processor_idle.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247
  1. /*
  2. * processor_idle - idle state submodule to the ACPI processor driver
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  8. * - Added processor hotplug support
  9. * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10. * - Added support for C3 on SMP
  11. *
  12. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or (at
  17. * your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful, but
  20. * WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  22. * General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27. *
  28. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/cpufreq.h>
  34. #include <linux/slab.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/seq_file.h>
  37. #include <linux/acpi.h>
  38. #include <linux/dmi.h>
  39. #include <linux/moduleparam.h>
  40. #include <linux/sched.h> /* need_resched() */
  41. #include <linux/pm_qos_params.h>
  42. #include <linux/clockchips.h>
  43. #include <linux/cpuidle.h>
  44. #include <linux/irqflags.h>
  45. /*
  46. * Include the apic definitions for x86 to have the APIC timer related defines
  47. * available also for UP (on SMP it gets magically included via linux/smp.h).
  48. * asm/acpi.h is not an option, as it would require more include magic. Also
  49. * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  50. */
  51. #ifdef CONFIG_X86
  52. #include <asm/apic.h>
  53. #endif
  54. #include <asm/io.h>
  55. #include <asm/uaccess.h>
  56. #include <acpi/acpi_bus.h>
  57. #include <acpi/processor.h>
  58. #include <asm/processor.h>
  59. #define PREFIX "ACPI: "
  60. #define ACPI_PROCESSOR_CLASS "processor"
  61. #define _COMPONENT ACPI_PROCESSOR_COMPONENT
  62. ACPI_MODULE_NAME("processor_idle");
  63. #define ACPI_PROCESSOR_FILE_POWER "power"
  64. #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
  65. #define C2_OVERHEAD 1 /* 1us */
  66. #define C3_OVERHEAD 1 /* 1us */
  67. #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  68. static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  69. module_param(max_cstate, uint, 0000);
  70. static unsigned int nocst __read_mostly;
  71. module_param(nocst, uint, 0000);
  72. static unsigned int latency_factor __read_mostly = 2;
  73. module_param(latency_factor, uint, 0644);
  74. static s64 us_to_pm_timer_ticks(s64 t)
  75. {
  76. return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
  77. }
  78. /*
  79. * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  80. * For now disable this. Probably a bug somewhere else.
  81. *
  82. * To skip this limit, boot/load with a large max_cstate limit.
  83. */
  84. static int set_max_cstate(const struct dmi_system_id *id)
  85. {
  86. if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  87. return 0;
  88. printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
  89. " Override with \"processor.max_cstate=%d\"\n", id->ident,
  90. (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  91. max_cstate = (long)id->driver_data;
  92. return 0;
  93. }
  94. /* Actually this shouldn't be __cpuinitdata, would be better to fix the
  95. callers to only run once -AK */
  96. static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
  97. { set_max_cstate, "Clevo 5600D", {
  98. DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  99. DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  100. (void *)2},
  101. { set_max_cstate, "Pavilion zv5000", {
  102. DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  103. DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  104. (void *)1},
  105. { set_max_cstate, "Asus L8400B", {
  106. DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  107. DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
  108. (void *)1},
  109. {},
  110. };
  111. /*
  112. * Callers should disable interrupts before the call and enable
  113. * interrupts after return.
  114. */
  115. static void acpi_safe_halt(void)
  116. {
  117. current_thread_info()->status &= ~TS_POLLING;
  118. /*
  119. * TS_POLLING-cleared state must be visible before we
  120. * test NEED_RESCHED:
  121. */
  122. smp_mb();
  123. if (!need_resched()) {
  124. safe_halt();
  125. local_irq_disable();
  126. }
  127. current_thread_info()->status |= TS_POLLING;
  128. }
  129. #ifdef ARCH_APICTIMER_STOPS_ON_C3
  130. /*
  131. * Some BIOS implementations switch to C3 in the published C2 state.
  132. * This seems to be a common problem on AMD boxen, but other vendors
  133. * are affected too. We pick the most conservative approach: we assume
  134. * that the local APIC stops in both C2 and C3.
  135. */
  136. static void lapic_timer_check_state(int state, struct acpi_processor *pr,
  137. struct acpi_processor_cx *cx)
  138. {
  139. struct acpi_processor_power *pwr = &pr->power;
  140. u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
  141. if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
  142. return;
  143. if (boot_cpu_has(X86_FEATURE_AMDC1E))
  144. type = ACPI_STATE_C1;
  145. /*
  146. * Check, if one of the previous states already marked the lapic
  147. * unstable
  148. */
  149. if (pwr->timer_broadcast_on_state < state)
  150. return;
  151. if (cx->type >= type)
  152. pr->power.timer_broadcast_on_state = state;
  153. }
  154. static void __lapic_timer_propagate_broadcast(void *arg)
  155. {
  156. struct acpi_processor *pr = (struct acpi_processor *) arg;
  157. unsigned long reason;
  158. reason = pr->power.timer_broadcast_on_state < INT_MAX ?
