intel_display.c 249 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. /* given values */
  47. int n;
  48. int m1, m2;
  49. int p1, p2;
  50. /* derived values */
  51. int dot;
  52. int vco;
  53. int m;
  54. int p;
  55. } intel_clock_t;
  56. typedef struct {
  57. int min, max;
  58. } intel_range_t;
  59. typedef struct {
  60. int dot_limit;
  61. int p2_slow, p2_fast;
  62. } intel_p2_t;
  63. #define INTEL_P2_NUM 2
  64. typedef struct intel_limit intel_limit_t;
  65. struct intel_limit {
  66. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  67. intel_p2_t p2;
  68. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  69. int, int, intel_clock_t *, intel_clock_t *);
  70. };
  71. /* FDI */
  72. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  73. int
  74. intel_pch_rawclk(struct drm_device *dev)
  75. {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. WARN_ON(!HAS_PCH_SPLIT(dev));
  78. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  79. }
  80. static bool
  81. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  82. int target, int refclk, intel_clock_t *match_clock,
  83. intel_clock_t *best_clock);
  84. static bool
  85. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  86. int target, int refclk, intel_clock_t *match_clock,
  87. intel_clock_t *best_clock);
  88. static bool
  89. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  90. int target, int refclk, intel_clock_t *match_clock,
  91. intel_clock_t *best_clock);
  92. static bool
  93. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  94. int target, int refclk, intel_clock_t *match_clock,
  95. intel_clock_t *best_clock);
  96. static bool
  97. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  98. int target, int refclk, intel_clock_t *match_clock,
  99. intel_clock_t *best_clock);
  100. static inline u32 /* units of 100MHz */
  101. intel_fdi_link_freq(struct drm_device *dev)
  102. {
  103. if (IS_GEN5(dev)) {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  106. } else
  107. return 27;
  108. }
  109. static const intel_limit_t intel_limits_i8xx_dvo = {
  110. .dot = { .min = 25000, .max = 350000 },
  111. .vco = { .min = 930000, .max = 1400000 },
  112. .n = { .min = 3, .max = 16 },
  113. .m = { .min = 96, .max = 140 },
  114. .m1 = { .min = 18, .max = 26 },
  115. .m2 = { .min = 6, .max = 16 },
  116. .p = { .min = 4, .max = 128 },
  117. .p1 = { .min = 2, .max = 33 },
  118. .p2 = { .dot_limit = 165000,
  119. .p2_slow = 4, .p2_fast = 2 },
  120. .find_pll = intel_find_best_PLL,
  121. };
  122. static const intel_limit_t intel_limits_i8xx_lvds = {
  123. .dot = { .min = 25000, .max = 350000 },
  124. .vco = { .min = 930000, .max = 1400000 },
  125. .n = { .min = 3, .max = 16 },
  126. .m = { .min = 96, .max = 140 },
  127. .m1 = { .min = 18, .max = 26 },
  128. .m2 = { .min = 6, .max = 16 },
  129. .p = { .min = 4, .max = 128 },
  130. .p1 = { .min = 1, .max = 6 },
  131. .p2 = { .dot_limit = 165000,
  132. .p2_slow = 14, .p2_fast = 7 },
  133. .find_pll = intel_find_best_PLL,
  134. };
  135. static const intel_limit_t intel_limits_i9xx_sdvo = {
  136. .dot = { .min = 20000, .max = 400000 },
  137. .vco = { .min = 1400000, .max = 2800000 },
  138. .n = { .min = 1, .max = 6 },
  139. .m = { .min = 70, .max = 120 },
  140. .m1 = { .min = 10, .max = 22 },
  141. .m2 = { .min = 5, .max = 9 },
  142. .p = { .min = 5, .max = 80 },
  143. .p1 = { .min = 1, .max = 8 },
  144. .p2 = { .dot_limit = 200000,
  145. .p2_slow = 10, .p2_fast = 5 },
  146. .find_pll = intel_find_best_PLL,
  147. };
  148. static const intel_limit_t intel_limits_i9xx_lvds = {
  149. .dot = { .min = 20000, .max = 400000 },
  150. .vco = { .min = 1400000, .max = 2800000 },
  151. .n = { .min = 1, .max = 6 },
  152. .m = { .min = 70, .max = 120 },
  153. .m1 = { .min = 10, .max = 22 },
  154. .m2 = { .min = 5, .max = 9 },
  155. .p = { .min = 7, .max = 98 },
