forcedeth.c 191 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.63"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x000040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x000600 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_STATISTICS_V3 0x000e00 /* device supports hw statistics version 3 */
  86. #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */
  87. #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */
  88. #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */
  89. #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */
  90. #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */
  93. #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */
  94. #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */
  95. enum {
  96. NvRegIrqStatus = 0x000,
  97. #define NVREG_IRQSTAT_MIIEVENT 0x040
  98. #define NVREG_IRQSTAT_MASK 0x83ff
  99. NvRegIrqMask = 0x004,
  100. #define NVREG_IRQ_RX_ERROR 0x0001
  101. #define NVREG_IRQ_RX 0x0002
  102. #define NVREG_IRQ_RX_NOBUF 0x0004
  103. #define NVREG_IRQ_TX_ERR 0x0008
  104. #define NVREG_IRQ_TX_OK 0x0010
  105. #define NVREG_IRQ_TIMER 0x0020
  106. #define NVREG_IRQ_LINK 0x0040
  107. #define NVREG_IRQ_RX_FORCED 0x0080
  108. #define NVREG_IRQ_TX_FORCED 0x0100
  109. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  110. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  111. #define NVREG_IRQMASK_CPU 0x0060
  112. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  113. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  114. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  115. NvRegUnknownSetupReg6 = 0x008,
  116. #define NVREG_UNKSETUP6_VAL 3
  117. /*
  118. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  119. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  120. */
  121. NvRegPollingInterval = 0x00c,
  122. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  123. #define NVREG_POLL_DEFAULT_CPU 13
  124. NvRegMSIMap0 = 0x020,
  125. NvRegMSIMap1 = 0x024,
  126. NvRegMSIIrqMask = 0x030,
  127. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  128. NvRegMisc1 = 0x080,
  129. #define NVREG_MISC1_PAUSE_TX 0x01
  130. #define NVREG_MISC1_HD 0x02
  131. #define NVREG_MISC1_FORCE 0x3b0f3c
  132. NvRegMacReset = 0x34,
  133. #define NVREG_MAC_RESET_ASSERT 0x0F3
  134. NvRegTransmitterControl = 0x084,
  135. #define NVREG_XMITCTL_START 0x01
  136. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  137. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  138. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  139. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  140. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  141. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  142. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  143. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  144. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  145. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  146. #define NVREG_XMITCTL_DATA_START 0x00100000
  147. #define NVREG_XMITCTL_DATA_READY 0x00010000
  148. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  149. NvRegTransmitterStatus = 0x088,
  150. #define NVREG_XMITSTAT_BUSY 0x01
  151. NvRegPacketFilterFlags = 0x8c,
  152. #define NVREG_PFF_PAUSE_RX 0x08
  153. #define NVREG_PFF_ALWAYS 0x7F0000
  154. #define NVREG_PFF_PROMISC 0x80
  155. #define NVREG_PFF_MYADDR 0x20
  156. #define NVREG_PFF_LOOPBACK 0x10
  157. NvRegOffloadConfig = 0x90,
  158. #define NVREG_OFFLOAD_HOMEPHY 0x601
  159. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  160. NvRegReceiverControl = 0x094,
  161. #define NVREG_RCVCTL_START 0x01
  162. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  163. NvRegReceiverStatus = 0x98,
  164. #define NVREG_RCVSTAT_BUSY 0x01
  165. NvRegSlotTime = 0x9c,
  166. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  167. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  168. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  169. #define NVREG_SLOTTIME_HALF 0x0000ff00
  170. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  171. #define NVREG_SLOTTIME_MASK 0x000000ff
  172. NvRegTxDeferral = 0xA0,
  173. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  174. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  175. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  176. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  177. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  178. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  179. NvRegRxDeferral = 0xA4,
  180. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  181. NvRegMacAddrA = 0xA8,
  182. NvRegMacAddrB = 0xAC,
  183. NvRegMulticastAddrA = 0xB0,
  184. #define NVREG_MCASTADDRA_FORCE 0x01
  185. NvRegMulticastAddrB = 0xB4,
  186. NvRegMulticastMaskA = 0xB8,
  187. #define NVREG_MCASTMASKA_NONE 0xffffffff
  188. NvRegMulticastMaskB = 0xBC,
  189. #define NVREG_MCASTMASKB_NONE 0xffff
  190. NvRegPhyInterface = 0xC0,
  191. #define PHY_RGMII 0x10000000
  192. NvRegBackOffControl = 0xC4,
  193. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  194. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  195. #define NVREG_BKOFFCTRL_SELECT 24
  196. #define NVREG_BKOFFCTRL_GEAR 12
  197. NvRegTxRingPhysAddr = 0x100,
  198. NvRegRxRingPhysAddr = 0x104,
  199. NvRegRingSizes = 0x108,
  200. #define NVREG_RINGSZ_TXSHIFT 0
  201. #define NVREG_RINGSZ_RXSHIFT 16
  202. NvRegTransmitPoll = 0x10c,
  203. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  204. NvRegLinkSpeed = 0x110,
  205. #define NVREG_LINKSPEED_FORCE 0x10000
  206. #define NVREG_LINKSPEED_10 1000
  207. #define NVREG_LINKSPEED_100 100
  208. #define NVREG_LINKSPEED_1000 50
  209. #define NVREG_LINKSPEED_MASK (0xFFF)
  210. NvRegUnknownSetupReg5 = 0x130,
  211. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  212. NvRegTxWatermark = 0x13c,
  213. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  214. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  215. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  216. NvRegTxRxControl = 0x144,
  217. #define NVREG_TXRXCTL_KICK 0x0001
  218. #define NVREG_TXRXCTL_BIT1 0x0002
  219. #define NVREG_TXRXCTL_BIT2 0x0004
  220. #define NVREG_TXRXCTL_IDLE 0x0008
  221. #define NVREG_TXRXCTL_RESET 0x0010
  222. #define NVREG_TXRXCTL_RXCHECK 0x0400
  223. #define NVREG_TXRXCTL_DESC_1 0
  224. #define NVREG_TXRXCTL_DESC_2 0x002100
  225. #define NVREG_TXRXCTL_DESC_3 0xc02200
  226. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  227. #define NVREG_TXRXCTL_VLANINS 0x00080
  228. NvRegTxRingPhysAddrHigh = 0x148,
  229. NvRegRxRingPhysAddrHigh = 0x14C,
  230. NvRegTxPauseFrame = 0x170,
  231. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  232. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  233. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  234. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  235. NvRegTxPauseFrameLimit = 0x174,
  236. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  237. NvRegMIIStatus = 0x180,
  238. #define NVREG_MIISTAT_ERROR 0x0001
  239. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  240. #define NVREG_MIISTAT_MASK_RW 0x0007
  241. #define NVREG_MIISTAT_MASK_ALL 0x000f
  242. NvRegMIIMask = 0x184,
  243. #define NVREG_MII_LINKCHANGE 0x0008
  244. NvRegAdapterControl = 0x188,
  245. #define NVREG_ADAPTCTL_START 0x02
  246. #define NVREG_ADAPTCTL_LINKUP 0x04
  247. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  248. #define NVREG_ADAPTCTL_RUNNING 0x100000
  249. #define NVREG_ADAPTCTL_PHYSHIFT 24
  250. NvRegMIISpeed = 0x18c,
  251. #define NVREG_MIISPEED_BIT8 (1<<8)
  252. #define NVREG_MIIDELAY 5
  253. NvRegMIIControl = 0x190,
  254. #define NVREG_MIICTL_INUSE 0x08000
  255. #define NVREG_MIICTL_WRITE 0x00400
  256. #define NVREG_MIICTL_ADDRSHIFT 5
  257. NvRegMIIData = 0x194,
  258. NvRegTxUnicast = 0x1a0,
  259. NvRegTxMulticast = 0x1a4,
  260. NvRegTxBroadcast = 0x1a8,
  261. NvRegWakeUpFlags = 0x200,
  262. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  263. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  264. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  265. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  266. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  267. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  268. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  269. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  270. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  271. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  272. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  273. NvRegMgmtUnitGetVersion = 0x204,
  274. #define NVREG_MGMTUNITGETVERSION 0x01
  275. NvRegMgmtUnitVersion = 0x208,
  276. #define NVREG_MGMTUNITVERSION 0x08
  277. NvRegPowerCap = 0x268,
  278. #define NVREG_POWERCAP_D3SUPP (1<<30)
  279. #define NVREG_POWERCAP_D2SUPP (1<<26)
  280. #define NVREG_POWERCAP_D1SUPP (1<<25)
  281. NvRegPowerState = 0x26c,
  282. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  283. #define NVREG_POWERSTATE_VALID 0x0100
  284. #define NVREG_POWERSTATE_MASK 0x0003
  285. #define NVREG_POWERSTATE_D0 0x0000
  286. #define NVREG_POWERSTATE_D1 0x0001
  287. #define NVREG_POWERSTATE_D2 0x0002
  288. #define NVREG_POWERSTATE_D3 0x0003
  289. NvRegMgmtUnitControl = 0x278,
  290. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  291. NvRegTxCnt = 0x280,
  292. NvRegTxZeroReXmt = 0x284,
  293. NvRegTxOneReXmt = 0x288,
  294. NvRegTxManyReXmt = 0x28c,
  295. NvRegTxLateCol = 0x290,
  296. NvRegTxUnderflow = 0x294,
  297. NvRegTxLossCarrier = 0x298,
  298. NvRegTxExcessDef = 0x29c,
  299. NvRegTxRetryErr = 0x2a0,
  300. NvRegRxFrameErr = 0x2a4,
  301. NvRegRxExtraByte = 0x2a8,
  302. NvRegRxLateCol = 0x2ac,
  303. NvRegRxRunt = 0x2b0,
  304. NvRegRxFrameTooLong = 0x2b4,
  305. NvRegRxOverflow = 0x2b8,
  306. NvRegRxFCSErr = 0x2bc,
  307. NvRegRxFrameAlignErr = 0x2c0,
  308. NvRegRxLenErr = 0x2c4,
  309. NvRegRxUnicast = 0x2c8,
  310. NvRegRxMulticast = 0x2cc,
  311. NvRegRxBroadcast = 0x2d0,
  312. NvRegTxDef = 0x2d4,
  313. NvRegTxFrame = 0x2d8,
  314. NvRegRxCnt = 0x2dc,
  315. NvRegTxPause = 0x2e0,
  316. NvRegRxPause = 0x2e4,
  317. NvRegRxDropFrame = 0x2e8,
  318. NvRegVlanControl = 0x300,
  319. #define NVREG_VLANCONTROL_ENABLE 0x2000
  320. NvRegMSIXMap0 = 0x3e0,
  321. NvRegMSIXMap1 = 0x3e4,
  322. NvRegMSIXIrqStatus = 0x3f0,
  323. NvRegPowerState2 = 0x600,
  324. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  325. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  326. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  327. };
  328. /* Big endian: should work, but is untested */
  329. struct ring_desc {
  330. __le32 buf;
  331. __le32 flaglen;
  332. };
  333. struct ring_desc_ex {
  334. __le32 bufhigh;
  335. __le32 buflow;
  336. __le32 txvlan;
  337. __le32 flaglen;
  338. };
  339. union ring_type {
  340. struct ring_desc* orig;
  341. struct ring_desc_ex* ex;
  342. };
  343. #define FLAG_MASK_V1 0xffff0000
  344. #define FLAG_MASK_V2 0xffffc000
  345. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  346. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  347. #define NV_TX_LASTPACKET (1<<16)
  348. #define NV_TX_RETRYERROR (1<<19)
  349. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  350. #define NV_TX_FORCED_INTERRUPT (1<<24)
  351. #define NV_TX_DEFERRED (1<<26)
  352. #define NV_TX_CARRIERLOST (1<<27)
  353. #define NV_TX_LATECOLLISION (1<<28)
  354. #define NV_TX_UNDERFLOW (1<<29)
  355. #define NV_TX_ERROR (1<<30)
  356. #define NV_TX_VALID (1<<31)
  357. #define NV_TX2_LASTPACKET (1<<29)
  358. #define NV_TX2_RETRYERROR (1<<18)
  359. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  360. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  361. #define NV_TX2_DEFERRED (1<<25)
  362. #define NV_TX2_CARRIERLOST (1<<26)
  363. #define NV_TX2_LATECOLLISION (1<<27)
  364. #define NV_TX2_UNDERFLOW (1<<28)
  365. /* error and valid are the same for both */
  366. #define NV_TX2_ERROR (1<<30)
  367. #define NV_TX2_VALID (1<<31)
  368. #define NV_TX2_TSO (1<<28)
  369. #define NV_TX2_TSO_SHIFT 14
  370. #define NV_TX2_TSO_MAX_SHIFT 14
  371. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  372. #define NV_TX2_CHECKSUM_L3 (1<<27)
  373. #define NV_TX2_CHECKSUM_L4 (1<<26)
  374. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  375. #define NV_RX_DESCRIPTORVALID (1<<16)
  376. #define NV_RX_MISSEDFRAME (1<<17)
  377. #define NV_RX_SUBSTRACT1 (1<<18)
  378. #define NV_RX_ERROR1 (1<<23)
  379. #define NV_RX_ERROR2 (1<<24)
  380. #define NV_RX_ERROR3 (1<<25)
  381. #define NV_RX_ERROR4 (1<<26)
  382. #define NV_RX_CRCERR (1<<27)
  383. #define NV_RX_OVERFLOW (1<<28)
  384. #define NV_RX_FRAMINGERR (1<<29)
  385. #define NV_RX_ERROR (1<<30)
  386. #define NV_RX_AVAIL (1<<31)
  387. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  388. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  389. #define NV_RX2_CHECKSUM_IP (0x10000000)
  390. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  391. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  392. #define NV_RX2_DESCRIPTORVALID (1<<29)
  393. #define NV_RX2_SUBSTRACT1 (1<<25)
  394. #define NV_RX2_ERROR1 (1<<18)
  395. #define NV_RX2_ERROR2 (1<<19)
  396. #define NV_RX2_ERROR3 (1<<20)
  397. #define NV_RX2_ERROR4 (1<<21)
  398. #define NV_RX2_CRCERR (1<<22)
  399. #define NV_RX2_OVERFLOW (1<<23)
  400. #define NV_RX2_FRAMINGERR (1<<24)
  401. /* error and avail are the same for both */
  402. #define NV_RX2_ERROR (1<<30)
  403. #define NV_RX2_AVAIL (1<<31)
  404. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  405. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  406. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  407. /* Miscelaneous hardware related defines: */
  408. #define NV_PCI_REGSZ_VER1 0x270
  409. #define NV_PCI_REGSZ_VER2 0x2d4
  410. #define NV_PCI_REGSZ_VER3 0x604
  411. #define NV_PCI_REGSZ_MAX 0x604
  412. /* various timeout delays: all in usec */
  413. #define NV_TXRX_RESET_DELAY 4
  414. #define NV_TXSTOP_DELAY1 10
  415. #define NV_TXSTOP_DELAY1MAX 500000
  416. #define NV_TXSTOP_DELAY2 100
  417. #define NV_RXSTOP_DELAY1 10
  418. #define NV_RXSTOP_DELAY1MAX 500000
  419. #define NV_RXSTOP_DELAY2 100
  420. #define NV_SETUP5_DELAY 5
  421. #define NV_SETUP5_DELAYMAX 50000
  422. #define NV_POWERUP_DELAY 5
  423. #define NV_POWERUP_DELAYMAX 5000
  424. #define NV_MIIBUSY_DELAY 50
  425. #define NV_MIIPHY_DELAY 10
  426. #define NV_MIIPHY_DELAYMAX 10000
  427. #define NV_MAC_RESET_DELAY 64
  428. #define NV_WAKEUPPATTERNS 5
  429. #define NV_WAKEUPMASKENTRIES 4
  430. /* General driver defaults */
  431. #define NV_WATCHDOG_TIMEO (5*HZ)
  432. #define RX_RING_DEFAULT 128
  433. #define TX_RING_DEFAULT 256
  434. #define RX_RING_MIN 128
  435. #define TX_RING_MIN 64
  436. #define RING_MAX_DESC_VER_1 1024
  437. #define RING_MAX_DESC_VER_2_3 16384
  438. /* rx/tx mac addr + type + vlan + align + slack*/
  439. #define NV_RX_HEADERS (64)
  440. /* even more slack. */
  441. #define NV_RX_ALLOC_PAD (64)
  442. /* maximum mtu size */
  443. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  444. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  445. #define OOM_REFILL (1+HZ/20)
  446. #define POLL_WAIT (1+HZ/100)
  447. #define LINK_TIMEOUT (3*HZ)
  448. #define STATS_INTERVAL (10*HZ)
  449. /*
  450. * desc_ver values:
  451. * The nic supports three different descriptor types:
  452. * - DESC_VER_1: Original
  453. * - DESC_VER_2: support for jumbo frames.
  454. * - DESC_VER_3: 64-bit format.
  455. */
  456. #define DESC_VER_1 1
  457. #define DESC_VER_2 2
  458. #define DESC_VER_3 3
  459. /* PHY defines */
  460. #define PHY_OUI_MARVELL 0x5043
  461. #define PHY_OUI_CICADA 0x03f1
  462. #define PHY_OUI_VITESSE 0x01c1
  463. #define PHY_OUI_REALTEK 0x0732
  464. #define PHY_OUI_REALTEK2 0x0020
  465. #define PHYID1_OUI_MASK 0x03ff
  466. #define PHYID1_OUI_SHFT 6
  467. #define PHYID2_OUI_MASK 0xfc00
  468. #define PHYID2_OUI_SHFT 10
  469. #define PHYID2_MODEL_MASK 0x03f0
  470. #define PHY_MODEL_REALTEK_8211 0x0110
  471. #define PHY_REV_MASK 0x0001
  472. #define PHY_REV_REALTEK_8211B 0x0000
  473. #define PHY_REV_REALTEK_8211C 0x0001
  474. #define PHY_MODEL_REALTEK_8201 0x0200
  475. #define PHY_MODEL_MARVELL_E3016 0x0220
  476. #define PHY_MARVELL_E3016_INITMASK 0x0300
  477. #define PHY_CICADA_INIT1 0x0f000
  478. #define PHY_CICADA_INIT2 0x0e00
  479. #define PHY_CICADA_INIT3 0x01000
  480. #define PHY_CICADA_INIT4 0x0200
  481. #define PHY_CICADA_INIT5 0x0004
  482. #define PHY_CICADA_INIT6 0x02000
  483. #define PHY_VITESSE_INIT_REG1 0x1f
  484. #define PHY_VITESSE_INIT_REG2 0x10
  485. #define PHY_VITESSE_INIT_REG3 0x11
  486. #define PHY_VITESSE_INIT_REG4 0x12
  487. #define PHY_VITESSE_INIT_MSK1 0xc
  488. #define PHY_VITESSE_INIT_MSK2 0x0180
  489. #define PHY_VITESSE_INIT1 0x52b5
  490. #define PHY_VITESSE_INIT2 0xaf8a
  491. #define PHY_VITESSE_INIT3 0x8
  492. #define PHY_VITESSE_INIT4 0x8f8a
  493. #define PHY_VITESSE_INIT5 0xaf86
  494. #define PHY_VITESSE_INIT6 0x8f86
  495. #define PHY_VITESSE_INIT7 0xaf82
  496. #define PHY_VITESSE_INIT8 0x0100
  497. #define PHY_VITESSE_INIT9 0x8f82
  498. #define PHY_VITESSE_INIT10 0x0
  499. #define PHY_REALTEK_INIT_REG1 0x1f
  500. #define PHY_REALTEK_INIT_REG2 0x19
  501. #define PHY_REALTEK_INIT_REG3 0x13
  502. #define PHY_REALTEK_INIT_REG4 0x14
  503. #define PHY_REALTEK_INIT_REG5 0x18
  504. #define PHY_REALTEK_INIT_REG6 0x11
  505. #define PHY_REALTEK_INIT_REG7 0x01
  506. #define PHY_REALTEK_INIT1 0x0000
  507. #define PHY_REALTEK_INIT2 0x8e00
  508. #define PHY_REALTEK_INIT3 0x0001
  509. #define PHY_REALTEK_INIT4 0xad17
  510. #define PHY_REALTEK_INIT5 0xfb54
  511. #define PHY_REALTEK_INIT6 0xf5c7
  512. #define PHY_REALTEK_INIT7 0x1000
  513. #define PHY_REALTEK_INIT8 0x0003
  514. #define PHY_REALTEK_INIT9 0x0008
  515. #define PHY_REALTEK_INIT10 0x0005
  516. #define PHY_REALTEK_INIT11 0x0200
  517. #define PHY_REALTEK_INIT_MSK1 0x0003
  518. #define PHY_GIGABIT 0x0100
  519. #define PHY_TIMEOUT 0x1
  520. #define PHY_ERROR 0x2
  521. #define PHY_100 0x1
  522. #define PHY_1000 0x2
  523. #define PHY_HALF 0x100
  524. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  525. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  526. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  527. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  528. #define NV_PAUSEFRAME_RX_REQ 0x0010
  529. #define NV_PAUSEFRAME_TX_REQ 0x0020
  530. #define NV_PAUSEFRAME_AUTONEG 0x0040
  531. /* MSI/MSI-X defines */
  532. #define NV_MSI_X_MAX_VECTORS 8
  533. #define NV_MSI_X_VECTORS_MASK 0x000f
  534. #define NV_MSI_CAPABLE 0x0010
  535. #define NV_MSI_X_CAPABLE 0x0020
  536. #define NV_MSI_ENABLED 0x0040
  537. #define NV_MSI_X_ENABLED 0x0080
  538. #define NV_MSI_X_VECTOR_ALL 0x0
  539. #define NV_MSI_X_VECTOR_RX 0x0
  540. #define NV_MSI_X_VECTOR_TX 0x1
  541. #define NV_MSI_X_VECTOR_OTHER 0x2
  542. #define NV_MSI_PRIV_OFFSET 0x68
  543. #define NV_MSI_PRIV_VALUE 0xffffffff
  544. #define NV_RESTART_TX 0x1
  545. #define NV_RESTART_RX 0x2
  546. #define NV_TX_LIMIT_COUNT 16
  547. /* statistics */
  548. struct nv_ethtool_str {
  549. char name[ETH_GSTRING_LEN];
  550. };
  551. static const struct nv_ethtool_str nv_estats_str[] = {
  552. { "tx_bytes" },
  553. { "tx_zero_rexmt" },
  554. { "tx_one_rexmt" },
  555. { "tx_many_rexmt" },
  556. { "tx_late_collision" },
  557. { "tx_fifo_errors" },
  558. { "tx_carrier_errors" },
  559. { "tx_excess_deferral" },
  560. { "tx_retry_error" },
  561. { "rx_frame_error" },
  562. { "rx_extra_byte" },
  563. { "rx_late_collision" },
  564. { "rx_runt" },
  565. { "rx_frame_too_long" },
  566. { "rx_over_errors" },
  567. { "rx_crc_errors" },
  568. { "rx_frame_align_error" },
  569. { "rx_length_error" },
  570. { "rx_unicast" },
  571. { "rx_multicast" },
  572. { "rx_broadcast" },
  573. { "rx_packets" },
  574. { "rx_errors_total" },
  575. { "tx_errors_total" },
  576. /* version 2 stats */
  577. { "tx_deferral" },
  578. { "tx_packets" },
  579. { "rx_bytes" },
  580. { "tx_pause" },
  581. { "rx_pause" },
  582. { "rx_drop_frame" },
  583. /* version 3 stats */
  584. { "tx_unicast" },
  585. { "tx_multicast" },
  586. { "tx_broadcast" }
  587. };
  588. struct nv_ethtool_stats {
  589. u64 tx_bytes;
  590. u64 tx_zero_rexmt;
  591. u64 tx_one_rexmt;
  592. u64 tx_many_rexmt;
  593. u64 tx_late_collision;
  594. u64 tx_fifo_errors;
  595. u64 tx_carrier_errors;
  596. u64 tx_excess_deferral;
  597. u64 tx_retry_error;
  598. u64 rx_frame_error;
  599. u64 rx_extra_byte;
  600. u64 rx_late_collision;
  601. u64 rx_runt;
  602. u64 rx_frame_too_long;
  603. u64 rx_over_errors;
  604. u64 rx_crc_errors;
  605. u64 rx_frame_align_error;
  606. u64 rx_length_error;
  607. u64 rx_unicast;
  608. u64 rx_multicast;
  609. u64 rx_broadcast;
  610. u64 rx_packets;
  611. u64 rx_errors_total;
  612. u64 tx_errors_total;
  613. /* version 2 stats */
  614. u64 tx_deferral;
  615. u64 tx_packets;
  616. u64 rx_bytes;
  617. u64 tx_pause;
  618. u64 rx_pause;
  619. u64 rx_drop_frame;
  620. /* version 3 stats */
  621. u64 tx_unicast;
  622. u64 tx_multicast;
  623. u64 tx_broadcast;
  624. };
  625. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  626. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  627. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  628. /* diagnostics */
  629. #define NV_TEST_COUNT_BASE 3
  630. #define NV_TEST_COUNT_EXTENDED 4
  631. static const struct nv_ethtool_str nv_etests_str[] = {
  632. { "link (online/offline)" },
  633. { "register (offline) " },
  634. { "interrupt (offline) " },
  635. { "loopback (offline) " }
  636. };
  637. struct register_test {
  638. __u32 reg;
  639. __u32 mask;
  640. };
  641. static const struct register_test nv_registers_test[] = {
  642. { NvRegUnknownSetupReg6, 0x01 },
  643. { NvRegMisc1, 0x03c },
  644. { NvRegOffloadConfig, 0x03ff },
  645. { NvRegMulticastAddrA, 0xffffffff },
  646. { NvRegTxWatermark, 0x0ff },
  647. { NvRegWakeUpFlags, 0x07777 },
  648. { 0,0 }
  649. };
  650. struct nv_skb_map {
  651. struct sk_buff *skb;
  652. dma_addr_t dma;
  653. unsigned int dma_len;
  654. struct ring_desc_ex *first_tx_desc;
  655. struct nv_skb_map *next_tx_ctx;
  656. };
  657. /*
  658. * SMP locking:
  659. * All hardware access under netdev_priv(dev)->lock, except the performance
  660. * critical parts:
  661. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  662. * by the arch code for interrupts.