  159. CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
  160. clockevents_notify(reason, &pr->id);
  161. }
  162. static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
  163. {
  164. smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
  165. (void *)pr, 1);
  166. }
  167. /* Power(C) State timer broadcast control */
  168. static void lapic_timer_state_broadcast(struct acpi_processor *pr,
  169. struct acpi_processor_cx *cx,
  170. int broadcast)
  171. {
  172. int state = cx - pr->power.states;
  173. if (state >= pr->power.timer_broadcast_on_state) {
  174. unsigned long reason;
  175. reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
  176. CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
  177. clockevents_notify(reason, &pr->id);
  178. }
  179. }
  180. #else
  181. static void lapic_timer_check_state(int state, struct acpi_processor *pr,
  182. struct acpi_processor_cx *cstate) { }
  183. static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
  184. static void lapic_timer_state_broadcast(struct acpi_processor *pr,
  185. struct acpi_processor_cx *cx,
  186. int broadcast)
  187. {
  188. }
  189. #endif
  190. /*
  191. * Suspend / resume control
  192. */
  193. static int acpi_idle_suspend;
  194. static u32 saved_bm_rld;
  195. static void acpi_idle_bm_rld_save(void)
  196. {
  197. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
  198. }
  199. static void acpi_idle_bm_rld_restore(void)
  200. {
  201. u32 resumed_bm_rld;
  202. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
  203. if (resumed_bm_rld != saved_bm_rld)
  204. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
  205. }
  206. int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
  207. {
  208. if (acpi_idle_suspend == 1)
  209. return 0;
  210. acpi_idle_bm_rld_save();
  211. acpi_idle_suspend = 1;
  212. return 0;
  213. }
  214. int acpi_processor_resume(struct acpi_device * device)
  215. {
  216. if (acpi_idle_suspend == 0)
  217. return 0;
  218. acpi_idle_bm_rld_restore();
  219. acpi_idle_suspend = 0;
  220. return 0;
  221. }
  222. #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
  223. static void tsc_check_state(int state)
  224. {
  225. switch (boot_cpu_data.x86_vendor) {
  226. case X86_VENDOR_AMD:
  227. case X86_VENDOR_INTEL:
  228. /*
  229. * AMD Fam10h TSC will tick in all
  230. * C/P/S0/S1 states when this bit is set.
  231. */
  232. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  233. return;
  234. /*FALL THROUGH*/
  235. default:
  236. /* TSC could halt in idle, so notify users */
  237. if (state > ACPI_STATE_C1)
  238. mark_tsc_unstable("TSC halts in idle");
  239. }
  240. }
  241. #else
  242. static void tsc_check_state(int state) { return; }
  243. #endif
  244. static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
  245. {
  246. if (!pr)
  247. return -EINVAL;
  248. if (!pr->pblk)
  249. return -ENODEV;
  250. /* if info is obtained from pblk/fadt, type equals state */
  251. pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
  252. pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
  253. #ifndef CONFIG_HOTPLUG_CPU
  254. /*
  255. * Check for P_LVL2_UP flag before entering C2 and above on
  256. * an SMP system.
  257. */
  258. if ((num_online_cpus() > 1) &&
  259. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  260. return -ENODEV;
  261. #endif
  262. /* determine C2 and C3 address from pblk */
  263. pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
  264. pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
  265. /* determine latencies from FADT */
  266. pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
  267. pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
  268. /*
  269. * FADT specified C2 latency must be less than or equal to
  270. * 100 microseconds.
  271. */
  272. if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
  273. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  274. "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
  275. /* invalidate C2 */
  276. pr->power.states[ACPI_STATE_C2].address = 0;
  277. }
  278. /*
  279. * FADT supplied C3 latency must be less than or equal to
  280. * 1000 microseconds.
