e1000_ethtool.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20. *******************************************************************************/
  21. /* ethtool support for e1000 */
  22. #include "e1000.h"
  23. #include <asm/uaccess.h>
  24. struct e1000_stats {
  25. char stat_string[ETH_GSTRING_LEN];
  26. int sizeof_stat;
  27. int stat_offset;
  28. };
  29. #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
  30. offsetof(struct e1000_adapter, m)
  31. static const struct e1000_stats e1000_gstrings_stats[] = {
  32. { "rx_packets", E1000_STAT(net_stats.rx_packets) },
  33. { "tx_packets", E1000_STAT(net_stats.tx_packets) },
  34. { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
  35. { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
  36. { "rx_errors", E1000_STAT(net_stats.rx_errors) },
  37. { "tx_errors", E1000_STAT(net_stats.tx_errors) },
  38. { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
  39. { "multicast", E1000_STAT(net_stats.multicast) },
  40. { "collisions", E1000_STAT(net_stats.collisions) },
  41. { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
  42. { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
  43. { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
  44. { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
  45. { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  46. { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
  47. { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
  48. { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
  49. { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
  50. { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
  51. { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
  52. { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  53. { "tx_deferred_ok", E1000_STAT(stats.dc) },
  54. { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  55. { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  56. { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  57. { "rx_long_length_errors", E1000_STAT(stats.roc) },
  58. { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  59. { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  60. { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  61. { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  62. { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  63. { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  64. { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  65. { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  66. { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  67. { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  68. { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  69. { "rx_header_split", E1000_STAT(rx_hdr_split) },
  70. { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  71. };
  72. #define E1000_QUEUE_STATS_LEN 0
  73. #define E1000_GLOBAL_STATS_LEN \
  74. sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
  75. #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
  76. static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  77. "Register test (offline)", "Eeprom test (offline)",
  78. "Interrupt test (offline)", "Loopback test (offline)",
  79. "Link test (on/offline)"
  80. };
  81. #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
  82. static int
  83. e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  84. {
  85. struct e1000_adapter *adapter = netdev_priv(netdev);
  86. struct e1000_hw *hw = &adapter->hw;
  87. if (hw->media_type == e1000_media_type_copper) {
  88. ecmd->supported = (SUPPORTED_10baseT_Half |
  89. SUPPORTED_10baseT_Full |
  90. SUPPORTED_100baseT_Half |
  91. SUPPORTED_100baseT_Full |
  92. SUPPORTED_1000baseT_Full|
  93. SUPPORTED_Autoneg |
  94. SUPPORTED_TP);
  95. ecmd->advertising = ADVERTISED_TP;
  96. if (hw->autoneg == 1) {
  97. ecmd->advertising |= ADVERTISED_Autoneg;
  98. /* the e1000 autoneg seems to match ethtool nicely */
  99. ecmd->advertising |= hw->autoneg_advertised;
  100. }
  101. ecmd->port = PORT_TP;
  102. ecmd->phy_address = hw->phy_addr;
  103. if (hw->mac_type == e1000_82543)
  104. ecmd->transceiver = XCVR_EXTERNAL;
  105. else
  106. ecmd->transceiver = XCVR_INTERNAL;
  107. } else {
  108. ecmd->supported = (SUPPORTED_1000baseT_Full |
  109. SUPPORTED_FIBRE |
  110. SUPPORTED_Autoneg);
  111. ecmd->advertising = (ADVERTISED_1000baseT_Full |
  112. ADVERTISED_FIBRE |
  113. ADVERTISED_Autoneg);
  114. ecmd->port = PORT_FIBRE;
  115. if (hw->mac_type >= e1000_82545)
  116. ecmd->transceiver = XCVR_INTERNAL;
  117. else
  118. ecmd->transceiver = XCVR_EXTERNAL;
  119. }
  120. if (netif_carrier_ok(adapter->netdev)) {
  121. e1000_get_speed_and_duplex(hw, &adapter->link_speed,
  122. &adapter->link_duplex);
  123. ecmd->speed = adapter->link_speed;
  124. /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
  125. * and HALF_DUPLEX != DUPLEX_HALF */
  126. if (adapter->link_duplex == FULL_DUPLEX)
  127. ecmd->duplex = DUPLEX_FULL;
  128. else
  129. ecmd->duplex = DUPLEX_HALF;
  130. } else {
  131. ecmd->speed = -1;
  132. ecmd->duplex = -1;
  133. }
  134. ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
  135. hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
  136. return 0;
  137. }
  138. static int
  139. e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  140. {
  141. struct e1000_adapter *adapter = netdev_priv(netdev);
  142. struct e1000_hw *hw = &adapter->hw;
  143. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  144. * cannot be changed */
  145. if (e1000_check_phy_reset_block(hw)) {
  146. DPRINTK(DRV, ERR, "Cannot change link characteristics "
  147. "when SoL/IDER is active.\n");
  148. return -EINVAL;
  149. }
  150. if (ecmd->autoneg == AUTONEG_ENABLE) {
  151. hw->autoneg = 1;
  152. if (hw->media_type == e1000_media_type_fiber)
  153. hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
  154. ADVERTISED_FIBRE |
  155. ADVERTISED_Autoneg;
  156. else
  157. hw->autoneg_advertised = ADVERTISED_10baseT_Half |
  158. ADVERTISED_10baseT_Full |
  159. ADVERTISED_100baseT_Half |
  160. ADVERTISED_100baseT_Full |
  161. ADVERTISED_1000baseT_Full|
  162. ADVERTISED_Autoneg |
  163. ADVERTISED_TP;
  164. ecmd->advertising = hw->autoneg_advertised;
  165. } else
  166. if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
  167. return -EINVAL;
  168. /* reset the link */
  169. if (netif_running(adapter->netdev))
  170. e1000_reinit_locked(adapter);
  171. else
  172. e1000_reset(adapter);
  173. return 0;
  174. }
  175. static void
  176. e1000_get_pauseparam(struct net_device *netdev,
  177. struct ethtool_pauseparam *pause)
  178. {
  179. struct e1000_adapter *adapter = netdev_priv(netdev);
  180. struct e1000_hw *hw = &adapter->hw;
  181. pause->autoneg =
  182. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  183. if (hw->fc == e1000_fc_rx_pause)
  184. pause->rx_pause = 1;
  185. else if (hw->fc == e1000_fc_tx_pause)
  186. pause->tx_pause = 1;
  187. else if (hw->fc == e1000_fc_full) {
  188. pause->rx_pause = 1;
  189. pause->tx_pause = 1;
  190. }
  191. }
  192. static int
  193. e1000_set_pauseparam(struct net_device *netdev,
  194. struct ethtool_pauseparam *pause)
  195. {
  196. struct e1000_adapter *adapter = netdev_priv(netdev);
  197. struct e1000_hw *hw = &adapter->hw;
  198. adapter->fc_autoneg = pause->autoneg;
  199. if (pause->rx_pause && pause->tx_pause)
  200. hw->fc = e1000_fc_full;
  201. else if (pause->rx_pause && !pause->tx_pause)
  202. hw->fc = e1000_fc_rx_pause;
  203. else if (!pause->rx_pause && pause->tx_pause)
  204. hw->fc = e1000_fc_tx_pause;
  205. else if (!pause->rx_pause && !pause->tx_pause)
  206. hw->fc = e1000_fc_none;
  207. hw->original_fc = hw->fc;
  208. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  209. if (netif_running(adapter->netdev))
  210. e1000_reinit_locked(adapter);
  211. else
  212. e1000_reset(adapter);
  213. } else
  214. return ((hw->media_type == e1000_media_type_fiber) ?