  663. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  664. * needs netdev_priv(dev)->lock :-(
  665. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  666. */
  667. /* in dev: base, irq */
  668. struct fe_priv {
  669. spinlock_t lock;
  670. struct net_device *dev;
  671. struct napi_struct napi;
  672. /* General data:
  673. * Locking: spin_lock(&np->lock); */
  674. struct nv_ethtool_stats estats;
  675. int in_shutdown;
  676. u32 linkspeed;
  677. int duplex;
  678. int autoneg;
  679. int fixed_mode;
  680. int phyaddr;
  681. int wolenabled;
  682. unsigned int phy_oui;
  683. unsigned int phy_model;
  684. unsigned int phy_rev;
  685. u16 gigabit;
  686. int intr_test;
  687. int recover_error;
  688. /* General data: RO fields */
  689. dma_addr_t ring_addr;
  690. struct pci_dev *pci_dev;
  691. u32 orig_mac[2];
  692. u32 events;
  693. u32 irqmask;
  694. u32 desc_ver;
  695. u32 txrxctl_bits;
  696. u32 vlanctl_bits;
  697. u32 driver_data;
  698. u32 device_id;
  699. u32 register_size;
  700. int rx_csum;
  701. u32 mac_in_use;
  702. int mgmt_version;
  703. int mgmt_sema;
  704. void __iomem *base;
  705. /* rx specific fields.
  706. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  707. */
  708. union ring_type get_rx, put_rx, first_rx, last_rx;
  709. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  710. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  711. struct nv_skb_map *rx_skb;
  712. union ring_type rx_ring;
  713. unsigned int rx_buf_sz;
  714. unsigned int pkt_limit;
  715. struct timer_list oom_kick;
  716. struct timer_list nic_poll;
  717. struct timer_list stats_poll;
  718. u32 nic_poll_irq;
  719. int rx_ring_size;
  720. /* media detection workaround.
  721. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  722. */
  723. int need_linktimer;
  724. unsigned long link_timeout;
  725. /*
  726. * tx specific fields.
  727. */
  728. union ring_type get_tx, put_tx, first_tx, last_tx;
  729. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  730. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  731. struct nv_skb_map *tx_skb;
  732. union ring_type tx_ring;
  733. u32 tx_flags;
  734. int tx_ring_size;
  735. int tx_limit;
  736. u32 tx_pkts_in_progress;
  737. struct nv_skb_map *tx_change_owner;
  738. struct nv_skb_map *tx_end_flip;
  739. int tx_stop;
  740. /* vlan fields */
  741. struct vlan_group *vlangrp;
  742. /* msi/msi-x fields */
  743. u32 msi_flags;
  744. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  745. /* flow control */
  746. u32 pause_flags;
  747. /* power saved state */
  748. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  749. /* for different msi-x irq type */
  750. char name_rx[IFNAMSIZ + 3]; /* -rx */
  751. char name_tx[IFNAMSIZ + 3]; /* -tx */
  752. char name_other[IFNAMSIZ + 6]; /* -other */
  753. };
  754. /*
  755. * Maximum number of loops until we assume that a bit in the irq mask
  756. * is stuck. Overridable with module param.
  757. */
  758. static int max_interrupt_work = 15;
  759. /*
  760. * Optimization can be either throuput mode or cpu mode
  761. *
  762. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  763. * CPU Mode: Interrupts are controlled by a timer.
  764. */
  765. enum {
  766. NV_OPTIMIZATION_MODE_THROUGHPUT,
  767. NV_OPTIMIZATION_MODE_CPU
  768. };
  769. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  770. /*
  771. * Poll interval for timer irq
  772. *
  773. * This interval determines how frequent an interrupt is generated.
  774. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  775. * Min = 0, and Max = 65535
  776. */
  777. static int poll_interval = -1;
  778. /*
  779. * MSI interrupts
  780. */
  781. enum {
  782. NV_MSI_INT_DISABLED,
  783. NV_MSI_INT_ENABLED
  784. };
  785. static int msi = NV_MSI_INT_ENABLED;
  786. /*
  787. * MSIX interrupts
  788. */
  789. enum {
  790. NV_MSIX_INT_DISABLED,
  791. NV_MSIX_INT_ENABLED
  792. };
  793. static int msix = NV_MSIX_INT_ENABLED;
  794. /*
  795. * DMA 64bit
  796. */
  797. enum {
  798. NV_DMA_64BIT_DISABLED,
  799. NV_DMA_64BIT_ENABLED
  800. };
  801. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  802. /*
  803. * Crossover Detection
  804. * Realtek 8201 phy + some OEM boards do not work properly.
  805. */
  806. enum {
  807. NV_CROSSOVER_DETECTION_DISABLED,
  808. NV_CROSSOVER_DETECTION_ENABLED
  809. };
  810. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  811. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  812. {
  813. return netdev_priv(dev);
  814. }
  815. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  816. {
  817. return ((struct fe_priv *)netdev_priv(dev))->base;
  818. }
  819. static inline void pci_push(u8 __iomem *base)
  820. {
  821. /* force out pending posted writes */
  822. readl(base);
  823. }
  824. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  825. {
  826. return le32_to_cpu(prd->flaglen)
  827. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  828. }
  829. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  830. {
  831. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  832. }
  833. static bool nv_optimized(struct fe_priv *np)
  834. {
  835. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  836. return false;
  837. return true;
  838. }
  839. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  840. int delay, int delaymax, const char *msg)
  841. {
  842. u8 __iomem *base = get_hwbase(dev);
  843. pci_push(base);
  844. do {
  845. udelay(delay);
  846. delaymax -= delay;
  847. if (delaymax < 0) {
  848. if (msg)
  849. printk("%s", msg);
  850. return 1;
  851. }
  852. } while ((readl(base + offset) & mask) != target);
  853. return 0;
  854. }
  855. #define NV_SETUP_RX_RING 0x01
  856. #define NV_SETUP_TX_RING 0x02
  857. static inline u32 dma_low(dma_addr_t addr)
  858. {
  859. return addr;
  860. }
  861. static inline u32 dma_high(dma_addr_t addr)
  862. {
  863. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  864. }
  865. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  866. {
  867. struct fe_priv *np = get_nvpriv(dev);
  868. u8 __iomem *base = get_hwbase(dev);
  869. if (!nv_optimized(np)) {
  870. if (rxtx_flags & NV_SETUP_RX_RING) {
  871. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  872. }
  873. if (rxtx_flags & NV_SETUP_TX_RING) {
  874. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  875. }
  876. } else {
  877. if (rxtx_flags & NV_SETUP_RX_RING) {
  878. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  879. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  880. }
  881. if (rxtx_flags & NV_SETUP_TX_RING) {
  882. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  883. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  884. }
  885. }
  886. }
  887. static void free_rings(struct net_device *dev)
  888. {
  889. struct fe_priv *np = get_nvpriv(dev);
  890. if (!nv_optimized(np)) {
  891. if (np->rx_ring.orig)
  892. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  893. np->rx_ring.orig, np->ring_addr);
  894. } else {
  895. if (np->rx_ring.ex)
  896. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  897. np->rx_ring.ex, np->ring_addr);
  898. }
  899. if (np->rx_skb)
  900. kfree(np->rx_skb);
  901. if (np->tx_skb)
  902. kfree(np->tx_skb);
  903. }
  904. static int using_multi_irqs(struct net_device *dev)
  905. {
  906. struct fe_priv *np = get_nvpriv(dev);
  907. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  908. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  909. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  910. return 0;
  911. else
  912. return 1;
  913. }
  914. static void nv_enable_irq(struct net_device *dev)
  915. {
  916. struct fe_priv *np = get_nvpriv(dev);
  917. if (!using_multi_irqs(dev)) {
  918. if (np->msi_flags & NV_MSI_X_ENABLED)
  919. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  920. else
  921. enable_irq(np->pci_dev->irq);
  922. } else {
  923. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  924. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  925. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  926. }
  927. }
  928. static void nv_disable_irq(struct net_device *dev)
  929. {
  930. struct fe_priv *np = get_nvpriv(dev);
  931. if (!using_multi_irqs(dev)) {
  932. if (np->msi_flags & NV_MSI_X_ENABLED)
  933. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  934. else
  935. disable_irq(np->pci_dev->irq);
  936. } else {
  937. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  938. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  939. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  940. }
  941. }
  942. /* In MSIX mode, a write to irqmask behaves as XOR */
  943. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  944. {
  945. u8 __iomem *base = get_hwbase(dev);
  946. writel(mask, base + NvRegIrqMask);
  947. }
  948. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  949. {
  950. struct fe_priv *np = get_nvpriv(dev);
  951. u8 __iomem *base = get_hwbase(dev);
  952. if (np->msi_flags & NV_MSI_X_ENABLED) {
  953. writel(mask, base + NvRegIrqMask);
  954. } else {
  955. if (np->msi_flags & NV_MSI_ENABLED)
  956. writel(0, base + NvRegMSIIrqMask);
  957. writel(0, base + NvRegIrqMask);
  958. }
  959. }
  960. static void nv_napi_enable(struct net_device *dev)
  961. {
  962. #ifdef CONFIG_FORCEDETH_NAPI
  963. struct fe_priv *np = get_nvpriv(dev);
  964. napi_enable(&np->napi);
  965. #endif
  966. }
  967. static void nv_napi_disable(struct net_device *dev)
  968. {
  969. #ifdef CONFIG_FORCEDETH_NAPI
  970. struct fe_priv *np = get_nvpriv(dev);
  971. napi_disable(&np->napi);
  972. #endif
  973. }
  974. #define MII_READ (-1)
  975. /* mii_rw: read/write a register on the PHY.
  976. *
  977. * Caller must guarantee serialization
  978. */
  979. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  980. {
  981. u8 __iomem *base = get_hwbase(dev);
  982. u32 reg;
  983. int retval;
  984. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  985. reg = readl(base + NvRegMIIControl);
  986. if (reg & NVREG_MIICTL_INUSE) {
  987. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  988. udelay(NV_MIIBUSY_DELAY);
  989. }
  990. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  991. if (value != MII_READ) {
  992. writel(value, base + NvRegMIIData);
  993. reg |= NVREG_MIICTL_WRITE;
  994. }
  995. writel(reg, base + NvRegMIIControl);
  996. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  997. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  998. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  999. dev->name, miireg, addr);
  1000. retval = -1;
  1001. } else if (value != MII_READ) {
  1002. /* it was a write operation - fewer failures are detectable */
  1003. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1004. dev->name, value, miireg, addr);
  1005. retval = 0;
  1006. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1007. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1008. dev->name, miireg, addr);
  1009. retval = -1;
  1010. } else {
  1011. retval = readl(base + NvRegMIIData);
  1012. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1013. dev->name, miireg, addr, retval);
  1014. }
  1015. return retval;
  1016. }
  1017. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1018. {
  1019. struct fe_priv *np = netdev_priv(dev);
  1020. u32 miicontrol;
  1021. unsigned int tries = 0;
  1022. miicontrol = BMCR_RESET | bmcr_setup;
  1023. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1024. return -1;
  1025. }
  1026. /* wait for 500ms */
  1027. msleep(500);
  1028. /* must wait till reset is deasserted */
  1029. while (miicontrol & BMCR_RESET) {
  1030. msleep(10);
  1031. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1032. /* FIXME: 100 tries seem excessive */
  1033. if (tries++ > 100)
  1034. return -1;
  1035. }
  1036. return 0;
  1037. }
  1038. static int phy_init(struct net_device *dev)
  1039. {
  1040. struct fe_priv *np = get_nvpriv(dev);
  1041. u8 __iomem *base = get_hwbase(dev);
  1042. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1043. /* phy errata for E3016 phy */
  1044. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1045. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1046. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1047. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1048. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1049. return PHY_ERROR;
  1050. }
  1051. }
  1052. if (np->phy_oui == PHY_OUI_REALTEK) {
  1053. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1054. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1055. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1056. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1057. return PHY_ERROR;
  1058. }
  1059. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1060. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1061. return PHY_ERROR;
  1062. }
  1063. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1064. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1065. return PHY_ERROR;
  1066. }
  1067. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1068. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1069. return PHY_ERROR;
  1070. }
  1071. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1072. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1073. return PHY_ERROR;
  1074. }
  1075. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1076. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1077. return PHY_ERROR;
  1078. }
  1079. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1080. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1081. return PHY_ERROR;
  1082. }
  1083. }
  1084. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1085. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1086. u32 powerstate = readl(base + NvRegPowerState2);
  1087. /* need to perform hw phy reset */
  1088. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1089. writel(powerstate, base + NvRegPowerState2);
  1090. msleep(25);
  1091. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1092. writel(powerstate, base + NvRegPowerState2);
  1093. msleep(25);
  1094. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1095. reg |= PHY_REALTEK_INIT9;
  1096. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1097. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1098. return PHY_ERROR;
  1099. }
  1100. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1101. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1102. return PHY_ERROR;
  1103. }
  1104. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1105. if (!(reg & PHY_REALTEK_INIT11)) {
  1106. reg |= PHY_REALTEK_INIT11;
  1107. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1108. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1109. return PHY_ERROR;
  1110. }
  1111. }
  1112. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1113. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1114. return PHY_ERROR;
  1115. }
  1116. }
  1117. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1118. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1119. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1120. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1121. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1122. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1123. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1124. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1125. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1126. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1127. phy_reserved |= PHY_REALTEK_INIT7;
  1128. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1129. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1130. return PHY_ERROR;
  1131. }
  1132. }
  1133. }
  1134. }
  1135. /* set advertise register */
  1136. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1137. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1138. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1139. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1140. return PHY_ERROR;
  1141. }
  1142. /* get phy interface type */
  1143. phyinterface = readl(base + NvRegPhyInterface);
  1144. /* see if gigabit phy */
  1145. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1146. if (mii_status & PHY_GIGABIT) {
  1147. np->gigabit = PHY_GIGABIT;
  1148. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1149. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1150. if (phyinterface & PHY_RGMII)
  1151. mii_control_1000 |= ADVERTISE_1000FULL;
  1152. else
  1153. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1154. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1155. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1156. return PHY_ERROR;
  1157. }
  1158. }
  1159. else
  1160. np->gigabit = 0;
  1161. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1162. mii_control |= BMCR_ANENABLE;
  1163. if (np->phy_oui == PHY_OUI_REALTEK &&
  1164. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1165. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1166. /* start autoneg since we already performed hw reset above */
  1167. mii_control |= BMCR_ANRESTART;
  1168. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1169. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1170. return PHY_ERROR;
  1171. }
  1172. } else {
  1173. /* reset the phy
  1174. * (certain phys need bmcr to be setup with reset)
  1175. */
  1176. if (phy_reset(dev, mii_control)) {
  1177. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1178. return PHY_ERROR;
  1179. }
  1180. }
  1181. /* phy vendor specific configuration */
  1182. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1183. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1184. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1185. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1186. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1187. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1188. return PHY_ERROR;
  1189. }
  1190. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1191. phy_reserved |= PHY_CICADA_INIT5;
  1192. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1193. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1194. return PHY_ERROR;
  1195. }
  1196. }
  1197. if (np->phy_oui == PHY_OUI_CICADA) {
  1198. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1199. phy_reserved |= PHY_CICADA_INIT6;
  1200. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1201. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1202. return PHY_ERROR;
  1203. }
  1204. }
  1205. if (np->phy_oui == PHY_OUI_VITESSE) {
  1206. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1207. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1208. return PHY_ERROR;
  1209. }
  1210. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1211. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1212. return PHY_ERROR;
  1213. }
  1214. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1215. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1216. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1217. return PHY_ERROR;
  1218. }
  1219. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1220. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1221. phy_reserved |= PHY_VITESSE_INIT3;
  1222. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1223. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1224. return PHY_ERROR;
  1225. }
  1226. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1227. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1228. return PHY_ERROR;
  1229. }
  1230. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1231. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1232. return PHY_ERROR;
  1233. }
  1234. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1235. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1236. phy_reserved |= PHY_VITESSE_INIT3;
  1237. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1238. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1239. return PHY_ERROR;
  1240. }
  1241. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1242. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1243. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1244. return PHY_ERROR;
  1245. }
  1246. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1247. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1248. return PHY_ERROR;
  1249. }
  1250. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1251. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1252. return PHY_ERROR;
  1253. }
  1254. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1255. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1256. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1257. return PHY_ERROR;
  1258. }
  1259. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1260. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1261. phy_reserved |= PHY_VITESSE_INIT8;
  1262. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1263. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1264. return PHY_ERROR;
  1265. }
  1266. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1267. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1268. return PHY_ERROR;
  1269. }
  1270. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1271. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1272. return PHY_ERROR;
  1273. }
  1274. }
  1275. if (np->phy_oui == PHY_OUI_REALTEK) {
  1276. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1277. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1278. /* reset could have cleared these out, set them back */
  1279. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1280. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1281. return PHY_ERROR;
  1282. }
  1283. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1284. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1285. return PHY_ERROR;
  1286. }
  1287. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1288. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1289. return PHY_ERROR;
  1290. }
  1291. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1292. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1293. return PHY_ERROR;
  1294. }
  1295. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1296. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1297. return PHY_ERROR;
  1298. }
  1299. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1300. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1301. return PHY_ERROR;
  1302. }
  1303. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1304. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1305. return PHY_ERROR;
  1306. }
  1307. }
  1308. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1309. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1310. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1311. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1312. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1313. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1314. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1315. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1316. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1317. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1318. phy_reserved |= PHY_REALTEK_INIT7;
  1319. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1320. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1321. return PHY_ERROR;
  1322. }
  1323. }
  1324. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1325. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1326. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1327. return PHY_ERROR;
  1328. }
  1329. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1330. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1331. phy_reserved |= PHY_REALTEK_INIT3;
  1332. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1333. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1334. return PHY_ERROR;
  1335. }
  1336. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1337. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1338. return PHY_ERROR;
  1339. }
  1340. }
  1341. }
  1342. }
  1343. /* some phys clear out pause advertisment on reset, set it back */
  1344. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1345. /* restart auto negotiation, power down phy */
  1346. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1347. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE | BMCR_PDOWN);
  1348. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1349. return PHY_ERROR;
  1350. }
  1351. return 0;
  1352. }
  1353. static void nv_start_rx(struct net_device *dev)
  1354. {
  1355. struct fe_priv *np = netdev_priv(dev);
  1356. u8 __iomem *base = get_hwbase(dev);
  1357. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1358. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1359. /* Already running? Stop it. */
  1360. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1361. rx_ctrl &= ~NVREG_RCVCTL_START;
  1362. writel(rx_ctrl, base + NvRegReceiverControl);
  1363. pci_push(base);
  1364. }
  1365. writel(np->linkspeed, base + NvRegLinkSpeed);
  1366. pci_push(base);
  1367. rx_ctrl |= NVREG_RCVCTL_START;
  1368. if (np->mac_in_use)
  1369. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1370. writel(rx_ctrl, base + NvRegReceiverControl);
  1371. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1372. dev->name, np->duplex, np->linkspeed);
  1373. pci_push(base);
  1374. }
  1375. static void nv_stop_rx(struct net_device *dev)
  1376. {
  1377. struct fe_priv *np = netdev_priv(dev);
  1378. u8 __iomem *base = get_hwbase(dev);
  1379. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1380. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1381. if (!np->mac_in_use)
  1382. rx_ctrl &= ~NVREG_RCVCTL_START;
  1383. else
  1384. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1385. writel(rx_ctrl, base + NvRegReceiverControl);
  1386. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1387. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1388. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1389. udelay(NV_RXSTOP_DELAY2);
  1390. if (!np->mac_in_use)
  1391. writel(0, base + NvRegLinkSpeed);
  1392. }
  1393. static void nv_start_tx(struct net_device *dev)
  1394. {
  1395. struct fe_priv *np = netdev_priv(dev);
  1396. u8 __iomem *base = get_hwbase(dev);
  1397. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1398. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1399. tx_ctrl |= NVREG_XMITCTL_START;
  1400. if (np->mac_in_use)
  1401. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1402. writel(tx_ctrl, base + NvRegTransmitterControl);
  1403. pci_push(base);
  1404. }
  1405. static void nv_stop_tx(struct net_device *dev)
  1406. {
  1407. struct fe_priv *np = netdev_priv(dev);
  1408. u8 __iomem *base = get_hwbase(dev);
  1409. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1410. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1411. if (!np->mac_in_use)
  1412. tx_ctrl &= ~NVREG_XMITCTL_START;
  1413. else
  1414. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1415. writel(tx_ctrl, base + NvRegTransmitterControl);
  1416. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1417. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1418. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1419. udelay(NV_TXSTOP_DELAY2);
  1420. if (!np->mac_in_use)
  1421. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1422. base + NvRegTransmitPoll);
  1423. }
  1424. static void nv_start_rxtx(struct net_device *dev)
  1425. {
  1426. nv_start_rx(dev);
  1427. nv_start_tx(dev);
  1428. }
  1429. static void nv_stop_rxtx(struct net_device *dev)
  1430. {
  1431. nv_stop_rx(dev);
  1432. nv_stop_tx(dev);
  1433. }
  1434. static void nv_txrx_reset(struct net_device *dev)
  1435. {
  1436. struct fe_priv *np = netdev_priv(dev);
  1437. u8 __iomem *base = get_hwbase(dev);
  1438. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1439. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1440. pci_push(base);
  1441. udelay(NV_TXRX_RESET_DELAY);
  1442. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1443. pci_push(base);
  1444. }
  1445. static void nv_mac_reset(struct net_device *dev)
  1446. {
  1447. struct fe_priv *np = netdev_priv(dev);
  1448. u8 __iomem *base = get_hwbase(dev);
  1449. u32 temp1, temp2, temp3;
  1450. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1451. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1452. pci_push(base);
  1453. /* save registers since they will be cleared on reset */
  1454. temp1 = readl(base + NvRegMacAddrA);
  1455. temp2 = readl(base + NvRegMacAddrB);
  1456. temp3 = readl(base + NvRegTransmitPoll);
  1457. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1458. pci_push(base);
  1459. udelay(NV_MAC_RESET_DELAY);
  1460. writel(0, base + NvRegMacReset);
  1461. pci_push(base);
  1462. udelay(NV_MAC_RESET_DELAY);
  1463. /* restore saved registers */
  1464. writel(temp1, base + NvRegMacAddrA);
  1465. writel(temp2, base + NvRegMacAddrB);
  1466. writel(temp3, base + NvRegTransmitPoll);
  1467. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1468. pci_push(base);
  1469. }
  1470. static void nv_get_hw_stats(struct net_device *dev)
  1471. {
  1472. struct fe_priv *np = netdev_priv(dev);
  1473. u8 __iomem *base = get_hwbase(dev);
  1474. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1475. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1476. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1477. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1478. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1479. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1480. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1481. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1482. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1483. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1484. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1485. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1486. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1487. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1488. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1489. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1490. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1491. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1492. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1493. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1494. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1495. np->estats.rx_packets =
  1496. np->estats.rx_unicast +
  1497. np->estats.rx_multicast +
  1498. np->estats.rx_broadcast;
  1499. np->estats.rx_errors_total =
  1500. np->estats.rx_crc_errors +
  1501. np->estats.rx_over_errors +
  1502. np->estats.rx_frame_error +
  1503. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1504. np->estats.rx_late_collision +
  1505. np->estats.rx_runt +
  1506. np->estats.rx_frame_too_long;
  1507. np->estats.tx_errors_total =
  1508. np->estats.tx_late_collision +
  1509. np->estats.tx_fifo_errors +
  1510. np->estats.tx_carrier_errors +
  1511. np->estats.tx_excess_deferral +
  1512. np->estats.tx_retry_error;
  1513. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1514. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1515. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1516. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1517. np->estats.tx_pause += readl(base + NvRegTxPause);
  1518. np->estats.rx_pause += readl(base + NvRegRxPause);
  1519. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1520. }
  1521. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1522. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1523. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1524. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1525. }
  1526. }
  1527. /*
  1528. * nv_get_stats: dev->get_stats function
  1529. * Get latest stats value from the nic.