  281. */
  282. if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
  283. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  284. "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
  285. /* invalidate C3 */
  286. pr->power.states[ACPI_STATE_C3].address = 0;
  287. }
  288. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  289. "lvl2[0x%08x] lvl3[0x%08x]\n",
  290. pr->power.states[ACPI_STATE_C2].address,
  291. pr->power.states[ACPI_STATE_C3].address));
  292. return 0;
  293. }
  294. static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
  295. {
  296. if (!pr->power.states[ACPI_STATE_C1].valid) {
  297. /* set the first C-State to C1 */
  298. /* all processors need to support C1 */
  299. pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
  300. pr->power.states[ACPI_STATE_C1].valid = 1;
  301. pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
  302. }
  303. /* the C0 state only exists as a filler in our array */
  304. pr->power.states[ACPI_STATE_C0].valid = 1;
  305. return 0;
  306. }
  307. static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
  308. {
  309. acpi_status status = 0;
  310. u64 count;
  311. int current_count;
  312. int i;
  313. struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
  314. union acpi_object *cst;
  315. if (nocst)
  316. return -ENODEV;
  317. current_count = 0;
  318. status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
  319. if (ACPI_FAILURE(status)) {
  320. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
  321. return -ENODEV;
  322. }
  323. cst = buffer.pointer;
  324. /* There must be at least 2 elements */
  325. if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
  326. printk(KERN_ERR PREFIX "not enough elements in _CST\n");
  327. status = -EFAULT;
  328. goto end;
  329. }
  330. count = cst->package.elements[0].integer.value;
  331. /* Validate number of power states. */
  332. if (count < 1 || count != cst->package.count - 1) {
  333. printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
  334. status = -EFAULT;
  335. goto end;
  336. }
  337. /* Tell driver that at least _CST is supported. */
  338. pr->flags.has_cst = 1;
  339. for (i = 1; i <= count; i++) {
  340. union acpi_object *element;
  341. union acpi_object *obj;
  342. struct acpi_power_register *reg;
  343. struct acpi_processor_cx cx;
  344. memset(&cx, 0, sizeof(cx));
  345. element = &(cst->package.elements[i]);
  346. if (element->type != ACPI_TYPE_PACKAGE)
  347. continue;
  348. if (element->package.count != 4)
  349. continue;
  350. obj = &(element->package.elements[0]);
  351. if (obj->type != ACPI_TYPE_BUFFER)
  352. continue;
  353. reg = (struct acpi_power_register *)obj->buffer.pointer;
  354. if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
  355. (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
  356. continue;
  357. /* There should be an easy way to extract an integer... */
  358. obj = &(element->package.elements[1]);
  359. if (obj->type != ACPI_TYPE_INTEGER)
  360. continue;
  361. cx.type = obj->integer.value;
  362. /*
  363. * Some buggy BIOSes won't list C1 in _CST -
  364. * Let acpi_processor_get_power_info_default() handle them later
  365. */
  366. if (i == 1 && cx.type != ACPI_STATE_C1)
  367. current_count++;
  368. cx.address = reg->address;
  369. cx.index = current_count + 1;
  370. cx.entry_method = ACPI_CSTATE_SYSTEMIO;
  371. if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
  372. if (acpi_processor_ffh_cstate_probe
  373. (pr->id, &cx, reg) == 0) {
  374. cx.entry_method = ACPI_CSTATE_FFH;
  375. } else if (cx.type == ACPI_STATE_C1) {
  376. /*
  377. * C1 is a special case where FIXED_HARDWARE
  378. * can be handled in non-MWAIT way as well.
  379. * In that case, save this _CST entry info.
  380. * Otherwise, ignore this info and continue.
  381. */
  382. cx.entry_method = ACPI_CSTATE_HALT;
  383. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  384. } else {
  385. continue;
  386. }
  387. if (cx.type == ACPI_STATE_C1 &&
  388. (idle_halt || idle_nomwait)) {
  389. /*
  390. * In most cases the C1 space_id obtained from
  391. * _CST object is FIXED_HARDWARE access mode.
  392. * But when the option of idle=halt is added,
  393. * the entry_method type should be changed from
  394. * CSTATE_FFH to CSTATE_HALT.
  395. * When the option of idle=nomwait is added,
  396. * the C1 entry_method type should be
  397. * CSTATE_HALT.
