amd64_edac.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873
  1. #include "amd64_edac.h"
  2. static struct edac_pci_ctl_info *amd64_ctl_pci;
  3. static int report_gart_errors;
  4. module_param(report_gart_errors, int, 0644);
  5. /*
  6. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  7. * cleared to prevent re-enabling the hardware by this driver.
  8. */
  9. static int ecc_enable_override;
  10. module_param(ecc_enable_override, int, 0644);
  11. /* Lookup table for all possible MC control instances */
  12. struct amd64_pvt;
  13. static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
  14. static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
  15. /*
  16. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  17. * hardware and can involve L2 cache, dcache as well as the main memory. With
  18. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  19. * functionality.
  20. *
  21. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  22. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  23. * bytes/sec for the setting.
  24. *
  25. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  26. * other archs, we might not have access to the caches directly.
  27. */
  28. /*
  29. * scan the scrub rate mapping table for a close or matching bandwidth value to
  30. * issue. If requested is too big, then use last maximum value found.
  31. */
  32. static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
  33. u32 min_scrubrate)
  34. {
  35. u32 scrubval;
  36. int i;
  37. /*
  38. * map the configured rate (new_bw) to a value specific to the AMD64
  39. * memory controller and apply to register. Search for the first
  40. * bandwidth entry that is greater or equal than the setting requested
  41. * and program that. If at last entry, turn off DRAM scrubbing.
  42. */
  43. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  44. /*
  45. * skip scrub rates which aren't recommended
  46. * (see F10 BKDG, F3x58)
  47. */
  48. if (scrubrates[i].scrubval < min_scrubrate)
  49. continue;
  50. if (scrubrates[i].bandwidth <= new_bw)
  51. break;
  52. /*
  53. * if no suitable bandwidth found, turn off DRAM scrubbing
  54. * entirely by falling back to the last element in the
  55. * scrubrates array.
  56. */
  57. }
  58. scrubval = scrubrates[i].scrubval;
  59. if (scrubval)
  60. edac_printk(KERN_DEBUG, EDAC_MC,
  61. "Setting scrub rate bandwidth: %u\n",
  62. scrubrates[i].bandwidth);
  63. else
  64. edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
  65. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  66. return 0;
  67. }
  68. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
  69. {
  70. struct amd64_pvt *pvt = mci->pvt_info;
  71. u32 min_scrubrate = 0x0;
  72. switch (boot_cpu_data.x86) {
  73. case 0xf:
  74. min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  75. break;
  76. case 0x10:
  77. min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  78. break;
  79. case 0x11:
  80. min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
  81. break;
  82. default:
  83. amd64_printk(KERN_ERR, "Unsupported family!\n");
  84. break;
  85. }
  86. return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
  87. min_scrubrate);
  88. }
  89. static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
  90. {
  91. struct amd64_pvt *pvt = mci->pvt_info;
  92. u32 scrubval = 0;
  93. int status = -1, i, ret = 0;
  94. ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
  95. if (ret)
  96. debugf0("Reading K8_SCRCTRL failed\n");
  97. scrubval = scrubval & 0x001F;
  98. edac_printk(KERN_DEBUG, EDAC_MC,
  99. "pci-read, sdram scrub control value: %d \n", scrubval);
  100. for (i = 0; ARRAY_SIZE(scrubrates); i++) {
  101. if (scrubrates[i].scrubval == scrubval) {
  102. *bw = scrubrates[i].bandwidth;
  103. status = 0;
  104. break;
  105. }
  106. }
  107. return status;
  108. }
  109. /* Map from a CSROW entry to the mask entry that operates on it */
  110. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  111. {
  112. return csrow >> (pvt->num_dcsm >> 3);
  113. }
  114. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  115. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  116. {
  117. if (dct == 0)
  118. return pvt->dcsb0[csrow];
  119. else
  120. return pvt->dcsb1[csrow];
  121. }
  122. /*
  123. * Return the 'mask' address the i'th CS entry. This function is needed because
  124. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  125. * different.