  1530. * Called with read_lock(&dev_base_lock) held for read -
  1531. * only synchronized against unregister_netdevice.
  1532. */
  1533. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1534. {
  1535. struct fe_priv *np = netdev_priv(dev);
  1536. /* If the nic supports hw counters then retrieve latest values */
  1537. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1538. nv_get_hw_stats(dev);
  1539. /* copy to net_device stats */
  1540. dev->stats.tx_bytes = np->estats.tx_bytes;
  1541. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1542. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1543. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1544. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1545. dev->stats.rx_errors = np->estats.rx_errors_total;
  1546. dev->stats.tx_errors = np->estats.tx_errors_total;
  1547. }
  1548. return &dev->stats;
  1549. }
  1550. /*
  1551. * nv_alloc_rx: fill rx ring entries.
  1552. * Return 1 if the allocations for the skbs failed and the
  1553. * rx engine is without Available descriptors
  1554. */
  1555. static int nv_alloc_rx(struct net_device *dev)
  1556. {
  1557. struct fe_priv *np = netdev_priv(dev);
  1558. struct ring_desc* less_rx;
  1559. less_rx = np->get_rx.orig;
  1560. if (less_rx-- == np->first_rx.orig)
  1561. less_rx = np->last_rx.orig;
  1562. while (np->put_rx.orig != less_rx) {
  1563. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1564. if (skb) {
  1565. np->put_rx_ctx->skb = skb;
  1566. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1567. skb->data,
  1568. skb_tailroom(skb),
  1569. PCI_DMA_FROMDEVICE);
  1570. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1571. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1572. wmb();
  1573. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1574. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1575. np->put_rx.orig = np->first_rx.orig;
  1576. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1577. np->put_rx_ctx = np->first_rx_ctx;
  1578. } else {
  1579. return 1;
  1580. }
  1581. }
  1582. return 0;
  1583. }
  1584. static int nv_alloc_rx_optimized(struct net_device *dev)
  1585. {
  1586. struct fe_priv *np = netdev_priv(dev);
  1587. struct ring_desc_ex* less_rx;
  1588. less_rx = np->get_rx.ex;
  1589. if (less_rx-- == np->first_rx.ex)
  1590. less_rx = np->last_rx.ex;
  1591. while (np->put_rx.ex != less_rx) {
  1592. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1593. if (skb) {
  1594. np->put_rx_ctx->skb = skb;
  1595. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1596. skb->data,
  1597. skb_tailroom(skb),
  1598. PCI_DMA_FROMDEVICE);
  1599. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1600. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1601. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1602. wmb();
  1603. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1604. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1605. np->put_rx.ex = np->first_rx.ex;
  1606. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1607. np->put_rx_ctx = np->first_rx_ctx;
  1608. } else {
  1609. return 1;
  1610. }
  1611. }
  1612. return 0;
  1613. }
  1614. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1615. #ifdef CONFIG_FORCEDETH_NAPI
  1616. static void nv_do_rx_refill(unsigned long data)
  1617. {
  1618. struct net_device *dev = (struct net_device *) data;
  1619. struct fe_priv *np = netdev_priv(dev);
  1620. /* Just reschedule NAPI rx processing */
  1621. napi_schedule(&np->napi);
  1622. }
  1623. #else
  1624. static void nv_do_rx_refill(unsigned long data)
  1625. {
  1626. struct net_device *dev = (struct net_device *) data;
  1627. struct fe_priv *np = netdev_priv(dev);
  1628. int retcode;
  1629. if (!using_multi_irqs(dev)) {
  1630. if (np->msi_flags & NV_MSI_X_ENABLED)
  1631. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1632. else
  1633. disable_irq(np->pci_dev->irq);
  1634. } else {
  1635. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1636. }
  1637. if (!nv_optimized(np))
  1638. retcode = nv_alloc_rx(dev);
  1639. else
  1640. retcode = nv_alloc_rx_optimized(dev);
  1641. if (retcode) {
  1642. spin_lock_irq(&np->lock);
  1643. if (!np->in_shutdown)
  1644. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1645. spin_unlock_irq(&np->lock);
  1646. }
  1647. if (!using_multi_irqs(dev)) {
  1648. if (np->msi_flags & NV_MSI_X_ENABLED)
  1649. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1650. else
  1651. enable_irq(np->pci_dev->irq);
  1652. } else {
  1653. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1654. }
  1655. }
  1656. #endif
  1657. static void nv_init_rx(struct net_device *dev)
  1658. {
  1659. struct fe_priv *np = netdev_priv(dev);
  1660. int i;
  1661. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1662. if (!nv_optimized(np))
  1663. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1664. else
  1665. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1666. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1667. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1668. for (i = 0; i < np->rx_ring_size; i++) {
  1669. if (!nv_optimized(np)) {
  1670. np->rx_ring.orig[i].flaglen = 0;
  1671. np->rx_ring.orig[i].buf = 0;
  1672. } else {
  1673. np->rx_ring.ex[i].flaglen = 0;
  1674. np->rx_ring.ex[i].txvlan = 0;
  1675. np->rx_ring.ex[i].bufhigh = 0;
  1676. np->rx_ring.ex[i].buflow = 0;
  1677. }
  1678. np->rx_skb[i].skb = NULL;
  1679. np->rx_skb[i].dma = 0;
  1680. }
  1681. }
  1682. static void nv_init_tx(struct net_device *dev)
  1683. {
  1684. struct fe_priv *np = netdev_priv(dev);
  1685. int i;
  1686. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1687. if (!nv_optimized(np))
  1688. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1689. else
  1690. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1691. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1692. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1693. np->tx_pkts_in_progress = 0;
  1694. np->tx_change_owner = NULL;
  1695. np->tx_end_flip = NULL;
  1696. for (i = 0; i < np->tx_ring_size; i++) {
  1697. if (!nv_optimized(np)) {
  1698. np->tx_ring.orig[i].flaglen = 0;
  1699. np->tx_ring.orig[i].buf = 0;
  1700. } else {
  1701. np->tx_ring.ex[i].flaglen = 0;
  1702. np->tx_ring.ex[i].txvlan = 0;
  1703. np->tx_ring.ex[i].bufhigh = 0;
  1704. np->tx_ring.ex[i].buflow = 0;
  1705. }
  1706. np->tx_skb[i].skb = NULL;
  1707. np->tx_skb[i].dma = 0;
  1708. np->tx_skb[i].dma_len = 0;
  1709. np->tx_skb[i].first_tx_desc = NULL;
  1710. np->tx_skb[i].next_tx_ctx = NULL;
  1711. }
  1712. }
  1713. static int nv_init_ring(struct net_device *dev)
  1714. {
  1715. struct fe_priv *np = netdev_priv(dev);
  1716. nv_init_tx(dev);
  1717. nv_init_rx(dev);
  1718. if (!nv_optimized(np))
  1719. return nv_alloc_rx(dev);
  1720. else
  1721. return nv_alloc_rx_optimized(dev);
  1722. }
  1723. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1724. {
  1725. struct fe_priv *np = netdev_priv(dev);
  1726. if (tx_skb->dma) {
  1727. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1728. tx_skb->dma_len,
  1729. PCI_DMA_TODEVICE);
  1730. tx_skb->dma = 0;
  1731. }
  1732. if (tx_skb->skb) {
  1733. dev_kfree_skb_any(tx_skb->skb);
  1734. tx_skb->skb = NULL;
  1735. return 1;
  1736. } else {
  1737. return 0;
  1738. }
  1739. }
  1740. static void nv_drain_tx(struct net_device *dev)
  1741. {
  1742. struct fe_priv *np = netdev_priv(dev);
  1743. unsigned int i;
  1744. for (i = 0; i < np->tx_ring_size; i++) {
  1745. if (!nv_optimized(np)) {
  1746. np->tx_ring.orig[i].flaglen = 0;
  1747. np->tx_ring.orig[i].buf = 0;
  1748. } else {
  1749. np->tx_ring.ex[i].flaglen = 0;
  1750. np->tx_ring.ex[i].txvlan = 0;
  1751. np->tx_ring.ex[i].bufhigh = 0;
  1752. np->tx_ring.ex[i].buflow = 0;
  1753. }
  1754. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1755. dev->stats.tx_dropped++;
  1756. np->tx_skb[i].dma = 0;
  1757. np->tx_skb[i].dma_len = 0;
  1758. np->tx_skb[i].first_tx_desc = NULL;
  1759. np->tx_skb[i].next_tx_ctx = NULL;
  1760. }
  1761. np->tx_pkts_in_progress = 0;
  1762. np->tx_change_owner = NULL;
  1763. np->tx_end_flip = NULL;
  1764. }
  1765. static void nv_drain_rx(struct net_device *dev)
  1766. {
  1767. struct fe_priv *np = netdev_priv(dev);
  1768. int i;
  1769. for (i = 0; i < np->rx_ring_size; i++) {
  1770. if (!nv_optimized(np)) {
  1771. np->rx_ring.orig[i].flaglen = 0;
  1772. np->rx_ring.orig[i].buf = 0;
  1773. } else {
  1774. np->rx_ring.ex[i].flaglen = 0;
  1775. np->rx_ring.ex[i].txvlan = 0;
  1776. np->rx_ring.ex[i].bufhigh = 0;
  1777. np->rx_ring.ex[i].buflow = 0;
  1778. }
  1779. wmb();
  1780. if (np->rx_skb[i].skb) {
  1781. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1782. (skb_end_pointer(np->rx_skb[i].skb) -
  1783. np->rx_skb[i].skb->data),
  1784. PCI_DMA_FROMDEVICE);
  1785. dev_kfree_skb(np->rx_skb[i].skb);
  1786. np->rx_skb[i].skb = NULL;
  1787. }
  1788. }
  1789. }
  1790. static void nv_drain_rxtx(struct net_device *dev)
  1791. {
  1792. nv_drain_tx(dev);
  1793. nv_drain_rx(dev);
  1794. }
  1795. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1796. {
  1797. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1798. }
  1799. static void nv_legacybackoff_reseed(struct net_device *dev)
  1800. {
  1801. u8 __iomem *base = get_hwbase(dev);
  1802. u32 reg;
  1803. u32 low;
  1804. int tx_status = 0;
  1805. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1806. get_random_bytes(&low, sizeof(low));
  1807. reg |= low & NVREG_SLOTTIME_MASK;
  1808. /* Need to stop tx before change takes effect.
  1809. * Caller has already gained np->lock.
  1810. */
  1811. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1812. if (tx_status)
  1813. nv_stop_tx(dev);
  1814. nv_stop_rx(dev);
  1815. writel(reg, base + NvRegSlotTime);
  1816. if (tx_status)
  1817. nv_start_tx(dev);
  1818. nv_start_rx(dev);
  1819. }
  1820. /* Gear Backoff Seeds */
  1821. #define BACKOFF_SEEDSET_ROWS 8
  1822. #define BACKOFF_SEEDSET_LFSRS 15
  1823. /* Known Good seed sets */
  1824. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1825. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1826. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1827. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1828. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1829. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1830. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1831. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1832. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1833. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1834. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1835. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1836. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1837. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1838. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1839. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1840. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1841. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1842. static void nv_gear_backoff_reseed(struct net_device *dev)
  1843. {
  1844. u8 __iomem *base = get_hwbase(dev);
  1845. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1846. u32 temp, seedset, combinedSeed;
  1847. int i;
  1848. /* Setup seed for free running LFSR */
  1849. /* We are going to read the time stamp counter 3 times
  1850. and swizzle bits around to increase randomness */
  1851. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1852. miniseed1 &= 0x0fff;
  1853. if (miniseed1 == 0)
  1854. miniseed1 = 0xabc;
  1855. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1856. miniseed2 &= 0x0fff;
  1857. if (miniseed2 == 0)
  1858. miniseed2 = 0xabc;
  1859. miniseed2_reversed =
  1860. ((miniseed2 & 0xF00) >> 8) |
  1861. (miniseed2 & 0x0F0) |
  1862. ((miniseed2 & 0x00F) << 8);
  1863. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1864. miniseed3 &= 0x0fff;
  1865. if (miniseed3 == 0)
  1866. miniseed3 = 0xabc;
  1867. miniseed3_reversed =
  1868. ((miniseed3 & 0xF00) >> 8) |
  1869. (miniseed3 & 0x0F0) |
  1870. ((miniseed3 & 0x00F) << 8);
  1871. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1872. (miniseed2 ^ miniseed3_reversed);
  1873. /* Seeds can not be zero */
  1874. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1875. combinedSeed |= 0x08;
  1876. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1877. combinedSeed |= 0x8000;
  1878. /* No need to disable tx here */
  1879. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1880. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1881. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1882. writel(temp,base + NvRegBackOffControl);
  1883. /* Setup seeds for all gear LFSRs. */
  1884. get_random_bytes(&seedset, sizeof(seedset));
  1885. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1886. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1887. {
  1888. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1889. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1890. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1891. writel(temp, base + NvRegBackOffControl);
  1892. }
  1893. }
  1894. /*
  1895. * nv_start_xmit: dev->hard_start_xmit function
  1896. * Called with netif_tx_lock held.
  1897. */
  1898. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1899. {
  1900. struct fe_priv *np = netdev_priv(dev);
  1901. u32 tx_flags = 0;
  1902. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1903. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1904. unsigned int i;
  1905. u32 offset = 0;
  1906. u32 bcnt;
  1907. u32 size = skb->len-skb->data_len;
  1908. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1909. u32 empty_slots;
  1910. struct ring_desc* put_tx;
  1911. struct ring_desc* start_tx;
  1912. struct ring_desc* prev_tx;
  1913. struct nv_skb_map* prev_tx_ctx;
  1914. unsigned long flags;
  1915. /* add fragments to entries count */
  1916. for (i = 0; i < fragments; i++) {
  1917. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1918. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1919. }
  1920. spin_lock_irqsave(&np->lock, flags);
  1921. empty_slots = nv_get_empty_tx_slots(np);
  1922. if (unlikely(empty_slots <= entries)) {
  1923. netif_stop_queue(dev);
  1924. np->tx_stop = 1;
  1925. spin_unlock_irqrestore(&np->lock, flags);
  1926. return NETDEV_TX_BUSY;
  1927. }
  1928. spin_unlock_irqrestore(&np->lock, flags);
  1929. start_tx = put_tx = np->put_tx.orig;
  1930. /* setup the header buffer */
  1931. do {
  1932. prev_tx = put_tx;
  1933. prev_tx_ctx = np->put_tx_ctx;
  1934. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1935. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1936. PCI_DMA_TODEVICE);
  1937. np->put_tx_ctx->dma_len = bcnt;
  1938. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1939. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1940. tx_flags = np->tx_flags;
  1941. offset += bcnt;
  1942. size -= bcnt;
  1943. if (unlikely(put_tx++ == np->last_tx.orig))
  1944. put_tx = np->first_tx.orig;
  1945. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1946. np->put_tx_ctx = np->first_tx_ctx;
  1947. } while (size);
  1948. /* setup the fragments */
  1949. for (i = 0; i < fragments; i++) {
  1950. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1951. u32 size = frag->size;
  1952. offset = 0;
  1953. do {
  1954. prev_tx = put_tx;
  1955. prev_tx_ctx = np->put_tx_ctx;
  1956. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1957. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1958. PCI_DMA_TODEVICE);
  1959. np->put_tx_ctx->dma_len = bcnt;
  1960. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1961. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1962. offset += bcnt;
  1963. size -= bcnt;
  1964. if (unlikely(put_tx++ == np->last_tx.orig))
  1965. put_tx = np->first_tx.orig;
  1966. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1967. np->put_tx_ctx = np->first_tx_ctx;
  1968. } while (size);
  1969. }
  1970. /* set last fragment flag */
  1971. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1972. /* save skb in this slot's context area */
  1973. prev_tx_ctx->skb = skb;
  1974. if (skb_is_gso(skb))
  1975. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1976. else
  1977. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1978. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1979. spin_lock_irqsave(&np->lock, flags);
  1980. /* set tx flags */
  1981. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1982. np->put_tx.orig = put_tx;
  1983. spin_unlock_irqrestore(&np->lock, flags);
  1984. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1985. dev->name, entries, tx_flags_extra);
  1986. {
  1987. int j;
  1988. for (j=0; j<64; j++) {
  1989. if ((j%16) == 0)
  1990. dprintk("\n%03x:", j);
  1991. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1992. }
  1993. dprintk("\n");
  1994. }
  1995. dev->trans_start = jiffies;
  1996. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1997. return NETDEV_TX_OK;
  1998. }
  1999. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  2000. {
  2001. struct fe_priv *np = netdev_priv(dev);
  2002. u32 tx_flags = 0;
  2003. u32 tx_flags_extra;
  2004. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2005. unsigned int i;
  2006. u32 offset = 0;
  2007. u32 bcnt;
  2008. u32 size = skb->len-skb->data_len;
  2009. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2010. u32 empty_slots;
  2011. struct ring_desc_ex* put_tx;
  2012. struct ring_desc_ex* start_tx;
  2013. struct ring_desc_ex* prev_tx;
  2014. struct nv_skb_map* prev_tx_ctx;
  2015. struct nv_skb_map* start_tx_ctx;
  2016. unsigned long flags;
  2017. /* add fragments to entries count */
  2018. for (i = 0; i < fragments; i++) {
  2019. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  2020. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2021. }
  2022. spin_lock_irqsave(&np->lock, flags);
  2023. empty_slots = nv_get_empty_tx_slots(np);
  2024. if (unlikely(empty_slots <= entries)) {
  2025. netif_stop_queue(dev);
  2026. np->tx_stop = 1;
  2027. spin_unlock_irqrestore(&np->lock, flags);
  2028. return NETDEV_TX_BUSY;
  2029. }
  2030. spin_unlock_irqrestore(&np->lock, flags);
  2031. start_tx = put_tx = np->put_tx.ex;
  2032. start_tx_ctx = np->put_tx_ctx;
  2033. /* setup the header buffer */
  2034. do {
  2035. prev_tx = put_tx;
  2036. prev_tx_ctx = np->put_tx_ctx;
  2037. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2038. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2039. PCI_DMA_TODEVICE);
  2040. np->put_tx_ctx->dma_len = bcnt;
  2041. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2042. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2043. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2044. tx_flags = NV_TX2_VALID;
  2045. offset += bcnt;
  2046. size -= bcnt;
  2047. if (unlikely(put_tx++ == np->last_tx.ex))
  2048. put_tx = np->first_tx.ex;
  2049. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2050. np->put_tx_ctx = np->first_tx_ctx;
  2051. } while (size);
  2052. /* setup the fragments */
  2053. for (i = 0; i < fragments; i++) {
  2054. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2055. u32 size = frag->size;
  2056. offset = 0;
  2057. do {
  2058. prev_tx = put_tx;
  2059. prev_tx_ctx = np->put_tx_ctx;
  2060. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2061. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2062. PCI_DMA_TODEVICE);
  2063. np->put_tx_ctx->dma_len = bcnt;
  2064. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2065. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2066. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2067. offset += bcnt;
  2068. size -= bcnt;
  2069. if (unlikely(put_tx++ == np->last_tx.ex))
  2070. put_tx = np->first_tx.ex;
  2071. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2072. np->put_tx_ctx = np->first_tx_ctx;
  2073. } while (size);
  2074. }
  2075. /* set last fragment flag */
  2076. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2077. /* save skb in this slot's context area */
  2078. prev_tx_ctx->skb = skb;
  2079. if (skb_is_gso(skb))
  2080. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2081. else
  2082. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2083. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2084. /* vlan tag */
  2085. if (likely(!np->vlangrp)) {
  2086. start_tx->txvlan = 0;
  2087. } else {
  2088. if (vlan_tx_tag_present(skb))
  2089. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2090. else
  2091. start_tx->txvlan = 0;
  2092. }
  2093. spin_lock_irqsave(&np->lock, flags);
  2094. if (np->tx_limit) {
  2095. /* Limit the number of outstanding tx. Setup all fragments, but
  2096. * do not set the VALID bit on the first descriptor. Save a pointer
  2097. * to that descriptor and also for next skb_map element.