  398. */
  399. cx.entry_method = ACPI_CSTATE_HALT;
  400. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  401. }
  402. } else {
  403. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
  404. cx.address);
  405. }
  406. if (cx.type == ACPI_STATE_C1) {
  407. cx.valid = 1;
  408. }
  409. obj = &(element->package.elements[2]);
  410. if (obj->type != ACPI_TYPE_INTEGER)
  411. continue;
  412. cx.latency = obj->integer.value;
  413. obj = &(element->package.elements[3]);
  414. if (obj->type != ACPI_TYPE_INTEGER)
  415. continue;
  416. cx.power = obj->integer.value;
  417. current_count++;
  418. memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
  419. /*
  420. * We support total ACPI_PROCESSOR_MAX_POWER - 1
  421. * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
  422. */
  423. if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
  424. printk(KERN_WARNING
  425. "Limiting number of power states to max (%d)\n",
  426. ACPI_PROCESSOR_MAX_POWER);
  427. printk(KERN_WARNING
  428. "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
  429. break;
  430. }
  431. }
  432. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
  433. current_count));
  434. /* Validate number of power states discovered */
  435. if (current_count < 2)
  436. status = -EFAULT;
  437. end:
  438. kfree(buffer.pointer);
  439. return status;
  440. }
  441. static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
  442. struct acpi_processor_cx *cx)
  443. {
  444. static int bm_check_flag = -1;
  445. static int bm_control_flag = -1;
  446. if (!cx->address)
  447. return;
  448. /*
  449. * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
  450. * DMA transfers are used by any ISA device to avoid livelock.
  451. * Note that we could disable Type-F DMA (as recommended by
  452. * the erratum), but this is known to disrupt certain ISA
  453. * devices thus we take the conservative approach.
  454. */
  455. else if (errata.piix4.fdma) {
  456. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  457. "C3 not supported on PIIX4 with Type-F DMA\n"));
  458. return;
  459. }
  460. /* All the logic here assumes flags.bm_check is same across all CPUs */
  461. if (bm_check_flag == -1) {
  462. /* Determine whether bm_check is needed based on CPU */
  463. acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
  464. bm_check_flag = pr->flags.bm_check;
  465. bm_control_flag = pr->flags.bm_control;
  466. } else {
  467. pr->flags.bm_check = bm_check_flag;
  468. pr->flags.bm_control = bm_control_flag;
  469. }
  470. if (pr->flags.bm_check) {
  471. if (!pr->flags.bm_control) {
  472. if (pr->flags.has_cst != 1) {
  473. /* bus mastering control is necessary */
  474. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  475. "C3 support requires BM control\n"));
  476. return;
  477. } else {
  478. /* Here we enter C3 without bus mastering */
  479. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  480. "C3 support without BM control\n"));
  481. }
  482. }
  483. } else {
  484. /*
  485. * WBINVD should be set in fadt, for C3 state to be
  486. * supported on when bm_check is not required.
  487. */
  488. if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
  489. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  490. "Cache invalidation should work properly"
  491. " for C3 to be enabled on SMP systems\n"));
  492. return;
  493. }
  494. }
  495. /*
  496. * Otherwise we've met all of our C3 requirements.
  497. * Normalize the C3 latency to expidite policy. Enable
  498. * checking of bus mastering status (bm_check) so we can
  499. * use this in our C3 policy
  500. */
  501. cx->valid = 1;
  502. cx->latency_ticks = cx->latency;
  503. /*
  504. * On older chipsets, BM_RLD needs to be set
  505. * in order for Bus Master activity to wake the
  506. * system from C3. Newer chipsets handle DMA
  507. * during C3 automatically and BM_RLD is a NOP.
  508. * In either case, the proper way to
  509. * handle BM_RLD is to set it and leave it set.