  215. e1000_setup_link(hw) : e1000_force_mac_fc(hw));
  216. return 0;
  217. }
  218. static uint32_t
  219. e1000_get_rx_csum(struct net_device *netdev)
  220. {
  221. struct e1000_adapter *adapter = netdev_priv(netdev);
  222. return adapter->rx_csum;
  223. }
  224. static int
  225. e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
  226. {
  227. struct e1000_adapter *adapter = netdev_priv(netdev);
  228. adapter->rx_csum = data;
  229. if (netif_running(netdev))
  230. e1000_reinit_locked(adapter);
  231. else
  232. e1000_reset(adapter);
  233. return 0;
  234. }
  235. static uint32_t
  236. e1000_get_tx_csum(struct net_device *netdev)
  237. {
  238. return (netdev->features & NETIF_F_HW_CSUM) != 0;
  239. }
  240. static int
  241. e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
  242. {
  243. struct e1000_adapter *adapter = netdev_priv(netdev);
  244. if (adapter->hw.mac_type < e1000_82543) {
  245. if (!data)
  246. return -EINVAL;
  247. return 0;
  248. }
  249. if (data)
  250. netdev->features |= NETIF_F_HW_CSUM;
  251. else
  252. netdev->features &= ~NETIF_F_HW_CSUM;
  253. return 0;
  254. }
  255. #ifdef NETIF_F_TSO
  256. static int
  257. e1000_set_tso(struct net_device *netdev, uint32_t data)
  258. {
  259. struct e1000_adapter *adapter = netdev_priv(netdev);
  260. if ((adapter->hw.mac_type < e1000_82544) ||
  261. (adapter->hw.mac_type == e1000_82547))
  262. return data ? -EINVAL : 0;
  263. if (data)
  264. netdev->features |= NETIF_F_TSO;
  265. else
  266. netdev->features &= ~NETIF_F_TSO;
  267. DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
  268. adapter->tso_force = TRUE;
  269. return 0;
  270. }
  271. #endif /* NETIF_F_TSO */
  272. static uint32_t
  273. e1000_get_msglevel(struct net_device *netdev)
  274. {
  275. struct e1000_adapter *adapter = netdev_priv(netdev);
  276. return adapter->msg_enable;
  277. }
  278. static void
  279. e1000_set_msglevel(struct net_device *netdev, uint32_t data)
  280. {
  281. struct e1000_adapter *adapter = netdev_priv(netdev);
  282. adapter->msg_enable = data;
  283. }
  284. static int
  285. e1000_get_regs_len(struct net_device *netdev)
  286. {
  287. #define E1000_REGS_LEN 32
  288. return E1000_REGS_LEN * sizeof(uint32_t);
  289. }
  290. static void
  291. e1000_get_regs(struct net_device *netdev,
  292. struct ethtool_regs *regs, void *p)
  293. {
  294. struct e1000_adapter *adapter = netdev_priv(netdev);
  295. struct e1000_hw *hw = &adapter->hw;
  296. uint32_t *regs_buff = p;
  297. uint16_t phy_data;
  298. memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
  299. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  300. regs_buff[0] = E1000_READ_REG(hw, CTRL);
  301. regs_buff[1] = E1000_READ_REG(hw, STATUS);
  302. regs_buff[2] = E1000_READ_REG(hw, RCTL);
  303. regs_buff[3] = E1000_READ_REG(hw, RDLEN);
  304. regs_buff[4] = E1000_READ_REG(hw, RDH);
  305. regs_buff[5] = E1000_READ_REG(hw, RDT);
  306. regs_buff[6] = E1000_READ_REG(hw, RDTR);
  307. regs_buff[7] = E1000_READ_REG(hw, TCTL);
  308. regs_buff[8] = E1000_READ_REG(hw, TDLEN);
  309. regs_buff[9] = E1000_READ_REG(hw, TDH);
  310. regs_buff[10] = E1000_READ_REG(hw, TDT);
  311. regs_buff[11] = E1000_READ_REG(hw, TIDV);
  312. regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
  313. if (hw->phy_type == e1000_phy_igp) {
  314. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  315. IGP01E1000_PHY_AGC_A);
  316. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
  317. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  318. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  319. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  320. IGP01E1000_PHY_AGC_B);
  321. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
  322. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  323. regs_buff[14] = (uint32_t)phy_data; /* cable length */
  324. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  325. IGP01E1000_PHY_AGC_C);
  326. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
  327. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  328. regs_buff[15] = (uint32_t)phy_data; /* cable length */
  329. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  330. IGP01E1000_PHY_AGC_D);
  331. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
  332. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  333. regs_buff[16] = (uint32_t)phy_data; /* cable length */
  334. regs_buff[17] = 0; /* extended 10bt distance (not needed) */
  335. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  336. e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
  337. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  338. regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
  339. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  340. IGP01E1000_PHY_PCS_INIT_REG);
  341. e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
  342. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  343. regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
  344. regs_buff[20] = 0; /* polarity correction enabled (always) */
  345. regs_buff[22] = 0; /* phy receive errors (unavailable) */
  346. regs_buff[23] = regs_buff[18]; /* mdix mode */
  347. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  348. } else {
  349. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  350. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  351. regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  352. regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  353. regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  354. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  355. regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
  356. regs_buff[18] = regs_buff[13]; /* cable polarity */
  357. regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  358. regs_buff[20] = regs_buff[17]; /* polarity correction */
  359. /* phy receive errors */
  360. regs_buff[22] = adapter->phy_stats.receive_errors;
  361. regs_buff[23] = regs_buff[13]; /* mdix mode */
  362. }
  363. regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
  364. e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
  365. regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
  366. regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
  367. if (hw->mac_type >= e1000_82540 &&
  368. hw->media_type == e1000_media_type_copper) {
  369. regs_buff[26] = E1000_READ_REG(hw, MANC);
  370. }
  371. }
  372. static int
  373. e1000_get_eeprom_len(struct net_device *netdev)
  374. {
  375. struct e1000_adapter *adapter = netdev_priv(netdev);
  376. return adapter->hw.eeprom.word_size * 2;
  377. }
  378. static int
  379. e1000_get_eeprom(struct net_device *netdev,
  380. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  381. {
  382. struct e1000_adapter *adapter = netdev_priv(netdev);
  383. struct e1000_hw *hw = &adapter->hw;
  384. uint16_t *eeprom_buff;
  385. int first_word, last_word;
  386. int ret_val = 0;
  387. uint16_t i;
  388. if (eeprom->len == 0)
  389. return -EINVAL;
  390. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  391. first_word = eeprom->offset >> 1;
  392. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  393. eeprom_buff = kmalloc(sizeof(uint16_t) *
  394. (last_word - first_word + 1), GFP_KERNEL);
  395. if (!eeprom_buff)
  396. return -ENOMEM;
  397. if (hw->eeprom.type == e1000_eeprom_spi)
  398. ret_val = e1000_read_eeprom(hw, first_word,
  399. last_word - first_word + 1,
  400. eeprom_buff);
  401. else {
  402. for (i = 0; i < last_word - first_word + 1; i++)
  403. if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
  404. &eeprom_buff[i])))
  405. break;
  406. }
  407. /* Device's eeprom is always little-endian, word addressable */
  408. for (i = 0; i < last_word - first_word + 1; i++)
  409. le16_to_cpus(&eeprom_buff[i]);
  410. memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
  411. eeprom->len);
  412. kfree(eeprom_buff);
  413. return ret_val;
  414. }
  415. static int
  416. e1000_set_eeprom(struct net_device *netdev,
  417. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  418. {
  419. struct e1000_adapter *adapter = netdev_priv(netdev);
  420. struct e1000_hw *hw = &adapter->hw;
  421. uint16_t *eeprom_buff;