  2098. */
  2099. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2100. if (!np->tx_change_owner)
  2101. np->tx_change_owner = start_tx_ctx;
  2102. /* remove VALID bit */
  2103. tx_flags &= ~NV_TX2_VALID;
  2104. start_tx_ctx->first_tx_desc = start_tx;
  2105. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2106. np->tx_end_flip = np->put_tx_ctx;
  2107. } else {
  2108. np->tx_pkts_in_progress++;
  2109. }
  2110. }
  2111. /* set tx flags */
  2112. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2113. np->put_tx.ex = put_tx;
  2114. spin_unlock_irqrestore(&np->lock, flags);
  2115. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2116. dev->name, entries, tx_flags_extra);
  2117. {
  2118. int j;
  2119. for (j=0; j<64; j++) {
  2120. if ((j%16) == 0)
  2121. dprintk("\n%03x:", j);
  2122. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2123. }
  2124. dprintk("\n");
  2125. }
  2126. dev->trans_start = jiffies;
  2127. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2128. return NETDEV_TX_OK;
  2129. }
  2130. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2131. {
  2132. struct fe_priv *np = netdev_priv(dev);
  2133. np->tx_pkts_in_progress--;
  2134. if (np->tx_change_owner) {
  2135. np->tx_change_owner->first_tx_desc->flaglen |=
  2136. cpu_to_le32(NV_TX2_VALID);
  2137. np->tx_pkts_in_progress++;
  2138. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2139. if (np->tx_change_owner == np->tx_end_flip)
  2140. np->tx_change_owner = NULL;
  2141. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2142. }
  2143. }
  2144. /*
  2145. * nv_tx_done: check for completed packets, release the skbs.
  2146. *
  2147. * Caller must own np->lock.
  2148. */
  2149. static void nv_tx_done(struct net_device *dev)
  2150. {
  2151. struct fe_priv *np = netdev_priv(dev);
  2152. u32 flags;
  2153. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2154. while ((np->get_tx.orig != np->put_tx.orig) &&
  2155. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  2156. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2157. dev->name, flags);
  2158. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2159. np->get_tx_ctx->dma_len,
  2160. PCI_DMA_TODEVICE);
  2161. np->get_tx_ctx->dma = 0;
  2162. if (np->desc_ver == DESC_VER_1) {
  2163. if (flags & NV_TX_LASTPACKET) {
  2164. if (flags & NV_TX_ERROR) {
  2165. if (flags & NV_TX_UNDERFLOW)
  2166. dev->stats.tx_fifo_errors++;
  2167. if (flags & NV_TX_CARRIERLOST)
  2168. dev->stats.tx_carrier_errors++;
  2169. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2170. nv_legacybackoff_reseed(dev);
  2171. dev->stats.tx_errors++;
  2172. } else {
  2173. dev->stats.tx_packets++;
  2174. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2175. }
  2176. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2177. np->get_tx_ctx->skb = NULL;
  2178. }
  2179. } else {
  2180. if (flags & NV_TX2_LASTPACKET) {
  2181. if (flags & NV_TX2_ERROR) {
  2182. if (flags & NV_TX2_UNDERFLOW)
  2183. dev->stats.tx_fifo_errors++;
  2184. if (flags & NV_TX2_CARRIERLOST)
  2185. dev->stats.tx_carrier_errors++;
  2186. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2187. nv_legacybackoff_reseed(dev);
  2188. dev->stats.tx_errors++;
  2189. } else {
  2190. dev->stats.tx_packets++;
  2191. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2192. }
  2193. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2194. np->get_tx_ctx->skb = NULL;
  2195. }
  2196. }
  2197. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2198. np->get_tx.orig = np->first_tx.orig;
  2199. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2200. np->get_tx_ctx = np->first_tx_ctx;
  2201. }
  2202. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2203. np->tx_stop = 0;
  2204. netif_wake_queue(dev);
  2205. }
  2206. }
  2207. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  2208. {
  2209. struct fe_priv *np = netdev_priv(dev);
  2210. u32 flags;
  2211. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2212. while ((np->get_tx.ex != np->put_tx.ex) &&
  2213. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2214. (limit-- > 0)) {
  2215. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2216. dev->name, flags);
  2217. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2218. np->get_tx_ctx->dma_len,
  2219. PCI_DMA_TODEVICE);
  2220. np->get_tx_ctx->dma = 0;
  2221. if (flags & NV_TX2_LASTPACKET) {
  2222. if (!(flags & NV_TX2_ERROR))
  2223. dev->stats.tx_packets++;
  2224. else {
  2225. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2226. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2227. nv_gear_backoff_reseed(dev);
  2228. else
  2229. nv_legacybackoff_reseed(dev);
  2230. }
  2231. }
  2232. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2233. np->get_tx_ctx->skb = NULL;
  2234. if (np->tx_limit) {
  2235. nv_tx_flip_ownership(dev);
  2236. }
  2237. }
  2238. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2239. np->get_tx.ex = np->first_tx.ex;
  2240. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2241. np->get_tx_ctx = np->first_tx_ctx;
  2242. }
  2243. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2244. np->tx_stop = 0;
  2245. netif_wake_queue(dev);
  2246. }
  2247. }
  2248. /*
  2249. * nv_tx_timeout: dev->tx_timeout function
  2250. * Called with netif_tx_lock held.
  2251. */
  2252. static void nv_tx_timeout(struct net_device *dev)
  2253. {
  2254. struct fe_priv *np = netdev_priv(dev);
  2255. u8 __iomem *base = get_hwbase(dev);
  2256. u32 status;
  2257. if (np->msi_flags & NV_MSI_X_ENABLED)
  2258. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2259. else
  2260. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2261. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2262. {
  2263. int i;
  2264. printk(KERN_INFO "%s: Ring at %lx\n",
  2265. dev->name, (unsigned long)np->ring_addr);
  2266. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2267. for (i=0;i<=np->register_size;i+= 32) {
  2268. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2269. i,
  2270. readl(base + i + 0), readl(base + i + 4),
  2271. readl(base + i + 8), readl(base + i + 12),
  2272. readl(base + i + 16), readl(base + i + 20),
  2273. readl(base + i + 24), readl(base + i + 28));
  2274. }
  2275. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2276. for (i=0;i<np->tx_ring_size;i+= 4) {
  2277. if (!nv_optimized(np)) {
  2278. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2279. i,
  2280. le32_to_cpu(np->tx_ring.orig[i].buf),
  2281. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2282. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2283. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2284. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2285. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2286. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2287. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2288. } else {
  2289. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2290. i,
  2291. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2292. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2293. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2294. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2295. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2296. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2297. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2298. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2299. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2300. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2301. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2302. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2303. }
  2304. }
  2305. }
  2306. spin_lock_irq(&np->lock);
  2307. /* 1) stop tx engine */
  2308. nv_stop_tx(dev);
  2309. /* 2) check that the packets were not sent already: */
  2310. if (!nv_optimized(np))
  2311. nv_tx_done(dev);
  2312. else
  2313. nv_tx_done_optimized(dev, np->tx_ring_size);
  2314. /* 3) if there are dead entries: clear everything */
  2315. if (np->get_tx_ctx != np->put_tx_ctx) {
  2316. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  2317. nv_drain_tx(dev);
  2318. nv_init_tx(dev);
  2319. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2320. }
  2321. netif_wake_queue(dev);
  2322. /* 4) restart tx engine */
  2323. nv_start_tx(dev);
  2324. spin_unlock_irq(&np->lock);
  2325. }
  2326. /*
  2327. * Called when the nic notices a mismatch between the actual data len on the
  2328. * wire and the len indicated in the 802 header
  2329. */
  2330. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2331. {
  2332. int hdrlen; /* length of the 802 header */
  2333. int protolen; /* length as stored in the proto field */
  2334. /* 1) calculate len according to header */
  2335. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2336. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2337. hdrlen = VLAN_HLEN;
  2338. } else {
  2339. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2340. hdrlen = ETH_HLEN;
  2341. }
  2342. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2343. dev->name, datalen, protolen, hdrlen);
  2344. if (protolen > ETH_DATA_LEN)
  2345. return datalen; /* Value in proto field not a len, no checks possible */
  2346. protolen += hdrlen;
  2347. /* consistency checks: */
  2348. if (datalen > ETH_ZLEN) {
  2349. if (datalen >= protolen) {
  2350. /* more data on wire than in 802 header, trim of
  2351. * additional data.
  2352. */
  2353. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2354. dev->name, protolen);
  2355. return protolen;
  2356. } else {
  2357. /* less data on wire than mentioned in header.
  2358. * Discard the packet.
  2359. */
  2360. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2361. dev->name);
  2362. return -1;
  2363. }
  2364. } else {
  2365. /* short packet. Accept only if 802 values are also short */
  2366. if (protolen > ETH_ZLEN) {
  2367. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2368. dev->name);
  2369. return -1;
  2370. }
  2371. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2372. dev->name, datalen);
  2373. return datalen;
  2374. }
  2375. }
  2376. static int nv_rx_process(struct net_device *dev, int limit)
  2377. {
  2378. struct fe_priv *np = netdev_priv(dev);
  2379. u32 flags;
  2380. int rx_work = 0;
  2381. struct sk_buff *skb;
  2382. int len;
  2383. while((np->get_rx.orig != np->put_rx.orig) &&
  2384. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2385. (rx_work < limit)) {
  2386. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2387. dev->name, flags);
  2388. /*
  2389. * the packet is for us - immediately tear down the pci mapping.
  2390. * TODO: check if a prefetch of the first cacheline improves
  2391. * the performance.
  2392. */
  2393. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2394. np->get_rx_ctx->dma_len,
  2395. PCI_DMA_FROMDEVICE);
  2396. skb = np->get_rx_ctx->skb;
  2397. np->get_rx_ctx->skb = NULL;
  2398. {
  2399. int j;
  2400. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2401. for (j=0; j<64; j++) {
  2402. if ((j%16) == 0)
  2403. dprintk("\n%03x:", j);
  2404. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2405. }
  2406. dprintk("\n");
  2407. }
  2408. /* look at what we actually got: */
  2409. if (np->desc_ver == DESC_VER_1) {
  2410. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2411. len = flags & LEN_MASK_V1;
  2412. if (unlikely(flags & NV_RX_ERROR)) {
  2413. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2414. len = nv_getlen(dev, skb->data, len);
  2415. if (len < 0) {
  2416. dev->stats.rx_errors++;
  2417. dev_kfree_skb(skb);
  2418. goto next_pkt;
  2419. }
  2420. }
  2421. /* framing errors are soft errors */
  2422. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2423. if (flags & NV_RX_SUBSTRACT1) {
  2424. len--;
  2425. }
  2426. }
  2427. /* the rest are hard errors */
  2428. else {
  2429. if (flags & NV_RX_MISSEDFRAME)
  2430. dev->stats.rx_missed_errors++;
  2431. if (flags & NV_RX_CRCERR)
  2432. dev->stats.rx_crc_errors++;
  2433. if (flags & NV_RX_OVERFLOW)
  2434. dev->stats.rx_over_errors++;
  2435. dev->stats.rx_errors++;
  2436. dev_kfree_skb(skb);
  2437. goto next_pkt;
  2438. }
  2439. }
  2440. } else {
  2441. dev_kfree_skb(skb);
  2442. goto next_pkt;
  2443. }
  2444. } else {
  2445. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2446. len = flags & LEN_MASK_V2;
  2447. if (unlikely(flags & NV_RX2_ERROR)) {
  2448. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2449. len = nv_getlen(dev, skb->data, len);
  2450. if (len < 0) {
  2451. dev->stats.rx_errors++;
  2452. dev_kfree_skb(skb);
  2453. goto next_pkt;
  2454. }
  2455. }
  2456. /* framing errors are soft errors */
  2457. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2458. if (flags & NV_RX2_SUBSTRACT1) {
  2459. len--;
  2460. }
  2461. }
  2462. /* the rest are hard errors */
  2463. else {
  2464. if (flags & NV_RX2_CRCERR)
  2465. dev->stats.rx_crc_errors++;
  2466. if (flags & NV_RX2_OVERFLOW)
  2467. dev->stats.rx_over_errors++;
  2468. dev->stats.rx_errors++;
  2469. dev_kfree_skb(skb);
  2470. goto next_pkt;
  2471. }
  2472. }
  2473. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2474. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2475. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2476. } else {
  2477. dev_kfree_skb(skb);
  2478. goto next_pkt;
  2479. }
  2480. }
  2481. /* got a valid packet - forward it to the network core */
  2482. skb_put(skb, len);
  2483. skb->protocol = eth_type_trans(skb, dev);
  2484. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2485. dev->name, len, skb->protocol);
  2486. #ifdef CONFIG_FORCEDETH_NAPI
  2487. netif_receive_skb(skb);
  2488. #else
  2489. netif_rx(skb);
  2490. #endif
  2491. dev->stats.rx_packets++;
  2492. dev->stats.rx_bytes += len;
  2493. next_pkt:
  2494. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2495. np->get_rx.orig = np->first_rx.orig;
  2496. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2497. np->get_rx_ctx = np->first_rx_ctx;
  2498. rx_work++;
  2499. }
  2500. return rx_work;
  2501. }
  2502. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2503. {
  2504. struct fe_priv *np = netdev_priv(dev);
  2505. u32 flags;
  2506. u32 vlanflags = 0;
  2507. int rx_work = 0;
  2508. struct sk_buff *skb;
  2509. int len;
  2510. while((np->get_rx.ex != np->put_rx.ex) &&
  2511. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2512. (rx_work < limit)) {
  2513. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2514. dev->name, flags);
  2515. /*
  2516. * the packet is for us - immediately tear down the pci mapping.
  2517. * TODO: check if a prefetch of the first cacheline improves
  2518. * the performance.
  2519. */
  2520. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2521. np->get_rx_ctx->dma_len,
  2522. PCI_DMA_FROMDEVICE);
  2523. skb = np->get_rx_ctx->skb;
  2524. np->get_rx_ctx->skb = NULL;
  2525. {
  2526. int j;
  2527. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2528. for (j=0; j<64; j++) {
  2529. if ((j%16) == 0)
  2530. dprintk("\n%03x:", j);
  2531. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2532. }
  2533. dprintk("\n");
  2534. }
  2535. /* look at what we actually got: */
  2536. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2537. len = flags & LEN_MASK_V2;
  2538. if (unlikely(flags & NV_RX2_ERROR)) {
  2539. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2540. len = nv_getlen(dev, skb->data, len);
  2541. if (len < 0) {
  2542. dev_kfree_skb(skb);
  2543. goto next_pkt;
  2544. }
  2545. }
  2546. /* framing errors are soft errors */
  2547. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2548. if (flags & NV_RX2_SUBSTRACT1) {
  2549. len--;
  2550. }
  2551. }
  2552. /* the rest are hard errors */
  2553. else {
  2554. dev_kfree_skb(skb);
  2555. goto next_pkt;
  2556. }
  2557. }
  2558. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2559. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2560. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2561. /* got a valid packet - forward it to the network core */
  2562. skb_put(skb, len);
  2563. skb->protocol = eth_type_trans(skb, dev);
  2564. prefetch(skb->data);
  2565. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2566. dev->name, len, skb->protocol);
  2567. if (likely(!np->vlangrp)) {
  2568. #ifdef CONFIG_FORCEDETH_NAPI
  2569. netif_receive_skb(skb);
  2570. #else
  2571. netif_rx(skb);
  2572. #endif
  2573. } else {
  2574. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2575. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2576. #ifdef CONFIG_FORCEDETH_NAPI
  2577. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2578. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2579. #else
  2580. vlan_hwaccel_rx(skb, np->vlangrp,
  2581. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2582. #endif
  2583. } else {
  2584. #ifdef CONFIG_FORCEDETH_NAPI
  2585. netif_receive_skb(skb);
  2586. #else
  2587. netif_rx(skb);
  2588. #endif
  2589. }
  2590. }
  2591. dev->stats.rx_packets++;
  2592. dev->stats.rx_bytes += len;
  2593. } else {
  2594. dev_kfree_skb(skb);
  2595. }
  2596. next_pkt:
  2597. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2598. np->get_rx.ex = np->first_rx.ex;
  2599. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2600. np->get_rx_ctx = np->first_rx_ctx;
  2601. rx_work++;
  2602. }
  2603. return rx_work;
  2604. }
  2605. static void set_bufsize(struct net_device *dev)
  2606. {
  2607. struct fe_priv *np = netdev_priv(dev);
  2608. if (dev->mtu <= ETH_DATA_LEN)
  2609. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2610. else
  2611. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2612. }
  2613. /*
  2614. * nv_change_mtu: dev->change_mtu function
  2615. * Called with dev_base_lock held for read.
  2616. */
  2617. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2618. {
  2619. struct fe_priv *np = netdev_priv(dev);
  2620. int old_mtu;
  2621. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2622. return -EINVAL;
  2623. old_mtu = dev->mtu;
  2624. dev->mtu = new_mtu;
  2625. /* return early if the buffer sizes will not change */
  2626. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2627. return 0;
  2628. if (old_mtu == new_mtu)
  2629. return 0;
  2630. /* synchronized against open : rtnl_lock() held by caller */
  2631. if (netif_running(dev)) {
  2632. u8 __iomem *base = get_hwbase(dev);
  2633. /*
  2634. * It seems that the nic preloads valid ring entries into an
  2635. * internal buffer. The procedure for flushing everything is
  2636. * guessed, there is probably a simpler approach.
  2637. * Changing the MTU is a rare event, it shouldn't matter.
  2638. */
  2639. nv_disable_irq(dev);
  2640. nv_napi_disable(dev);
  2641. netif_tx_lock_bh(dev);
  2642. netif_addr_lock(dev);
  2643. spin_lock(&np->lock);
  2644. /* stop engines */
  2645. nv_stop_rxtx(dev);
  2646. nv_txrx_reset(dev);
  2647. /* drain rx queue */
  2648. nv_drain_rxtx(dev);
  2649. /* reinit driver view of the rx queue */
  2650. set_bufsize(dev);
  2651. if (nv_init_ring(dev)) {
  2652. if (!np->in_shutdown)
  2653. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2654. }
  2655. /* reinit nic view of the rx queue */
  2656. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2657. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2658. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2659. base + NvRegRingSizes);
  2660. pci_push(base);
  2661. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2662. pci_push(base);
  2663. /* restart rx engine */
  2664. nv_start_rxtx(dev);
  2665. spin_unlock(&np->lock);
  2666. netif_addr_unlock(dev);
  2667. netif_tx_unlock_bh(dev);
  2668. nv_napi_enable(dev);
  2669. nv_enable_irq(dev);
  2670. }
  2671. return 0;
  2672. }
  2673. static void nv_copy_mac_to_hw(struct net_device *dev)
  2674. {
  2675. u8 __iomem *base = get_hwbase(dev);
  2676. u32 mac[2];
  2677. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2678. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2679. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2680. writel(mac[0], base + NvRegMacAddrA);
  2681. writel(mac[1], base + NvRegMacAddrB);
  2682. }
  2683. /*
  2684. * nv_set_mac_address: dev->set_mac_address function
  2685. * Called with rtnl_lock() held.
  2686. */
  2687. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2688. {
  2689. struct fe_priv *np = netdev_priv(dev);
  2690. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2691. if (!is_valid_ether_addr(macaddr->sa_data))
  2692. return -EADDRNOTAVAIL;
  2693. /* synchronized against open : rtnl_lock() held by caller */
  2694. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2695. if (netif_running(dev)) {
  2696. netif_tx_lock_bh(dev);
  2697. netif_addr_lock(dev);
  2698. spin_lock_irq(&np->lock);
  2699. /* stop rx engine */
  2700. nv_stop_rx(dev);
  2701. /* set mac address */
  2702. nv_copy_mac_to_hw(dev);
  2703. /* restart rx engine */
  2704. nv_start_rx(dev);
  2705. spin_unlock_irq(&np->lock);
  2706. netif_addr_unlock(dev);
  2707. netif_tx_unlock_bh(dev);
  2708. } else {
  2709. nv_copy_mac_to_hw(dev);
  2710. }
  2711. return 0;
  2712. }
  2713. /*
  2714. * nv_set_multicast: dev->set_multicast function
  2715. * Called with netif_tx_lock held.