  510. */
  511. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
  512. return;
  513. }
  514. static int acpi_processor_power_verify(struct acpi_processor *pr)
  515. {
  516. unsigned int i;
  517. unsigned int working = 0;
  518. pr->power.timer_broadcast_on_state = INT_MAX;
  519. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  520. struct acpi_processor_cx *cx = &pr->power.states[i];
  521. switch (cx->type) {
  522. case ACPI_STATE_C1:
  523. cx->valid = 1;
  524. break;
  525. case ACPI_STATE_C2:
  526. if (!cx->address)
  527. break;
  528. cx->valid = 1;
  529. cx->latency_ticks = cx->latency; /* Normalize latency */
  530. break;
  531. case ACPI_STATE_C3:
  532. acpi_processor_power_verify_c3(pr, cx);
  533. break;
  534. }
  535. if (!cx->valid)
  536. continue;
  537. lapic_timer_check_state(i, pr, cx);
  538. tsc_check_state(cx->type);
  539. working++;
  540. }
  541. lapic_timer_propagate_broadcast(pr);
  542. return (working);
  543. }
  544. static int acpi_processor_get_power_info(struct acpi_processor *pr)
  545. {
  546. unsigned int i;
  547. int result;
  548. /* NOTE: the idle thread may not be running while calling
  549. * this function */
  550. /* Zero initialize all the C-states info. */
  551. memset(pr->power.states, 0, sizeof(pr->power.states));
  552. result = acpi_processor_get_power_info_cst(pr);
  553. if (result == -ENODEV)
  554. result = acpi_processor_get_power_info_fadt(pr);
  555. if (result)
  556. return result;
  557. acpi_processor_get_power_info_default(pr);
  558. pr->power.count = acpi_processor_power_verify(pr);
  559. /*
  560. * if one state of type C2 or C3 is available, mark this
  561. * CPU as being "idle manageable"
  562. */
  563. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  564. if (pr->power.states[i].valid) {
  565. pr->power.count = i;
  566. if (pr->power.states[i].type >= ACPI_STATE_C2)
  567. pr->flags.power = 1;
  568. }
  569. }
  570. return 0;
  571. }
  572. #ifdef CONFIG_ACPI_PROCFS
  573. static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
  574. {
  575. struct acpi_processor *pr = seq->private;
  576. unsigned int i;
  577. if (!pr)
  578. goto end;
  579. seq_printf(seq, "active state: C%zd\n"
  580. "max_cstate: C%d\n"
  581. "maximum allowed latency: %d usec\n",
  582. pr->power.state ? pr->power.state - pr->power.states : 0,
  583. max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
  584. seq_puts(seq, "states:\n");
  585. for (i = 1; i <= pr->power.count; i++) {
  586. seq_printf(seq, " %cC%d: ",
  587. (&pr->power.states[i] ==
  588. pr->power.state ? '*' : ' '), i);
  589. if (!pr->power.states[i].valid) {
  590. seq_puts(seq, "<not supported>\n");
  591. continue;
  592. }
  593. switch (pr->power.states[i].type) {
  594. case ACPI_STATE_C1:
  595. seq_printf(seq, "type[C1] ");
  596. break;
  597. case ACPI_STATE_C2:
  598. seq_printf(seq, "type[C2] ");
  599. break;
  600. case ACPI_STATE_C3:
  601. seq_printf(seq, "type[C3] ");
  602. break;
  603. default:
  604. seq_printf(seq, "type[--] ");
  605. break;
  606. }
  607. seq_puts(seq, "promotion[--] ");
  608. seq_puts(seq, "demotion[--] ");
  609. seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
  610. pr->power.states[i].latency,
  611. pr->power.states[i].usage,
  612. (unsigned long long)pr->power.states[i].time);
  613. }
  614. end:
  615. return 0;
  616. }
  617. static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
  618. {
  619. return single_open(file, acpi_processor_power_seq_show,
  620. PDE(inode)->data);
  621. }
  622. static const struct file_operations acpi_processor_power_fops = {
  623. .owner = THIS_MODULE,
  624. .open = acpi_processor_power_open_fs,
  625. .read = seq_read,
  626. .llseek = seq_lseek,
  627. .release = single_release,
  628. };
  629. #endif
  630. /**
  631. * acpi_idle_bm_check - checks if bus master activity was detected
  632. */
  633. static int acpi_idle_bm_check(void)
  634. {
  635. u32 bm_status = 0;
  636. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
  637. if (bm_status)
  638. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  639. /*
  640. * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
  641. * the true state of bus mastering activity; forcing us to
  642. * manually check the BMIDEA bit of each IDE channel.
  643. */
  644. else if (errata.piix4.bmisx) {
  645. if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
  646. || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
  647. bm_status = 1;
  648. }
  649. return bm_status;
  650. }
  651. /**
  652. * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
  653. * @cx: cstate data
  654. *
  655. * Caller disables interrupt before call and enables interrupt after return.
  656. */
  657. static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
  658. {
  659. /* Don't trace irqs off for idle */
  660. stop_critical_timings();
  661. if (cx->entry_method == ACPI_CSTATE_FFH) {
  662. /* Call into architectural FFH based C-state */
  663. acpi_processor_ffh_cstate_enter(cx);
  664. } else if (cx->entry_method == ACPI_CSTATE_HALT) {
  665. acpi_safe_halt();
  666. } else {
  667. int unused;
  668. /* IO port based C-state */
  669. inb(cx->address);
  670. /* Dummy wait op - must do something useless after P_LVL2 read
  671. because chipsets cannot guarantee that STPCLK# signal
  672. gets asserted in time to freeze execution properly. */
  673. unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
  674. }
  675. start_critical_timings();
  676. }
  677. /**
  678. * acpi_idle_enter_c1 - enters an ACPI C1 state-type
  679. * @dev: the target CPU
  680. * @state: the state data
  681. *
  682. * This is equivalent to the HALT instruction.