  422. void *ptr;
  423. int max_len, first_word, last_word, ret_val = 0;
  424. uint16_t i;
  425. if (eeprom->len == 0)
  426. return -EOPNOTSUPP;
  427. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  428. return -EFAULT;
  429. max_len = hw->eeprom.word_size * 2;
  430. first_word = eeprom->offset >> 1;
  431. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  432. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  433. if (!eeprom_buff)
  434. return -ENOMEM;
  435. ptr = (void *)eeprom_buff;
  436. if (eeprom->offset & 1) {
  437. /* need read/modify/write of first changed EEPROM word */
  438. /* only the second byte of the word is being modified */
  439. ret_val = e1000_read_eeprom(hw, first_word, 1,
  440. &eeprom_buff[0]);
  441. ptr++;
  442. }
  443. if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  444. /* need read/modify/write of last changed EEPROM word */
  445. /* only the first byte of the word is being modified */
  446. ret_val = e1000_read_eeprom(hw, last_word, 1,
  447. &eeprom_buff[last_word - first_word]);
  448. }
  449. /* Device's eeprom is always little-endian, word addressable */
  450. for (i = 0; i < last_word - first_word + 1; i++)
  451. le16_to_cpus(&eeprom_buff[i]);
  452. memcpy(ptr, bytes, eeprom->len);
  453. for (i = 0; i < last_word - first_word + 1; i++)
  454. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  455. ret_val = e1000_write_eeprom(hw, first_word,
  456. last_word - first_word + 1, eeprom_buff);
  457. /* Update the checksum over the first part of the EEPROM if needed
  458. * and flush shadow RAM for 82573 conrollers */
  459. if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
  460. (hw->mac_type == e1000_82573)))
  461. e1000_update_eeprom_checksum(hw);
  462. kfree(eeprom_buff);
  463. return ret_val;
  464. }
  465. static void
  466. e1000_get_drvinfo(struct net_device *netdev,
  467. struct ethtool_drvinfo *drvinfo)
  468. {
  469. struct e1000_adapter *adapter = netdev_priv(netdev);
  470. char firmware_version[32];
  471. uint16_t eeprom_data;
  472. strncpy(drvinfo->driver, e1000_driver_name, 32);
  473. strncpy(drvinfo->version, e1000_driver_version, 32);
  474. /* EEPROM image version # is reported as firmware version # for
  475. * 8257{1|2|3} controllers */
  476. e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
  477. switch (adapter->hw.mac_type) {
  478. case e1000_82571:
  479. case e1000_82572:
  480. case e1000_82573:
  481. case e1000_80003es2lan:
  482. sprintf(firmware_version, "%d.%d-%d",
  483. (eeprom_data & 0xF000) >> 12,
  484. (eeprom_data & 0x0FF0) >> 4,
  485. eeprom_data & 0x000F);
  486. break;
  487. default:
  488. sprintf(firmware_version, "N/A");
  489. }
  490. strncpy(drvinfo->fw_version, firmware_version, 32);
  491. strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
  492. drvinfo->n_stats = E1000_STATS_LEN;
  493. drvinfo->testinfo_len = E1000_TEST_LEN;
  494. drvinfo->regdump_len = e1000_get_regs_len(netdev);
  495. drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
  496. }
  497. static void
  498. e1000_get_ringparam(struct net_device *netdev,
  499. struct ethtool_ringparam *ring)
  500. {
  501. struct e1000_adapter *adapter = netdev_priv(netdev);
  502. e1000_mac_type mac_type = adapter->hw.mac_type;
  503. struct e1000_tx_ring *txdr = adapter->tx_ring;
  504. struct e1000_rx_ring *rxdr = adapter->rx_ring;
  505. ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
  506. E1000_MAX_82544_RXD;
  507. ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
  508. E1000_MAX_82544_TXD;
  509. ring->rx_mini_max_pending = 0;
  510. ring->rx_jumbo_max_pending = 0;
  511. ring->rx_pending = rxdr->count;
  512. ring->tx_pending = txdr->count;
  513. ring->rx_mini_pending = 0;
  514. ring->rx_jumbo_pending = 0;
  515. }
  516. static int
  517. e1000_set_ringparam(struct net_device *netdev,
  518. struct ethtool_ringparam *ring)
  519. {
  520. struct e1000_adapter *adapter = netdev_priv(netdev);
  521. e1000_mac_type mac_type = adapter->hw.mac_type;
  522. struct e1000_tx_ring *txdr, *tx_old, *tx_new;
  523. struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
  524. int i, err, tx_ring_size, rx_ring_size;
  525. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  526. return -EINVAL;
  527. tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
  528. rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
  529. while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
  530. msleep(1);
  531. if (netif_running(adapter->netdev))
  532. e1000_down(adapter);
  533. tx_old = adapter->tx_ring;
  534. rx_old = adapter->rx_ring;
  535. adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
  536. if (!adapter->tx_ring) {
  537. err = -ENOMEM;
  538. goto err_setup_rx;
  539. }
  540. memset(adapter->tx_ring, 0, tx_ring_size);
  541. adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
  542. if (!adapter->rx_ring) {
  543. kfree(adapter->tx_ring);
  544. err = -ENOMEM;
  545. goto err_setup_rx;
  546. }
  547. memset(adapter->rx_ring, 0, rx_ring_size);
  548. txdr = adapter->tx_ring;
  549. rxdr = adapter->rx_ring;
  550. rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
  551. rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
  552. E1000_MAX_RXD : E1000_MAX_82544_RXD));
  553. E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
  554. txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
  555. txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
  556. E1000_MAX_TXD : E1000_MAX_82544_TXD));
  557. E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
  558. for (i = 0; i < adapter->num_tx_queues; i++)
  559. txdr[i].count = txdr->count;
  560. for (i = 0; i < adapter->num_rx_queues; i++)
  561. rxdr[i].count = rxdr->count;
  562. if (netif_running(adapter->netdev)) {
  563. /* Try to get new resources before deleting old */
  564. if ((err = e1000_setup_all_rx_resources(adapter)))
  565. goto err_setup_rx;
  566. if ((err = e1000_setup_all_tx_resources(adapter)))
  567. goto err_setup_tx;
  568. /* save the new, restore the old in order to free it,
  569. * then restore the new back again */
  570. rx_new = adapter->rx_ring;
  571. tx_new = adapter->tx_ring;
  572. adapter->rx_ring = rx_old;
  573. adapter->tx_ring = tx_old;
  574. e1000_free_all_rx_resources(adapter);
  575. e1000_free_all_tx_resources(adapter);
  576. kfree(tx_old);
  577. kfree(rx_old);
  578. adapter->rx_ring = rx_new;
  579. adapter->tx_ring = tx_new;
  580. if ((err = e1000_up(adapter)))
  581. goto err_setup;
  582. }
  583. clear_bit(__E1000_RESETTING, &adapter->flags);
  584. return 0;
  585. err_setup_tx:
  586. e1000_free_all_rx_resources(adapter);
  587. err_setup_rx:
  588. adapter->rx_ring = rx_old;
  589. adapter->tx_ring = tx_old;
  590. e1000_up(adapter);
  591. err_setup:
  592. clear_bit(__E1000_RESETTING, &adapter->flags);
  593. return err;
  594. }
  595. #define REG_PATTERN_TEST(R, M, W) \
  596. { \
  597. uint32_t pat, value; \
  598. uint32_t test[] = \
  599. {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
  600. for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
  601. E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
  602. value = E1000_READ_REG(&adapter->hw, R); \
  603. if (value != (test[pat] & W & M)) { \
  604. DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
  605. "0x%08X expected 0x%08X\n", \
  606. E1000_##R, value, (test[pat] & W & M)); \
  607. *data = (adapter->hw.mac_type < e1000_82543) ? \
  608. E1000_82542_##R : E1000_##R; \
  609. return 1; \
  610. } \
  611. } \
  612. }
  613. #define REG_SET_AND_CHECK(R, M, W) \
  614. { \
  615. uint32_t value; \
  616. E1000_WRITE_REG(&adapter->hw, R, W & M); \
  617. value = E1000_READ_REG(&adapter->hw, R); \
  618. if ((W & M) != (value & M)) { \
  619. DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
  620. "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
  621. *data = (adapter->hw.mac_type < e1000_82543) ? \
  622. E1000_82542_##R : E1000_##R; \
  623. return 1; \
  624. } \
  625. }
  626. static int
  627. e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
  628. {
  629. uint32_t value, before, after;
  630. uint32_t i, toggle;
  631. /* The status register is Read Only, so a write should fail.
