonelist_cache(pg_data_t *pgdat)
  1959. {
  1960. struct zonelist *zonelist;
  1961. struct zonelist_cache *zlc;
  1962. struct zoneref *z;
  1963. zonelist = &pgdat->node_zonelists[0];
  1964. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1965. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1966. for (z = zonelist->_zonerefs; z->zone; z++)
  1967. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  1968. }
  1969. #else /* CONFIG_NUMA */
  1970. static void set_zonelist_order(void)
  1971. {
  1972. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1973. }
  1974. static void build_zonelists(pg_data_t *pgdat)
  1975. {
  1976. int node, local_node;
  1977. enum zone_type j;
  1978. struct zonelist *zonelist;
  1979. local_node = pgdat->node_id;
  1980. zonelist = &pgdat->node_zonelists[0];
  1981. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1982. /*
  1983. * Now we build the zonelist so that it contains the zones
  1984. * of all the other nodes.
  1985. * We don't want to pressure a particular node, so when
  1986. * building the zones for node N, we make sure that the
  1987. * zones coming right after the local ones are those from
  1988. * node N+1 (modulo N)
  1989. */
  1990. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1991. if (!node_online(node))
  1992. continue;
  1993. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1994. MAX_NR_ZONES - 1);
  1995. }
  1996. for (node = 0; node < local_node; node++) {
  1997. if (!node_online(node))
  1998. continue;
  1999. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2000. MAX_NR_ZONES - 1);
  2001. }
  2002. zonelist->_zonerefs[j].zone = NULL;
  2003. zonelist->_zonerefs[j].zone_idx = 0;
  2004. }
  2005. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2006. static void build_zonelist_cache(pg_data_t *pgdat)
  2007. {
  2008. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2009. }
  2010. #endif /* CONFIG_NUMA */
  2011. /* return values int ....just for stop_machine_run() */
  2012. static int __build_all_zonelists(void *dummy)
  2013. {
  2014. int nid;
  2015. for_each_online_node(nid) {
  2016. pg_data_t *pgdat = NODE_DATA(nid);
  2017. build_zonelists(pgdat);
  2018. build_zonelist_cache(pgdat);
  2019. }
  2020. return 0;
  2021. }
  2022. void build_all_zonelists(void)
  2023. {
  2024. set_zonelist_order();
  2025. if (system_state == SYSTEM_BOOTING) {
  2026. __build_all_zonelists(NULL);
  2027. cpuset_init_current_mems_allowed();
  2028. } else {
  2029. /* we have to stop all cpus to guarantee there is no user
  2030. of zonelist */
  2031. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  2032. /* cpuset refresh routine should be here */
  2033. }
  2034. vm_total_pages = nr_free_pagecache_pages();
  2035. /*
  2036. * Disable grouping by mobility if the number of pages in the
  2037. * system is too low to allow the mechanism to work. It would be
  2038. * more accurate, but expensive to check per-zone. This check is
  2039. * made on memory-hotadd so a system can start with mobility
  2040. * disabled and enable it later
  2041. */
  2042. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2043. page_group_by_mobility_disabled = 1;
  2044. else
  2045. page_group_by_mobility_disabled = 0;
  2046. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2047. "Total pages: %ld\n",
  2048. num_online_nodes(),
  2049. zonelist_order_name[current_zonelist_order],
  2050. page_group_by_mobility_disabled ? "off" : "on",
  2051. vm_total_pages);
  2052. #ifdef CONFIG_NUMA
  2053. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2054. #endif
  2055. }
  2056. /*
  2057. * Helper functions to size the waitqueue hash table.
  2058. * Essentially these want to choose hash table sizes sufficiently
  2059. * large so that collisions trying to wait on pages are rare.
  2060. * But in fact, the number of active page waitqueues on typical
  2061. * systems is ridiculously low, less than 200. So this is even
  2062. * conservative, even though it seems large.
  2063. *
  2064. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2065. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2066. */
  2067. #define PAGES_PER_WAITQUEUE 256
  2068. #ifndef CONFIG_MEMORY_HOTPLUG
  2069. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2070. {
  2071. unsigned long size = 1;
  2072. pages /= PAGES_PER_WAITQUEUE;
  2073. while (size < pages)
  2074. size <<= 1;
  2075. /*
  2076. * Once we have dozens or even hundreds of threads sleeping
  2077. * on IO we've got bigger problems than wait queue collision.
  2078. * Limit the size of the wait table to a reasonable size.
  2079. */
  2080. size = min(size, 4096UL);
  2081. return max(size, 4UL);
  2082. }
  2083. #else
  2084. /*
  2085. * A zone's size might be changed by hot-add, so it is not possible to determine
  2086. * a suitable size for its wait_table. So we use the maximum size now.
  2087. *
  2088. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2089. *
  2090. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2091. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2092. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2093. *
  2094. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2095. * or more by the traditional way. (See above). It equals:
  2096. *
  2097. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2098. * ia64(16K page size) : = ( 8G + 4M)byte.
  2099. * powerpc (64K page size) : = (32G +16M)byte.
  2100. */
  2101. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2102. {
  2103. return 4096UL;
  2104. }
  2105. #endif
  2106. /*
  2107. * This is an integer logarithm so that shifts can be used later
  2108. * to extract the more random high bits from the multiplicative
  2109. * hash function before the remainder is taken.
  2110. */
  2111. static inline unsigned long wait_table_bits(unsigned long size)
  2112. {
  2113. return ffz(~size);
  2114. }
  2115. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2116. /*
  2117. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2118. * of blocks reserved is based on zone->pages_min. The memory within the
  2119. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2120. * higher will lead to a bigger reserve which will get freed as contiguous
  2121. * blocks as reclaim kicks in
  2122. */
  2123. static void setup_zone_migrate_reserve(struct zone *zone)
  2124. {
  2125. unsigned long start_pfn, pfn, end_pfn;
  2126. struct page *page;
  2127. unsigned long reserve, block_migratetype;
  2128. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2129. start_pfn = zone->zone_start_pfn;
  2130. end_pfn = start_pfn + zone->spanned_pages;
  2131. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2132. pageblock_order;
  2133. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2134. if (!pfn_valid(pfn))
  2135. continue;
  2136. page = pfn_to_page(pfn);
  2137. /* Blocks with reserved pages will never free, skip them. */
  2138. if (PageReserved(page))
  2139. continue;
  2140. block_migratetype = get_pageblock_migratetype(page);
  2141. /* If this block is reserved, account for it */
  2142. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2143. reserve--;
  2144. continue;
  2145. }
  2146. /* Suitable for reserving if this block is movable */
  2147. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2148. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2149. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2150. reserve--;
  2151. continue;
  2152. }
  2153. /*
  2154. * If the reserve is met and this is a previous reserved block,
  2155. * take it back
  2156. */
  2157. if (block_migratetype == MIGRATE_RESERVE) {
  2158. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2159. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2160. }
  2161. }
  2162. }
  2163. /*
  2164. * Initially all pages are reserved - free ones are freed
  2165. * up by free_all_bootmem() once the early boot process is
  2166. * done. Non-atomic initialization, single-pass.
  2167. */
  2168. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2169. unsigned long start_pfn, enum memmap_context context)
  2170. {
  2171. struct page *page;
  2172. unsigned long end_pfn = start_pfn + size;
  2173. unsigned long pfn;
  2174. struct zone *z;
  2175. z = &NODE_DATA(nid)->node_zones[zone];
  2176. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2177. /*
  2178. * There can be holes in boot-time mem_map[]s
  2179. * handed to this function. They do not
  2180. * exist on hotplugged memory.
  2181. */
  2182. if (context == MEMMAP_EARLY) {
  2183. if (!early_pfn_valid(pfn))
  2184. continue;
  2185. if (!early_pfn_in_nid(pfn, nid))
  2186. continue;
  2187. }
  2188. page = pfn_to_page(pfn);
  2189. set_page_links(page, zone, nid, pfn);
  2190. mminit_verify_page_links(page, zone, nid, pfn);
  2191. init_page_count(page);
  2192. reset_page_mapcount(page);
  2193. SetPageReserved(page);
  2194. /*
  2195. * Mark the block movable so that blocks are reserved for
  2196. * movable at startup. This will force kernel allocations
  2197. * to reserve their blocks rather than leaking throughout
  2198. * the address space during boot when many long-lived
  2199. * kernel allocations are made. Later some blocks near
  2200. * the start are marked MIGRATE_RESERVE by
  2201. * setup_zone_migrate_reserve()
  2202. *
  2203. * bitmap is created for zone's valid pfn range. but memmap
  2204. * can be created for invalid pages (for alignment)
  2205. * check here not to call set_pageblock_migratetype() against
  2206. * pfn out of zone.
  2207. */
  2208. if ((z->zone_start_pfn <= pfn)
  2209. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2210. && !(pfn & (pageblock_nr_pages - 1)))
  2211. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2212. INIT_LIST_HEAD(&page->lru);
  2213. #ifdef WANT_PAGE_VIRTUAL
  2214. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2215. if (!is_highmem_idx(zone))
  2216. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2217. #endif
  2218. }
  2219. }
  2220. static void __meminit zone_init_free_lists(struct zone *zone)
  2221. {
  2222. int order, t;
  2223. for_each_migratetype_order(order, t) {
  2224. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2225. zone->free_area[order].nr_free = 0;
  2226. }
  2227. }
  2228. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2229. #define memmap_init(size, nid, zone, start_pfn) \
  2230. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2231. #endif
  2232. static int zone_batchsize(struct zone *zone)
  2233. {
  2234. int batch;
  2235. /*
  2236. * The per-cpu-pages pools are set to around 1000th of the
  2237. * size of the zone. But no more than 1/2 of a meg.