  126. */
  127. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  128. {
  129. if (dct == 0)
  130. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  131. else
  132. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  133. }
  134. /*
  135. * In *base and *limit, pass back the full 40-bit base and limit physical
  136. * addresses for the node given by node_id. This information is obtained from
  137. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  138. * base and limit addresses are of type SysAddr, as defined at the start of
  139. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  140. * in the address range they represent.
  141. */
  142. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  143. u64 *base, u64 *limit)
  144. {
  145. *base = pvt->dram_base[node_id];
  146. *limit = pvt->dram_limit[node_id];
  147. }
  148. /*
  149. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  150. * with node_id
  151. */
  152. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  153. u64 sys_addr, int node_id)
  154. {
  155. u64 base, limit, addr;
  156. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  157. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  158. * all ones if the most significant implemented address bit is 1.
  159. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  160. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  161. * Application Programming.
  162. */
  163. addr = sys_addr & 0x000000ffffffffffull;
  164. return (addr >= base) && (addr <= limit);
  165. }
  166. /*
  167. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  168. * mem_ctl_info structure for the node that the SysAddr maps to.
  169. *
  170. * On failure, return NULL.
  171. */
  172. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  173. u64 sys_addr)
  174. {
  175. struct amd64_pvt *pvt;
  176. int node_id;
  177. u32 intlv_en, bits;
  178. /*
  179. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  180. * 3.4.4.2) registers to map the SysAddr to a node ID.
  181. */
  182. pvt = mci->pvt_info;
  183. /*
  184. * The value of this field should be the same for all DRAM Base
  185. * registers. Therefore we arbitrarily choose to read it from the
  186. * register for node 0.
  187. */
  188. intlv_en = pvt->dram_IntlvEn[0];
  189. if (intlv_en == 0) {
  190. for (node_id = 0; ; ) {
  191. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  192. break;
  193. if (++node_id >= DRAM_REG_COUNT)
  194. goto err_no_match;
  195. }
  196. goto found;
  197. }
  198. if (unlikely((intlv_en != (0x01 << 8)) &&
  199. (intlv_en != (0x03 << 8)) &&
  200. (intlv_en != (0x07 << 8)))) {
  201. amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
  202. "IntlvEn field of DRAM Base Register for node 0: "
  203. "This probably indicates a BIOS bug.\n", intlv_en);
  204. return NULL;
  205. }
  206. bits = (((u32) sys_addr) >> 12) & intlv_en;
  207. for (node_id = 0; ; ) {
  208. if ((pvt->dram_limit[node_id] & intlv_en) == bits)
  209. break; /* intlv_sel field matches */
  210. if (++node_id >= DRAM_REG_COUNT)
  211. goto err_no_match;
  212. }
  213. /* sanity test for sys_addr */
  214. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  215. amd64_printk(KERN_WARNING,
  216. "%s(): sys_addr 0x%lx falls outside base/limit "
  217. "address range for node %d with node interleaving "
  218. "enabled.\n", __func__, (unsigned long)sys_addr,
  219. node_id);
  220. return NULL;
  221. }
  222. found:
  223. return edac_mc_find(node_id);
  224. err_no_match:
  225. debugf2("sys_addr 0x%lx doesn't match any node\n",
  226. (unsigned long)sys_addr);
  227. return NULL;
  228. }
  229. /*
  230. * Extract the DRAM CS base address from selected csrow register.
  231. */
  232. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  233. {
  234. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  235. pvt->dcs_shift;
  236. }
  237. /*
  238. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  239. */
  240. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  241. {
  242. u64 dcsm_bits, other_bits;
  243. u64 mask;
  244. /* Extract bits from DRAM CS Mask. */
  245. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  246. other_bits = pvt->dcsm_mask;
  247. other_bits = ~(other_bits << pvt->dcs_shift);
  248. /*
  249. * The extracted bits from DCSM belong in the spaces represented by
  250. * the cleared bits in other_bits.