  632. * Some bits that get toggled are ignored.
  633. */
  634. switch (adapter->hw.mac_type) {
  635. /* there are several bits on newer hardware that are r/w */
  636. case e1000_82571:
  637. case e1000_82572:
  638. case e1000_80003es2lan:
  639. toggle = 0x7FFFF3FF;
  640. break;
  641. case e1000_82573:
  642. toggle = 0x7FFFF033;
  643. break;
  644. default:
  645. toggle = 0xFFFFF833;
  646. break;
  647. }
  648. before = E1000_READ_REG(&adapter->hw, STATUS);
  649. value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
  650. E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
  651. after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
  652. if (value != after) {
  653. DPRINTK(DRV, ERR, "failed STATUS register test got: "
  654. "0x%08X expected: 0x%08X\n", after, value);
  655. *data = 1;
  656. return 1;
  657. }
  658. /* restore previous status */
  659. E1000_WRITE_REG(&adapter->hw, STATUS, before);
  660. REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
  661. REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
  662. REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
  663. REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
  664. REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
  665. REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  666. REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
  667. REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
  668. REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
  669. REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
  670. REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
  671. REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
  672. REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  673. REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
  674. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
  675. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
  676. REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
  677. if (adapter->hw.mac_type >= e1000_82543) {
  678. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
  679. REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  680. REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
  681. REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  682. REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
  683. for (i = 0; i < E1000_RAR_ENTRIES; i++) {
  684. REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
  685. 0xFFFFFFFF);
  686. REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
  687. 0xFFFFFFFF);
  688. }
  689. } else {
  690. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
  691. REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
  692. REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
  693. REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
  694. }
  695. for (i = 0; i < E1000_MC_TBL_SIZE; i++)
  696. REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
  697. *data = 0;
  698. return 0;
  699. }
  700. static int
  701. e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
  702. {
  703. uint16_t temp;
  704. uint16_t checksum = 0;
  705. uint16_t i;
  706. *data = 0;
  707. /* Read and add up the contents of the EEPROM */
  708. for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
  709. if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
  710. *data = 1;
  711. break;
  712. }
  713. checksum += temp;
  714. }
  715. /* If Checksum is not Correct return error else test passed */
  716. if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
  717. *data = 2;
  718. return *data;
  719. }
  720. static irqreturn_t
  721. e1000_test_intr(int irq,
  722. void *data,
  723. struct pt_regs *regs)
  724. {
  725. struct net_device *netdev = (struct net_device *) data;
  726. struct e1000_adapter *adapter = netdev_priv(netdev);
  727. adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
  728. return IRQ_HANDLED;
  729. }
  730. static int
  731. e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
  732. {
  733. struct net_device *netdev = adapter->netdev;
  734. uint32_t mask, i=0, shared_int = TRUE;
  735. uint32_t irq = adapter->pdev->irq;
  736. *data = 0;
  737. /* Hook up test interrupt handler just for this test */
  738. if (!request_irq(irq, &e1000_test_intr, SA_PROBEIRQ, netdev->name,
  739. netdev)) {
  740. shared_int = FALSE;
  741. } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
  742. netdev->name, netdev)){
  743. *data = 1;
  744. return -1;
  745. }
  746. DPRINTK(PROBE,INFO, "testing %s interrupt\n",
  747. (shared_int ? "shared" : "unshared"));
  748. /* Disable all the interrupts */
  749. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  750. msec_delay(10);
  751. /* Test each interrupt */
  752. for (; i < 10; i++) {
  753. /* Interrupt to test */
  754. mask = 1 << i;
  755. if (!shared_int) {
  756. /* Disable the interrupt to be reported in
  757. * the cause register and then force the same
  758. * interrupt and see if one gets posted. If
  759. * an interrupt was posted to the bus, the
  760. * test failed.
  761. */
  762. adapter->test_icr = 0;
  763. E1000_WRITE_REG(&adapter->hw, IMC, mask);
  764. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  765. msec_delay(10);
  766. if (adapter->test_icr & mask) {
  767. *data = 3;
  768. break;
  769. }
  770. }
  771. /* Enable the interrupt to be reported in
  772. * the cause register and then force the same
  773. * interrupt and see if one gets posted. If
  774. * an interrupt was not posted to the bus, the
  775. * test failed.
  776. */
  777. adapter->test_icr = 0;
  778. E1000_WRITE_REG(&adapter->hw, IMS, mask);
  779. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  780. msec_delay(10);
  781. if (!(adapter->test_icr & mask)) {
  782. *data = 4;
  783. break;
  784. }
  785. if (!shared_int) {
  786. /* Disable the other interrupts to be reported in
  787. * the cause register and then force the other
  788. * interrupts and see if any get posted. If
  789. * an interrupt was posted to the bus, the
  790. * test failed.