  2238. *
  2239. * OK, so we don't know how big the cache is. So guess.
  2240. */
  2241. batch = zone->present_pages / 1024;
  2242. if (batch * PAGE_SIZE > 512 * 1024)
  2243. batch = (512 * 1024) / PAGE_SIZE;
  2244. batch /= 4; /* We effectively *= 4 below */
  2245. if (batch < 1)
  2246. batch = 1;
  2247. /*
  2248. * Clamp the batch to a 2^n - 1 value. Having a power
  2249. * of 2 value was found to be more likely to have
  2250. * suboptimal cache aliasing properties in some cases.
  2251. *
  2252. * For example if 2 tasks are alternately allocating
  2253. * batches of pages, one task can end up with a lot
  2254. * of pages of one half of the possible page colors
  2255. * and the other with pages of the other colors.
  2256. */
  2257. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2258. return batch;
  2259. }
  2260. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2261. {
  2262. struct per_cpu_pages *pcp;
  2263. memset(p, 0, sizeof(*p));
  2264. pcp = &p->pcp;
  2265. pcp->count = 0;
  2266. pcp->high = 6 * batch;
  2267. pcp->batch = max(1UL, 1 * batch);
  2268. INIT_LIST_HEAD(&pcp->list);
  2269. }
  2270. /*
  2271. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2272. * to the value high for the pageset p.
  2273. */
  2274. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2275. unsigned long high)
  2276. {
  2277. struct per_cpu_pages *pcp;
  2278. pcp = &p->pcp;
  2279. pcp->high = high;
  2280. pcp->batch = max(1UL, high/4);
  2281. if ((high/4) > (PAGE_SHIFT * 8))
  2282. pcp->batch = PAGE_SHIFT * 8;
  2283. }
  2284. #ifdef CONFIG_NUMA
  2285. /*
  2286. * Boot pageset table. One per cpu which is going to be used for all
  2287. * zones and all nodes. The parameters will be set in such a way
  2288. * that an item put on a list will immediately be handed over to
  2289. * the buddy list. This is safe since pageset manipulation is done
  2290. * with interrupts disabled.
  2291. *
  2292. * Some NUMA counter updates may also be caught by the boot pagesets.
  2293. *
  2294. * The boot_pagesets must be kept even after bootup is complete for
  2295. * unused processors and/or zones. They do play a role for bootstrapping
  2296. * hotplugged processors.
  2297. *
  2298. * zoneinfo_show() and maybe other functions do
  2299. * not check if the processor is online before following the pageset pointer.
  2300. * Other parts of the kernel may not check if the zone is available.
  2301. */
  2302. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2303. /*
  2304. * Dynamically allocate memory for the
  2305. * per cpu pageset array in struct zone.
  2306. */
  2307. static int __cpuinit process_zones(int cpu)
  2308. {
  2309. struct zone *zone, *dzone;
  2310. int node = cpu_to_node(cpu);
  2311. node_set_state(node, N_CPU); /* this node has a cpu */
  2312. for_each_zone(zone) {
  2313. if (!populated_zone(zone))
  2314. continue;
  2315. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2316. GFP_KERNEL, node);
  2317. if (!zone_pcp(zone, cpu))
  2318. goto bad;
  2319. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2320. if (percpu_pagelist_fraction)
  2321. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2322. (zone->present_pages / percpu_pagelist_fraction));
  2323. }
  2324. return 0;
  2325. bad:
  2326. for_each_zone(dzone) {
  2327. if (!populated_zone(dzone))
  2328. continue;
  2329. if (dzone == zone)
  2330. break;
  2331. kfree(zone_pcp(dzone, cpu));
  2332. zone_pcp(dzone, cpu) = NULL;
  2333. }
  2334. return -ENOMEM;
  2335. }
  2336. static inline void free_zone_pagesets(int cpu)
  2337. {
  2338. struct zone *zone;
  2339. for_each_zone(zone) {
  2340. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2341. /* Free per_cpu_pageset if it is slab allocated */
  2342. if (pset != &boot_pageset[cpu])
  2343. kfree(pset);
  2344. zone_pcp(zone, cpu) = NULL;
  2345. }
  2346. }
  2347. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2348. unsigned long action,
  2349. void *hcpu)
  2350. {
  2351. int cpu = (long)hcpu;
  2352. int ret = NOTIFY_OK;
  2353. switch (action) {
  2354. case CPU_UP_PREPARE:
  2355. case CPU_UP_PREPARE_FROZEN:
  2356. if (process_zones(cpu))
  2357. ret = NOTIFY_BAD;
  2358. break;
  2359. case CPU_UP_CANCELED:
  2360. case CPU_UP_CANCELED_FROZEN:
  2361. case CPU_DEAD:
  2362. case CPU_DEAD_FROZEN:
  2363. free_zone_pagesets(cpu);
  2364. break;
  2365. default:
  2366. break;
  2367. }
  2368. return ret;
  2369. }
  2370. static struct notifier_block __cpuinitdata pageset_notifier =
  2371. { &pageset_cpuup_callback, NULL, 0 };
  2372. void __init setup_per_cpu_pageset(void)
  2373. {
  2374. int err;
  2375. /* Initialize per_cpu_pageset for cpu 0.
  2376. * A cpuup callback will do this for every cpu
  2377. * as it comes online
  2378. */
  2379. err = process_zones(smp_processor_id());
  2380. BUG_ON(err);
  2381. register_cpu_notifier(&pageset_notifier);
  2382. }
  2383. #endif
  2384. static noinline __init_refok
  2385. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2386. {
  2387. int i;
  2388. struct pglist_data *pgdat = zone->zone_pgdat;
  2389. size_t alloc_size;
  2390. /*
  2391. * The per-page waitqueue mechanism uses hashed waitqueues
  2392. * per zone.
  2393. */
  2394. zone->wait_table_hash_nr_entries =
  2395. wait_table_hash_nr_entries(zone_size_pages);
  2396. zone->wait_table_bits =
  2397. wait_table_bits(zone->wait_table_hash_nr_entries);
  2398. alloc_size = zone->wait_table_hash_nr_entries
  2399. * sizeof(wait_queue_head_t);
  2400. if (!slab_is_available()) {
  2401. zone->wait_table = (wait_queue_head_t *)
  2402. alloc_bootmem_node(pgdat, alloc_size);
  2403. } else {
  2404. /*
  2405. * This case means that a zone whose size was 0 gets new memory
  2406. * via memory hot-add.
  2407. * But it may be the case that a new node was hot-added. In
  2408. * this case vmalloc() will not be able to use this new node's
  2409. * memory - this wait_table must be initialized to use this new
  2410. * node itself as well.
  2411. * To use this new node's memory, further consideration will be
  2412. * necessary.
  2413. */
  2414. zone->wait_table = vmalloc(alloc_size);
  2415. }
  2416. if (!zone->wait_table)
  2417. return -ENOMEM;
  2418. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2419. init_waitqueue_head(zone->wait_table + i);
  2420. return 0;
  2421. }
  2422. static __meminit void zone_pcp_init(struct zone *zone)
  2423. {
  2424. int cpu;
  2425. unsigned long batch = zone_batchsize(zone);
  2426. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2427. #ifdef CONFIG_NUMA
  2428. /* Early boot. Slab allocator not functional yet */
  2429. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2430. setup_pageset(&boot_pageset[cpu],0);
  2431. #else
  2432. setup_pageset(zone_pcp(zone,cpu), batch);
  2433. #endif
  2434. }
  2435. if (zone->present_pages)
  2436. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2437. zone->name, zone->present_pages, batch);
  2438. }
  2439. __meminit int init_currently_empty_zone(struct zone *zone,
  2440. unsigned long zone_start_pfn,
  2441. unsigned long size,
  2442. enum memmap_context context)
  2443. {
  2444. struct pglist_data *pgdat = zone->zone_pgdat;
  2445. int ret;
  2446. ret = zone_wait_table_init(zone, size);
  2447. if (ret)
  2448. return ret;
  2449. pgdat->nr_zones = zone_idx(zone) + 1;
  2450. zone->zone_start_pfn = zone_start_pfn;
  2451. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2452. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2453. pgdat->node_id,
  2454. (unsigned long)zone_idx(zone),
  2455. zone_start_pfn, (zone_start_pfn + size));
  2456. zone_init_free_lists(zone);
  2457. return 0;
  2458. }
  2459. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2460. /*
  2461. * Basic iterator support. Return the first range of PFNs for a node
  2462. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2463. */
  2464. static int __meminit first_active_region_index_in_nid(int nid)
  2465. {
  2466. int i;
  2467. for (i = 0; i < nr_nodemap_entries; i++)
  2468. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2469. return i;
  2470. return -1;
  2471. }
  2472. /*
  2473. * Basic iterator support. Return the next active range of PFNs for a node
  2474. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2475. */
  2476. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2477. {
  2478. for (index = index + 1; index < nr_nodemap_entries; index++)
  2479. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2480. return index;
  2481. return -1;
  2482. }
  2483. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2484. /*
  2485. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2486. * Architectures may implement their own version but if add_active_range()
  2487. * was used and there are no special requirements, this is a convenient
  2488. * alternative
  2489. */
  2490. int __meminit early_pfn_to_nid(unsigned long pfn)
  2491. {
  2492. int i;
  2493. for (i = 0; i < nr_nodemap_entries; i++) {
  2494. unsigned long start_pfn = early_node_map[i].start_pfn;
  2495. unsigned long end_pfn = early_node_map[i].end_pfn;
  2496. if (start_pfn <= pfn && pfn < end_pfn)
  2497. return early_node_map[i].nid;
  2498. }
  2499. return 0;
  2500. }
  2501. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2502. /* Basic iterator support to walk early_node_map[] */
  2503. #define for_each_active_range_index_in_nid(i, nid) \
  2504. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2505. i = next_active_region_index_in_nid(i, nid))
  2506. /**
  2507. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2508. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2509. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2510. *
  2511. * If an architecture guarantees that all ranges registered with
  2512. * add_active_ranges() contain no holes and may be freed, this
  2513. * this function may be used instead of calling free_bootmem() manually.