  2716. */
  2717. static void nv_set_multicast(struct net_device *dev)
  2718. {
  2719. struct fe_priv *np = netdev_priv(dev);
  2720. u8 __iomem *base = get_hwbase(dev);
  2721. u32 addr[2];
  2722. u32 mask[2];
  2723. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2724. memset(addr, 0, sizeof(addr));
  2725. memset(mask, 0, sizeof(mask));
  2726. if (dev->flags & IFF_PROMISC) {
  2727. pff |= NVREG_PFF_PROMISC;
  2728. } else {
  2729. pff |= NVREG_PFF_MYADDR;
  2730. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2731. u32 alwaysOff[2];
  2732. u32 alwaysOn[2];
  2733. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2734. if (dev->flags & IFF_ALLMULTI) {
  2735. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2736. } else {
  2737. struct dev_mc_list *walk;
  2738. walk = dev->mc_list;
  2739. while (walk != NULL) {
  2740. u32 a, b;
  2741. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2742. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2743. alwaysOn[0] &= a;
  2744. alwaysOff[0] &= ~a;
  2745. alwaysOn[1] &= b;
  2746. alwaysOff[1] &= ~b;
  2747. walk = walk->next;
  2748. }
  2749. }
  2750. addr[0] = alwaysOn[0];
  2751. addr[1] = alwaysOn[1];
  2752. mask[0] = alwaysOn[0] | alwaysOff[0];
  2753. mask[1] = alwaysOn[1] | alwaysOff[1];
  2754. } else {
  2755. mask[0] = NVREG_MCASTMASKA_NONE;
  2756. mask[1] = NVREG_MCASTMASKB_NONE;
  2757. }
  2758. }
  2759. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2760. pff |= NVREG_PFF_ALWAYS;
  2761. spin_lock_irq(&np->lock);
  2762. nv_stop_rx(dev);
  2763. writel(addr[0], base + NvRegMulticastAddrA);
  2764. writel(addr[1], base + NvRegMulticastAddrB);
  2765. writel(mask[0], base + NvRegMulticastMaskA);
  2766. writel(mask[1], base + NvRegMulticastMaskB);
  2767. writel(pff, base + NvRegPacketFilterFlags);
  2768. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2769. dev->name);
  2770. nv_start_rx(dev);
  2771. spin_unlock_irq(&np->lock);
  2772. }
  2773. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2774. {
  2775. struct fe_priv *np = netdev_priv(dev);
  2776. u8 __iomem *base = get_hwbase(dev);
  2777. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2778. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2779. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2780. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2781. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2782. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2783. } else {
  2784. writel(pff, base + NvRegPacketFilterFlags);
  2785. }
  2786. }
  2787. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2788. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2789. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2790. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2791. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2792. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2793. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2794. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2795. /* limit the number of tx pause frames to a default of 8 */
  2796. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2797. }
  2798. writel(pause_enable, base + NvRegTxPauseFrame);
  2799. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2800. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2801. } else {
  2802. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2803. writel(regmisc, base + NvRegMisc1);
  2804. }
  2805. }
  2806. }
  2807. /**
  2808. * nv_update_linkspeed: Setup the MAC according to the link partner
  2809. * @dev: Network device to be configured
  2810. *
  2811. * The function queries the PHY and checks if there is a link partner.
  2812. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2813. * set to 10 MBit HD.
  2814. *
  2815. * The function returns 0 if there is no link partner and 1 if there is
  2816. * a good link partner.
  2817. */
  2818. static int nv_update_linkspeed(struct net_device *dev)
  2819. {
  2820. struct fe_priv *np = netdev_priv(dev);
  2821. u8 __iomem *base = get_hwbase(dev);
  2822. int adv = 0;
  2823. int lpa = 0;
  2824. int adv_lpa, adv_pause, lpa_pause;
  2825. int newls = np->linkspeed;
  2826. int newdup = np->duplex;
  2827. int mii_status;
  2828. int retval = 0;
  2829. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2830. u32 txrxFlags = 0;
  2831. u32 phy_exp;
  2832. /* BMSR_LSTATUS is latched, read it twice:
  2833. * we want the current value.
  2834. */
  2835. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2836. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2837. if (!(mii_status & BMSR_LSTATUS)) {
  2838. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2839. dev->name);
  2840. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2841. newdup = 0;
  2842. retval = 0;
  2843. goto set_speed;
  2844. }
  2845. if (np->autoneg == 0) {
  2846. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2847. dev->name, np->fixed_mode);
  2848. if (np->fixed_mode & LPA_100FULL) {
  2849. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2850. newdup = 1;
  2851. } else if (np->fixed_mode & LPA_100HALF) {
  2852. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2853. newdup = 0;
  2854. } else if (np->fixed_mode & LPA_10FULL) {
  2855. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2856. newdup = 1;
  2857. } else {
  2858. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2859. newdup = 0;
  2860. }
  2861. retval = 1;
  2862. goto set_speed;
  2863. }
  2864. /* check auto negotiation is complete */
  2865. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2866. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2867. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2868. newdup = 0;
  2869. retval = 0;
  2870. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2871. goto set_speed;
  2872. }
  2873. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2874. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2875. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2876. dev->name, adv, lpa);
  2877. retval = 1;
  2878. if (np->gigabit == PHY_GIGABIT) {
  2879. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2880. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2881. if ((control_1000 & ADVERTISE_1000FULL) &&
  2882. (status_1000 & LPA_1000FULL)) {
  2883. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2884. dev->name);
  2885. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2886. newdup = 1;
  2887. goto set_speed;
  2888. }
  2889. }
  2890. /* FIXME: handle parallel detection properly */
  2891. adv_lpa = lpa & adv;
  2892. if (adv_lpa & LPA_100FULL) {
  2893. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2894. newdup = 1;
  2895. } else if (adv_lpa & LPA_100HALF) {
  2896. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2897. newdup = 0;
  2898. } else if (adv_lpa & LPA_10FULL) {
  2899. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2900. newdup = 1;
  2901. } else if (adv_lpa & LPA_10HALF) {
  2902. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2903. newdup = 0;
  2904. } else {
  2905. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2906. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2907. newdup = 0;
  2908. }
  2909. set_speed:
  2910. if (np->duplex == newdup && np->linkspeed == newls)
  2911. return retval;
  2912. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2913. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2914. np->duplex = newdup;
  2915. np->linkspeed = newls;
  2916. /* The transmitter and receiver must be restarted for safe update */
  2917. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2918. txrxFlags |= NV_RESTART_TX;
  2919. nv_stop_tx(dev);
  2920. }
  2921. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2922. txrxFlags |= NV_RESTART_RX;
  2923. nv_stop_rx(dev);
  2924. }
  2925. if (np->gigabit == PHY_GIGABIT) {
  2926. phyreg = readl(base + NvRegSlotTime);
  2927. phyreg &= ~(0x3FF00);
  2928. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2929. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2930. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2931. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2932. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2933. writel(phyreg, base + NvRegSlotTime);
  2934. }
  2935. phyreg = readl(base + NvRegPhyInterface);
  2936. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2937. if (np->duplex == 0)
  2938. phyreg |= PHY_HALF;
  2939. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2940. phyreg |= PHY_100;
  2941. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2942. phyreg |= PHY_1000;
  2943. writel(phyreg, base + NvRegPhyInterface);
  2944. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2945. if (phyreg & PHY_RGMII) {
  2946. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2947. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2948. } else {
  2949. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2950. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2951. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2952. else
  2953. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2954. } else {
  2955. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2956. }
  2957. }
  2958. } else {
  2959. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2960. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2961. else
  2962. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2963. }
  2964. writel(txreg, base + NvRegTxDeferral);
  2965. if (np->desc_ver == DESC_VER_1) {
  2966. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2967. } else {
  2968. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2969. txreg = NVREG_TX_WM_DESC2_3_1000;
  2970. else
  2971. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2972. }
  2973. writel(txreg, base + NvRegTxWatermark);
  2974. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2975. base + NvRegMisc1);
  2976. pci_push(base);
  2977. writel(np->linkspeed, base + NvRegLinkSpeed);
  2978. pci_push(base);
  2979. pause_flags = 0;
  2980. /* setup pause frame */
  2981. if (np->duplex != 0) {
  2982. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2983. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2984. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2985. switch (adv_pause) {
  2986. case ADVERTISE_PAUSE_CAP:
  2987. if (lpa_pause & LPA_PAUSE_CAP) {
  2988. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2989. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2990. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2991. }
  2992. break;
  2993. case ADVERTISE_PAUSE_ASYM:
  2994. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2995. {
  2996. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2997. }
  2998. break;
  2999. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  3000. if (lpa_pause & LPA_PAUSE_CAP)
  3001. {
  3002. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3003. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3004. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3005. }
  3006. if (lpa_pause == LPA_PAUSE_ASYM)
  3007. {
  3008. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3009. }
  3010. break;
  3011. }
  3012. } else {
  3013. pause_flags = np->pause_flags;
  3014. }
  3015. }
  3016. nv_update_pause(dev, pause_flags);
  3017. if (txrxFlags & NV_RESTART_TX)
  3018. nv_start_tx(dev);
  3019. if (txrxFlags & NV_RESTART_RX)
  3020. nv_start_rx(dev);
  3021. return retval;
  3022. }
  3023. static void nv_linkchange(struct net_device *dev)
  3024. {
  3025. if (nv_update_linkspeed(dev)) {
  3026. if (!netif_carrier_ok(dev)) {
  3027. netif_carrier_on(dev);
  3028. printk(KERN_INFO "%s: link up.\n", dev->name);
  3029. nv_start_rx(dev);
  3030. }
  3031. } else {
  3032. if (netif_carrier_ok(dev)) {
  3033. netif_carrier_off(dev);
  3034. printk(KERN_INFO "%s: link down.\n", dev->name);
  3035. nv_stop_rx(dev);
  3036. }
  3037. }
  3038. }
  3039. static void nv_link_irq(struct net_device *dev)
  3040. {
  3041. u8 __iomem *base = get_hwbase(dev);
  3042. u32 miistat;
  3043. miistat = readl(base + NvRegMIIStatus);
  3044. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3045. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3046. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3047. nv_linkchange(dev);
  3048. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3049. }
  3050. static void nv_msi_workaround(struct fe_priv *np)
  3051. {
  3052. /* Need to toggle the msi irq mask within the ethernet device,
  3053. * otherwise, future interrupts will not be detected.
  3054. */
  3055. if (np->msi_flags & NV_MSI_ENABLED) {
  3056. u8 __iomem *base = np->base;
  3057. writel(0, base + NvRegMSIIrqMask);
  3058. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3059. }
  3060. }
  3061. static irqreturn_t nv_nic_irq(int foo, void *data)
  3062. {
  3063. struct net_device *dev = (struct net_device *) data;
  3064. struct fe_priv *np = netdev_priv(dev);
  3065. u8 __iomem *base = get_hwbase(dev);
  3066. int i;
  3067. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3068. for (i=0; ; i++) {
  3069. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3070. np->events = readl(base + NvRegIrqStatus);
  3071. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3072. } else {
  3073. np->events = readl(base + NvRegMSIXIrqStatus);
  3074. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3075. }
  3076. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3077. if (!(np->events & np->irqmask))
  3078. break;
  3079. nv_msi_workaround(np);
  3080. spin_lock(&np->lock);
  3081. nv_tx_done(dev);
  3082. spin_unlock(&np->lock);
  3083. #ifdef CONFIG_FORCEDETH_NAPI
  3084. if (np->events & NVREG_IRQ_RX_ALL) {
  3085. spin_lock(&np->lock);
  3086. napi_schedule(&np->napi);
  3087. /* Disable furthur receive irq's */
  3088. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3089. if (np->msi_flags & NV_MSI_X_ENABLED)
  3090. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3091. else
  3092. writel(np->irqmask, base + NvRegIrqMask);
  3093. spin_unlock(&np->lock);
  3094. }
  3095. #else
  3096. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  3097. if (unlikely(nv_alloc_rx(dev))) {
  3098. spin_lock(&np->lock);
  3099. if (!np->in_shutdown)
  3100. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3101. spin_unlock(&np->lock);
  3102. }
  3103. }
  3104. #endif
  3105. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3106. spin_lock(&np->lock);
  3107. nv_link_irq(dev);
  3108. spin_unlock(&np->lock);
  3109. }
  3110. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3111. spin_lock(&np->lock);
  3112. nv_linkchange(dev);
  3113. spin_unlock(&np->lock);
  3114. np->link_timeout = jiffies + LINK_TIMEOUT;
  3115. }
  3116. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3117. spin_lock(&np->lock);
  3118. /* disable interrupts on the nic */
  3119. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3120. writel(0, base + NvRegIrqMask);
  3121. else
  3122. writel(np->irqmask, base + NvRegIrqMask);
  3123. pci_push(base);
  3124. if (!np->in_shutdown) {
  3125. np->nic_poll_irq = np->irqmask;
  3126. np->recover_error = 1;
  3127. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3128. }
  3129. spin_unlock(&np->lock);
  3130. break;
  3131. }
  3132. if (unlikely(i > max_interrupt_work)) {
  3133. spin_lock(&np->lock);
  3134. /* disable interrupts on the nic */
  3135. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3136. writel(0, base + NvRegIrqMask);
  3137. else
  3138. writel(np->irqmask, base + NvRegIrqMask);
  3139. pci_push(base);
  3140. if (!np->in_shutdown) {
  3141. np->nic_poll_irq = np->irqmask;
  3142. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3143. }
  3144. spin_unlock(&np->lock);
  3145. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3146. break;
  3147. }
  3148. }
  3149. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3150. return IRQ_RETVAL(i);
  3151. }
  3152. /**
  3153. * All _optimized functions are used to help increase performance
  3154. * (reduce CPU and increase throughput). They use descripter version 3,
  3155. * compiler directives, and reduce memory accesses.
  3156. */
  3157. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3158. {
  3159. struct net_device *dev = (struct net_device *) data;
  3160. struct fe_priv *np = netdev_priv(dev);
  3161. u8 __iomem *base = get_hwbase(dev);
  3162. int i;
  3163. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3164. for (i=0; ; i++) {
  3165. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3166. np->events = readl(base + NvRegIrqStatus);
  3167. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3168. } else {
  3169. np->events = readl(base + NvRegMSIXIrqStatus);
  3170. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3171. }
  3172. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3173. if (!(np->events & np->irqmask))
  3174. break;
  3175. nv_msi_workaround(np);
  3176. spin_lock(&np->lock);
  3177. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3178. spin_unlock(&np->lock);
  3179. #ifdef CONFIG_FORCEDETH_NAPI
  3180. if (np->events & NVREG_IRQ_RX_ALL) {
  3181. spin_lock(&np->lock);
  3182. napi_schedule(&np->napi);
  3183. /* Disable furthur receive irq's */
  3184. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3185. if (np->msi_flags & NV_MSI_X_ENABLED)
  3186. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3187. else
  3188. writel(np->irqmask, base + NvRegIrqMask);
  3189. spin_unlock(&np->lock);
  3190. }
  3191. #else
  3192. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3193. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3194. spin_lock(&np->lock);
  3195. if (!np->in_shutdown)
  3196. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3197. spin_unlock(&np->lock);
  3198. }
  3199. }
  3200. #endif
  3201. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3202. spin_lock(&np->lock);
  3203. nv_link_irq(dev);
  3204. spin_unlock(&np->lock);
  3205. }
  3206. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3207. spin_lock(&np->lock);
  3208. nv_linkchange(dev);
  3209. spin_unlock(&np->lock);
  3210. np->link_timeout = jiffies + LINK_TIMEOUT;
  3211. }
  3212. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3213. spin_lock(&np->lock);
  3214. /* disable interrupts on the nic */
  3215. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3216. writel(0, base + NvRegIrqMask);
  3217. else
  3218. writel(np->irqmask, base + NvRegIrqMask);
  3219. pci_push(base);
  3220. if (!np->in_shutdown) {
  3221. np->nic_poll_irq = np->irqmask;
  3222. np->recover_error = 1;
  3223. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3224. }
  3225. spin_unlock(&np->lock);
  3226. break;
  3227. }
  3228. if (unlikely(i > max_interrupt_work)) {
  3229. spin_lock(&np->lock);
  3230. /* disable interrupts on the nic */
  3231. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3232. writel(0, base + NvRegIrqMask);
  3233. else
  3234. writel(np->irqmask, base + NvRegIrqMask);
  3235. pci_push(base);
  3236. if (!np->in_shutdown) {
  3237. np->nic_poll_irq = np->irqmask;
  3238. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3239. }
  3240. spin_unlock(&np->lock);
  3241. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3242. break;
  3243. }
  3244. }
  3245. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3246. return IRQ_RETVAL(i);
  3247. }
  3248. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3249. {
  3250. struct net_device *dev = (struct net_device *) data;
  3251. struct fe_priv *np = netdev_priv(dev);
  3252. u8 __iomem *base = get_hwbase(dev);
  3253. u32 events;
  3254. int i;
  3255. unsigned long flags;
  3256. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3257. for (i=0; ; i++) {
  3258. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3259. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3260. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3261. if (!(events & np->irqmask))
  3262. break;
  3263. spin_lock_irqsave(&np->lock, flags);
  3264. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3265. spin_unlock_irqrestore(&np->lock, flags);
  3266. if (unlikely(i > max_interrupt_work)) {
  3267. spin_lock_irqsave(&np->lock, flags);
  3268. /* disable interrupts on the nic */
  3269. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3270. pci_push(base);
  3271. if (!np->in_shutdown) {
  3272. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3273. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3274. }
  3275. spin_unlock_irqrestore(&np->lock, flags);
  3276. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3277. break;
  3278. }
  3279. }
  3280. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3281. return IRQ_RETVAL(i);
  3282. }
  3283. #ifdef CONFIG_FORCEDETH_NAPI
  3284. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3285. {
  3286. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3287. struct net_device *dev = np->dev;
  3288. u8 __iomem *base = get_hwbase(dev);
  3289. unsigned long flags;
  3290. int pkts, retcode;
  3291. if (!nv_optimized(np)) {
  3292. pkts = nv_rx_process(dev, budget);
  3293. retcode = nv_alloc_rx(dev);
  3294. } else {
  3295. pkts = nv_rx_process_optimized(dev, budget);
  3296. retcode = nv_alloc_rx_optimized(dev);
  3297. }
  3298. if (retcode) {
  3299. spin_lock_irqsave(&np->lock, flags);
  3300. if (!np->in_shutdown)
  3301. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3302. spin_unlock_irqrestore(&np->lock, flags);
  3303. }
  3304. if (pkts < budget) {
  3305. /* re-enable receive interrupts */
  3306. spin_lock_irqsave(&np->lock, flags);
  3307. __napi_complete(napi);
  3308. np->irqmask |= NVREG_IRQ_RX_ALL;
  3309. if (np->msi_flags & NV_MSI_X_ENABLED)
  3310. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3311. else
  3312. writel(np->irqmask, base + NvRegIrqMask);
  3313. spin_unlock_irqrestore(&np->lock, flags);
  3314. }
  3315. return pkts;
  3316. }
  3317. #endif
  3318. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3319. {
  3320. struct net_device *dev = (struct net_device *) data;
  3321. struct fe_priv *np = netdev_priv(dev);
  3322. u8 __iomem *base = get_hwbase(dev);
  3323. u32 events;
  3324. int i;
  3325. unsigned long flags;
  3326. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3327. for (i=0; ; i++) {
  3328. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3329. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3330. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3331. if (!(events & np->irqmask))
  3332. break;
  3333. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3334. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3335. spin_lock_irqsave(&np->lock, flags);
  3336. if (!np->in_shutdown)
  3337. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3338. spin_unlock_irqrestore(&np->lock, flags);
  3339. }
  3340. }
  3341. if (unlikely(i > max_interrupt_work)) {
  3342. spin_lock_irqsave(&np->lock, flags);
  3343. /* disable interrupts on the nic */
  3344. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3345. pci_push(base);
  3346. if (!np->in_shutdown) {
  3347. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3348. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3349. }
  3350. spin_unlock_irqrestore(&np->lock, flags);
  3351. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3352. break;
  3353. }
  3354. }
  3355. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3356. return IRQ_RETVAL(i);
  3357. }
  3358. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3359. {
  3360. struct net_device *dev = (struct net_device *) data;
  3361. struct fe_priv *np = netdev_priv(dev);
  3362. u8 __iomem *base = get_hwbase(dev);
  3363. u32 events;
  3364. int i;
  3365. unsigned long flags;
  3366. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3367. for (i=0; ; i++) {
  3368. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3369. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3370. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3371. if (!(events & np->irqmask))
  3372. break;
  3373. /* check tx in case we reached max loop limit in tx isr */
  3374. spin_lock_irqsave(&np->lock, flags);
  3375. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3376. spin_unlock_irqrestore(&np->lock, flags);
  3377. if (events & NVREG_IRQ_LINK) {
  3378. spin_lock_irqsave(&np->lock, flags);
  3379. nv_link_irq(dev);
  3380. spin_unlock_irqrestore(&np->lock, flags);
  3381. }
  3382. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3383. spin_lock_irqsave(&np->lock, flags);
  3384. nv_linkchange(dev);
  3385. spin_unlock_irqrestore(&np->lock, flags);
  3386. np->link_timeout = jiffies + LINK_TIMEOUT;
  3387. }
  3388. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3389. spin_lock_irq(&np->lock);
  3390. /* disable interrupts on the nic */
  3391. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3392. pci_push(base);
  3393. if (!np->in_shutdown) {
  3394. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3395. np->recover_error = 1;
  3396. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3397. }
  3398. spin_unlock_irq(&np->lock);
  3399. break;
  3400. }
  3401. if (unlikely(i > max_interrupt_work)) {
  3402. spin_lock_irqsave(&np->lock, flags);
  3403. /* disable interrupts on the nic */
  3404. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3405. pci_push(base);
  3406. if (!np->in_shutdown) {
  3407. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3408. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3409. }
  3410. spin_unlock_irqrestore(&np->lock, flags);
  3411. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3412. break;
  3413. }
  3414. }
  3415. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3416. return IRQ_RETVAL(i);
  3417. }
  3418. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3419. {
  3420. struct net_device *dev = (struct net_device *) data;
  3421. struct fe_priv *np = netdev_priv(dev);
  3422. u8 __iomem *base = get_hwbase(dev);
  3423. u32 events;
  3424. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3425. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3426. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3427. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3428. } else {
  3429. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3430. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3431. }
  3432. pci_push(base);
  3433. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3434. if (!(events & NVREG_IRQ_TIMER))
  3435. return IRQ_RETVAL(0);
  3436. nv_msi_workaround(np);
  3437. spin_lock(&np->lock);
  3438. np->intr_test = 1;
  3439. spin_unlock(&np->lock);
  3440. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3441. return IRQ_RETVAL(1);
  3442. }
  3443. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3444. {
  3445. u8 __iomem *base = get_hwbase(dev);
  3446. int i;
  3447. u32 msixmap = 0;
  3448. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3449. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3450. * the remaining 8 interrupts.