  251. */
  252. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  253. return mask;
  254. }
  255. /*
  256. * @input_addr is an InputAddr associated with the node given by mci. Return the
  257. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  258. */
  259. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  260. {
  261. struct amd64_pvt *pvt;
  262. int csrow;
  263. u64 base, mask;
  264. pvt = mci->pvt_info;
  265. /*
  266. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  267. * base/mask register pair, test the condition shown near the start of
  268. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  269. */
  270. for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
  271. /* This DRAM chip select is disabled on this node */
  272. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  273. continue;
  274. base = base_from_dct_base(pvt, csrow);
  275. mask = ~mask_from_dct_mask(pvt, csrow);
  276. if ((input_addr & mask) == (base & mask)) {
  277. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  278. (unsigned long)input_addr, csrow,
  279. pvt->mc_node_id);
  280. return csrow;
  281. }
  282. }
  283. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  284. (unsigned long)input_addr, pvt->mc_node_id);
  285. return -1;
  286. }
  287. /*
  288. * Return the base value defined by the DRAM Base register for the node
  289. * represented by mci. This function returns the full 40-bit value despite the
  290. * fact that the register only stores bits 39-24 of the value. See section
  291. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  292. */
  293. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  294. {
  295. struct amd64_pvt *pvt = mci->pvt_info;
  296. return pvt->dram_base[pvt->mc_node_id];
  297. }
  298. /*
  299. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  300. * for the node represented by mci. Info is passed back in *hole_base,
  301. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  302. * info is invalid. Info may be invalid for either of the following reasons:
  303. *
  304. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  305. * Address Register does not exist.
  306. *
  307. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  308. * indicating that its contents are not valid.
  309. *
  310. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  311. * complete 32-bit values despite the fact that the bitfields in the DHAR
  312. * only represent bits 31-24 of the base and offset values.
  313. */
  314. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  315. u64 *hole_offset, u64 *hole_size)
  316. {
  317. struct amd64_pvt *pvt = mci->pvt_info;
  318. u64 base;
  319. /* only revE and later have the DRAM Hole Address Register */
  320. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
  321. debugf1(" revision %d for node %d does not support DHAR\n",
  322. pvt->ext_model, pvt->mc_node_id);
  323. return 1;
  324. }
  325. /* only valid for Fam10h */
  326. if (boot_cpu_data.x86 == 0x10 &&
  327. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  328. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  329. return 1;
  330. }
  331. if ((pvt->dhar & DHAR_VALID) == 0) {
  332. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  333. pvt->mc_node_id);
  334. return 1;
  335. }
  336. /* This node has Memory Hoisting */
  337. /* +------------------+--------------------+--------------------+-----
  338. * | memory | DRAM hole | relocated |
  339. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  340. * | | | DRAM hole |
  341. * | | | [0x100000000, |
  342. * | | | (0x100000000+ |
  343. * | | | (0xffffffff-x))] |
  344. * +------------------+--------------------+--------------------+-----
  345. *
  346. * Above is a diagram of physical memory showing the DRAM hole and the
  347. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  348. * starts at address x (the base address) and extends through address
  349. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  350. * addresses in the hole so that they start at 0x100000000.
  351. */
  352. base = dhar_base(pvt->dhar);
  353. *hole_base = base;
  354. *hole_size = (0x1ull << 32) - base;
  355. if (boot_cpu_data.x86 > 0xf)
  356. *hole_offset = f10_dhar_offset(pvt->dhar);
  357. else
  358. *hole_offset = k8_dhar_offset(pvt->dhar);
  359. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  360. pvt->mc_node_id, (unsigned long)*hole_base,
  361. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  362. return 0;
  363. }
  364. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  365. /*
  366. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  367. * assumed that sys_addr maps to the node given by mci.