  2514. */
  2515. void __init free_bootmem_with_active_regions(int nid,
  2516. unsigned long max_low_pfn)
  2517. {
  2518. int i;
  2519. for_each_active_range_index_in_nid(i, nid) {
  2520. unsigned long size_pages = 0;
  2521. unsigned long end_pfn = early_node_map[i].end_pfn;
  2522. if (early_node_map[i].start_pfn >= max_low_pfn)
  2523. continue;
  2524. if (end_pfn > max_low_pfn)
  2525. end_pfn = max_low_pfn;
  2526. size_pages = end_pfn - early_node_map[i].start_pfn;
  2527. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2528. PFN_PHYS(early_node_map[i].start_pfn),
  2529. size_pages << PAGE_SHIFT);
  2530. }
  2531. }
  2532. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2533. {
  2534. int i;
  2535. int ret;
  2536. for_each_active_range_index_in_nid(i, nid) {
  2537. ret = work_fn(early_node_map[i].start_pfn,
  2538. early_node_map[i].end_pfn, data);
  2539. if (ret)
  2540. break;
  2541. }
  2542. }
  2543. /**
  2544. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2545. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2546. *
  2547. * If an architecture guarantees that all ranges registered with
  2548. * add_active_ranges() contain no holes and may be freed, this
  2549. * function may be used instead of calling memory_present() manually.
  2550. */
  2551. void __init sparse_memory_present_with_active_regions(int nid)
  2552. {
  2553. int i;
  2554. for_each_active_range_index_in_nid(i, nid)
  2555. memory_present(early_node_map[i].nid,
  2556. early_node_map[i].start_pfn,
  2557. early_node_map[i].end_pfn);
  2558. }
  2559. /**
  2560. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2561. * @nid: The nid of the node to push the boundary for
  2562. * @start_pfn: The start pfn of the node
  2563. * @end_pfn: The end pfn of the node
  2564. *
  2565. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2566. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2567. * be hotplugged even though no physical memory exists. This function allows
  2568. * an arch to push out the node boundaries so mem_map is allocated that can
  2569. * be used later.
  2570. */
  2571. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2572. void __init push_node_boundaries(unsigned int nid,
  2573. unsigned long start_pfn, unsigned long end_pfn)
  2574. {
  2575. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2576. "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2577. nid, start_pfn, end_pfn);
  2578. /* Initialise the boundary for this node if necessary */
  2579. if (node_boundary_end_pfn[nid] == 0)
  2580. node_boundary_start_pfn[nid] = -1UL;
  2581. /* Update the boundaries */
  2582. if (node_boundary_start_pfn[nid] > start_pfn)
  2583. node_boundary_start_pfn[nid] = start_pfn;
  2584. if (node_boundary_end_pfn[nid] < end_pfn)
  2585. node_boundary_end_pfn[nid] = end_pfn;
  2586. }
  2587. /* If necessary, push the node boundary out for reserve hotadd */
  2588. static void __meminit account_node_boundary(unsigned int nid,
  2589. unsigned long *start_pfn, unsigned long *end_pfn)
  2590. {
  2591. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2592. "Entering account_node_boundary(%u, %lu, %lu)\n",
  2593. nid, *start_pfn, *end_pfn);
  2594. /* Return if boundary information has not been provided */
  2595. if (node_boundary_end_pfn[nid] == 0)
  2596. return;
  2597. /* Check the boundaries and update if necessary */
  2598. if (node_boundary_start_pfn[nid] < *start_pfn)
  2599. *start_pfn = node_boundary_start_pfn[nid];
  2600. if (node_boundary_end_pfn[nid] > *end_pfn)
  2601. *end_pfn = node_boundary_end_pfn[nid];
  2602. }
  2603. #else
  2604. void __init push_node_boundaries(unsigned int nid,
  2605. unsigned long start_pfn, unsigned long end_pfn) {}
  2606. static void __meminit account_node_boundary(unsigned int nid,
  2607. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2608. #endif
  2609. /**
  2610. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2611. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2612. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2613. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2614. *
  2615. * It returns the start and end page frame of a node based on information
  2616. * provided by an arch calling add_active_range(). If called for a node
  2617. * with no available memory, a warning is printed and the start and end
  2618. * PFNs will be 0.
  2619. */
  2620. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2621. unsigned long *start_pfn, unsigned long *end_pfn)
  2622. {
  2623. int i;
  2624. *start_pfn = -1UL;
  2625. *end_pfn = 0;
  2626. for_each_active_range_index_in_nid(i, nid) {
  2627. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2628. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2629. }
  2630. if (*start_pfn == -1UL)
  2631. *start_pfn = 0;
  2632. /* Push the node boundaries out if requested */
  2633. account_node_boundary(nid, start_pfn, end_pfn);
  2634. }
  2635. /*
  2636. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2637. * assumption is made that zones within a node are ordered in monotonic
  2638. * increasing memory addresses so that the "highest" populated zone is used
  2639. */
  2640. void __init find_usable_zone_for_movable(void)
  2641. {
  2642. int zone_index;
  2643. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2644. if (zone_index == ZONE_MOVABLE)
  2645. continue;
  2646. if (arch_zone_highest_possible_pfn[zone_index] >
  2647. arch_zone_lowest_possible_pfn[zone_index])
  2648. break;
  2649. }
  2650. VM_BUG_ON(zone_index == -1);
  2651. movable_zone = zone_index;
  2652. }
  2653. /*
  2654. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2655. * because it is sized independant of architecture. Unlike the other zones,
  2656. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2657. * in each node depending on the size of each node and how evenly kernelcore
  2658. * is distributed. This helper function adjusts the zone ranges
  2659. * provided by the architecture for a given node by using the end of the
  2660. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2661. * zones within a node are in order of monotonic increases memory addresses
  2662. */
  2663. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2664. unsigned long zone_type,
  2665. unsigned long node_start_pfn,
  2666. unsigned long node_end_pfn,
  2667. unsigned long *zone_start_pfn,
  2668. unsigned long *zone_end_pfn)
  2669. {
  2670. /* Only adjust if ZONE_MOVABLE is on this node */
  2671. if (zone_movable_pfn[nid]) {
  2672. /* Size ZONE_MOVABLE */
  2673. if (zone_type == ZONE_MOVABLE) {
  2674. *zone_start_pfn = zone_movable_pfn[nid];
  2675. *zone_end_pfn = min(node_end_pfn,
  2676. arch_zone_highest_possible_pfn[movable_zone]);
  2677. /* Adjust for ZONE_MOVABLE starting within this range */
  2678. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2679. *zone_end_pfn > zone_movable_pfn[nid]) {
  2680. *zone_end_pfn = zone_movable_pfn[nid];
  2681. /* Check if this whole range is within ZONE_MOVABLE */
  2682. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2683. *zone_start_pfn = *zone_end_pfn;
  2684. }
  2685. }
  2686. /*
  2687. * Return the number of pages a zone spans in a node, including holes
  2688. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2689. */
  2690. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2691. unsigned long zone_type,
  2692. unsigned long *ignored)
  2693. {
  2694. unsigned long node_start_pfn, node_end_pfn;
  2695. unsigned long zone_start_pfn, zone_end_pfn;
  2696. /* Get the start and end of the node and zone */
  2697. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2698. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2699. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2700. adjust_zone_range_for_zone_movable(nid, zone_type,
  2701. node_start_pfn, node_end_pfn,
  2702. &zone_start_pfn, &zone_end_pfn);
  2703. /* Check that this node has pages within the zone's required range */
  2704. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2705. return 0;
  2706. /* Move the zone boundaries inside the node if necessary */
  2707. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2708. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2709. /* Return the spanned pages */
  2710. return zone_end_pfn - zone_start_pfn;
  2711. }
  2712. /*
  2713. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2714. * then all holes in the requested range will be accounted for.