  3451. */
  3452. for (i = 0; i < 8; i++) {
  3453. if ((irqmask >> i) & 0x1) {
  3454. msixmap |= vector << (i << 2);
  3455. }
  3456. }
  3457. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3458. msixmap = 0;
  3459. for (i = 0; i < 8; i++) {
  3460. if ((irqmask >> (i + 8)) & 0x1) {
  3461. msixmap |= vector << (i << 2);
  3462. }
  3463. }
  3464. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3465. }
  3466. static int nv_request_irq(struct net_device *dev, int intr_test)
  3467. {
  3468. struct fe_priv *np = get_nvpriv(dev);
  3469. u8 __iomem *base = get_hwbase(dev);
  3470. int ret = 1;
  3471. int i;
  3472. irqreturn_t (*handler)(int foo, void *data);
  3473. if (intr_test) {
  3474. handler = nv_nic_irq_test;
  3475. } else {
  3476. if (nv_optimized(np))
  3477. handler = nv_nic_irq_optimized;
  3478. else
  3479. handler = nv_nic_irq;
  3480. }
  3481. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3482. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3483. np->msi_x_entry[i].entry = i;
  3484. }
  3485. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3486. np->msi_flags |= NV_MSI_X_ENABLED;
  3487. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3488. /* Request irq for rx handling */
  3489. sprintf(np->name_rx, "%s-rx", dev->name);
  3490. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3491. &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3492. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3493. pci_disable_msix(np->pci_dev);
  3494. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3495. goto out_err;
  3496. }
  3497. /* Request irq for tx handling */
  3498. sprintf(np->name_tx, "%s-tx", dev->name);
  3499. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3500. &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3501. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3502. pci_disable_msix(np->pci_dev);
  3503. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3504. goto out_free_rx;
  3505. }
  3506. /* Request irq for link and timer handling */
  3507. sprintf(np->name_other, "%s-other", dev->name);
  3508. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3509. &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3510. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3511. pci_disable_msix(np->pci_dev);
  3512. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3513. goto out_free_tx;
  3514. }
  3515. /* map interrupts to their respective vector */
  3516. writel(0, base + NvRegMSIXMap0);
  3517. writel(0, base + NvRegMSIXMap1);
  3518. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3519. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3520. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3521. } else {
  3522. /* Request irq for all interrupts */
  3523. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3524. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3525. pci_disable_msix(np->pci_dev);
  3526. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3527. goto out_err;
  3528. }
  3529. /* map interrupts to vector 0 */
  3530. writel(0, base + NvRegMSIXMap0);
  3531. writel(0, base + NvRegMSIXMap1);
  3532. }
  3533. }
  3534. }
  3535. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3536. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3537. np->msi_flags |= NV_MSI_ENABLED;
  3538. dev->irq = np->pci_dev->irq;
  3539. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3540. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3541. pci_disable_msi(np->pci_dev);
  3542. np->msi_flags &= ~NV_MSI_ENABLED;
  3543. dev->irq = np->pci_dev->irq;
  3544. goto out_err;
  3545. }
  3546. /* map interrupts to vector 0 */
  3547. writel(0, base + NvRegMSIMap0);
  3548. writel(0, base + NvRegMSIMap1);
  3549. /* enable msi vector 0 */
  3550. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3551. }
  3552. }
  3553. if (ret != 0) {
  3554. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3555. goto out_err;
  3556. }
  3557. return 0;
  3558. out_free_tx:
  3559. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3560. out_free_rx:
  3561. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3562. out_err:
  3563. return 1;
  3564. }
  3565. static void nv_free_irq(struct net_device *dev)
  3566. {
  3567. struct fe_priv *np = get_nvpriv(dev);
  3568. int i;
  3569. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3570. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3571. free_irq(np->msi_x_entry[i].vector, dev);
  3572. }
  3573. pci_disable_msix(np->pci_dev);
  3574. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3575. } else {
  3576. free_irq(np->pci_dev->irq, dev);
  3577. if (np->msi_flags & NV_MSI_ENABLED) {
  3578. pci_disable_msi(np->pci_dev);
  3579. np->msi_flags &= ~NV_MSI_ENABLED;
  3580. }
  3581. }
  3582. }
  3583. static void nv_do_nic_poll(unsigned long data)
  3584. {
  3585. struct net_device *dev = (struct net_device *) data;
  3586. struct fe_priv *np = netdev_priv(dev);
  3587. u8 __iomem *base = get_hwbase(dev);
  3588. u32 mask = 0;
  3589. /*
  3590. * First disable irq(s) and then
  3591. * reenable interrupts on the nic, we have to do this before calling
  3592. * nv_nic_irq because that may decide to do otherwise
  3593. */
  3594. if (!using_multi_irqs(dev)) {
  3595. if (np->msi_flags & NV_MSI_X_ENABLED)
  3596. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3597. else
  3598. disable_irq_lockdep(np->pci_dev->irq);
  3599. mask = np->irqmask;
  3600. } else {
  3601. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3602. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3603. mask |= NVREG_IRQ_RX_ALL;
  3604. }
  3605. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3606. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3607. mask |= NVREG_IRQ_TX_ALL;
  3608. }
  3609. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3610. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3611. mask |= NVREG_IRQ_OTHER;
  3612. }
  3613. }
  3614. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3615. if (np->recover_error) {
  3616. np->recover_error = 0;
  3617. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3618. if (netif_running(dev)) {
  3619. netif_tx_lock_bh(dev);
  3620. netif_addr_lock(dev);
  3621. spin_lock(&np->lock);
  3622. /* stop engines */
  3623. nv_stop_rxtx(dev);
  3624. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3625. nv_mac_reset(dev);
  3626. nv_txrx_reset(dev);
  3627. /* drain rx queue */
  3628. nv_drain_rxtx(dev);
  3629. /* reinit driver view of the rx queue */
  3630. set_bufsize(dev);
  3631. if (nv_init_ring(dev)) {
  3632. if (!np->in_shutdown)
  3633. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3634. }
  3635. /* reinit nic view of the rx queue */
  3636. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3637. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3638. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3639. base + NvRegRingSizes);
  3640. pci_push(base);
  3641. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3642. pci_push(base);
  3643. /* clear interrupts */
  3644. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3645. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3646. else
  3647. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3648. /* restart rx engine */
  3649. nv_start_rxtx(dev);
  3650. spin_unlock(&np->lock);
  3651. netif_addr_unlock(dev);
  3652. netif_tx_unlock_bh(dev);
  3653. }
  3654. }
  3655. writel(mask, base + NvRegIrqMask);
  3656. pci_push(base);
  3657. if (!using_multi_irqs(dev)) {
  3658. np->nic_poll_irq = 0;
  3659. if (nv_optimized(np))
  3660. nv_nic_irq_optimized(0, dev);
  3661. else
  3662. nv_nic_irq(0, dev);
  3663. if (np->msi_flags & NV_MSI_X_ENABLED)
  3664. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3665. else
  3666. enable_irq_lockdep(np->pci_dev->irq);
  3667. } else {
  3668. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3669. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3670. nv_nic_irq_rx(0, dev);
  3671. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3672. }
  3673. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3674. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3675. nv_nic_irq_tx(0, dev);
  3676. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3677. }
  3678. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3679. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3680. nv_nic_irq_other(0, dev);
  3681. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3682. }
  3683. }
  3684. }
  3685. #ifdef CONFIG_NET_POLL_CONTROLLER
  3686. static void nv_poll_controller(struct net_device *dev)
  3687. {
  3688. nv_do_nic_poll((unsigned long) dev);
  3689. }
  3690. #endif
  3691. static void nv_do_stats_poll(unsigned long data)
  3692. {
  3693. struct net_device *dev = (struct net_device *) data;
  3694. struct fe_priv *np = netdev_priv(dev);
  3695. nv_get_hw_stats(dev);
  3696. if (!np->in_shutdown)
  3697. mod_timer(&np->stats_poll,
  3698. round_jiffies(jiffies + STATS_INTERVAL));
  3699. }
  3700. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3701. {
  3702. struct fe_priv *np = netdev_priv(dev);
  3703. strcpy(info->driver, DRV_NAME);
  3704. strcpy(info->version, FORCEDETH_VERSION);
  3705. strcpy(info->bus_info, pci_name(np->pci_dev));
  3706. }
  3707. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3708. {
  3709. struct fe_priv *np = netdev_priv(dev);
  3710. wolinfo->supported = WAKE_MAGIC;
  3711. spin_lock_irq(&np->lock);
  3712. if (np->wolenabled)
  3713. wolinfo->wolopts = WAKE_MAGIC;
  3714. spin_unlock_irq(&np->lock);
  3715. }
  3716. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3717. {
  3718. struct fe_priv *np = netdev_priv(dev);
  3719. u8 __iomem *base = get_hwbase(dev);
  3720. u32 flags = 0;
  3721. if (wolinfo->wolopts == 0) {
  3722. np->wolenabled = 0;
  3723. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3724. np->wolenabled = 1;
  3725. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3726. }
  3727. if (netif_running(dev)) {
  3728. spin_lock_irq(&np->lock);
  3729. writel(flags, base + NvRegWakeUpFlags);
  3730. spin_unlock_irq(&np->lock);
  3731. }
  3732. return 0;
  3733. }
  3734. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3735. {
  3736. struct fe_priv *np = netdev_priv(dev);
  3737. int adv;
  3738. spin_lock_irq(&np->lock);
  3739. ecmd->port = PORT_MII;
  3740. if (!netif_running(dev)) {
  3741. /* We do not track link speed / duplex setting if the
  3742. * interface is disabled. Force a link check */
  3743. if (nv_update_linkspeed(dev)) {
  3744. if (!netif_carrier_ok(dev))
  3745. netif_carrier_on(dev);
  3746. } else {
  3747. if (netif_carrier_ok(dev))
  3748. netif_carrier_off(dev);
  3749. }
  3750. }
  3751. if (netif_carrier_ok(dev)) {
  3752. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3753. case NVREG_LINKSPEED_10:
  3754. ecmd->speed = SPEED_10;
  3755. break;
  3756. case NVREG_LINKSPEED_100:
  3757. ecmd->speed = SPEED_100;
  3758. break;
  3759. case NVREG_LINKSPEED_1000:
  3760. ecmd->speed = SPEED_1000;
  3761. break;
  3762. }
  3763. ecmd->duplex = DUPLEX_HALF;
  3764. if (np->duplex)
  3765. ecmd->duplex = DUPLEX_FULL;
  3766. } else {
  3767. ecmd->speed = -1;
  3768. ecmd->duplex = -1;
  3769. }
  3770. ecmd->autoneg = np->autoneg;
  3771. ecmd->advertising = ADVERTISED_MII;
  3772. if (np->autoneg) {
  3773. ecmd->advertising |= ADVERTISED_Autoneg;
  3774. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3775. if (adv & ADVERTISE_10HALF)
  3776. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3777. if (adv & ADVERTISE_10FULL)
  3778. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3779. if (adv & ADVERTISE_100HALF)
  3780. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3781. if (adv & ADVERTISE_100FULL)
  3782. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3783. if (np->gigabit == PHY_GIGABIT) {
  3784. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3785. if (adv & ADVERTISE_1000FULL)
  3786. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3787. }
  3788. }
  3789. ecmd->supported = (SUPPORTED_Autoneg |
  3790. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3791. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3792. SUPPORTED_MII);
  3793. if (np->gigabit == PHY_GIGABIT)
  3794. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3795. ecmd->phy_address = np->phyaddr;
  3796. ecmd->transceiver = XCVR_EXTERNAL;
  3797. /* ignore maxtxpkt, maxrxpkt for now */
  3798. spin_unlock_irq(&np->lock);
  3799. return 0;
  3800. }
  3801. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3802. {
  3803. struct fe_priv *np = netdev_priv(dev);
  3804. if (ecmd->port != PORT_MII)
  3805. return -EINVAL;
  3806. if (ecmd->transceiver != XCVR_EXTERNAL)
  3807. return -EINVAL;
  3808. if (ecmd->phy_address != np->phyaddr) {
  3809. /* TODO: support switching between multiple phys. Should be
  3810. * trivial, but not enabled due to lack of test hardware. */
  3811. return -EINVAL;
  3812. }
  3813. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3814. u32 mask;
  3815. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3816. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3817. if (np->gigabit == PHY_GIGABIT)
  3818. mask |= ADVERTISED_1000baseT_Full;
  3819. if ((ecmd->advertising & mask) == 0)
  3820. return -EINVAL;
  3821. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3822. /* Note: autonegotiation disable, speed 1000 intentionally
  3823. * forbidden - noone should need that. */
  3824. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3825. return -EINVAL;
  3826. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3827. return -EINVAL;
  3828. } else {
  3829. return -EINVAL;
  3830. }
  3831. netif_carrier_off(dev);
  3832. if (netif_running(dev)) {
  3833. unsigned long flags;
  3834. nv_disable_irq(dev);
  3835. netif_tx_lock_bh(dev);
  3836. netif_addr_lock(dev);
  3837. /* with plain spinlock lockdep complains */
  3838. spin_lock_irqsave(&np->lock, flags);
  3839. /* stop engines */
  3840. /* FIXME:
  3841. * this can take some time, and interrupts are disabled
  3842. * due to spin_lock_irqsave, but let's hope no daemon
  3843. * is going to change the settings very often...
  3844. * Worst case:
  3845. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3846. * + some minor delays, which is up to a second approximately
  3847. */
  3848. nv_stop_rxtx(dev);
  3849. spin_unlock_irqrestore(&np->lock, flags);
  3850. netif_addr_unlock(dev);
  3851. netif_tx_unlock_bh(dev);
  3852. }
  3853. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3854. int adv, bmcr;
  3855. np->autoneg = 1;
  3856. /* advertise only what has been requested */
  3857. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3858. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3859. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3860. adv |= ADVERTISE_10HALF;
  3861. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3862. adv |= ADVERTISE_10FULL;
  3863. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3864. adv |= ADVERTISE_100HALF;
  3865. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3866. adv |= ADVERTISE_100FULL;
  3867. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3868. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3869. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3870. adv |= ADVERTISE_PAUSE_ASYM;
  3871. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3872. if (np->gigabit == PHY_GIGABIT) {
  3873. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3874. adv &= ~ADVERTISE_1000FULL;
  3875. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3876. adv |= ADVERTISE_1000FULL;
  3877. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3878. }
  3879. if (netif_running(dev))
  3880. printk(KERN_INFO "%s: link down.\n", dev->name);
  3881. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3882. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3883. bmcr |= BMCR_ANENABLE;
  3884. /* reset the phy in order for settings to stick,
  3885. * and cause autoneg to start */
  3886. if (phy_reset(dev, bmcr)) {
  3887. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3888. return -EINVAL;
  3889. }
  3890. } else {
  3891. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3892. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3893. }
  3894. } else {
  3895. int adv, bmcr;
  3896. np->autoneg = 0;
  3897. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3898. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3899. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3900. adv |= ADVERTISE_10HALF;
  3901. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3902. adv |= ADVERTISE_10FULL;
  3903. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3904. adv |= ADVERTISE_100HALF;
  3905. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3906. adv |= ADVERTISE_100FULL;
  3907. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3908. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3909. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3910. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3911. }
  3912. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3913. adv |= ADVERTISE_PAUSE_ASYM;
  3914. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3915. }
  3916. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3917. np->fixed_mode = adv;
  3918. if (np->gigabit == PHY_GIGABIT) {
  3919. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3920. adv &= ~ADVERTISE_1000FULL;
  3921. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3922. }
  3923. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3924. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3925. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3926. bmcr |= BMCR_FULLDPLX;
  3927. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3928. bmcr |= BMCR_SPEED100;
  3929. if (np->phy_oui == PHY_OUI_MARVELL) {
  3930. /* reset the phy in order for forced mode settings to stick */
  3931. if (phy_reset(dev, bmcr)) {
  3932. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3933. return -EINVAL;
  3934. }
  3935. } else {
  3936. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3937. if (netif_running(dev)) {
  3938. /* Wait a bit and then reconfigure the nic. */
  3939. udelay(10);
  3940. nv_linkchange(dev);
  3941. }
  3942. }
  3943. }
  3944. if (netif_running(dev)) {
  3945. nv_start_rxtx(dev);
  3946. nv_enable_irq(dev);
  3947. }
  3948. return 0;
  3949. }
  3950. #define FORCEDETH_REGS_VER 1
  3951. static int nv_get_regs_len(struct net_device *dev)
  3952. {
  3953. struct fe_priv *np = netdev_priv(dev);
  3954. return np->register_size;
  3955. }
  3956. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3957. {
  3958. struct fe_priv *np = netdev_priv(dev);
  3959. u8 __iomem *base = get_hwbase(dev);
  3960. u32 *rbuf = buf;
  3961. int i;
  3962. regs->version = FORCEDETH_REGS_VER;
  3963. spin_lock_irq(&np->lock);
  3964. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3965. rbuf[i] = readl(base + i*sizeof(u32));
  3966. spin_unlock_irq(&np->lock);
  3967. }
  3968. static int nv_nway_reset(struct net_device *dev)
  3969. {
  3970. struct fe_priv *np = netdev_priv(dev);
  3971. int ret;
  3972. if (np->autoneg) {
  3973. int bmcr;
  3974. netif_carrier_off(dev);
  3975. if (netif_running(dev)) {
  3976. nv_disable_irq(dev);
  3977. netif_tx_lock_bh(dev);
  3978. netif_addr_lock(dev);
  3979. spin_lock(&np->lock);
  3980. /* stop engines */
  3981. nv_stop_rxtx(dev);
  3982. spin_unlock(&np->lock);
  3983. netif_addr_unlock(dev);
  3984. netif_tx_unlock_bh(dev);
  3985. printk(KERN_INFO "%s: link down.\n", dev->name);
  3986. }
  3987. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3988. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3989. bmcr |= BMCR_ANENABLE;
  3990. /* reset the phy in order for settings to stick*/
  3991. if (phy_reset(dev, bmcr)) {
  3992. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3993. return -EINVAL;
  3994. }
  3995. } else {
  3996. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3997. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3998. }
  3999. if (netif_running(dev)) {
  4000. nv_start_rxtx(dev);
  4001. nv_enable_irq(dev);
  4002. }
  4003. ret = 0;
  4004. } else {
  4005. ret = -EINVAL;
  4006. }
  4007. return ret;
  4008. }
  4009. static int nv_set_tso(struct net_device *dev, u32 value)
  4010. {
  4011. struct fe_priv *np = netdev_priv(dev);
  4012. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4013. return ethtool_op_set_tso(dev, value);
  4014. else
  4015. return -EOPNOTSUPP;
  4016. }
  4017. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4018. {
  4019. struct fe_priv *np = netdev_priv(dev);
  4020. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4021. ring->rx_mini_max_pending = 0;
  4022. ring->rx_jumbo_max_pending = 0;
  4023. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4024. ring->rx_pending = np->rx_ring_size;
  4025. ring->rx_mini_pending = 0;
  4026. ring->rx_jumbo_pending = 0;
  4027. ring->tx_pending = np->tx_ring_size;
  4028. }
  4029. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4030. {
  4031. struct fe_priv *np = netdev_priv(dev);
  4032. u8 __iomem *base = get_hwbase(dev);
  4033. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4034. dma_addr_t ring_addr;
  4035. if (ring->rx_pending < RX_RING_MIN ||
  4036. ring->tx_pending < TX_RING_MIN ||
  4037. ring->rx_mini_pending != 0 ||
  4038. ring->rx_jumbo_pending != 0 ||
  4039. (np->desc_ver == DESC_VER_1 &&
  4040. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4041. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4042. (np->desc_ver != DESC_VER_1 &&
  4043. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4044. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4045. return -EINVAL;
  4046. }
  4047. /* allocate new rings */
  4048. if (!nv_optimized(np)) {
  4049. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4050. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4051. &ring_addr);
  4052. } else {
  4053. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4054. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4055. &ring_addr);
  4056. }
  4057. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4058. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4059. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4060. /* fall back to old rings */
  4061. if (!nv_optimized(np)) {
  4062. if (rxtx_ring)
  4063. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4064. rxtx_ring, ring_addr);
  4065. } else {
  4066. if (rxtx_ring)
  4067. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4068. rxtx_ring, ring_addr);
  4069. }
  4070. if (rx_skbuff)
  4071. kfree(rx_skbuff);
  4072. if (tx_skbuff)
  4073. kfree(tx_skbuff);
  4074. goto exit;
  4075. }
  4076. if (netif_running(dev)) {
  4077. nv_disable_irq(dev);
  4078. nv_napi_disable(dev);
  4079. netif_tx_lock_bh(dev);
  4080. netif_addr_lock(dev);
  4081. spin_lock(&np->lock);
  4082. /* stop engines */
  4083. nv_stop_rxtx(dev);
  4084. nv_txrx_reset(dev);
  4085. /* drain queues */
  4086. nv_drain_rxtx(dev);
  4087. /* delete queues */
  4088. free_rings(dev);
  4089. }
  4090. /* set new values */
  4091. np->rx_ring_size = ring->rx_pending;
  4092. np->tx_ring_size = ring->tx_pending;
  4093. if (!nv_optimized(np)) {
  4094. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4095. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4096. } else {
  4097. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4098. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4099. }
  4100. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4101. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4102. np->ring_addr = ring_addr;
  4103. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4104. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4105. if (netif_running(dev)) {
  4106. /* reinit driver view of the queues */
  4107. set_bufsize(dev);
  4108. if (nv_init_ring(dev)) {
  4109. if (!np->in_shutdown)