  368. *
  369. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  370. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  371. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  372. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  373. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  374. * These parts of the documentation are unclear. I interpret them as follows:
  375. *
  376. * When node n receives a SysAddr, it processes the SysAddr as follows:
  377. *
  378. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  379. * Limit registers for node n. If the SysAddr is not within the range
  380. * specified by the base and limit values, then node n ignores the Sysaddr
  381. * (since it does not map to node n). Otherwise continue to step 2 below.
  382. *
  383. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  384. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  385. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  386. * hole. If not, skip to step 3 below. Else get the value of the
  387. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  388. * offset defined by this value from the SysAddr.
  389. *
  390. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  391. * Base register for node n. To obtain the DramAddr, subtract the base
  392. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  393. */
  394. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  395. {
  396. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  397. int ret = 0;
  398. dram_base = get_dram_base(mci);
  399. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  400. &hole_size);
  401. if (!ret) {
  402. if ((sys_addr >= (1ull << 32)) &&
  403. (sys_addr < ((1ull << 32) + hole_size))) {
  404. /* use DHAR to translate SysAddr to DramAddr */
  405. dram_addr = sys_addr - hole_offset;
  406. debugf2("using DHAR to translate SysAddr 0x%lx to "
  407. "DramAddr 0x%lx\n",
  408. (unsigned long)sys_addr,
  409. (unsigned long)dram_addr);
  410. return dram_addr;
  411. }
  412. }
  413. /*
  414. * Translate the SysAddr to a DramAddr as shown near the start of
  415. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  416. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  417. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  418. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  419. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  420. * Programmer's Manual Volume 1 Application Programming.
  421. */
  422. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  423. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  424. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  425. (unsigned long)dram_addr);
  426. return dram_addr;
  427. }
  428. /*
  429. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  430. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  431. * for node interleaving.
  432. */
  433. static int num_node_interleave_bits(unsigned intlv_en)
  434. {
  435. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  436. int n;
  437. BUG_ON(intlv_en > 7);
  438. n = intlv_shift_table[intlv_en];
  439. return n;
  440. }
  441. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  442. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  443. {
  444. struct amd64_pvt *pvt;
  445. int intlv_shift;
  446. u64 input_addr;
  447. pvt = mci->pvt_info;
  448. /*
  449. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  450. * concerning translating a DramAddr to an InputAddr.
  451. */
  452. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  453. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  454. (dram_addr & 0xfff);
  455. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  456. intlv_shift, (unsigned long)dram_addr,
  457. (unsigned long)input_addr);
  458. return input_addr;
  459. }
  460. /*
  461. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  462. * assumed that @sys_addr maps to the node given by mci.
  463. */
  464. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  465. {
  466. u64 input_addr;
  467. input_addr =
  468. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  469. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  470. (unsigned long)sys_addr, (unsigned long)input_addr);
  471. return input_addr;
  472. }
  473. /*
  474. * @input_addr is an InputAddr associated with the node represented by mci.
  475. * Translate @input_addr to a DramAddr and return the result.
  476. */
  477. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  478. {
  479. struct amd64_pvt *pvt;
  480. int node_id, intlv_shift;
  481. u64 bits, dram_addr;
  482. u32 intlv_sel;
  483. /*
  484. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  485. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  486. * this procedure. When translating from a DramAddr to an InputAddr, the
  487. * bits used for node interleaving are discarded. Here we recover these
  488. * bits from the IntlvSel field of the DRAM Limit register (section
  489. * 3.4.4.2) for the node that input_addr is associated with.