  791. */
  792. adapter->test_icr = 0;
  793. E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
  794. E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
  795. msec_delay(10);
  796. if (adapter->test_icr) {
  797. *data = 5;
  798. break;
  799. }
  800. }
  801. }
  802. /* Disable all the interrupts */
  803. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  804. msec_delay(10);
  805. /* Unhook test interrupt handler */
  806. free_irq(irq, netdev);
  807. return *data;
  808. }
  809. static void
  810. e1000_free_desc_rings(struct e1000_adapter *adapter)
  811. {
  812. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  813. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  814. struct pci_dev *pdev = adapter->pdev;
  815. int i;
  816. if (txdr->desc && txdr->buffer_info) {
  817. for (i = 0; i < txdr->count; i++) {
  818. if (txdr->buffer_info[i].dma)
  819. pci_unmap_single(pdev, txdr->buffer_info[i].dma,
  820. txdr->buffer_info[i].length,
  821. PCI_DMA_TODEVICE);
  822. if (txdr->buffer_info[i].skb)
  823. dev_kfree_skb(txdr->buffer_info[i].skb);
  824. }
  825. }
  826. if (rxdr->desc && rxdr->buffer_info) {
  827. for (i = 0; i < rxdr->count; i++) {
  828. if (rxdr->buffer_info[i].dma)
  829. pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
  830. rxdr->buffer_info[i].length,
  831. PCI_DMA_FROMDEVICE);
  832. if (rxdr->buffer_info[i].skb)
  833. dev_kfree_skb(rxdr->buffer_info[i].skb);
  834. }
  835. }
  836. if (txdr->desc) {
  837. pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
  838. txdr->desc = NULL;
  839. }
  840. if (rxdr->desc) {
  841. pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
  842. rxdr->desc = NULL;
  843. }
  844. kfree(txdr->buffer_info);
  845. txdr->buffer_info = NULL;
  846. kfree(rxdr->buffer_info);
  847. rxdr->buffer_info = NULL;
  848. return;
  849. }
  850. static int
  851. e1000_setup_desc_rings(struct e1000_adapter *adapter)
  852. {
  853. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  854. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  855. struct pci_dev *pdev = adapter->pdev;
  856. uint32_t rctl;
  857. int size, i, ret_val;
  858. /* Setup Tx descriptor ring and Tx buffers */
  859. if (!txdr->count)
  860. txdr->count = E1000_DEFAULT_TXD;
  861. size = txdr->count * sizeof(struct e1000_buffer);
  862. if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  863. ret_val = 1;
  864. goto err_nomem;
  865. }
  866. memset(txdr->buffer_info, 0, size);
  867. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  868. E1000_ROUNDUP(txdr->size, 4096);
  869. if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
  870. ret_val = 2;
  871. goto err_nomem;
  872. }
  873. memset(txdr->desc, 0, txdr->size);
  874. txdr->next_to_use = txdr->next_to_clean = 0;
  875. E1000_WRITE_REG(&adapter->hw, TDBAL,
  876. ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
  877. E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
  878. E1000_WRITE_REG(&adapter->hw, TDLEN,
  879. txdr->count * sizeof(struct e1000_tx_desc));
  880. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  881. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  882. E1000_WRITE_REG(&adapter->hw, TCTL,
  883. E1000_TCTL_PSP | E1000_TCTL_EN |
  884. E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
  885. E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
  886. for (i = 0; i < txdr->count; i++) {
  887. struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
  888. struct sk_buff *skb;
  889. unsigned int size = 1024;
  890. if (!(skb = alloc_skb(size, GFP_KERNEL))) {
  891. ret_val = 3;
  892. goto err_nomem;
  893. }
  894. skb_put(skb, size);
  895. txdr->buffer_info[i].skb = skb;
  896. txdr->buffer_info[i].length = skb->len;
  897. txdr->buffer_info[i].dma =
  898. pci_map_single(pdev, skb->data, skb->len,
  899. PCI_DMA_TODEVICE);
  900. tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
  901. tx_desc->lower.data = cpu_to_le32(skb->len);
  902. tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
  903. E1000_TXD_CMD_IFCS |
  904. E1000_TXD_CMD_RPS);
  905. tx_desc->upper.data = 0;
  906. }
  907. /* Setup Rx descriptor ring and Rx buffers */
  908. if (!rxdr->count)
  909. rxdr->count = E1000_DEFAULT_RXD;
  910. size = rxdr->count * sizeof(struct e1000_buffer);
  911. if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  912. ret_val = 4;
  913. goto err_nomem;
  914. }
  915. memset(rxdr->buffer_info, 0, size);
  916. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  917. if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
  918. ret_val = 5;
  919. goto err_nomem;
  920. }
  921. memset(rxdr->desc, 0, rxdr->size);
  922. rxdr->next_to_use = rxdr->next_to_clean = 0;
  923. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  924. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  925. E1000_WRITE_REG(&adapter->hw, RDBAL,
  926. ((uint64_t) rxdr->dma & 0xFFFFFFFF));
  927. E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
  928. E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
  929. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  930. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  931. rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
  932. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  933. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  934. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  935. for (i = 0; i < rxdr->count; i++) {
  936. struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
  937. struct sk_buff *skb;
  938. if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
  939. GFP_KERNEL))) {
  940. ret_val = 6;
  941. goto err_nomem;
  942. }
  943. skb_reserve(skb, NET_IP_ALIGN);
  944. rxdr->buffer_info[i].skb = skb;
  945. rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
  946. rxdr->buffer_info[i].dma =
  947. pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
  948. PCI_DMA_FROMDEVICE);
  949. rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
  950. memset(skb->data, 0x00, skb->len);
  951. }
  952. return 0;
  953. err_nomem:
  954. e1000_free_desc_rings(adapter);
  955. return ret_val;
  956. }
  957. static void
  958. e1000_phy_disable_receiver(struct e1000_adapter *adapter)
  959. {
  960. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  961. e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
  962. e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
  963. e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
  964. e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
  965. }
  966. static void
  967. e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
  968. {
  969. uint16_t phy_reg;
  970. /* Because we reset the PHY above, we need to re-force TX_CLK in the
  971. * Extended PHY Specific Control Register to 25MHz clock. This
  972. * value defaults back to a 2.5MHz clock when the PHY is reset.
  973. */
  974. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  975. phy_reg |= M88E1000_EPSCR_TX_CLK_25;
  976. e1000_write_phy_reg(&adapter->hw,
  977. M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
  978. /* In addition, because of the s/w reset above, we need to enable
  979. * CRS on TX. This must be set for both full and half duplex
  980. * operation.
  981. */
  982. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  983. phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
  984. e1000_write_phy_reg(&adapter->hw,
  985. M88E1000_PHY_SPEC_CTRL, phy_reg);
  986. }
  987. static int
  988. e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
  989. {
  990. uint32_t ctrl_reg;
  991. uint16_t phy_reg;
  992. /* Setup the Device Control Register for PHY loopback test. */
  993. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  994. ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
  995. E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  996. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  997. E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
  998. E1000_CTRL_FD); /* Force Duplex to FULL */
  999. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  1000. /* Read the PHY Specific Control Register (0x10) */
  1001. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  1002. /* Clear Auto-Crossover bits in PHY Specific Control Register
  1003. * (bits 6:5).
  1004. */
  1005. phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
  1006. e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
  1007. /* Perform software reset on the PHY */
  1008. e1000_phy_reset(&adapter->hw);
  1009. /* Have to setup TX_CLK and TX_CRS after software reset */
  1010. e1000_phy_reset_clk_and_crs(adapter);
  1011. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
  1012. /* Wait for reset to complete. */
  1013. udelay(500);
  1014. /* Have to setup TX_CLK and TX_CRS after software reset */
  1015. e1000_phy_reset_clk_and_crs(adapter);
  1016. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1017. e1000_phy_disable_receiver(adapter);
  1018. /* Set the loopback bit in the PHY control register. */
  1019. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1020. phy_reg |= MII_CR_LOOPBACK;
  1021. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1022. /* Setup TX_CLK and TX_CRS one more time. */
  1023. e1000_phy_reset_clk_and_crs(adapter);
  1024. /* Check Phy Configuration */
  1025. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1026. if (phy_reg != 0x4100)
  1027. return 9;
  1028. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  1029. if (phy_reg != 0x0070)
  1030. return 10;
  1031. e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
  1032. if (phy_reg != 0x001A)
  1033. return 11;
  1034. return 0;
  1035. }
  1036. static int
  1037. e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
  1038. {
  1039. uint32_t ctrl_reg = 0;
  1040. uint32_t stat_reg = 0;
  1041. adapter->hw.autoneg = FALSE;
  1042. if (adapter->hw.phy_type == e1000_phy_m88) {
  1043. /* Auto-MDI/MDIX Off */
  1044. e1000_write_phy_reg(&adapter->hw,
  1045. M88E1000_PHY_SPEC_CTRL, 0x0808);
  1046. /* reset to update Auto-MDI/MDIX */
  1047. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
  1048. /* autoneg off */
  1049. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
  1050. } else if (adapter->hw.phy_type == e1000_phy_gg82563) {
  1051. e1000_write_phy_reg(&adapter->hw,
  1052. GG82563_PHY_KMRN_MODE_CTRL,
  1053. 0x1CC);
  1054. }
  1055. /* force 1000, set loopback */
  1056. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
  1057. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1058. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  1059. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1060. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1061. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1062. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1063. E1000_CTRL_FD); /* Force Duplex to FULL */
  1064. if (adapter->hw.media_type == e1000_media_type_copper &&
  1065. adapter->hw.phy_type == e1000_phy_m88) {
  1066. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1067. } else {
  1068. /* Set the ILOS bit on the fiber Nic is half
  1069. * duplex link is detected. */
  1070. stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
  1071. if ((stat_reg & E1000_STATUS_FD) == 0)
  1072. ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
  1073. }
  1074. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  1075. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1076. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1077. */
  1078. if (adapter->hw.phy_type == e1000_phy_m88)
  1079. e1000_phy_disable_receiver(adapter);
  1080. udelay(500);
  1081. return 0;
  1082. }
  1083. static int
  1084. e1000_set_phy_loopback(struct e1000_adapter *adapter)
  1085. {
  1086. uint16_t phy_reg = 0;
  1087. uint16_t count = 0;
  1088. switch (adapter->hw.mac_type) {
  1089. case e1000_82543:
  1090. if (adapter->hw.media_type == e1000_media_type_copper) {
  1091. /* Attempt to setup Loopback mode on Non-integrated PHY.