  2715. */
  2716. unsigned long __meminit __absent_pages_in_range(int nid,
  2717. unsigned long range_start_pfn,
  2718. unsigned long range_end_pfn)
  2719. {
  2720. int i = 0;
  2721. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2722. unsigned long start_pfn;
  2723. /* Find the end_pfn of the first active range of pfns in the node */
  2724. i = first_active_region_index_in_nid(nid);
  2725. if (i == -1)
  2726. return 0;
  2727. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2728. /* Account for ranges before physical memory on this node */
  2729. if (early_node_map[i].start_pfn > range_start_pfn)
  2730. hole_pages = prev_end_pfn - range_start_pfn;
  2731. /* Find all holes for the zone within the node */
  2732. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2733. /* No need to continue if prev_end_pfn is outside the zone */
  2734. if (prev_end_pfn >= range_end_pfn)
  2735. break;
  2736. /* Make sure the end of the zone is not within the hole */
  2737. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2738. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2739. /* Update the hole size cound and move on */
  2740. if (start_pfn > range_start_pfn) {
  2741. BUG_ON(prev_end_pfn > start_pfn);
  2742. hole_pages += start_pfn - prev_end_pfn;
  2743. }
  2744. prev_end_pfn = early_node_map[i].end_pfn;
  2745. }
  2746. /* Account for ranges past physical memory on this node */
  2747. if (range_end_pfn > prev_end_pfn)
  2748. hole_pages += range_end_pfn -
  2749. max(range_start_pfn, prev_end_pfn);
  2750. return hole_pages;
  2751. }
  2752. /**
  2753. * absent_pages_in_range - Return number of page frames in holes within a range
  2754. * @start_pfn: The start PFN to start searching for holes
  2755. * @end_pfn: The end PFN to stop searching for holes
  2756. *
  2757. * It returns the number of pages frames in memory holes within a range.
  2758. */
  2759. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2760. unsigned long end_pfn)
  2761. {
  2762. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2763. }
  2764. /* Return the number of page frames in holes in a zone on a node */
  2765. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2766. unsigned long zone_type,
  2767. unsigned long *ignored)
  2768. {
  2769. unsigned long node_start_pfn, node_end_pfn;
  2770. unsigned long zone_start_pfn, zone_end_pfn;
  2771. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2772. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2773. node_start_pfn);
  2774. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2775. node_end_pfn);
  2776. adjust_zone_range_for_zone_movable(nid, zone_type,
  2777. node_start_pfn, node_end_pfn,
  2778. &zone_start_pfn, &zone_end_pfn);
  2779. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2780. }
  2781. #else
  2782. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2783. unsigned long zone_type,
  2784. unsigned long *zones_size)
  2785. {
  2786. return zones_size[zone_type];
  2787. }
  2788. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2789. unsigned long zone_type,
  2790. unsigned long *zholes_size)
  2791. {
  2792. if (!zholes_size)
  2793. return 0;
  2794. return zholes_size[zone_type];
  2795. }
  2796. #endif
  2797. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2798. unsigned long *zones_size, unsigned long *zholes_size)
  2799. {
  2800. unsigned long realtotalpages, totalpages = 0;
  2801. enum zone_type i;
  2802. for (i = 0; i < MAX_NR_ZONES; i++)
  2803. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2804. zones_size);
  2805. pgdat->node_spanned_pages = totalpages;
  2806. realtotalpages = totalpages;
  2807. for (i = 0; i < MAX_NR_ZONES; i++)
  2808. realtotalpages -=
  2809. zone_absent_pages_in_node(pgdat->node_id, i,
  2810. zholes_size);
  2811. pgdat->node_present_pages = realtotalpages;
  2812. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2813. realtotalpages);
  2814. }
  2815. #ifndef CONFIG_SPARSEMEM
  2816. /*
  2817. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2818. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2819. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2820. * round what is now in bits to nearest long in bits, then return it in
  2821. * bytes.
  2822. */
  2823. static unsigned long __init usemap_size(unsigned long zonesize)
  2824. {
  2825. unsigned long usemapsize;
  2826. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2827. usemapsize = usemapsize >> pageblock_order;
  2828. usemapsize *= NR_PAGEBLOCK_BITS;
  2829. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2830. return usemapsize / 8;
  2831. }
  2832. static void __init setup_usemap(struct pglist_data *pgdat,
  2833. struct zone *zone, unsigned long zonesize)
  2834. {
  2835. unsigned long usemapsize = usemap_size(zonesize);
  2836. zone->pageblock_flags = NULL;
  2837. if (usemapsize) {
  2838. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2839. memset(zone->pageblock_flags, 0, usemapsize);
  2840. }
  2841. }
  2842. #else
  2843. static void inline setup_usemap(struct pglist_data *pgdat,
  2844. struct zone *zone, unsigned long zonesize) {}
  2845. #endif /* CONFIG_SPARSEMEM */
  2846. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2847. /* Return a sensible default order for the pageblock size. */
  2848. static inline int pageblock_default_order(void)
  2849. {
  2850. if (HPAGE_SHIFT > PAGE_SHIFT)
  2851. return HUGETLB_PAGE_ORDER;
  2852. return MAX_ORDER-1;
  2853. }
  2854. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2855. static inline void __init set_pageblock_order(unsigned int order)
  2856. {
  2857. /* Check that pageblock_nr_pages has not already been setup */
  2858. if (pageblock_order)
  2859. return;
  2860. /*
  2861. * Assume the largest contiguous order of interest is a huge page.
  2862. * This value may be variable depending on boot parameters on IA64
  2863. */
  2864. pageblock_order = order;
  2865. }
  2866. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2867. /*
  2868. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2869. * and pageblock_default_order() are unused as pageblock_order is set
  2870. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2871. * pageblock_order based on the kernel config
  2872. */
  2873. static inline int pageblock_default_order(unsigned int order)
  2874. {
  2875. return MAX_ORDER-1;
  2876. }
  2877. #define set_pageblock_order(x) do {} while (0)
  2878. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2879. /*
  2880. * Set up the zone data structures:
  2881. * - mark all pages reserved
  2882. * - mark all memory queues empty
  2883. * - clear the memory bitmaps
  2884. */
  2885. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2886. unsigned long *zones_size, unsigned long *zholes_size)
  2887. {
  2888. enum zone_type j;
  2889. int nid = pgdat->node_id;
  2890. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2891. int ret;
  2892. pgdat_resize_init(pgdat);
  2893. pgdat->nr_zones = 0;
  2894. init_waitqueue_head(&pgdat->kswapd_wait);
  2895. pgdat->kswapd_max_order = 0;
  2896. for (j = 0; j < MAX_NR_ZONES; j++) {
  2897. struct zone *zone = pgdat->node_zones + j;
  2898. unsigned long size, realsize, memmap_pages;
  2899. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2900. realsize = size - zone_absent_pages_in_node(nid, j,
  2901. zholes_size);
  2902. /*
  2903. * Adjust realsize so that it accounts for how much memory
  2904. * is used by this zone for memmap. This affects the watermark
  2905. * and per-cpu initialisations
  2906. */
  2907. memmap_pages =
  2908. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  2909. if (realsize >= memmap_pages) {
  2910. realsize -= memmap_pages;
  2911. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2912. "%s zone: %lu pages used for memmap\n",
  2913. zone_names[j], memmap_pages);
  2914. } else
  2915. printk(KERN_WARNING
  2916. " %s zone: %lu pages exceeds realsize %lu\n",
  2917. zone_names[j], memmap_pages, realsize);
  2918. /* Account for reserved pages */
  2919. if (j == 0 && realsize > dma_reserve) {
  2920. realsize -= dma_reserve;
  2921. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2922. "%s zone: %lu pages reserved\n",
  2923. zone_names[0], dma_reserve);
  2924. }
  2925. if (!is_highmem_idx(j))
  2926. nr_kernel_pages += realsize;
  2927. nr_all_pages += realsize;
  2928. zone->spanned_pages = size;
  2929. zone->present_pages = realsize;
  2930. #ifdef CONFIG_NUMA
  2931. zone->node = nid;
  2932. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2933. / 100;
  2934. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2935. #endif
  2936. zone->name = zone_names[j];
  2937. spin_lock_init(&zone->lock);
  2938. spin_lock_init(&zone->lru_lock);
  2939. zone_seqlock_init(zone);
  2940. zone->zone_pgdat = pgdat;
  2941. zone->prev_priority = DEF_PRIORITY;
  2942. zone_pcp_init(zone);
  2943. INIT_LIST_HEAD(&zone->active_list);
  2944. INIT_LIST_HEAD(&zone->inactive_list);
  2945. zone->nr_scan_active = 0;
  2946. zone->nr_scan_inactive = 0;
  2947. zap_zone_vm_stats(zone);
  2948. zone->flags = 0;
  2949. if (!size)
  2950. continue;
  2951. set_pageblock_order(pageblock_default_order());
  2952. setup_usemap(pgdat, zone, size);
  2953. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2954. size, MEMMAP_EARLY);
  2955. BUG_ON(ret);
  2956. memmap_init(size, nid, j, zone_start_pfn);
  2957. zone_start_pfn += size;
  2958. }
  2959. }
  2960. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2961. {
  2962. /* Skip empty nodes */
  2963. if (!pgdat->node_spanned_pages)
  2964. return;
  2965. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2966. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2967. if (!pgdat->node_mem_map) {
  2968. unsigned long size, start, end;
  2969. struct page *map;
  2970. /*
  2971. * The zone's endpoints aren't required to be MAX_ORDER
  2972. * aligned but the node_mem_map endpoints must be in order
  2973. * for the buddy allocator to function correctly.