  490. */
  491. pvt = mci->pvt_info;
  492. node_id = pvt->mc_node_id;
  493. BUG_ON((node_id < 0) || (node_id > 7));
  494. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  495. if (intlv_shift == 0) {
  496. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  497. "same value\n", (unsigned long)input_addr);
  498. return input_addr;
  499. }
  500. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  501. (input_addr & 0xfff);
  502. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  503. dram_addr = bits + (intlv_sel << 12);
  504. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  505. "(%d node interleave bits)\n", (unsigned long)input_addr,
  506. (unsigned long)dram_addr, intlv_shift);
  507. return dram_addr;
  508. }
  509. /*
  510. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  511. * @dram_addr to a SysAddr.
  512. */
  513. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  514. {
  515. struct amd64_pvt *pvt = mci->pvt_info;
  516. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  517. int ret = 0;
  518. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  519. &hole_size);
  520. if (!ret) {
  521. if ((dram_addr >= hole_base) &&
  522. (dram_addr < (hole_base + hole_size))) {
  523. sys_addr = dram_addr + hole_offset;
  524. debugf1("using DHAR to translate DramAddr 0x%lx to "
  525. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  526. (unsigned long)sys_addr);
  527. return sys_addr;
  528. }
  529. }
  530. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  531. sys_addr = dram_addr + base;
  532. /*
  533. * The sys_addr we have computed up to this point is a 40-bit value
  534. * because the k8 deals with 40-bit values. However, the value we are
  535. * supposed to return is a full 64-bit physical address. The AMD
  536. * x86-64 architecture specifies that the most significant implemented
  537. * address bit through bit 63 of a physical address must be either all
  538. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  539. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  540. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  541. * Programming.
  542. */
  543. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  544. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  545. pvt->mc_node_id, (unsigned long)dram_addr,
  546. (unsigned long)sys_addr);
  547. return sys_addr;
  548. }
  549. /*
  550. * @input_addr is an InputAddr associated with the node given by mci. Translate
  551. * @input_addr to a SysAddr.
  552. */
  553. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  554. u64 input_addr)
  555. {
  556. return dram_addr_to_sys_addr(mci,
  557. input_addr_to_dram_addr(mci, input_addr));
  558. }
  559. /*
  560. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  561. * Pass back these values in *input_addr_min and *input_addr_max.
  562. */
  563. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  564. u64 *input_addr_min, u64 *input_addr_max)
  565. {
  566. struct amd64_pvt *pvt;
  567. u64 base, mask;
  568. pvt = mci->pvt_info;
  569. BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
  570. base = base_from_dct_base(pvt, csrow);
  571. mask = mask_from_dct_mask(pvt, csrow);
  572. *input_addr_min = base & ~mask;
  573. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  574. }
  575. /*
  576. * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
  577. * Address High (section 3.6.4.6) register values and return the result. Address
  578. * is located in the info structure (nbeah and nbeal), the encoding is device
  579. * specific.
  580. */
  581. static u64 extract_error_address(struct mem_ctl_info *mci,
  582. struct amd64_error_info_regs *info)
  583. {
  584. struct amd64_pvt *pvt = mci->pvt_info;
  585. return pvt->ops->get_error_address(mci, info);
  586. }
  587. /* Map the Error address to a PAGE and PAGE OFFSET. */
  588. static inline void error_address_to_page_and_offset(u64 error_address,
  589. u32 *page, u32 *offset)
  590. {
  591. *page = (u32) (error_address >> PAGE_SHIFT);
  592. *offset = ((u32) error_address) & ~PAGE_MASK;
  593. }
  594. /*
  595. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  596. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  597. * of a node that detected an ECC memory error. mci represents the node that
  598. * the error address maps to (possibly different from the node that detected
  599. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  600. * error.
  601. */
  602. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  603. {
  604. int csrow;
  605. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  606. if (csrow == -1)
  607. amd64_mc_printk(mci, KERN_ERR,
  608. "Failed to translate InputAddr to csrow for "
  609. "address 0x%lx\n", (unsigned long)sys_addr);
  610. return csrow;
  611. }
  612. static int get_channel_from_ecc_syndrome(unsigned short syndrome);
  613. static void amd64_cpu_display_info(struct amd64_pvt *pvt)
  614. {
  615. if (boot_cpu_data.x86 == 0x11)
  616. edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
  617. else if (boot_cpu_data.x86 == 0x10)
  618. edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
  619. else if (boot_cpu_data.x86 == 0xf)
  620. edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
  621. (pvt->ext_model >= OPTERON_CPU_REV_F) ?