  683. */
  684. static int acpi_idle_enter_c1(struct cpuidle_device *dev,
  685. struct cpuidle_state *state)
  686. {
  687. ktime_t kt1, kt2;
  688. s64 idle_time;
  689. struct acpi_processor *pr;
  690. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  691. pr = __get_cpu_var(processors);
  692. if (unlikely(!pr))
  693. return 0;
  694. local_irq_disable();
  695. /* Do not access any ACPI IO ports in suspend path */
  696. if (acpi_idle_suspend) {
  697. local_irq_enable();
  698. cpu_relax();
  699. return 0;
  700. }
  701. lapic_timer_state_broadcast(pr, cx, 1);
  702. kt1 = ktime_get_real();
  703. acpi_idle_do_entry(cx);
  704. kt2 = ktime_get_real();
  705. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  706. local_irq_enable();
  707. cx->usage++;
  708. lapic_timer_state_broadcast(pr, cx, 0);
  709. return idle_time;
  710. }
  711. /**
  712. * acpi_idle_enter_simple - enters an ACPI state without BM handling
  713. * @dev: the target CPU
  714. * @state: the state data
  715. */
  716. static int acpi_idle_enter_simple(struct cpuidle_device *dev,
  717. struct cpuidle_state *state)
  718. {
  719. struct acpi_processor *pr;
  720. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  721. ktime_t kt1, kt2;
  722. s64 idle_time_ns;
  723. s64 idle_time;
  724. s64 sleep_ticks = 0;
  725. pr = __get_cpu_var(processors);
  726. if (unlikely(!pr))
  727. return 0;
  728. if (acpi_idle_suspend)
  729. return(acpi_idle_enter_c1(dev, state));
  730. local_irq_disable();
  731. if (cx->entry_method != ACPI_CSTATE_FFH) {
  732. current_thread_info()->status &= ~TS_POLLING;
  733. /*
  734. * TS_POLLING-cleared state must be visible before we test
  735. * NEED_RESCHED:
  736. */
  737. smp_mb();
  738. }
  739. if (unlikely(need_resched())) {
  740. current_thread_info()->status |= TS_POLLING;
  741. local_irq_enable();
  742. return 0;
  743. }
  744. /*
  745. * Must be done before busmaster disable as we might need to
  746. * access HPET !
  747. */
  748. lapic_timer_state_broadcast(pr, cx, 1);
  749. if (cx->type == ACPI_STATE_C3)
  750. ACPI_FLUSH_CPU_CACHE();
  751. kt1 = ktime_get_real();
  752. /* Tell the scheduler that we are going deep-idle: */
  753. sched_clock_idle_sleep_event();
  754. acpi_idle_do_entry(cx);
  755. kt2 = ktime_get_real();
  756. idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
  757. idle_time = idle_time_ns;
  758. do_div(idle_time, NSEC_PER_USEC);
  759. sleep_ticks = us_to_pm_timer_ticks(idle_time);
  760. /* Tell the scheduler how much we idled: */
  761. sched_clock_idle_wakeup_event(idle_time_ns);
  762. local_irq_enable();
  763. current_thread_info()->status |= TS_POLLING;
  764. cx->usage++;
  765. lapic_timer_state_broadcast(pr, cx, 0);
  766. cx->time += sleep_ticks;
  767. return idle_time;
  768. }
  769. static int c3_cpu_count;
  770. static DEFINE_SPINLOCK(c3_lock);
  771. /**
  772. * acpi_idle_enter_bm - enters C3 with proper BM handling
  773. * @dev: the target CPU
  774. * @state: the state data
  775. *
  776. * If BM is detected, the deepest non-C3 idle state is entered instead.