  2974. */
  2975. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2976. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2977. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2978. size = (end - start) * sizeof(struct page);
  2979. map = alloc_remap(pgdat->node_id, size);
  2980. if (!map)
  2981. map = alloc_bootmem_node(pgdat, size);
  2982. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2983. }
  2984. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2985. /*
  2986. * With no DISCONTIG, the global mem_map is just set as node 0's
  2987. */
  2988. if (pgdat == NODE_DATA(0)) {
  2989. mem_map = NODE_DATA(0)->node_mem_map;
  2990. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2991. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2992. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  2993. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2994. }
  2995. #endif
  2996. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2997. }
  2998. void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
  2999. unsigned long *zones_size, unsigned long node_start_pfn,
  3000. unsigned long *zholes_size)
  3001. {
  3002. pgdat->node_id = nid;
  3003. pgdat->node_start_pfn = node_start_pfn;
  3004. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3005. alloc_node_mem_map(pgdat);
  3006. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3007. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3008. nid, (unsigned long)pgdat,
  3009. (unsigned long)pgdat->node_mem_map);
  3010. #endif
  3011. free_area_init_core(pgdat, zones_size, zholes_size);
  3012. }
  3013. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3014. #if MAX_NUMNODES > 1
  3015. /*
  3016. * Figure out the number of possible node ids.
  3017. */
  3018. static void __init setup_nr_node_ids(void)
  3019. {
  3020. unsigned int node;
  3021. unsigned int highest = 0;
  3022. for_each_node_mask(node, node_possible_map)
  3023. highest = node;
  3024. nr_node_ids = highest + 1;
  3025. }
  3026. #else
  3027. static inline void setup_nr_node_ids(void)
  3028. {
  3029. }
  3030. #endif
  3031. /**
  3032. * add_active_range - Register a range of PFNs backed by physical memory
  3033. * @nid: The node ID the range resides on
  3034. * @start_pfn: The start PFN of the available physical memory
  3035. * @end_pfn: The end PFN of the available physical memory
  3036. *
  3037. * These ranges are stored in an early_node_map[] and later used by
  3038. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3039. * range spans a memory hole, it is up to the architecture to ensure
  3040. * the memory is not freed by the bootmem allocator. If possible
  3041. * the range being registered will be merged with existing ranges.
  3042. */
  3043. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3044. unsigned long end_pfn)
  3045. {
  3046. int i;
  3047. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3048. "Entering add_active_range(%d, %#lx, %#lx) "
  3049. "%d entries of %d used\n",
  3050. nid, start_pfn, end_pfn,
  3051. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3052. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3053. /* Merge with existing active regions if possible */
  3054. for (i = 0; i < nr_nodemap_entries; i++) {
  3055. if (early_node_map[i].nid != nid)
  3056. continue;
  3057. /* Skip if an existing region covers this new one */
  3058. if (start_pfn >= early_node_map[i].start_pfn &&
  3059. end_pfn <= early_node_map[i].end_pfn)
  3060. return;
  3061. /* Merge forward if suitable */
  3062. if (start_pfn <= early_node_map[i].end_pfn &&
  3063. end_pfn > early_node_map[i].end_pfn) {
  3064. early_node_map[i].end_pfn = end_pfn;
  3065. return;
  3066. }
  3067. /* Merge backward if suitable */
  3068. if (start_pfn < early_node_map[i].end_pfn &&
  3069. end_pfn >= early_node_map[i].start_pfn) {
  3070. early_node_map[i].start_pfn = start_pfn;
  3071. return;
  3072. }
  3073. }
  3074. /* Check that early_node_map is large enough */
  3075. if (i >= MAX_ACTIVE_REGIONS) {
  3076. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3077. MAX_ACTIVE_REGIONS);
  3078. return;
  3079. }
  3080. early_node_map[i].nid = nid;
  3081. early_node_map[i].start_pfn = start_pfn;
  3082. early_node_map[i].end_pfn = end_pfn;
  3083. nr_nodemap_entries = i + 1;
  3084. }
  3085. /**
  3086. * remove_active_range - Shrink an existing registered range of PFNs
  3087. * @nid: The node id the range is on that should be shrunk
  3088. * @start_pfn: The new PFN of the range
  3089. * @end_pfn: The new PFN of the range
  3090. *
  3091. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3092. * The map is kept near the end physical page range that has already been
  3093. * registered. This function allows an arch to shrink an existing registered
  3094. * range.
  3095. */
  3096. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3097. unsigned long end_pfn)
  3098. {
  3099. int i, j;
  3100. int removed = 0;
  3101. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3102. nid, start_pfn, end_pfn);
  3103. /* Find the old active region end and shrink */
  3104. for_each_active_range_index_in_nid(i, nid) {
  3105. if (early_node_map[i].start_pfn >= start_pfn &&
  3106. early_node_map[i].end_pfn <= end_pfn) {
  3107. /* clear it */
  3108. early_node_map[i].start_pfn = 0;
  3109. early_node_map[i].end_pfn = 0;
  3110. removed = 1;
  3111. continue;
  3112. }
  3113. if (early_node_map[i].start_pfn < start_pfn &&
  3114. early_node_map[i].end_pfn > start_pfn) {
  3115. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3116. early_node_map[i].end_pfn = start_pfn;
  3117. if (temp_end_pfn > end_pfn)
  3118. add_active_range(nid, end_pfn, temp_end_pfn);
  3119. continue;
  3120. }
  3121. if (early_node_map[i].start_pfn >= start_pfn &&
  3122. early_node_map[i].end_pfn > end_pfn &&
  3123. early_node_map[i].start_pfn < end_pfn) {
  3124. early_node_map[i].start_pfn = end_pfn;
  3125. continue;
  3126. }
  3127. }
  3128. if (!removed)
  3129. return;
  3130. /* remove the blank ones */
  3131. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3132. if (early_node_map[i].nid != nid)
  3133. continue;
  3134. if (early_node_map[i].end_pfn)
  3135. continue;
  3136. /* we found it, get rid of it */
  3137. for (j = i; j < nr_nodemap_entries - 1; j++)
  3138. memcpy(&early_node_map[j], &early_node_map[j+1],
  3139. sizeof(early_node_map[j]));
  3140. j = nr_nodemap_entries - 1;
  3141. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3142. nr_nodemap_entries--;
  3143. }
  3144. }
  3145. /**
  3146. * remove_all_active_ranges - Remove all currently registered regions
  3147. *
  3148. * During discovery, it may be found that a table like SRAT is invalid
  3149. * and an alternative discovery method must be used. This function removes
  3150. * all currently registered regions.
  3151. */
  3152. void __init remove_all_active_ranges(void)
  3153. {
  3154. memset(early_node_map, 0, sizeof(early_node_map));
  3155. nr_nodemap_entries = 0;
  3156. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3157. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3158. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3159. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3160. }
  3161. /* Compare two active node_active_regions */
  3162. static int __init cmp_node_active_region(const void *a, const void *b)
  3163. {
  3164. struct node_active_region *arange = (struct node_active_region *)a;
  3165. struct node_active_region *brange = (struct node_active_region *)b;
  3166. /* Done this way to avoid overflows */
  3167. if (arange->start_pfn > brange->start_pfn)
  3168. return 1;
  3169. if (arange->start_pfn < brange->start_pfn)
  3170. return -1;
  3171. return 0;
  3172. }
  3173. /* sort the node_map by start_pfn */
  3174. static void __init sort_node_map(void)
  3175. {
  3176. sort(early_node_map, (size_t)nr_nodemap_entries,
  3177. sizeof(struct node_active_region),
  3178. cmp_node_active_region, NULL);
  3179. }
  3180. /* Find the lowest pfn for a node */
  3181. unsigned long __init find_min_pfn_for_node(int nid)
  3182. {
  3183. int i;
  3184. unsigned long min_pfn = ULONG_MAX;
  3185. /* Assuming a sorted map, the first range found has the starting pfn */
  3186. for_each_active_range_index_in_nid(i, nid)
  3187. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3188. if (min_pfn == ULONG_MAX) {
  3189. printk(KERN_WARNING
  3190. "Could not find start_pfn for node %d\n", nid);
  3191. return 0;
  3192. }
  3193. return min_pfn;
  3194. }
  3195. /**
  3196. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3197. *
  3198. * It returns the minimum PFN based on information provided via
  3199. * add_active_range().
  3200. */
  3201. unsigned long __init find_min_pfn_with_active_regions(void)
  3202. {
  3203. return find_min_pfn_for_node(MAX_NUMNODES);
  3204. }
  3205. /**
  3206. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  3207. *
  3208. * It returns the maximum PFN based on information provided via
  3209. * add_active_range().
  3210. */
  3211. unsigned long __init find_max_pfn_with_active_regions(void)
  3212. {
  3213. int i;
  3214. unsigned long max_pfn = 0;
  3215. for (i = 0; i < nr_nodemap_entries; i++)
  3216. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  3217. return max_pfn;
  3218. }
  3219. /*
  3220. * early_calculate_totalpages()
  3221. * Sum pages in active regions for movable zone.