  1092. * Some PHY registers get corrupted at random, so
  1093. * attempt this 10 times.
  1094. */
  1095. while (e1000_nonintegrated_phy_loopback(adapter) &&
  1096. count++ < 10);
  1097. if (count < 11)
  1098. return 0;
  1099. }
  1100. break;
  1101. case e1000_82544:
  1102. case e1000_82540:
  1103. case e1000_82545:
  1104. case e1000_82545_rev_3:
  1105. case e1000_82546:
  1106. case e1000_82546_rev_3:
  1107. case e1000_82541:
  1108. case e1000_82541_rev_2:
  1109. case e1000_82547:
  1110. case e1000_82547_rev_2:
  1111. case e1000_82571:
  1112. case e1000_82572:
  1113. case e1000_82573:
  1114. case e1000_80003es2lan:
  1115. return e1000_integrated_phy_loopback(adapter);
  1116. break;
  1117. default:
  1118. /* Default PHY loopback work is to read the MII
  1119. * control register and assert bit 14 (loopback mode).
  1120. */
  1121. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1122. phy_reg |= MII_CR_LOOPBACK;
  1123. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1124. return 0;
  1125. break;
  1126. }
  1127. return 8;
  1128. }
  1129. static int
  1130. e1000_setup_loopback_test(struct e1000_adapter *adapter)
  1131. {
  1132. struct e1000_hw *hw = &adapter->hw;
  1133. uint32_t rctl;
  1134. if (hw->media_type == e1000_media_type_fiber ||
  1135. hw->media_type == e1000_media_type_internal_serdes) {
  1136. switch (hw->mac_type) {
  1137. case e1000_82545:
  1138. case e1000_82546:
  1139. case e1000_82545_rev_3:
  1140. case e1000_82546_rev_3:
  1141. return e1000_set_phy_loopback(adapter);
  1142. break;
  1143. case e1000_82571:
  1144. case e1000_82572:
  1145. #define E1000_SERDES_LB_ON 0x410
  1146. e1000_set_phy_loopback(adapter);
  1147. E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
  1148. msec_delay(10);
  1149. return 0;
  1150. break;
  1151. default:
  1152. rctl = E1000_READ_REG(hw, RCTL);
  1153. rctl |= E1000_RCTL_LBM_TCVR;
  1154. E1000_WRITE_REG(hw, RCTL, rctl);
  1155. return 0;
  1156. }
  1157. } else if (hw->media_type == e1000_media_type_copper)
  1158. return e1000_set_phy_loopback(adapter);
  1159. return 7;
  1160. }
  1161. static void
  1162. e1000_loopback_cleanup(struct e1000_adapter *adapter)
  1163. {
  1164. struct e1000_hw *hw = &adapter->hw;
  1165. uint32_t rctl;
  1166. uint16_t phy_reg;
  1167. rctl = E1000_READ_REG(hw, RCTL);
  1168. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1169. E1000_WRITE_REG(hw, RCTL, rctl);
  1170. switch (hw->mac_type) {
  1171. case e1000_82571:
  1172. case e1000_82572:
  1173. if (hw->media_type == e1000_media_type_fiber ||
  1174. hw->media_type == e1000_media_type_internal_serdes) {
  1175. #define E1000_SERDES_LB_OFF 0x400
  1176. E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
  1177. msec_delay(10);
  1178. break;
  1179. }
  1180. /* Fall Through */
  1181. case e1000_82545:
  1182. case e1000_82546:
  1183. case e1000_82545_rev_3:
  1184. case e1000_82546_rev_3:
  1185. default:
  1186. hw->autoneg = TRUE;
  1187. if (hw->phy_type == e1000_phy_gg82563) {
  1188. e1000_write_phy_reg(hw,
  1189. GG82563_PHY_KMRN_MODE_CTRL,
  1190. 0x180);
  1191. }
  1192. e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
  1193. if (phy_reg & MII_CR_LOOPBACK) {
  1194. phy_reg &= ~MII_CR_LOOPBACK;
  1195. e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
  1196. e1000_phy_reset(hw);
  1197. }
  1198. break;
  1199. }
  1200. }
  1201. static void
  1202. e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1203. {
  1204. memset(skb->data, 0xFF, frame_size);
  1205. frame_size &= ~1;
  1206. memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
  1207. memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
  1208. memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
  1209. }
  1210. static int
  1211. e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1212. {
  1213. frame_size &= ~1;
  1214. if (*(skb->data + 3) == 0xFF) {
  1215. if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
  1216. (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
  1217. return 0;
  1218. }
  1219. }
  1220. return 13;
  1221. }
  1222. static int
  1223. e1000_run_loopback_test(struct e1000_adapter *adapter)
  1224. {
  1225. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  1226. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  1227. struct pci_dev *pdev = adapter->pdev;
  1228. int i, j, k, l, lc, good_cnt, ret_val=0;
  1229. unsigned long time;
  1230. E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
  1231. /* Calculate the loop count based on the largest descriptor ring
  1232. * The idea is to wrap the largest ring a number of times using 64
  1233. * send/receive pairs during each loop
  1234. */
  1235. if (rxdr->count <= txdr->count)
  1236. lc = ((txdr->count / 64) * 2) + 1;
  1237. else
  1238. lc = ((rxdr->count / 64) * 2) + 1;
  1239. k = l = 0;
  1240. for (j = 0; j <= lc; j++) { /* loop count loop */
  1241. for (i = 0; i < 64; i++) { /* send the packets */
  1242. e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
  1243. 1024);
  1244. pci_dma_sync_single_for_device(pdev,
  1245. txdr->buffer_info[k].dma,
  1246. txdr->buffer_info[k].length,
  1247. PCI_DMA_TODEVICE);
  1248. if (unlikely(++k == txdr->count)) k = 0;
  1249. }
  1250. E1000_WRITE_REG(&adapter->hw, TDT, k);
  1251. msec_delay(200);
  1252. time = jiffies; /* set the start time for the receive */
  1253. good_cnt = 0;
  1254. do { /* receive the sent packets */
  1255. pci_dma_sync_single_for_cpu(pdev,
  1256. rxdr->buffer_info[l].dma,
  1257. rxdr->buffer_info[l].length,
  1258. PCI_DMA_FROMDEVICE);
  1259. ret_val = e1000_check_lbtest_frame(
  1260. rxdr->buffer_info[l].skb,
  1261. 1024);
  1262. if (!ret_val)
  1263. good_cnt++;
  1264. if (unlikely(++l == rxdr->count)) l = 0;
  1265. /* time + 20 msecs (200 msecs on 2.4) is more than
  1266. * enough time to complete the receives, if it's
  1267. * exceeded, break and error off
  1268. */
  1269. } while (good_cnt < 64 && jiffies < (time + 20));
  1270. if (good_cnt != 64) {
  1271. ret_val = 13; /* ret_val is the same as mis-compare */
  1272. break;
  1273. }
  1274. if (jiffies >= (time + 2)) {
  1275. ret_val = 14; /* error code for time out error */
  1276. break;
  1277. }
  1278. } /* end loop count loop */
  1279. return ret_val;
  1280. }
  1281. static int
  1282. e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
  1283. {
  1284. /* PHY loopback cannot be performed if SoL/IDER
  1285. * sessions are active */