  777. */
  778. static int acpi_idle_enter_bm(struct cpuidle_device *dev,
  779. struct cpuidle_state *state)
  780. {
  781. struct acpi_processor *pr;
  782. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  783. ktime_t kt1, kt2;
  784. s64 idle_time_ns;
  785. s64 idle_time;
  786. s64 sleep_ticks = 0;
  787. pr = __get_cpu_var(processors);
  788. if (unlikely(!pr))
  789. return 0;
  790. if (acpi_idle_suspend)
  791. return(acpi_idle_enter_c1(dev, state));
  792. if (acpi_idle_bm_check()) {
  793. if (dev->safe_state) {
  794. dev->last_state = dev->safe_state;
  795. return dev->safe_state->enter(dev, dev->safe_state);
  796. } else {
  797. local_irq_disable();
  798. acpi_safe_halt();
  799. local_irq_enable();
  800. return 0;
  801. }
  802. }
  803. local_irq_disable();
  804. if (cx->entry_method != ACPI_CSTATE_FFH) {
  805. current_thread_info()->status &= ~TS_POLLING;
  806. /*
  807. * TS_POLLING-cleared state must be visible before we test
  808. * NEED_RESCHED:
  809. */
  810. smp_mb();
  811. }
  812. if (unlikely(need_resched())) {
  813. current_thread_info()->status |= TS_POLLING;
  814. local_irq_enable();
  815. return 0;
  816. }
  817. acpi_unlazy_tlb(smp_processor_id());
  818. /* Tell the scheduler that we are going deep-idle: */
  819. sched_clock_idle_sleep_event();
  820. /*
  821. * Must be done before busmaster disable as we might need to
  822. * access HPET !
  823. */
  824. lapic_timer_state_broadcast(pr, cx, 1);
  825. kt1 = ktime_get_real();
  826. /*
  827. * disable bus master
  828. * bm_check implies we need ARB_DIS
  829. * !bm_check implies we need cache flush
  830. * bm_control implies whether we can do ARB_DIS
  831. *
  832. * That leaves a case where bm_check is set and bm_control is
  833. * not set. In that case we cannot do much, we enter C3
  834. * without doing anything.
  835. */
  836. if (pr->flags.bm_check && pr->flags.bm_control) {
  837. spin_lock(&c3_lock);
  838. c3_cpu_count++;
  839. /* Disable bus master arbitration when all CPUs are in C3 */
  840. if (c3_cpu_count == num_online_cpus())
  841. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
  842. spin_unlock(&c3_lock);
  843. } else if (!pr->flags.bm_check) {
  844. ACPI_FLUSH_CPU_CACHE();
  845. }
  846. acpi_idle_do_entry(cx);
  847. /* Re-enable bus master arbitration */
  848. if (pr->flags.bm_check && pr->flags.bm_control) {
  849. spin_lock(&c3_lock);
  850. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
  851. c3_cpu_count--;
  852. spin_unlock(&c3_lock);
  853. }
  854. kt2 = ktime_get_real();
  855. idle_time_ns = ktime_to_us(ktime_sub(kt2, kt1));
  856. idle_time = idle_time_ns;
  857. do_div(idle_time, NSEC_PER_USEC);
  858. sleep_ticks = us_to_pm_timer_ticks(idle_time);
  859. /* Tell the scheduler how much we idled: */
  860. sched_clock_idle_wakeup_event(idle_time_ns);
  861. local_irq_enable();
  862. current_thread_info()->status |= TS_POLLING;
  863. cx->usage++;
  864. lapic_timer_state_broadcast(pr, cx, 0);
  865. cx->time += sleep_ticks;
  866. return idle_time;
  867. }
  868. struct cpuidle_driver acpi_idle_driver = {
  869. .name = "acpi_idle",
  870. .owner = THIS_MODULE,
  871. };
  872. /**
  873. * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
  874. * @pr: the ACPI processor
  875. */
  876. static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
  877. {
  878. int i, count = CPUIDLE_DRIVER_STATE_START;
  879. struct acpi_processor_cx *cx;
  880. struct cpuidle_state *state;
  881. struct cpuidle_device *dev = &pr->power.dev;
  882. if (!pr->flags.power_setup_done)
  883. return -EINVAL;
  884. if (pr->flags.power == 0) {
  885. return -EINVAL;
  886. }
  887. dev->cpu = pr->id;
  888. for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
  889. dev->states[i].name[0] = '\0';
  890. dev->states[i].desc[0] = '\0';
  891. }
  892. if (max_cstate == 0)
  893. max_cstate = 1;
  894. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  895. cx = &pr->power.states[i];
  896. state = &dev->states[count];
  897. if (!cx->valid)
  898. continue;
  899. #ifdef CONFIG_HOTPLUG_CPU
  900. if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
  901. !pr->flags.has_cst &&
  902. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  903. continue;
  904. #endif
  905. cpuidle_set_statedata(state, cx);
  906. snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
  907. strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
  908. state->exit_latency = cx->latency;
  909. state->target_residency = cx->latency * latency_factor;
  910. state->power_usage = cx->power;
  911. state->flags = 0;
  912. switch (cx->type) {
  913. case ACPI_STATE_C1:
  914. state->flags |= CPUIDLE_FLAG_SHALLOW;
  915. if (cx->entry_method == ACPI_CSTATE_FFH)
  916. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  917. state->enter = acpi_idle_enter_c1;
  918. dev->safe_state = state;
  919. break;
  920. case ACPI_STATE_C2:
  921. state->flags |= CPUIDLE_FLAG_BALANCED;
  922. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  923. state->enter = acpi_idle_enter_simple;
  924. dev->safe_state = state;
  925. break;
  926. case ACPI_STATE_C3:
  927. state->flags |= CPUIDLE_FLAG_DEEP;
  928. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  929. state->flags |= CPUIDLE_FLAG_CHECK_BM;
  930. state->enter = pr->flags.bm_check ?