  3222. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3223. */
  3224. static unsigned long __init early_calculate_totalpages(void)
  3225. {
  3226. int i;
  3227. unsigned long totalpages = 0;
  3228. for (i = 0; i < nr_nodemap_entries; i++) {
  3229. unsigned long pages = early_node_map[i].end_pfn -
  3230. early_node_map[i].start_pfn;
  3231. totalpages += pages;
  3232. if (pages)
  3233. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3234. }
  3235. return totalpages;
  3236. }
  3237. /*
  3238. * Find the PFN the Movable zone begins in each node. Kernel memory
  3239. * is spread evenly between nodes as long as the nodes have enough
  3240. * memory. When they don't, some nodes will have more kernelcore than
  3241. * others
  3242. */
  3243. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3244. {
  3245. int i, nid;
  3246. unsigned long usable_startpfn;
  3247. unsigned long kernelcore_node, kernelcore_remaining;
  3248. unsigned long totalpages = early_calculate_totalpages();
  3249. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3250. /*
  3251. * If movablecore was specified, calculate what size of
  3252. * kernelcore that corresponds so that memory usable for
  3253. * any allocation type is evenly spread. If both kernelcore
  3254. * and movablecore are specified, then the value of kernelcore
  3255. * will be used for required_kernelcore if it's greater than
  3256. * what movablecore would have allowed.
  3257. */
  3258. if (required_movablecore) {
  3259. unsigned long corepages;
  3260. /*
  3261. * Round-up so that ZONE_MOVABLE is at least as large as what
  3262. * was requested by the user
  3263. */
  3264. required_movablecore =
  3265. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3266. corepages = totalpages - required_movablecore;
  3267. required_kernelcore = max(required_kernelcore, corepages);
  3268. }
  3269. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3270. if (!required_kernelcore)
  3271. return;
  3272. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3273. find_usable_zone_for_movable();
  3274. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3275. restart:
  3276. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3277. kernelcore_node = required_kernelcore / usable_nodes;
  3278. for_each_node_state(nid, N_HIGH_MEMORY) {
  3279. /*
  3280. * Recalculate kernelcore_node if the division per node
  3281. * now exceeds what is necessary to satisfy the requested
  3282. * amount of memory for the kernel
  3283. */
  3284. if (required_kernelcore < kernelcore_node)
  3285. kernelcore_node = required_kernelcore / usable_nodes;
  3286. /*
  3287. * As the map is walked, we track how much memory is usable
  3288. * by the kernel using kernelcore_remaining. When it is
  3289. * 0, the rest of the node is usable by ZONE_MOVABLE
  3290. */
  3291. kernelcore_remaining = kernelcore_node;
  3292. /* Go through each range of PFNs within this node */
  3293. for_each_active_range_index_in_nid(i, nid) {
  3294. unsigned long start_pfn, end_pfn;
  3295. unsigned long size_pages;
  3296. start_pfn = max(early_node_map[i].start_pfn,
  3297. zone_movable_pfn[nid]);
  3298. end_pfn = early_node_map[i].end_pfn;
  3299. if (start_pfn >= end_pfn)
  3300. continue;
  3301. /* Account for what is only usable for kernelcore */
  3302. if (start_pfn < usable_startpfn) {
  3303. unsigned long kernel_pages;
  3304. kernel_pages = min(end_pfn, usable_startpfn)
  3305. - start_pfn;
  3306. kernelcore_remaining -= min(kernel_pages,
  3307. kernelcore_remaining);
  3308. required_kernelcore -= min(kernel_pages,
  3309. required_kernelcore);
  3310. /* Continue if range is now fully accounted */
  3311. if (end_pfn <= usable_startpfn) {
  3312. /*
  3313. * Push zone_movable_pfn to the end so
  3314. * that if we have to rebalance
  3315. * kernelcore across nodes, we will
  3316. * not double account here
  3317. */
  3318. zone_movable_pfn[nid] = end_pfn;
  3319. continue;
  3320. }
  3321. start_pfn = usable_startpfn;
  3322. }
  3323. /*
  3324. * The usable PFN range for ZONE_MOVABLE is from
  3325. * start_pfn->end_pfn. Calculate size_pages as the
  3326. * number of pages used as kernelcore
  3327. */
  3328. size_pages = end_pfn - start_pfn;
  3329. if (size_pages > kernelcore_remaining)
  3330. size_pages = kernelcore_remaining;
  3331. zone_movable_pfn[nid] = start_pfn + size_pages;
  3332. /*
  3333. * Some kernelcore has been met, update counts and
  3334. * break if the kernelcore for this node has been
  3335. * satisified
  3336. */
  3337. required_kernelcore -= min(required_kernelcore,
  3338. size_pages);
  3339. kernelcore_remaining -= size_pages;
  3340. if (!kernelcore_remaining)
  3341. break;
  3342. }
  3343. }
  3344. /*
  3345. * If there is still required_kernelcore, we do another pass with one
  3346. * less node in the count. This will push zone_movable_pfn[nid] further
  3347. * along on the nodes that still have memory until kernelcore is
  3348. * satisified
  3349. */
  3350. usable_nodes--;
  3351. if (usable_nodes && required_kernelcore > usable_nodes)
  3352. goto restart;
  3353. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3354. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3355. zone_movable_pfn[nid] =
  3356. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3357. }
  3358. /* Any regular memory on that node ? */
  3359. static void check_for_regular_memory(pg_data_t *pgdat)
  3360. {
  3361. #ifdef CONFIG_HIGHMEM
  3362. enum zone_type zone_type;
  3363. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3364. struct zone *zone = &pgdat->node_zones[zone_type];
  3365. if (zone->present_pages)
  3366. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3367. }
  3368. #endif
  3369. }
  3370. /**
  3371. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3372. * @max_zone_pfn: an array of max PFNs for each zone
  3373. *
  3374. * This will call free_area_init_node() for each active node in the system.
  3375. * Using the page ranges provided by add_active_range(), the size of each
  3376. * zone in each node and their holes is calculated. If the maximum PFN
  3377. * between two adjacent zones match, it is assumed that the zone is empty.
  3378. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3379. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3380. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3381. * at arch_max_dma_pfn.
  3382. */
  3383. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3384. {
  3385. unsigned long nid;
  3386. enum zone_type i;
  3387. /* Sort early_node_map as initialisation assumes it is sorted */
  3388. sort_node_map();
  3389. /* Record where the zone boundaries are */
  3390. memset(arch_zone_lowest_possible_pfn, 0,
  3391. sizeof(arch_zone_lowest_possible_pfn));
  3392. memset(arch_zone_highest_possible_pfn, 0,
  3393. sizeof(arch_zone_highest_possible_pfn));
  3394. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3395. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3396. for (i = 1; i < MAX_NR_ZONES; i++) {
  3397. if (i == ZONE_MOVABLE)
  3398. continue;
  3399. arch_zone_lowest_possible_pfn[i] =
  3400. arch_zone_highest_possible_pfn[i-1];
  3401. arch_zone_highest_possible_pfn[i] =
  3402. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3403. }
  3404. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3405. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3406. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3407. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3408. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3409. /* Print out the zone ranges */
  3410. printk("Zone PFN ranges:\n");
  3411. for (i = 0; i < MAX_NR_ZONES; i++) {
  3412. if (i == ZONE_MOVABLE)
  3413. continue;
  3414. printk(" %-8s %0#10lx -> %0#10lx\n",
  3415. zone_names[i],
  3416. arch_zone_lowest_possible_pfn[i],
  3417. arch_zone_highest_possible_pfn[i]);
  3418. }
  3419. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3420. printk("Movable zone start PFN for each node\n");
  3421. for (i = 0; i < MAX_NUMNODES; i++) {
  3422. if (zone_movable_pfn[i])
  3423. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3424. }
  3425. /* Print out the early_node_map[] */
  3426. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3427. for (i = 0; i < nr_nodemap_entries; i++)
  3428. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3429. early_node_map[i].start_pfn,
  3430. early_node_map[i].end_pfn);
  3431. /* Initialise every node */
  3432. mminit_verify_pageflags_layout();
  3433. setup_nr_node_ids();
  3434. for_each_online_node(nid) {
  3435. pg_data_t *pgdat = NODE_DATA(nid);
  3436. free_area_init_node(nid, pgdat, NULL,
  3437. find_min_pfn_for_node(nid), NULL);
  3438. /* Any memory on that node */
  3439. if (pgdat->node_present_pages)
  3440. node_set_state(nid, N_HIGH_MEMORY);
  3441. check_for_regular_memory(pgdat);
  3442. }
  3443. }
  3444. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3445. {
  3446. unsigned long long coremem;
  3447. if (!p)
  3448. return -EINVAL;
  3449. coremem = memparse(p, &p);
  3450. *core = coremem >> PAGE_SHIFT;
  3451. /* Paranoid check that UL is enough for the coremem value */
  3452. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3453. return 0;
  3454. }
  3455. /*
  3456. * kernelcore=size sets the amount of memory for use for allocations that
  3457. * cannot be reclaimed or migrated.
  3458. */
  3459. static int __init cmdline_parse_kernelcore(char *p)
  3460. {
  3461. return cmdline_parse_core(p, &required_kernelcore);
  3462. }
  3463. /*
  3464. * movablecore=size sets the amount of memory for use for allocations that
  3465. * can be reclaimed or migrated.
  3466. */
  3467. static int __init cmdline_parse_movablecore(char *p)
  3468. {
  3469. return cmdline_parse_core(p, &required_movablecore);
  3470. }
  3471. early_param("kernelcore", cmdline_parse_kernelcore);
  3472. early_param("movablecore", cmdline_parse_movablecore);
  3473. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3474. /**
  3475. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3476. * @new_dma_reserve: The number of pages to mark reserved
  3477. *
  3478. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3479. * In the DMA zone, a significant percentage may be consumed by kernel image
  3480. * and other unfreeable allocations which can skew the watermarks badly. This
  3481. * function may optionally be used to account for unfreeable pages in the
  3482. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3483. * smaller per-cpu batchsize.