  1286. if (e1000_check_phy_reset_block(&adapter->hw)) {
  1287. DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
  1288. "when SoL/IDER is active.\n");
  1289. *data = 0;
  1290. goto out;
  1291. }
  1292. if ((*data = e1000_setup_desc_rings(adapter)))
  1293. goto out;
  1294. if ((*data = e1000_setup_loopback_test(adapter)))
  1295. goto err_loopback;
  1296. *data = e1000_run_loopback_test(adapter);
  1297. e1000_loopback_cleanup(adapter);
  1298. err_loopback:
  1299. e1000_free_desc_rings(adapter);
  1300. out:
  1301. return *data;
  1302. }
  1303. static int
  1304. e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
  1305. {
  1306. *data = 0;
  1307. if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
  1308. int i = 0;
  1309. adapter->hw.serdes_link_down = TRUE;
  1310. /* On some blade server designs, link establishment
  1311. * could take as long as 2-3 minutes */
  1312. do {
  1313. e1000_check_for_link(&adapter->hw);
  1314. if (adapter->hw.serdes_link_down == FALSE)
  1315. return *data;
  1316. msec_delay(20);
  1317. } while (i++ < 3750);
  1318. *data = 1;
  1319. } else {
  1320. e1000_check_for_link(&adapter->hw);
  1321. if (adapter->hw.autoneg) /* if auto_neg is set wait for it */
  1322. msec_delay(4000);
  1323. if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
  1324. *data = 1;
  1325. }
  1326. }
  1327. return *data;
  1328. }
  1329. static int
  1330. e1000_diag_test_count(struct net_device *netdev)
  1331. {
  1332. return E1000_TEST_LEN;
  1333. }
  1334. static void
  1335. e1000_diag_test(struct net_device *netdev,
  1336. struct ethtool_test *eth_test, uint64_t *data)
  1337. {
  1338. struct e1000_adapter *adapter = netdev_priv(netdev);
  1339. boolean_t if_running = netif_running(netdev);
  1340. set_bit(__E1000_DRIVER_TESTING, &adapter->flags);
  1341. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1342. /* Offline tests */
  1343. /* save speed, duplex, autoneg settings */
  1344. uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
  1345. uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
  1346. uint8_t autoneg = adapter->hw.autoneg;
  1347. /* Link test performed before hardware reset so autoneg doesn't
  1348. * interfere with test result */
  1349. if (e1000_link_test(adapter, &data[4]))
  1350. eth_test->flags |= ETH_TEST_FL_FAILED;
  1351. if (if_running)
  1352. /* indicate we're in test mode */
  1353. dev_close(netdev);
  1354. else
  1355. e1000_reset(adapter);
  1356. if (e1000_reg_test(adapter, &data[0]))
  1357. eth_test->flags |= ETH_TEST_FL_FAILED;
  1358. e1000_reset(adapter);
  1359. if (e1000_eeprom_test(adapter, &data[1]))
  1360. eth_test->flags |= ETH_TEST_FL_FAILED;
  1361. e1000_reset(adapter);
  1362. if (e1000_intr_test(adapter, &data[2]))
  1363. eth_test->flags |= ETH_TEST_FL_FAILED;
  1364. e1000_reset(adapter);
  1365. if (e1000_loopback_test(adapter, &data[3]))
  1366. eth_test->flags |= ETH_TEST_FL_FAILED;
  1367. /* restore speed, duplex, autoneg settings */
  1368. adapter->hw.autoneg_advertised = autoneg_advertised;
  1369. adapter->hw.forced_speed_duplex = forced_speed_duplex;
  1370. adapter->hw.autoneg = autoneg;
  1371. e1000_reset(adapter);
  1372. clear_bit(__E1000_DRIVER_TESTING, &adapter->flags);
  1373. if (if_running)
  1374. dev_open(netdev);
  1375. } else {
  1376. /* Online tests */
  1377. if (e1000_link_test(adapter, &data[4]))
  1378. eth_test->flags |= ETH_TEST_FL_FAILED;
  1379. /* Offline tests aren't run; pass by default */
  1380. data[0] = 0;
  1381. data[1] = 0;
  1382. data[2] = 0;
  1383. data[3] = 0;
  1384. clear_bit(__E1000_DRIVER_TESTING, &adapter->flags);
  1385. }
  1386. msleep_interruptible(4 * 1000);
  1387. }
  1388. static void
  1389. e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1390. {
  1391. struct e1000_adapter *adapter = netdev_priv(netdev);
  1392. struct e1000_hw *hw = &adapter->hw;
  1393. switch (adapter->hw.device_id) {
  1394. case E1000_DEV_ID_82542:
  1395. case E1000_DEV_ID_82543GC_FIBER:
  1396. case E1000_DEV_ID_82543GC_COPPER:
  1397. case E1000_DEV_ID_82544EI_FIBER:
  1398. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1399. case E1000_DEV_ID_82545EM_FIBER:
  1400. case E1000_DEV_ID_82545EM_COPPER:
  1401. case E1000_DEV_ID_82546GB_QUAD_COPPER:
  1402. wol->supported = 0;
  1403. wol->wolopts = 0;
  1404. return;
  1405. case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
  1406. /* device id 10B5 port-A supports wol */
  1407. if (!adapter->ksp3_port_a) {
  1408. wol->supported = 0;
  1409. return;
  1410. }
  1411. /* KSP3 does not suppport UCAST wake-ups for any interface */
  1412. wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
  1413. if (adapter->wol & E1000_WUFC_EX)
  1414. DPRINTK(DRV, ERR, "Interface does not support "
  1415. "directed (unicast) frame wake-up packets\n");
  1416. wol->wolopts = 0;
  1417. goto do_defaults;
  1418. case E1000_DEV_ID_82546EB_FIBER:
  1419. case E1000_DEV_ID_82546GB_FIBER:
  1420. case E1000_DEV_ID_82571EB_FIBER:
  1421. /* Wake events only supported on port A for dual fiber */
  1422. if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
  1423. wol->supported = 0;
  1424. wol->wolopts = 0;
  1425. return;
  1426. }
  1427. /* Fall Through */
  1428. default:
  1429. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1430. WAKE_BCAST | WAKE_MAGIC;
  1431. wol->wolopts = 0;
  1432. do_defaults:
  1433. if (adapter->wol & E1000_WUFC_EX)
  1434. wol->wolopts |= WAKE_UCAST;
  1435. if (adapter->wol & E1000_WUFC_MC)
  1436. wol->wolopts |= WAKE_MCAST;
  1437. if (adapter->wol & E1000_WUFC_BC)
  1438. wol->wolopts |= WAKE_BCAST;
  1439. if (adapter->wol & E1000_WUFC_MAG)
  1440. wol->wolopts |= WAKE_MAGIC;
  1441. return;
  1442. }
  1443. }
  1444. static int
  1445. e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1446. {
  1447. struct e1000_adapter *adapter = netdev_priv(netdev);
  1448. struct e1000_hw *hw = &adapter->hw;
  1449. switch (adapter->hw.device_id) {
  1450. case E1000_DEV_ID_82542:
  1451. case E1000_DEV_ID_82543GC_FIBER:
  1452. case E1000_DEV_ID_82543GC_COPPER:
  1453. case E1000_DEV_ID_82544EI_FIBER:
  1454. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1455. case E1000_DEV_ID_82546GB_QUAD_COPPER:
  1456. case E1000_DEV_ID_82545EM_FIBER:
  1457. case E1000_DEV_ID_82545EM_COPPER:
  1458. return wol->wolopts ? -EOPNOTSUPP : 0;
  1459. case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
  1460. /* device id 10B5 port-A supports wol */