  4110. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4111. }
  4112. /* reinit nic view of the queues */
  4113. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4114. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4115. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4116. base + NvRegRingSizes);
  4117. pci_push(base);
  4118. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4119. pci_push(base);
  4120. /* restart engines */
  4121. nv_start_rxtx(dev);
  4122. spin_unlock(&np->lock);
  4123. netif_addr_unlock(dev);
  4124. netif_tx_unlock_bh(dev);
  4125. nv_napi_enable(dev);
  4126. nv_enable_irq(dev);
  4127. }
  4128. return 0;
  4129. exit:
  4130. return -ENOMEM;
  4131. }
  4132. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4133. {
  4134. struct fe_priv *np = netdev_priv(dev);
  4135. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4136. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4137. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4138. }
  4139. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4140. {
  4141. struct fe_priv *np = netdev_priv(dev);
  4142. int adv, bmcr;
  4143. if ((!np->autoneg && np->duplex == 0) ||
  4144. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4145. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4146. dev->name);
  4147. return -EINVAL;
  4148. }
  4149. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4150. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4151. return -EINVAL;
  4152. }
  4153. netif_carrier_off(dev);
  4154. if (netif_running(dev)) {
  4155. nv_disable_irq(dev);
  4156. netif_tx_lock_bh(dev);
  4157. netif_addr_lock(dev);
  4158. spin_lock(&np->lock);
  4159. /* stop engines */
  4160. nv_stop_rxtx(dev);
  4161. spin_unlock(&np->lock);
  4162. netif_addr_unlock(dev);
  4163. netif_tx_unlock_bh(dev);
  4164. }
  4165. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4166. if (pause->rx_pause)
  4167. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4168. if (pause->tx_pause)
  4169. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4170. if (np->autoneg && pause->autoneg) {
  4171. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4172. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4173. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4174. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4175. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4176. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4177. adv |= ADVERTISE_PAUSE_ASYM;
  4178. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4179. if (netif_running(dev))
  4180. printk(KERN_INFO "%s: link down.\n", dev->name);
  4181. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4182. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4183. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4184. } else {
  4185. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4186. if (pause->rx_pause)
  4187. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4188. if (pause->tx_pause)
  4189. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4190. if (!netif_running(dev))
  4191. nv_update_linkspeed(dev);
  4192. else
  4193. nv_update_pause(dev, np->pause_flags);
  4194. }
  4195. if (netif_running(dev)) {
  4196. nv_start_rxtx(dev);
  4197. nv_enable_irq(dev);
  4198. }
  4199. return 0;
  4200. }
  4201. static u32 nv_get_rx_csum(struct net_device *dev)
  4202. {
  4203. struct fe_priv *np = netdev_priv(dev);
  4204. return (np->rx_csum) != 0;
  4205. }
  4206. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4207. {
  4208. struct fe_priv *np = netdev_priv(dev);
  4209. u8 __iomem *base = get_hwbase(dev);
  4210. int retcode = 0;
  4211. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4212. if (data) {
  4213. np->rx_csum = 1;
  4214. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4215. } else {
  4216. np->rx_csum = 0;
  4217. /* vlan is dependent on rx checksum offload */
  4218. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4219. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4220. }
  4221. if (netif_running(dev)) {
  4222. spin_lock_irq(&np->lock);
  4223. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4224. spin_unlock_irq(&np->lock);
  4225. }
  4226. } else {
  4227. return -EINVAL;
  4228. }
  4229. return retcode;
  4230. }
  4231. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4232. {
  4233. struct fe_priv *np = netdev_priv(dev);
  4234. if (np->driver_data & DEV_HAS_CHECKSUM)
  4235. return ethtool_op_set_tx_csum(dev, data);
  4236. else
  4237. return -EOPNOTSUPP;
  4238. }
  4239. static int nv_set_sg(struct net_device *dev, u32 data)
  4240. {
  4241. struct fe_priv *np = netdev_priv(dev);
  4242. if (np->driver_data & DEV_HAS_CHECKSUM)
  4243. return ethtool_op_set_sg(dev, data);
  4244. else
  4245. return -EOPNOTSUPP;
  4246. }
  4247. static int nv_get_sset_count(struct net_device *dev, int sset)
  4248. {
  4249. struct fe_priv *np = netdev_priv(dev);
  4250. switch (sset) {
  4251. case ETH_SS_TEST:
  4252. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4253. return NV_TEST_COUNT_EXTENDED;
  4254. else
  4255. return NV_TEST_COUNT_BASE;
  4256. case ETH_SS_STATS:
  4257. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4258. return NV_DEV_STATISTICS_V3_COUNT;
  4259. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4260. return NV_DEV_STATISTICS_V2_COUNT;
  4261. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4262. return NV_DEV_STATISTICS_V1_COUNT;
  4263. else
  4264. return 0;
  4265. default:
  4266. return -EOPNOTSUPP;
  4267. }
  4268. }
  4269. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4270. {
  4271. struct fe_priv *np = netdev_priv(dev);
  4272. /* update stats */
  4273. nv_do_stats_poll((unsigned long)dev);
  4274. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4275. }
  4276. static int nv_link_test(struct net_device *dev)
  4277. {
  4278. struct fe_priv *np = netdev_priv(dev);
  4279. int mii_status;
  4280. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4281. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4282. /* check phy link status */
  4283. if (!(mii_status & BMSR_LSTATUS))
  4284. return 0;
  4285. else
  4286. return 1;
  4287. }
  4288. static int nv_register_test(struct net_device *dev)
  4289. {
  4290. u8 __iomem *base = get_hwbase(dev);
  4291. int i = 0;
  4292. u32 orig_read, new_read;
  4293. do {
  4294. orig_read = readl(base + nv_registers_test[i].reg);
  4295. /* xor with mask to toggle bits */
  4296. orig_read ^= nv_registers_test[i].mask;
  4297. writel(orig_read, base + nv_registers_test[i].reg);
  4298. new_read = readl(base + nv_registers_test[i].reg);
  4299. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4300. return 0;
  4301. /* restore original value */
  4302. orig_read ^= nv_registers_test[i].mask;
  4303. writel(orig_read, base + nv_registers_test[i].reg);
  4304. } while (nv_registers_test[++i].reg != 0);
  4305. return 1;
  4306. }
  4307. static int nv_interrupt_test(struct net_device *dev)
  4308. {
  4309. struct fe_priv *np = netdev_priv(dev);
  4310. u8 __iomem *base = get_hwbase(dev);
  4311. int ret = 1;
  4312. int testcnt;
  4313. u32 save_msi_flags, save_poll_interval = 0;
  4314. if (netif_running(dev)) {
  4315. /* free current irq */
  4316. nv_free_irq(dev);
  4317. save_poll_interval = readl(base+NvRegPollingInterval);
  4318. }
  4319. /* flag to test interrupt handler */
  4320. np->intr_test = 0;
  4321. /* setup test irq */
  4322. save_msi_flags = np->msi_flags;
  4323. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4324. np->msi_flags |= 0x001; /* setup 1 vector */
  4325. if (nv_request_irq(dev, 1))
  4326. return 0;
  4327. /* setup timer interrupt */
  4328. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4329. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4330. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4331. /* wait for at least one interrupt */
  4332. msleep(100);
  4333. spin_lock_irq(&np->lock);
  4334. /* flag should be set within ISR */
  4335. testcnt = np->intr_test;
  4336. if (!testcnt)
  4337. ret = 2;
  4338. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4339. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4340. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4341. else
  4342. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4343. spin_unlock_irq(&np->lock);
  4344. nv_free_irq(dev);
  4345. np->msi_flags = save_msi_flags;
  4346. if (netif_running(dev)) {
  4347. writel(save_poll_interval, base + NvRegPollingInterval);
  4348. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4349. /* restore original irq */
  4350. if (nv_request_irq(dev, 0))
  4351. return 0;
  4352. }
  4353. return ret;
  4354. }
  4355. static int nv_loopback_test(struct net_device *dev)
  4356. {
  4357. struct fe_priv *np = netdev_priv(dev);
  4358. u8 __iomem *base = get_hwbase(dev);
  4359. struct sk_buff *tx_skb, *rx_skb;
  4360. dma_addr_t test_dma_addr;
  4361. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4362. u32 flags;
  4363. int len, i, pkt_len;
  4364. u8 *pkt_data;
  4365. u32 filter_flags = 0;
  4366. u32 misc1_flags = 0;
  4367. int ret = 1;
  4368. if (netif_running(dev)) {
  4369. nv_disable_irq(dev);
  4370. filter_flags = readl(base + NvRegPacketFilterFlags);
  4371. misc1_flags = readl(base + NvRegMisc1);
  4372. } else {
  4373. nv_txrx_reset(dev);
  4374. }
  4375. /* reinit driver view of the rx queue */
  4376. set_bufsize(dev);
  4377. nv_init_ring(dev);
  4378. /* setup hardware for loopback */
  4379. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4380. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4381. /* reinit nic view of the rx queue */
  4382. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4383. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4384. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4385. base + NvRegRingSizes);
  4386. pci_push(base);
  4387. /* restart rx engine */
  4388. nv_start_rxtx(dev);
  4389. /* setup packet for tx */
  4390. pkt_len = ETH_DATA_LEN;
  4391. tx_skb = dev_alloc_skb(pkt_len);
  4392. if (!tx_skb) {
  4393. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4394. " of %s\n", dev->name);
  4395. ret = 0;
  4396. goto out;
  4397. }
  4398. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4399. skb_tailroom(tx_skb),
  4400. PCI_DMA_FROMDEVICE);
  4401. pkt_data = skb_put(tx_skb, pkt_len);
  4402. for (i = 0; i < pkt_len; i++)
  4403. pkt_data[i] = (u8)(i & 0xff);
  4404. if (!nv_optimized(np)) {
  4405. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4406. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4407. } else {
  4408. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4409. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4410. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4411. }
  4412. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4413. pci_push(get_hwbase(dev));
  4414. msleep(500);
  4415. /* check for rx of the packet */
  4416. if (!nv_optimized(np)) {
  4417. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4418. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4419. } else {
  4420. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4421. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4422. }
  4423. if (flags & NV_RX_AVAIL) {
  4424. ret = 0;
  4425. } else if (np->desc_ver == DESC_VER_1) {
  4426. if (flags & NV_RX_ERROR)
  4427. ret = 0;
  4428. } else {
  4429. if (flags & NV_RX2_ERROR) {
  4430. ret = 0;
  4431. }
  4432. }
  4433. if (ret) {
  4434. if (len != pkt_len) {
  4435. ret = 0;
  4436. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4437. dev->name, len, pkt_len);
  4438. } else {
  4439. rx_skb = np->rx_skb[0].skb;
  4440. for (i = 0; i < pkt_len; i++) {
  4441. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4442. ret = 0;
  4443. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4444. dev->name, i);
  4445. break;
  4446. }
  4447. }
  4448. }
  4449. } else {
  4450. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4451. }
  4452. pci_unmap_page(np->pci_dev, test_dma_addr,
  4453. (skb_end_pointer(tx_skb) - tx_skb->data),
  4454. PCI_DMA_TODEVICE);
  4455. dev_kfree_skb_any(tx_skb);
  4456. out:
  4457. /* stop engines */
  4458. nv_stop_rxtx(dev);
  4459. nv_txrx_reset(dev);
  4460. /* drain rx queue */
  4461. nv_drain_rxtx(dev);
  4462. if (netif_running(dev)) {
  4463. writel(misc1_flags, base + NvRegMisc1);
  4464. writel(filter_flags, base + NvRegPacketFilterFlags);
  4465. nv_enable_irq(dev);
  4466. }
  4467. return ret;
  4468. }
  4469. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4470. {
  4471. struct fe_priv *np = netdev_priv(dev);
  4472. u8 __iomem *base = get_hwbase(dev);
  4473. int result;
  4474. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4475. if (!nv_link_test(dev)) {
  4476. test->flags |= ETH_TEST_FL_FAILED;
  4477. buffer[0] = 1;
  4478. }
  4479. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4480. if (netif_running(dev)) {
  4481. netif_stop_queue(dev);
  4482. nv_napi_disable(dev);
  4483. netif_tx_lock_bh(dev);
  4484. netif_addr_lock(dev);
  4485. spin_lock_irq(&np->lock);
  4486. nv_disable_hw_interrupts(dev, np->irqmask);
  4487. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4488. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4489. } else {
  4490. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4491. }
  4492. /* stop engines */
  4493. nv_stop_rxtx(dev);
  4494. nv_txrx_reset(dev);
  4495. /* drain rx queue */
  4496. nv_drain_rxtx(dev);
  4497. spin_unlock_irq(&np->lock);
  4498. netif_addr_unlock(dev);
  4499. netif_tx_unlock_bh(dev);
  4500. }
  4501. if (!nv_register_test(dev)) {
  4502. test->flags |= ETH_TEST_FL_FAILED;
  4503. buffer[1] = 1;
  4504. }
  4505. result = nv_interrupt_test(dev);
  4506. if (result != 1) {
  4507. test->flags |= ETH_TEST_FL_FAILED;
  4508. buffer[2] = 1;
  4509. }
  4510. if (result == 0) {
  4511. /* bail out */
  4512. return;
  4513. }
  4514. if (!nv_loopback_test(dev)) {
  4515. test->flags |= ETH_TEST_FL_FAILED;
  4516. buffer[3] = 1;
  4517. }
  4518. if (netif_running(dev)) {
  4519. /* reinit driver view of the rx queue */
  4520. set_bufsize(dev);
  4521. if (nv_init_ring(dev)) {
  4522. if (!np->in_shutdown)
  4523. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4524. }
  4525. /* reinit nic view of the rx queue */
  4526. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4527. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4528. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4529. base + NvRegRingSizes);
  4530. pci_push(base);
  4531. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4532. pci_push(base);
  4533. /* restart rx engine */
  4534. nv_start_rxtx(dev);
  4535. netif_start_queue(dev);
  4536. nv_napi_enable(dev);
  4537. nv_enable_hw_interrupts(dev, np->irqmask);
  4538. }
  4539. }
  4540. }
  4541. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4542. {
  4543. switch (stringset) {
  4544. case ETH_SS_STATS:
  4545. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4546. break;
  4547. case ETH_SS_TEST:
  4548. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4549. break;
  4550. }
  4551. }
  4552. static const struct ethtool_ops ops = {
  4553. .get_drvinfo = nv_get_drvinfo,
  4554. .get_link = ethtool_op_get_link,
  4555. .get_wol = nv_get_wol,
  4556. .set_wol = nv_set_wol,
  4557. .get_settings = nv_get_settings,
  4558. .set_settings = nv_set_settings,
  4559. .get_regs_len = nv_get_regs_len,
  4560. .get_regs = nv_get_regs,
  4561. .nway_reset = nv_nway_reset,
  4562. .set_tso = nv_set_tso,
  4563. .get_ringparam = nv_get_ringparam,
  4564. .set_ringparam = nv_set_ringparam,
  4565. .get_pauseparam = nv_get_pauseparam,
  4566. .set_pauseparam = nv_set_pauseparam,
  4567. .get_rx_csum = nv_get_rx_csum,
  4568. .set_rx_csum = nv_set_rx_csum,
  4569. .set_tx_csum = nv_set_tx_csum,
  4570. .set_sg = nv_set_sg,
  4571. .get_strings = nv_get_strings,
  4572. .get_ethtool_stats = nv_get_ethtool_stats,
  4573. .get_sset_count = nv_get_sset_count,
  4574. .self_test = nv_self_test,
  4575. };
  4576. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4577. {
  4578. struct fe_priv *np = get_nvpriv(dev);
  4579. spin_lock_irq(&np->lock);
  4580. /* save vlan group */
  4581. np->vlangrp = grp;
  4582. if (grp) {
  4583. /* enable vlan on MAC */
  4584. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4585. } else {
  4586. /* disable vlan on MAC */
  4587. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4588. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4589. }
  4590. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4591. spin_unlock_irq(&np->lock);
  4592. }
  4593. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4594. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4595. {
  4596. struct fe_priv *np = netdev_priv(dev);
  4597. u8 __iomem *base = get_hwbase(dev);
  4598. int i;
  4599. u32 tx_ctrl, mgmt_sema;
  4600. for (i = 0; i < 10; i++) {
  4601. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4602. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4603. break;
  4604. msleep(500);
  4605. }
  4606. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4607. return 0;
  4608. for (i = 0; i < 2; i++) {
  4609. tx_ctrl = readl(base + NvRegTransmitterControl);
  4610. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4611. writel(tx_ctrl, base + NvRegTransmitterControl);
  4612. /* verify that semaphore was acquired */
  4613. tx_ctrl = readl(base + NvRegTransmitterControl);
  4614. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4615. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4616. np->mgmt_sema = 1;
  4617. return 1;
  4618. }
  4619. else
  4620. udelay(50);
  4621. }
  4622. return 0;
  4623. }
  4624. static void nv_mgmt_release_sema(struct net_device *dev)
  4625. {
  4626. struct fe_priv *np = netdev_priv(dev);
  4627. u8 __iomem *base = get_hwbase(dev);
  4628. u32 tx_ctrl;
  4629. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4630. if (np->mgmt_sema) {
  4631. tx_ctrl = readl(base + NvRegTransmitterControl);
  4632. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4633. writel(tx_ctrl, base + NvRegTransmitterControl);
  4634. }
  4635. }
  4636. }
  4637. static int nv_mgmt_get_version(struct net_device *dev)
  4638. {
  4639. struct fe_priv *np = netdev_priv(dev);
  4640. u8 __iomem *base = get_hwbase(dev);
  4641. u32 data_ready = readl(base + NvRegTransmitterControl);
  4642. u32 data_ready2 = 0;
  4643. unsigned long start;
  4644. int ready = 0;
  4645. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4646. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4647. start = jiffies;
  4648. while (time_before(jiffies, start + 5*HZ)) {
  4649. data_ready2 = readl(base + NvRegTransmitterControl);
  4650. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4651. ready = 1;
  4652. break;
  4653. }
  4654. schedule_timeout_uninterruptible(1);
  4655. }
  4656. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4657. return 0;
  4658. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4659. return 1;
  4660. }
  4661. static int nv_open(struct net_device *dev)
  4662. {
  4663. struct fe_priv *np = netdev_priv(dev);
  4664. u8 __iomem *base = get_hwbase(dev);
  4665. int ret = 1;
  4666. int oom, i;
  4667. u32 low;
  4668. dprintk(KERN_DEBUG "nv_open: begin\n");
  4669. /* power up phy */
  4670. mii_rw(dev, np->phyaddr, MII_BMCR,
  4671. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4672. /* erase previous misconfiguration */
  4673. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4674. nv_mac_reset(dev);
  4675. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4676. writel(0, base + NvRegMulticastAddrB);
  4677. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4678. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4679. writel(0, base + NvRegPacketFilterFlags);
  4680. writel(0, base + NvRegTransmitterControl);
  4681. writel(0, base + NvRegReceiverControl);
  4682. writel(0, base + NvRegAdapterControl);
  4683. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4684. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4685. /* initialize descriptor rings */
  4686. set_bufsize(dev);
  4687. oom = nv_init_ring(dev);
  4688. writel(0, base + NvRegLinkSpeed);
  4689. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4690. nv_txrx_reset(dev);
  4691. writel(0, base + NvRegUnknownSetupReg6);
  4692. np->in_shutdown = 0;
  4693. /* give hw rings */
  4694. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4695. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4696. base + NvRegRingSizes);
  4697. writel(np->linkspeed, base + NvRegLinkSpeed);
  4698. if (np->desc_ver == DESC_VER_1)
  4699. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4700. else
  4701. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4702. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4703. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4704. pci_push(base);
  4705. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4706. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4707. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4708. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4709. writel(0, base + NvRegMIIMask);
  4710. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4711. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4712. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4713. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4714. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4715. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4716. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4717. get_random_bytes(&low, sizeof(low));
  4718. low &= NVREG_SLOTTIME_MASK;
  4719. if (np->desc_ver == DESC_VER_1) {
  4720. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4721. } else {
  4722. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4723. /* setup legacy backoff */
  4724. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4725. } else {
  4726. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4727. nv_gear_backoff_reseed(dev);
  4728. }
  4729. }
  4730. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4731. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4732. if (poll_interval == -1) {
  4733. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4734. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4735. else
  4736. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4737. }
  4738. else
  4739. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4740. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4741. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4742. base + NvRegAdapterControl);
  4743. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4744. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4745. if (np->wolenabled)
  4746. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4747. i = readl(base + NvRegPowerState);
  4748. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4749. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4750. pci_push(base);
  4751. udelay(10);
  4752. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4753. nv_disable_hw_interrupts(dev, np->irqmask);
  4754. pci_push(base);
  4755. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4756. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4757. pci_push(base);
  4758. if (nv_request_irq(dev, 0)) {
  4759. goto out_drain;
  4760. }
  4761. /* ask for interrupts */
  4762. nv_enable_hw_interrupts(dev, np->irqmask);
  4763. spin_lock_irq(&np->lock);
  4764. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4765. writel(0, base + NvRegMulticastAddrB);
  4766. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4767. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4768. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4769. /* One manual link speed update: Interrupts are enabled, future link
  4770. * speed changes cause interrupts and are handled by nv_link_irq().