  3484. */
  3485. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3486. {
  3487. dma_reserve = new_dma_reserve;
  3488. }
  3489. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3490. static bootmem_data_t contig_bootmem_data;
  3491. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3492. EXPORT_SYMBOL(contig_page_data);
  3493. #endif
  3494. void __init free_area_init(unsigned long *zones_size)
  3495. {
  3496. free_area_init_node(0, NODE_DATA(0), zones_size,
  3497. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3498. }
  3499. static int page_alloc_cpu_notify(struct notifier_block *self,
  3500. unsigned long action, void *hcpu)
  3501. {
  3502. int cpu = (unsigned long)hcpu;
  3503. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3504. drain_pages(cpu);
  3505. /*
  3506. * Spill the event counters of the dead processor
  3507. * into the current processors event counters.
  3508. * This artificially elevates the count of the current
  3509. * processor.
  3510. */
  3511. vm_events_fold_cpu(cpu);
  3512. /*
  3513. * Zero the differential counters of the dead processor
  3514. * so that the vm statistics are consistent.
  3515. *
  3516. * This is only okay since the processor is dead and cannot
  3517. * race with what we are doing.
  3518. */
  3519. refresh_cpu_vm_stats(cpu);
  3520. }
  3521. return NOTIFY_OK;
  3522. }
  3523. void __init page_alloc_init(void)
  3524. {
  3525. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3526. }
  3527. /*
  3528. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3529. * or min_free_kbytes changes.
  3530. */
  3531. static void calculate_totalreserve_pages(void)
  3532. {
  3533. struct pglist_data *pgdat;
  3534. unsigned long reserve_pages = 0;
  3535. enum zone_type i, j;
  3536. for_each_online_pgdat(pgdat) {
  3537. for (i = 0; i < MAX_NR_ZONES; i++) {
  3538. struct zone *zone = pgdat->node_zones + i;
  3539. unsigned long max = 0;
  3540. /* Find valid and maximum lowmem_reserve in the zone */
  3541. for (j = i; j < MAX_NR_ZONES; j++) {
  3542. if (zone->lowmem_reserve[j] > max)
  3543. max = zone->lowmem_reserve[j];
  3544. }
  3545. /* we treat pages_high as reserved pages. */
  3546. max += zone->pages_high;
  3547. if (max > zone->present_pages)
  3548. max = zone->present_pages;
  3549. reserve_pages += max;
  3550. }
  3551. }
  3552. totalreserve_pages = reserve_pages;
  3553. }
  3554. /*
  3555. * setup_per_zone_lowmem_reserve - called whenever
  3556. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3557. * has a correct pages reserved value, so an adequate number of
  3558. * pages are left in the zone after a successful __alloc_pages().
  3559. */
  3560. static void setup_per_zone_lowmem_reserve(void)
  3561. {
  3562. struct pglist_data *pgdat;
  3563. enum zone_type j, idx;
  3564. for_each_online_pgdat(pgdat) {
  3565. for (j = 0; j < MAX_NR_ZONES; j++) {
  3566. struct zone *zone = pgdat->node_zones + j;
  3567. unsigned long present_pages = zone->present_pages;
  3568. zone->lowmem_reserve[j] = 0;
  3569. idx = j;
  3570. while (idx) {
  3571. struct zone *lower_zone;
  3572. idx--;
  3573. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3574. sysctl_lowmem_reserve_ratio[idx] = 1;
  3575. lower_zone = pgdat->node_zones + idx;
  3576. lower_zone->lowmem_reserve[j] = present_pages /
  3577. sysctl_lowmem_reserve_ratio[idx];
  3578. present_pages += lower_zone->present_pages;
  3579. }
  3580. }
  3581. }
  3582. /* update totalreserve_pages */
  3583. calculate_totalreserve_pages();
  3584. }
  3585. /**
  3586. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3587. *
  3588. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3589. * with respect to min_free_kbytes.
  3590. */
  3591. void setup_per_zone_pages_min(void)
  3592. {
  3593. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3594. unsigned long lowmem_pages = 0;
  3595. struct zone *zone;
  3596. unsigned long flags;
  3597. /* Calculate total number of !ZONE_HIGHMEM pages */
  3598. for_each_zone(zone) {
  3599. if (!is_highmem(zone))
  3600. lowmem_pages += zone->present_pages;
  3601. }
  3602. for_each_zone(zone) {
  3603. u64 tmp;
  3604. spin_lock_irqsave(&zone->lru_lock, flags);
  3605. tmp = (u64)pages_min * zone->present_pages;
  3606. do_div(tmp, lowmem_pages);
  3607. if (is_highmem(zone)) {
  3608. /*
  3609. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3610. * need highmem pages, so cap pages_min to a small
  3611. * value here.
  3612. *
  3613. * The (pages_high-pages_low) and (pages_low-pages_min)
  3614. * deltas controls asynch page reclaim, and so should
  3615. * not be capped for highmem.
  3616. */
  3617. int min_pages;
  3618. min_pages = zone->present_pages / 1024;
  3619. if (min_pages < SWAP_CLUSTER_MAX)
  3620. min_pages = SWAP_CLUSTER_MAX;
  3621. if (min_pages > 128)
  3622. min_pages = 128;
  3623. zone->pages_min = min_pages;
  3624. } else {
  3625. /*
  3626. * If it's a lowmem zone, reserve a number of pages
  3627. * proportionate to the zone's size.
  3628. */
  3629. zone->pages_min = tmp;
  3630. }
  3631. zone->pages_low = zone->pages_min + (tmp >> 2);
  3632. zone->pages_high = zone->pages_min + (tmp >> 1);
  3633. setup_zone_migrate_reserve(zone);
  3634. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3635. }
  3636. /* update totalreserve_pages */
  3637. calculate_totalreserve_pages();
  3638. }
  3639. /*
  3640. * Initialise min_free_kbytes.
  3641. *
  3642. * For small machines we want it small (128k min). For large machines
  3643. * we want it large (64MB max). But it is not linear, because network
  3644. * bandwidth does not increase linearly with machine size. We use
  3645. *
  3646. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3647. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3648. *
  3649. * which yields
  3650. *
  3651. * 16MB: 512k
  3652. * 32MB: 724k
  3653. * 64MB: 1024k
  3654. * 128MB: 1448k
  3655. * 256MB: 2048k
  3656. * 512MB: 2896k
  3657. * 1024MB: 4096k
  3658. * 2048MB: 5792k
  3659. * 4096MB: 8192k
  3660. * 8192MB: 11584k
  3661. * 16384MB: 16384k
  3662. */
  3663. static int __init init_per_zone_pages_min(void)
  3664. {
  3665. unsigned long lowmem_kbytes;
  3666. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3667. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3668. if (min_free_kbytes < 128)
  3669. min_free_kbytes = 128;
  3670. if (min_free_kbytes > 65536)
  3671. min_free_kbytes = 65536;
  3672. setup_per_zone_pages_min();
  3673. setup_per_zone_lowmem_reserve();
  3674. return 0;
  3675. }
  3676. module_init(init_per_zone_pages_min)
  3677. /*
  3678. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3679. * that we can call two helper functions whenever min_free_kbytes
  3680. * changes.
  3681. */
  3682. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3683. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3684. {
  3685. proc_dointvec(table, write, file, buffer, length, ppos);
  3686. if (write)
  3687. setup_per_zone_pages_min();
  3688. return 0;
  3689. }
  3690. #ifdef CONFIG_NUMA
  3691. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3692. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3693. {
  3694. struct zone *zone;
  3695. int rc;
  3696. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3697. if (rc)
  3698. return rc;
  3699. for_each_zone(zone)
  3700. zone->min_unmapped_pages = (zone->present_pages *
  3701. sysctl_min_unmapped_ratio) / 100;
  3702. return 0;
  3703. }
  3704. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3705. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3706. {
  3707. struct zone *zone;
  3708. int rc;
  3709. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3710. if (rc)
  3711. return rc;
  3712. for_each_zone(zone)
  3713. zone->min_slab_pages = (zone->present_pages *
  3714. sysctl_min_slab_ratio) / 100;
  3715. return 0;
  3716. }
  3717. #endif
  3718. /*
  3719. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3720. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3721. * whenever sysctl_lowmem_reserve_ratio changes.
  3722. *
  3723. * The reserve ratio obviously has absolutely no relation with the
  3724. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3725. * if in function of the boot time zone sizes.
  3726. */
  3727. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3728. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3729. {
  3730. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3731. setup_per_zone_lowmem_reserve();
  3732. return 0;
  3733. }
  3734. /*
  3735. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3736. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3737. * can have before it gets flushed back to buddy allocator.