  622. "Rev F or later" : "Rev E or earlier");
  623. else
  624. /* we'll hardly ever ever get here */
  625. edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
  626. }
  627. /*
  628. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  629. * are ECC capable.
  630. */
  631. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  632. {
  633. int bit;
  634. enum dev_type edac_cap = EDAC_NONE;
  635. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
  636. ? 19
  637. : 17;
  638. if (pvt->dclr0 >> BIT(bit))
  639. edac_cap = EDAC_FLAG_SECDED;
  640. return edac_cap;
  641. }
  642. static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
  643. int ganged);
  644. /* Display and decode various NB registers for debug purposes. */
  645. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  646. {
  647. int ganged;
  648. debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
  649. pvt->nbcap,
  650. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
  651. (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
  652. (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
  653. debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
  654. (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
  655. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
  656. debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
  657. pvt->dclr0,
  658. (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
  659. (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
  660. (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
  661. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
  662. (pvt->dclr0 & BIT(12)) ? "Y" : "N",
  663. (pvt->dclr0 & BIT(13)) ? "Y" : "N",
  664. (pvt->dclr0 & BIT(14)) ? "Y" : "N",
  665. (pvt->dclr0 & BIT(15)) ? "Y" : "N",
  666. (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
  667. debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
  668. if (boot_cpu_data.x86 == 0xf) {
  669. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  670. pvt->dhar, dhar_base(pvt->dhar),
  671. k8_dhar_offset(pvt->dhar));
  672. debugf1(" DramHoleValid=%s\n",
  673. (pvt->dhar & DHAR_VALID) ? "True" : "False");
  674. debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
  675. /* everything below this point is Fam10h and above */
  676. return;
  677. } else {
  678. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  679. pvt->dhar, dhar_base(pvt->dhar),
  680. f10_dhar_offset(pvt->dhar));
  681. debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
  682. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
  683. "True" : "False",
  684. (pvt->dhar & DHAR_VALID) ?
  685. "True" : "False");
  686. }
  687. /* Only if NOT ganged does dcl1 have valid info */
  688. if (!dct_ganging_enabled(pvt)) {
  689. debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
  690. "Width=%s\n", pvt->dclr1,
  691. (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
  692. (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
  693. (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
  694. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
  695. "DIMM Type=%s\n",
  696. (pvt->dclr1 & BIT(12)) ? "Y" : "N",
  697. (pvt->dclr1 & BIT(13)) ? "Y" : "N",
  698. (pvt->dclr1 & BIT(14)) ? "Y" : "N",
  699. (pvt->dclr1 & BIT(15)) ? "Y" : "N",
  700. (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
  701. }
  702. /*
  703. * Determine if ganged and then dump memory sizes for first controller,
  704. * and if NOT ganged dump info for 2nd controller.
  705. */
  706. ganged = dct_ganging_enabled(pvt);
  707. f10_debug_display_dimm_sizes(0, pvt, ganged);
  708. if (!ganged)
  709. f10_debug_display_dimm_sizes(1, pvt, ganged);
  710. }
  711. /* Read in both of DBAM registers */
  712. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  713. {
  714. int err = 0;
  715. unsigned int reg;
  716. reg = DBAM0;
  717. err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
  718. if (err)
  719. goto err_reg;
  720. if (boot_cpu_data.x86 >= 0x10) {
  721. reg = DBAM1;
  722. err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
  723. if (err)
  724. goto err_reg;
  725. }
  726. err_reg:
  727. debugf0("Error reading F2x%03x.\n", reg);
  728. }