  4771. */
  4772. {
  4773. u32 miistat;
  4774. miistat = readl(base + NvRegMIIStatus);
  4775. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4776. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4777. }
  4778. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4779. * to init hw */
  4780. np->linkspeed = 0;
  4781. ret = nv_update_linkspeed(dev);
  4782. nv_start_rxtx(dev);
  4783. netif_start_queue(dev);
  4784. nv_napi_enable(dev);
  4785. if (ret) {
  4786. netif_carrier_on(dev);
  4787. } else {
  4788. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4789. netif_carrier_off(dev);
  4790. }
  4791. if (oom)
  4792. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4793. /* start statistics timer */
  4794. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4795. mod_timer(&np->stats_poll,
  4796. round_jiffies(jiffies + STATS_INTERVAL));
  4797. spin_unlock_irq(&np->lock);
  4798. return 0;
  4799. out_drain:
  4800. nv_drain_rxtx(dev);
  4801. return ret;
  4802. }
  4803. static int nv_close(struct net_device *dev)
  4804. {
  4805. struct fe_priv *np = netdev_priv(dev);
  4806. u8 __iomem *base;
  4807. spin_lock_irq(&np->lock);
  4808. np->in_shutdown = 1;
  4809. spin_unlock_irq(&np->lock);
  4810. nv_napi_disable(dev);
  4811. synchronize_irq(np->pci_dev->irq);
  4812. del_timer_sync(&np->oom_kick);
  4813. del_timer_sync(&np->nic_poll);
  4814. del_timer_sync(&np->stats_poll);
  4815. netif_stop_queue(dev);
  4816. spin_lock_irq(&np->lock);
  4817. nv_stop_rxtx(dev);
  4818. nv_txrx_reset(dev);
  4819. /* disable interrupts on the nic or we will lock up */
  4820. base = get_hwbase(dev);
  4821. nv_disable_hw_interrupts(dev, np->irqmask);
  4822. pci_push(base);
  4823. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4824. spin_unlock_irq(&np->lock);
  4825. nv_free_irq(dev);
  4826. nv_drain_rxtx(dev);
  4827. if (np->wolenabled) {
  4828. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4829. nv_start_rx(dev);
  4830. } else {
  4831. /* power down phy */
  4832. mii_rw(dev, np->phyaddr, MII_BMCR,
  4833. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4834. }
  4835. /* FIXME: power down nic */
  4836. return 0;
  4837. }
  4838. static const struct net_device_ops nv_netdev_ops = {
  4839. .ndo_open = nv_open,
  4840. .ndo_stop = nv_close,
  4841. .ndo_get_stats = nv_get_stats,
  4842. .ndo_start_xmit = nv_start_xmit,
  4843. .ndo_tx_timeout = nv_tx_timeout,
  4844. .ndo_change_mtu = nv_change_mtu,
  4845. .ndo_validate_addr = eth_validate_addr,
  4846. .ndo_set_mac_address = nv_set_mac_address,
  4847. .ndo_set_multicast_list = nv_set_multicast,
  4848. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4849. #ifdef CONFIG_NET_POLL_CONTROLLER
  4850. .ndo_poll_controller = nv_poll_controller,
  4851. #endif
  4852. };
  4853. static const struct net_device_ops nv_netdev_ops_optimized = {
  4854. .ndo_open = nv_open,
  4855. .ndo_stop = nv_close,
  4856. .ndo_get_stats = nv_get_stats,
  4857. .ndo_start_xmit = nv_start_xmit_optimized,
  4858. .ndo_tx_timeout = nv_tx_timeout,
  4859. .ndo_change_mtu = nv_change_mtu,
  4860. .ndo_validate_addr = eth_validate_addr,
  4861. .ndo_set_mac_address = nv_set_mac_address,
  4862. .ndo_set_multicast_list = nv_set_multicast,
  4863. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4864. #ifdef CONFIG_NET_POLL_CONTROLLER
  4865. .ndo_poll_controller = nv_poll_controller,
  4866. #endif
  4867. };
  4868. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4869. {
  4870. struct net_device *dev;
  4871. struct fe_priv *np;
  4872. unsigned long addr;
  4873. u8 __iomem *base;
  4874. int err, i;
  4875. u32 powerstate, txreg;
  4876. u32 phystate_orig = 0, phystate;
  4877. int phyinitialized = 0;
  4878. static int printed_version;
  4879. if (!printed_version++)
  4880. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4881. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4882. dev = alloc_etherdev(sizeof(struct fe_priv));
  4883. err = -ENOMEM;
  4884. if (!dev)
  4885. goto out;
  4886. np = netdev_priv(dev);
  4887. np->dev = dev;
  4888. np->pci_dev = pci_dev;
  4889. spin_lock_init(&np->lock);
  4890. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4891. init_timer(&np->oom_kick);
  4892. np->oom_kick.data = (unsigned long) dev;
  4893. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4894. init_timer(&np->nic_poll);
  4895. np->nic_poll.data = (unsigned long) dev;
  4896. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4897. init_timer(&np->stats_poll);
  4898. np->stats_poll.data = (unsigned long) dev;
  4899. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4900. err = pci_enable_device(pci_dev);
  4901. if (err)
  4902. goto out_free;
  4903. pci_set_master(pci_dev);
  4904. err = pci_request_regions(pci_dev, DRV_NAME);
  4905. if (err < 0)
  4906. goto out_disable;
  4907. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4908. np->register_size = NV_PCI_REGSZ_VER3;
  4909. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4910. np->register_size = NV_PCI_REGSZ_VER2;
  4911. else
  4912. np->register_size = NV_PCI_REGSZ_VER1;
  4913. err = -EINVAL;
  4914. addr = 0;
  4915. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4916. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4917. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4918. pci_resource_len(pci_dev, i),
  4919. pci_resource_flags(pci_dev, i));
  4920. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4921. pci_resource_len(pci_dev, i) >= np->register_size) {
  4922. addr = pci_resource_start(pci_dev, i);
  4923. break;
  4924. }
  4925. }
  4926. if (i == DEVICE_COUNT_RESOURCE) {
  4927. dev_printk(KERN_INFO, &pci_dev->dev,
  4928. "Couldn't find register window\n");
  4929. goto out_relreg;
  4930. }
  4931. /* copy of driver data */
  4932. np->driver_data = id->driver_data;
  4933. /* copy of device id */
  4934. np->device_id = id->device;
  4935. /* handle different descriptor versions */
  4936. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4937. /* packet format 3: supports 40-bit addressing */
  4938. np->desc_ver = DESC_VER_3;
  4939. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4940. if (dma_64bit) {
  4941. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4942. dev_printk(KERN_INFO, &pci_dev->dev,
  4943. "64-bit DMA failed, using 32-bit addressing\n");
  4944. else
  4945. dev->features |= NETIF_F_HIGHDMA;
  4946. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4947. dev_printk(KERN_INFO, &pci_dev->dev,
  4948. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4949. }
  4950. }
  4951. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4952. /* packet format 2: supports jumbo frames */
  4953. np->desc_ver = DESC_VER_2;
  4954. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4955. } else {
  4956. /* original packet format */
  4957. np->desc_ver = DESC_VER_1;
  4958. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4959. }
  4960. np->pkt_limit = NV_PKTLIMIT_1;
  4961. if (id->driver_data & DEV_HAS_LARGEDESC)
  4962. np->pkt_limit = NV_PKTLIMIT_2;
  4963. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4964. np->rx_csum = 1;
  4965. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4966. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  4967. dev->features |= NETIF_F_TSO;
  4968. }
  4969. np->vlanctl_bits = 0;
  4970. if (id->driver_data & DEV_HAS_VLAN) {
  4971. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4972. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4973. }
  4974. np->msi_flags = 0;
  4975. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4976. np->msi_flags |= NV_MSI_CAPABLE;
  4977. }
  4978. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4979. /* msix has had reported issues when modifying irqmask
  4980. as in the case of napi, therefore, disable for now
  4981. */
  4982. #ifndef CONFIG_FORCEDETH_NAPI
  4983. np->msi_flags |= NV_MSI_X_CAPABLE;
  4984. #endif
  4985. }
  4986. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4987. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4988. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4989. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4990. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4991. }
  4992. err = -ENOMEM;
  4993. np->base = ioremap(addr, np->register_size);
  4994. if (!np->base)
  4995. goto out_relreg;
  4996. dev->base_addr = (unsigned long)np->base;
  4997. dev->irq = pci_dev->irq;
  4998. np->rx_ring_size = RX_RING_DEFAULT;
  4999. np->tx_ring_size = TX_RING_DEFAULT;
  5000. if (!nv_optimized(np)) {
  5001. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  5002. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  5003. &np->ring_addr);
  5004. if (!np->rx_ring.orig)
  5005. goto out_unmap;
  5006. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5007. } else {
  5008. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  5009. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  5010. &np->ring_addr);
  5011. if (!np->rx_ring.ex)
  5012. goto out_unmap;
  5013. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5014. }
  5015. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5016. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5017. if (!np->rx_skb || !np->tx_skb)
  5018. goto out_freering;
  5019. if (!nv_optimized(np))
  5020. dev->netdev_ops = &nv_netdev_ops;
  5021. else
  5022. dev->netdev_ops = &nv_netdev_ops_optimized;
  5023. #ifdef CONFIG_FORCEDETH_NAPI
  5024. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5025. #endif
  5026. SET_ETHTOOL_OPS(dev, &ops);
  5027. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5028. pci_set_drvdata(pci_dev, dev);
  5029. /* read the mac address */
  5030. base = get_hwbase(dev);
  5031. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5032. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5033. /* check the workaround bit for correct mac address order */
  5034. txreg = readl(base + NvRegTransmitPoll);
  5035. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5036. /* mac address is already in correct order */
  5037. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5038. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5039. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5040. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5041. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5042. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5043. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5044. /* mac address is already in correct order */
  5045. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5046. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5047. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5048. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5049. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5050. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5051. /*
  5052. * Set orig mac address back to the reversed version.
  5053. * This flag will be cleared during low power transition.
  5054. * Therefore, we should always put back the reversed address.
  5055. */
  5056. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5057. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5058. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5059. } else {
  5060. /* need to reverse mac address to correct order */
  5061. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5062. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5063. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5064. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5065. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5066. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5067. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5068. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  5069. }
  5070. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5071. if (!is_valid_ether_addr(dev->perm_addr)) {
  5072. /*
  5073. * Bad mac address. At least one bios sets the mac address
  5074. * to 01:23:45:67:89:ab
  5075. */
  5076. dev_printk(KERN_ERR, &pci_dev->dev,
  5077. "Invalid Mac address detected: %pM\n",
  5078. dev->dev_addr);
  5079. dev_printk(KERN_ERR, &pci_dev->dev,
  5080. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5081. dev->dev_addr[0] = 0x00;
  5082. dev->dev_addr[1] = 0x00;
  5083. dev->dev_addr[2] = 0x6c;
  5084. get_random_bytes(&dev->dev_addr[3], 3);
  5085. }
  5086. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  5087. pci_name(pci_dev), dev->dev_addr);
  5088. /* set mac address */
  5089. nv_copy_mac_to_hw(dev);
  5090. /* Workaround current PCI init glitch: wakeup bits aren't
  5091. * being set from PCI PM capability.
  5092. */
  5093. device_init_wakeup(&pci_dev->dev, 1);
  5094. /* disable WOL */
  5095. writel(0, base + NvRegWakeUpFlags);
  5096. np->wolenabled = 0;
  5097. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5098. /* take phy and nic out of low power mode */
  5099. powerstate = readl(base + NvRegPowerState2);
  5100. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5101. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  5102. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  5103. pci_dev->revision >= 0xA3)
  5104. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5105. writel(powerstate, base + NvRegPowerState2);
  5106. }
  5107. if (np->desc_ver == DESC_VER_1) {
  5108. np->tx_flags = NV_TX_VALID;
  5109. } else {
  5110. np->tx_flags = NV_TX2_VALID;
  5111. }
  5112. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  5113. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5114. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5115. np->msi_flags |= 0x0003;
  5116. } else {
  5117. np->irqmask = NVREG_IRQMASK_CPU;
  5118. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5119. np->msi_flags |= 0x0001;
  5120. }
  5121. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5122. np->irqmask |= NVREG_IRQ_TIMER;
  5123. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5124. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5125. np->need_linktimer = 1;
  5126. np->link_timeout = jiffies + LINK_TIMEOUT;
  5127. } else {
  5128. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5129. np->need_linktimer = 0;
  5130. }
  5131. /* Limit the number of tx's outstanding for hw bug */
  5132. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5133. np->tx_limit = 1;
  5134. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  5135. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  5136. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  5137. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  5138. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  5139. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  5140. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  5141. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  5142. pci_dev->revision >= 0xA2)
  5143. np->tx_limit = 0;
  5144. }
  5145. /* clear phy state and temporarily halt phy interrupts */
  5146. writel(0, base + NvRegMIIMask);
  5147. phystate = readl(base + NvRegAdapterControl);
  5148. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5149. phystate_orig = 1;
  5150. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5151. writel(phystate, base + NvRegAdapterControl);
  5152. }
  5153. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5154. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5155. /* management unit running on the mac? */
  5156. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5157. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5158. nv_mgmt_acquire_sema(dev) &&
  5159. nv_mgmt_get_version(dev)) {
  5160. np->mac_in_use = 1;
  5161. if (np->mgmt_version > 0) {
  5162. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5163. }
  5164. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
  5165. pci_name(pci_dev), np->mac_in_use);
  5166. /* management unit setup the phy already? */
  5167. if (np->mac_in_use &&
  5168. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5169. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5170. /* phy is inited by mgmt unit */
  5171. phyinitialized = 1;
  5172. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
  5173. pci_name(pci_dev));
  5174. } else {
  5175. /* we need to init the phy */
  5176. }
  5177. }
  5178. }
  5179. /* find a suitable phy */
  5180. for (i = 1; i <= 32; i++) {
  5181. int id1, id2;
  5182. int phyaddr = i & 0x1F;
  5183. spin_lock_irq(&np->lock);
  5184. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5185. spin_unlock_irq(&np->lock);
  5186. if (id1 < 0 || id1 == 0xffff)
  5187. continue;
  5188. spin_lock_irq(&np->lock);
  5189. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5190. spin_unlock_irq(&np->lock);
  5191. if (id2 < 0 || id2 == 0xffff)
  5192. continue;
  5193. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5194. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5195. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5196. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5197. pci_name(pci_dev), id1, id2, phyaddr);
  5198. np->phyaddr = phyaddr;
  5199. np->phy_oui = id1 | id2;
  5200. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5201. if (np->phy_oui == PHY_OUI_REALTEK2)
  5202. np->phy_oui = PHY_OUI_REALTEK;
  5203. /* Setup phy revision for Realtek */
  5204. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5205. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5206. break;
  5207. }
  5208. if (i == 33) {
  5209. dev_printk(KERN_INFO, &pci_dev->dev,
  5210. "open: Could not find a valid PHY.\n");
  5211. goto out_error;
  5212. }
  5213. if (!phyinitialized) {
  5214. /* reset it */
  5215. phy_init(dev);
  5216. } else {
  5217. /* see if it is a gigabit phy */
  5218. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5219. if (mii_status & PHY_GIGABIT) {
  5220. np->gigabit = PHY_GIGABIT;
  5221. }
  5222. }
  5223. /* set default link speed settings */
  5224. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5225. np->duplex = 0;
  5226. np->autoneg = 1;
  5227. err = register_netdev(dev);
  5228. if (err) {
  5229. dev_printk(KERN_INFO, &pci_dev->dev,
  5230. "unable to register netdev: %d\n", err);
  5231. goto out_error;
  5232. }
  5233. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5234. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5235. dev->name,
  5236. np->phy_oui,
  5237. np->phyaddr,
  5238. dev->dev_addr[0],
  5239. dev->dev_addr[1],
  5240. dev->dev_addr[2],
  5241. dev->dev_addr[3],
  5242. dev->dev_addr[4],
  5243. dev->dev_addr[5]);
  5244. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5245. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5246. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5247. "csum " : "",
  5248. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5249. "vlan " : "",
  5250. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5251. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5252. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5253. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5254. np->need_linktimer ? "lnktim " : "",
  5255. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5256. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5257. np->desc_ver);
  5258. return 0;
  5259. out_error:
  5260. if (phystate_orig)
  5261. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5262. pci_set_drvdata(pci_dev, NULL);
  5263. out_freering:
  5264. free_rings(dev);
  5265. out_unmap:
  5266. iounmap(get_hwbase(dev));
  5267. out_relreg:
  5268. pci_release_regions(pci_dev);
  5269. out_disable:
  5270. pci_disable_device(pci_dev);
  5271. out_free:
  5272. free_netdev(dev);
  5273. out:
  5274. return err;
  5275. }
  5276. static void nv_restore_phy(struct net_device *dev)
  5277. {
  5278. struct fe_priv *np = netdev_priv(dev);
  5279. u16 phy_reserved, mii_control;
  5280. if (np->phy_oui == PHY_OUI_REALTEK &&
  5281. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5282. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5283. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5284. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5285. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5286. phy_reserved |= PHY_REALTEK_INIT8;
  5287. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5288. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5289. /* restart auto negotiation */
  5290. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5291. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5292. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5293. }
  5294. }
  5295. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5296. {
  5297. struct net_device *dev = pci_get_drvdata(pci_dev);
  5298. struct fe_priv *np = netdev_priv(dev);
  5299. u8 __iomem *base = get_hwbase(dev);
  5300. /* special op: write back the misordered MAC address - otherwise
  5301. * the next nv_probe would see a wrong address.
  5302. */
  5303. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5304. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5305. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5306. base + NvRegTransmitPoll);
  5307. }
  5308. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5309. {
  5310. struct net_device *dev = pci_get_drvdata(pci_dev);
  5311. unregister_netdev(dev);
  5312. nv_restore_mac_addr(pci_dev);
  5313. /* restore any phy related changes */
  5314. nv_restore_phy(dev);
  5315. nv_mgmt_release_sema(dev);
  5316. /* free all structures */
  5317. free_rings(dev);
  5318. iounmap(get_hwbase(dev));
  5319. pci_release_regions(pci_dev);
  5320. pci_disable_device(pci_dev);
  5321. free_netdev(dev);
  5322. pci_set_drvdata(pci_dev, NULL);
  5323. }
  5324. #ifdef CONFIG_PM
  5325. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5326. {
  5327. struct net_device *dev = pci_get_drvdata(pdev);
  5328. struct fe_priv *np = netdev_priv(dev);
  5329. u8 __iomem *base = get_hwbase(dev);
  5330. int i;
  5331. if (netif_running(dev)) {
  5332. // Gross.
  5333. nv_close(dev);
  5334. }
  5335. netif_device_detach(dev);
  5336. /* save non-pci configuration space */
  5337. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5338. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5339. pci_save_state(pdev);
  5340. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5341. pci_disable_device(pdev);
  5342. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5343. return 0;
  5344. }
  5345. static int nv_resume(struct pci_dev *pdev)
  5346. {
  5347. struct net_device *dev = pci_get_drvdata(pdev);
  5348. struct fe_priv *np = netdev_priv(dev);
  5349. u8 __iomem *base = get_hwbase(dev);
  5350. int i, rc = 0;
  5351. pci_set_power_state(pdev, PCI_D0);
  5352. pci_restore_state(pdev);
  5353. /* ack any pending wake events, disable PME */
  5354. pci_enable_wake(pdev, PCI_D0, 0);
  5355. /* restore non-pci configuration space */
  5356. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5357. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5358. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5359. netif_device_attach(dev);
  5360. if (netif_running(dev)) {
  5361. rc = nv_open(dev);
  5362. nv_set_multicast(dev);
  5363. }
  5364. return rc;
  5365. }
  5366. static void nv_shutdown(struct pci_dev *pdev)
  5367. {
  5368. struct net_device *dev = pci_get_drvdata(pdev);
  5369. struct fe_priv *np = netdev_priv(dev);
  5370. if (netif_running(dev))
  5371. nv_close(dev);
  5372. /*
  5373. * Restore the MAC so a kernel started by kexec won't get confused.
  5374. * If we really go for poweroff, we must not restore the MAC,
  5375. * otherwise the MAC for WOL will be reversed at least on some boards.
  5376. */
  5377. if (system_state != SYSTEM_POWER_OFF) {
  5378. nv_restore_mac_addr(pdev);
  5379. }
  5380. pci_disable_device(pdev);
  5381. /*
  5382. * Apparently it is not possible to reinitialise from D3 hot,
  5383. * only put the device into D3 if we really go for poweroff.
  5384. */
  5385. if (system_state == SYSTEM_POWER_OFF) {
  5386. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5387. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5388. pci_set_power_state(pdev, PCI_D3hot);
  5389. }
  5390. }
  5391. #else
  5392. #define nv_suspend NULL
  5393. #define nv_shutdown NULL
  5394. #define nv_resume NULL
  5395. #endif /* CONFIG_PM */
  5396. static struct pci_device_id pci_tbl[] = {
  5397. { /* nForce Ethernet Controller */
  5398. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5399. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5400. },
  5401. { /* nForce2 Ethernet Controller */
  5402. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5403. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5404. },
  5405. { /* nForce3 Ethernet Controller */
  5406. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5407. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5408. },
  5409. { /* nForce3 Ethernet Controller */
  5410. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5411. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5412. },
  5413. { /* nForce3 Ethernet Controller */
  5414. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5415. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5416. },
  5417. { /* nForce3 Ethernet Controller */
  5418. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5419. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5420. },
  5421. { /* nForce3 Ethernet Controller */
  5422. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5423. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5424. },
  5425. { /* CK804 Ethernet Controller */
  5426. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5427. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5428. },
  5429. { /* CK804 Ethernet Controller */
  5430. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5431. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5432. },
  5433. { /* MCP04 Ethernet Controller */
  5434. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5435. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5436. },
  5437. { /* MCP04 Ethernet Controller */
  5438. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5439. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5440. },
  5441. { /* MCP51 Ethernet Controller */
  5442. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5443. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5444. },
  5445. { /* MCP51 Ethernet Controller */
  5446. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5447. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5448. },
  5449. { /* MCP55 Ethernet Controller */
  5450. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5451. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5452. },
  5453. { /* MCP55 Ethernet Controller */
  5454. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5455. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5456. },
  5457. { /* MCP61 Ethernet Controller */
  5458. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5459. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5460. },
  5461. { /* MCP61 Ethernet Controller */
  5462. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5463. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5464. },
  5465. { /* MCP61 Ethernet Controller */
  5466. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5467. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5468. },
  5469. { /* MCP61 Ethernet Controller */
  5470. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5471. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5472. },
  5473. { /* MCP65 Ethernet Controller */
  5474. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5475. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5476. },
  5477. { /* MCP65 Ethernet Controller */
  5478. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5479. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5480. },
  5481. { /* MCP65 Ethernet Controller */
  5482. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5483. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5484. },
  5485. { /* MCP65 Ethernet Controller */
  5486. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5487. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5488. },
  5489. { /* MCP67 Ethernet Controller */
  5490. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5491. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5492. },
  5493. { /* MCP67 Ethernet Controller */
  5494. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5495. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5496. },
  5497. { /* MCP67 Ethernet Controller */
  5498. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5499. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5500. },
  5501. { /* MCP67 Ethernet Controller */
  5502. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5503. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5504. },
  5505. { /* MCP73 Ethernet Controller */
  5506. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5507. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5508. },
  5509. { /* MCP73 Ethernet Controller */
  5510. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5511. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5512. },
  5513. { /* MCP73 Ethernet Controller */
  5514. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5515. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5516. },
  5517. { /* MCP73 Ethernet Controller */
  5518. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5519. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5520. },
  5521. { /* MCP77 Ethernet Controller */
  5522. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5523. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5524. },
  5525. { /* MCP77 Ethernet Controller */
  5526. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5527. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5528. },
  5529. { /* MCP77 Ethernet Controller */
  5530. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5531. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5532. },
  5533. { /* MCP77 Ethernet Controller */
  5534. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5535. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5536. },
  5537. { /* MCP79 Ethernet Controller */
  5538. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5539. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5540. },
  5541. { /* MCP79 Ethernet Controller */
  5542. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5543. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5544. },
  5545. { /* MCP79 Ethernet Controller */
  5546. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5547. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5548. },
  5549. { /* MCP79 Ethernet Controller */
  5550. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5551. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5552. },
  5553. {0,},
  5554. };
  5555. static struct pci_driver driver = {
  5556. .name = DRV_NAME,
  5557. .id_table = pci_tbl,
  5558. .probe = nv_probe,
  5559. .remove = __devexit_p(nv_remove),
  5560. .suspend = nv_suspend,
  5561. .resume = nv_resume,
  5562. .shutdown = nv_shutdown,
  5563. };
  5564. static int __init init_nic(void)
  5565. {
  5566. return pci_register_driver(&driver);
  5567. }
  5568. static void __exit exit_nic(void)
  5569. {
  5570. pci_unregister_driver(&driver);
  5571. }
  5572. module_param(max_interrupt_work, int, 0);
  5573. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5574. module_param(optimization_mode, int, 0);
  5575. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5576. module_param(poll_interval, int, 0);
  5577. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5578. module_param(msi, int, 0);
  5579. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5580. module_param(msix, int, 0);
  5581. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5582. module_param(dma_64bit, int, 0);
  5583. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5584. module_param(phy_cross, int, 0);
  5585. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5586. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5587. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5588. MODULE_LICENSE("GPL");
  5589. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5590. module_init(init_nic);
  5591. module_exit(exit_nic);