  3738. */
  3739. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3740. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3741. {
  3742. struct zone *zone;
  3743. unsigned int cpu;
  3744. int ret;
  3745. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3746. if (!write || (ret == -EINVAL))
  3747. return ret;
  3748. for_each_zone(zone) {
  3749. for_each_online_cpu(cpu) {
  3750. unsigned long high;
  3751. high = zone->present_pages / percpu_pagelist_fraction;
  3752. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3753. }
  3754. }
  3755. return 0;
  3756. }
  3757. int hashdist = HASHDIST_DEFAULT;
  3758. #ifdef CONFIG_NUMA
  3759. static int __init set_hashdist(char *str)
  3760. {
  3761. if (!str)
  3762. return 0;
  3763. hashdist = simple_strtoul(str, &str, 0);
  3764. return 1;
  3765. }
  3766. __setup("hashdist=", set_hashdist);
  3767. #endif
  3768. /*
  3769. * allocate a large system hash table from bootmem
  3770. * - it is assumed that the hash table must contain an exact power-of-2
  3771. * quantity of entries
  3772. * - limit is the number of hash buckets, not the total allocation size
  3773. */
  3774. void *__init alloc_large_system_hash(const char *tablename,
  3775. unsigned long bucketsize,
  3776. unsigned long numentries,
  3777. int scale,
  3778. int flags,
  3779. unsigned int *_hash_shift,
  3780. unsigned int *_hash_mask,
  3781. unsigned long limit)
  3782. {
  3783. unsigned long long max = limit;
  3784. unsigned long log2qty, size;
  3785. void *table = NULL;
  3786. /* allow the kernel cmdline to have a say */
  3787. if (!numentries) {
  3788. /* round applicable memory size up to nearest megabyte */
  3789. numentries = nr_kernel_pages;
  3790. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3791. numentries >>= 20 - PAGE_SHIFT;
  3792. numentries <<= 20 - PAGE_SHIFT;
  3793. /* limit to 1 bucket per 2^scale bytes of low memory */
  3794. if (scale > PAGE_SHIFT)
  3795. numentries >>= (scale - PAGE_SHIFT);
  3796. else
  3797. numentries <<= (PAGE_SHIFT - scale);
  3798. /* Make sure we've got at least a 0-order allocation.. */
  3799. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3800. numentries = PAGE_SIZE / bucketsize;
  3801. }
  3802. numentries = roundup_pow_of_two(numentries);
  3803. /* limit allocation size to 1/16 total memory by default */
  3804. if (max == 0) {
  3805. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3806. do_div(max, bucketsize);
  3807. }
  3808. if (numentries > max)
  3809. numentries = max;
  3810. log2qty = ilog2(numentries);
  3811. do {
  3812. size = bucketsize << log2qty;
  3813. if (flags & HASH_EARLY)
  3814. table = alloc_bootmem(size);
  3815. else if (hashdist)
  3816. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3817. else {
  3818. unsigned long order = get_order(size);
  3819. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3820. /*
  3821. * If bucketsize is not a power-of-two, we may free
  3822. * some pages at the end of hash table.
  3823. */
  3824. if (table) {
  3825. unsigned long alloc_end = (unsigned long)table +
  3826. (PAGE_SIZE << order);
  3827. unsigned long used = (unsigned long)table +
  3828. PAGE_ALIGN(size);
  3829. split_page(virt_to_page(table), order);
  3830. while (used < alloc_end) {
  3831. free_page(used);
  3832. used += PAGE_SIZE;
  3833. }
  3834. }
  3835. }
  3836. } while (!table && size > PAGE_SIZE && --log2qty);
  3837. if (!table)
  3838. panic("Failed to allocate %s hash table\n", tablename);
  3839. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3840. tablename,
  3841. (1U << log2qty),
  3842. ilog2(size) - PAGE_SHIFT,
  3843. size);
  3844. if (_hash_shift)
  3845. *_hash_shift = log2qty;
  3846. if (_hash_mask)
  3847. *_hash_mask = (1 << log2qty) - 1;
  3848. return table;
  3849. }
  3850. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3851. struct page *pfn_to_page(unsigned long pfn)
  3852. {
  3853. return __pfn_to_page(pfn);
  3854. }
  3855. unsigned long page_to_pfn(struct page *page)
  3856. {
  3857. return __page_to_pfn(page);
  3858. }
  3859. EXPORT_SYMBOL(pfn_to_page);
  3860. EXPORT_SYMBOL(page_to_pfn);
  3861. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3862. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3863. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3864. unsigned long pfn)
  3865. {
  3866. #ifdef CONFIG_SPARSEMEM
  3867. return __pfn_to_section(pfn)->pageblock_flags;
  3868. #else
  3869. return zone->pageblock_flags;
  3870. #endif /* CONFIG_SPARSEMEM */
  3871. }
  3872. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3873. {
  3874. #ifdef CONFIG_SPARSEMEM
  3875. pfn &= (PAGES_PER_SECTION-1);
  3876. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3877. #else
  3878. pfn = pfn - zone->zone_start_pfn;
  3879. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3880. #endif /* CONFIG_SPARSEMEM */
  3881. }
  3882. /**
  3883. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3884. * @page: The page within the block of interest
  3885. * @start_bitidx: The first bit of interest to retrieve
  3886. * @end_bitidx: The last bit of interest
  3887. * returns pageblock_bits flags
  3888. */
  3889. unsigned long get_pageblock_flags_group(struct page *page,
  3890. int start_bitidx, int end_bitidx)
  3891. {
  3892. struct zone *zone;
  3893. unsigned long *bitmap;
  3894. unsigned long pfn, bitidx;
  3895. unsigned long flags = 0;
  3896. unsigned long value = 1;
  3897. zone = page_zone(page);
  3898. pfn = page_to_pfn(page);
  3899. bitmap = get_pageblock_bitmap(zone, pfn);
  3900. bitidx = pfn_to_bitidx(zone, pfn);
  3901. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3902. if (test_bit(bitidx + start_bitidx, bitmap))
  3903. flags |= value;
  3904. return flags;
  3905. }
  3906. /**
  3907. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3908. * @page: The page within the block of interest
  3909. * @start_bitidx: The first bit of interest
  3910. * @end_bitidx: The last bit of interest
  3911. * @flags: The flags to set
  3912. */
  3913. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3914. int start_bitidx, int end_bitidx)
  3915. {
  3916. struct zone *zone;
  3917. unsigned long *bitmap;
  3918. unsigned long pfn, bitidx;
  3919. unsigned long value = 1;
  3920. zone = page_zone(page);
  3921. pfn = page_to_pfn(page);
  3922. bitmap = get_pageblock_bitmap(zone, pfn);
  3923. bitidx = pfn_to_bitidx(zone, pfn);
  3924. VM_BUG_ON(pfn < zone->zone_start_pfn);
  3925. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  3926. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3927. if (flags & value)
  3928. __set_bit(bitidx + start_bitidx, bitmap);
  3929. else
  3930. __clear_bit(bitidx + start_bitidx, bitmap);
  3931. }
  3932. /*
  3933. * This is designed as sub function...plz see page_isolation.c also.
  3934. * set/clear page block's type to be ISOLATE.
  3935. * page allocater never alloc memory from ISOLATE block.
  3936. */
  3937. int set_migratetype_isolate(struct page *page)
  3938. {
  3939. struct zone *zone;
  3940. unsigned long flags;
  3941. int ret = -EBUSY;
  3942. zone = page_zone(page);
  3943. spin_lock_irqsave(&zone->lock, flags);
  3944. /*
  3945. * In future, more migrate types will be able to be isolation target.
  3946. */
  3947. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3948. goto out;
  3949. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3950. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3951. ret = 0;
  3952. out:
  3953. spin_unlock_irqrestore(&zone->lock, flags);
  3954. if (!ret)
  3955. drain_all_pages();
  3956. return ret;
  3957. }
  3958. void unset_migratetype_isolate(struct page *page)
  3959. {
  3960. struct zone *zone;
  3961. unsigned long flags;
  3962. zone = page_zone(page);
  3963. spin_lock_irqsave(&zone->lock, flags);
  3964. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  3965. goto out;
  3966. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3967. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3968. out:
  3969. spin_unlock_irqrestore(&zone->lock, flags);
  3970. }
  3971. #ifdef CONFIG_MEMORY_HOTREMOVE
  3972. /*
  3973. * All pages in the range must be isolated before calling this.
  3974. */
  3975. void
  3976. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  3977. {
  3978. struct page *page;
  3979. struct zone *zone;
  3980. int order, i;
  3981. unsigned long pfn;
  3982. unsigned long flags;
  3983. /* find the first valid pfn */
  3984. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  3985. if (pfn_valid(pfn))
  3986. break;
  3987. if (pfn == end_pfn)
  3988. return;
  3989. zone = page_zone(pfn_to_page(pfn));
  3990. spin_lock_irqsave(&zone->lock, flags);
  3991. pfn = start_pfn;
  3992. while (pfn < end_pfn) {
  3993. if (!pfn_valid(pfn)) {
  3994. pfn++;
  3995. continue;
  3996. }
  3997. page = pfn_to_page(pfn);
  3998. BUG_ON(page_count(page));
  3999. BUG_ON(!PageBuddy(page));
  4000. order = page_order(page);
  4001. #ifdef CONFIG_DEBUG_VM
  4002. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4003. pfn, 1 << order, end_pfn);
  4004. #endif
  4005. list_del(&page->lru);
  4006. rmv_page_order(page);
  4007. zone->free_area[order].nr_free--;
  4008. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4009. - (1UL << order));
  4010. for (i = 0; i < (1 << order); i++)
  4011. SetPageReserved((page+i));
  4012. pfn += (1 << order);
  4013. }
  4014. spin_unlock_irqrestore(&zone->lock, flags);
  4015. }
  4016. #endif