  931. acpi_idle_enter_bm :
  932. acpi_idle_enter_simple;
  933. break;
  934. }
  935. count++;
  936. if (count == CPUIDLE_STATE_MAX)
  937. break;
  938. }
  939. dev->state_count = count;
  940. if (!count)
  941. return -EINVAL;
  942. return 0;
  943. }
  944. int acpi_processor_cst_has_changed(struct acpi_processor *pr)
  945. {
  946. int ret = 0;
  947. if (boot_option_idle_override)
  948. return 0;
  949. if (!pr)
  950. return -EINVAL;
  951. if (nocst) {
  952. return -ENODEV;
  953. }
  954. if (!pr->flags.power_setup_done)
  955. return -ENODEV;
  956. cpuidle_pause_and_lock();
  957. cpuidle_disable_device(&pr->power.dev);
  958. acpi_processor_get_power_info(pr);
  959. if (pr->flags.power) {
  960. acpi_processor_setup_cpuidle(pr);
  961. ret = cpuidle_enable_device(&pr->power.dev);
  962. }
  963. cpuidle_resume_and_unlock();
  964. return ret;
  965. }
  966. int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
  967. struct acpi_device *device)
  968. {
  969. acpi_status status = 0;
  970. static int first_run;
  971. #ifdef CONFIG_ACPI_PROCFS
  972. struct proc_dir_entry *entry = NULL;
  973. #endif
  974. if (boot_option_idle_override)
  975. return 0;
  976. if (!first_run) {
  977. if (idle_halt) {
  978. /*
  979. * When the boot option of "idle=halt" is added, halt
  980. * is used for CPU IDLE.
  981. * In such case C2/C3 is meaningless. So the max_cstate
  982. * is set to one.
  983. */
  984. max_cstate = 1;
  985. }
  986. dmi_check_system(processor_power_dmi_table);
  987. max_cstate = acpi_processor_cstate_check(max_cstate);
  988. if (max_cstate < ACPI_C_STATES_MAX)
  989. printk(KERN_NOTICE
  990. "ACPI: processor limited to max C-state %d\n",
  991. max_cstate);
  992. first_run++;
  993. }
  994. if (!pr)
  995. return -EINVAL;
  996. if (acpi_gbl_FADT.cst_control && !nocst) {
  997. status =
  998. acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
  999. if (ACPI_FAILURE(status)) {
  1000. ACPI_EXCEPTION((AE_INFO, status,
  1001. "Notifying BIOS of _CST ability failed"));
  1002. }
  1003. }
  1004. acpi_processor_get_power_info(pr);
  1005. pr->flags.power_setup_done = 1;
  1006. /*
  1007. * Install the idle handler if processor power management is supported.
  1008. * Note that we use previously set idle handler will be used on
  1009. * platforms that only support C1.
  1010. */
  1011. if (pr->flags.power) {
  1012. acpi_processor_setup_cpuidle(pr);
  1013. if (cpuidle_register_device(&pr->power.dev))
  1014. return -EIO;
  1015. }
  1016. #ifdef CONFIG_ACPI_PROCFS
  1017. /* 'power' [R] */
  1018. entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
  1019. S_IRUGO, acpi_device_dir(device),
  1020. &acpi_processor_power_fops,
  1021. acpi_driver_data(device));
  1022. if (!entry)
  1023. return -EIO;
  1024. #endif
  1025. return 0;
  1026. }
  1027. int acpi_processor_power_exit(struct acpi_processor *pr,
  1028. struct acpi_device *device)
  1029. {
  1030. if (boot_option_idle_override)
  1031. return 0;
  1032. cpuidle_unregister_device(&pr->power.dev);
  1033. pr->flags.power_setup_done = 0;
  1034. #ifdef CONFIG_ACPI_PROCFS
  1035. if (acpi_device_dir(device))
  1036. remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
  1037. acpi_device_dir(device));
  1038. #endif
  1039. return 0;
  1040. }