  1461. if (!adapter->ksp3_port_a)
  1462. return wol->wolopts ? -EOPNOTSUPP : 0;
  1463. if (wol->wolopts & WAKE_UCAST) {
  1464. DPRINTK(DRV, ERR, "Interface does not support "
  1465. "directed (unicast) frame wake-up packets\n");
  1466. return -EOPNOTSUPP;
  1467. }
  1468. case E1000_DEV_ID_82546EB_FIBER:
  1469. case E1000_DEV_ID_82546GB_FIBER:
  1470. case E1000_DEV_ID_82571EB_FIBER:
  1471. /* Wake events only supported on port A for dual fiber */
  1472. if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
  1473. return wol->wolopts ? -EOPNOTSUPP : 0;
  1474. /* Fall Through */
  1475. default:
  1476. if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
  1477. return -EOPNOTSUPP;
  1478. adapter->wol = 0;
  1479. if (wol->wolopts & WAKE_UCAST)
  1480. adapter->wol |= E1000_WUFC_EX;
  1481. if (wol->wolopts & WAKE_MCAST)
  1482. adapter->wol |= E1000_WUFC_MC;
  1483. if (wol->wolopts & WAKE_BCAST)
  1484. adapter->wol |= E1000_WUFC_BC;
  1485. if (wol->wolopts & WAKE_MAGIC)
  1486. adapter->wol |= E1000_WUFC_MAG;
  1487. }
  1488. return 0;
  1489. }
  1490. /* toggle LED 4 times per second = 2 "blinks" per second */
  1491. #define E1000_ID_INTERVAL (HZ/4)
  1492. /* bit defines for adapter->led_status */
  1493. #define E1000_LED_ON 0
  1494. static void
  1495. e1000_led_blink_callback(unsigned long data)
  1496. {
  1497. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1498. if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
  1499. e1000_led_off(&adapter->hw);
  1500. else
  1501. e1000_led_on(&adapter->hw);
  1502. mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
  1503. }
  1504. static int
  1505. e1000_phys_id(struct net_device *netdev, uint32_t data)
  1506. {
  1507. struct e1000_adapter *adapter = netdev_priv(netdev);
  1508. if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
  1509. data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
  1510. if (adapter->hw.mac_type < e1000_82571) {
  1511. if (!adapter->blink_timer.function) {
  1512. init_timer(&adapter->blink_timer);
  1513. adapter->blink_timer.function = e1000_led_blink_callback;
  1514. adapter->blink_timer.data = (unsigned long) adapter;
  1515. }
  1516. e1000_setup_led(&adapter->hw);
  1517. mod_timer(&adapter->blink_timer, jiffies);
  1518. msleep_interruptible(data * 1000);
  1519. del_timer_sync(&adapter->blink_timer);
  1520. } else if (adapter->hw.mac_type < e1000_82573) {
  1521. E1000_WRITE_REG(&adapter->hw, LEDCTL,
  1522. (E1000_LEDCTL_LED2_BLINK_RATE |
  1523. E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
  1524. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1525. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
  1526. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
  1527. msleep_interruptible(data * 1000);
  1528. } else {
  1529. E1000_WRITE_REG(&adapter->hw, LEDCTL,
  1530. (E1000_LEDCTL_LED2_BLINK_RATE |
  1531. E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
  1532. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1533. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
  1534. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
  1535. msleep_interruptible(data * 1000);
  1536. }
  1537. e1000_led_off(&adapter->hw);
  1538. clear_bit(E1000_LED_ON, &adapter->led_status);
  1539. e1000_cleanup_led(&adapter->hw);
  1540. return 0;
  1541. }
  1542. static int
  1543. e1000_nway_reset(struct net_device *netdev)
  1544. {
  1545. struct e1000_adapter *adapter = netdev_priv(netdev);
  1546. if (netif_running(netdev))
  1547. e1000_reinit_locked(adapter);
  1548. return 0;
  1549. }
  1550. static int
  1551. e1000_get_stats_count(struct net_device *netdev)
  1552. {
  1553. return E1000_STATS_LEN;
  1554. }
  1555. static void
  1556. e1000_get_ethtool_stats(struct net_device *netdev,
  1557. struct ethtool_stats *stats, uint64_t *data)
  1558. {
  1559. struct e1000_adapter *adapter = netdev_priv(netdev);
  1560. int i;
  1561. e1000_update_stats(adapter);
  1562. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1563. char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
  1564. data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
  1565. sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
  1566. }
  1567. /* BUG_ON(i != E1000_STATS_LEN); */
  1568. }
  1569. static void
  1570. e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
  1571. {
  1572. uint8_t *p = data;
  1573. int i;
  1574. switch (stringset) {
  1575. case ETH_SS_TEST:
  1576. memcpy(data, *e1000_gstrings_test,
  1577. E1000_TEST_LEN*ETH_GSTRING_LEN);
  1578. break;
  1579. case ETH_SS_STATS:
  1580. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1581. memcpy(p, e1000_gstrings_stats[i].stat_string,
  1582. ETH_GSTRING_LEN);
  1583. p += ETH_GSTRING_LEN;
  1584. }
  1585. /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
  1586. break;
  1587. }
  1588. }
  1589. static struct ethtool_ops e1000_ethtool_ops = {
  1590. .get_settings = e1000_get_settings,
  1591. .set_settings = e1000_set_settings,
  1592. .get_drvinfo = e1000_get_drvinfo,
  1593. .get_regs_len = e1000_get_regs_len,
  1594. .get_regs = e1000_get_regs,
  1595. .get_wol = e1000_get_wol,
  1596. .set_wol = e1000_set_wol,
  1597. .get_msglevel = e1000_get_msglevel,
  1598. .set_msglevel = e1000_set_msglevel,
  1599. .nway_reset = e1000_nway_reset,
  1600. .get_link = ethtool_op_get_link,
  1601. .get_eeprom_len = e1000_get_eeprom_len,
  1602. .get_eeprom = e1000_get_eeprom,
  1603. .set_eeprom = e1000_set_eeprom,
  1604. .get_ringparam = e1000_get_ringparam,
  1605. .set_ringparam = e1000_set_ringparam,
  1606. .get_pauseparam = e1000_get_pauseparam,
  1607. .set_pauseparam = e1000_set_pauseparam,
  1608. .get_rx_csum = e1000_get_rx_csum,
  1609. .set_rx_csum = e1000_set_rx_csum,
  1610. .get_tx_csum = e1000_get_tx_csum,
  1611. .set_tx_csum = e1000_set_tx_csum,
  1612. .get_sg = ethtool_op_get_sg,
  1613. .set_sg = ethtool_op_set_sg,
  1614. #ifdef NETIF_F_TSO
  1615. .get_tso = ethtool_op_get_tso,
  1616. .set_tso = e1000_set_tso,
  1617. #endif
  1618. .self_test_count = e1000_diag_test_count,
  1619. .self_test = e1000_diag_test,
  1620. .get_strings = e1000_get_strings,
  1621. .phys_id = e1000_phys_id,
  1622. .get_stats_count = e1000_get_stats_count,
  1623. .get_ethtool_stats = e1000_get_ethtool_stats,
  1624. .get_perm_addr = ethtool_op_get_perm_addr,
  1625. };
  1626. void e1000_set_ethtool_ops(struct net_device *netdev)
  1627. {
  1628. SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
  1629. }