  156. .p1 = { .min = 1, .max = 8 },
  157. .p2 = { .dot_limit = 112000,
  158. .p2_slow = 14, .p2_fast = 7 },
  159. .find_pll = intel_find_best_PLL,
  160. };
  161. static const intel_limit_t intel_limits_g4x_sdvo = {
  162. .dot = { .min = 25000, .max = 270000 },
  163. .vco = { .min = 1750000, .max = 3500000},
  164. .n = { .min = 1, .max = 4 },
  165. .m = { .min = 104, .max = 138 },
  166. .m1 = { .min = 17, .max = 23 },
  167. .m2 = { .min = 5, .max = 11 },
  168. .p = { .min = 10, .max = 30 },
  169. .p1 = { .min = 1, .max = 3},
  170. .p2 = { .dot_limit = 270000,
  171. .p2_slow = 10,
  172. .p2_fast = 10
  173. },
  174. .find_pll = intel_g4x_find_best_PLL,
  175. };
  176. static const intel_limit_t intel_limits_g4x_hdmi = {
  177. .dot = { .min = 22000, .max = 400000 },
  178. .vco = { .min = 1750000, .max = 3500000},
  179. .n = { .min = 1, .max = 4 },
  180. .m = { .min = 104, .max = 138 },
  181. .m1 = { .min = 16, .max = 23 },
  182. .m2 = { .min = 5, .max = 11 },
  183. .p = { .min = 5, .max = 80 },
  184. .p1 = { .min = 1, .max = 8},
  185. .p2 = { .dot_limit = 165000,
  186. .p2_slow = 10, .p2_fast = 5 },
  187. .find_pll = intel_g4x_find_best_PLL,
  188. };
  189. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  190. .dot = { .min = 20000, .max = 115000 },
  191. .vco = { .min = 1750000, .max = 3500000 },
  192. .n = { .min = 1, .max = 3 },
  193. .m = { .min = 104, .max = 138 },
  194. .m1 = { .min = 17, .max = 23 },
  195. .m2 = { .min = 5, .max = 11 },
  196. .p = { .min = 28, .max = 112 },
  197. .p1 = { .min = 2, .max = 8 },
  198. .p2 = { .dot_limit = 0,
  199. .p2_slow = 14, .p2_fast = 14
  200. },
  201. .find_pll = intel_g4x_find_best_PLL,
  202. };
  203. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  204. .dot = { .min = 80000, .max = 224000 },
  205. .vco = { .min = 1750000, .max = 3500000 },
  206. .n = { .min = 1, .max = 3 },
  207. .m = { .min = 104, .max = 138 },
  208. .m1 = { .min = 17, .max = 23 },
  209. .m2 = { .min = 5, .max = 11 },
  210. .p = { .min = 14, .max = 42 },
  211. .p1 = { .min = 2, .max = 6 },
  212. .p2 = { .dot_limit = 0,
  213. .p2_slow = 7, .p2_fast = 7
  214. },
  215. .find_pll = intel_g4x_find_best_PLL,
  216. };
  217. static const intel_limit_t intel_limits_g4x_display_port = {
  218. .dot = { .min = 161670, .max = 227000 },
  219. .vco = { .min = 1750000, .max = 3500000},
  220. .n = { .min = 1, .max = 2 },
  221. .m = { .min = 97, .max = 108 },
  222. .m1 = { .min = 0x10, .max = 0x12 },
  223. .m2 = { .min = 0x05, .max = 0x06 },
  224. .p = { .min = 10, .max = 20 },
  225. .p1 = { .min = 1, .max = 2},
  226. .p2 = { .dot_limit = 0,
  227. .p2_slow = 10, .p2_fast = 10 },
  228. .find_pll = intel_find_pll_g4x_dp,
  229. };
  230. static const intel_limit_t intel_limits_pineview_sdvo = {
  231. .dot = { .min = 20000, .max = 400000},
  232. .vco = { .min = 1700000, .max = 3500000 },
  233. /* Pineview's Ncounter is a ring counter */
  234. .n = { .min = 3, .max = 6 },
  235. .m = { .min = 2, .max = 256 },
  236. /* Pineview only has one combined m divider, which we treat as m2. */
  237. .m1 = { .min = 0, .max = 0 },
  238. .m2 = { .min = 0, .max = 254 },
  239. .p = { .min = 5, .max = 80 },
  240. .p1 = { .min = 1, .max = 8 },
  241. .p2 = { .dot_limit = 200000,
  242. .p2_slow = 10, .p2_fast = 5 },
  243. .find_pll = intel_find_best_PLL,
  244. };
  245. static const intel_limit_t intel_limits_pineview_lvds = {
  246. .dot = { .min = 20000, .max = 400000 },
  247. .vco = { .min = 1700000, .max = 3500000 },
  248. .n = { .min = 3, .max = 6 },
  249. .m = { .min = 2, .max = 256 },
  250. .m1 = { .min = 0, .max = 0 },
  251. .m2 = { .min = 0, .max = 254 },
  252. .p = { .min = 7, .max = 112 },
  253. .p1 = { .min = 1, .max = 8 },
  254. .p2 = { .dot_limit = 112000,
  255. .p2_slow = 14, .p2_fast = 14 },
  256. .find_pll = intel_find_best_PLL,
  257. };
  258. /* Ironlake / Sandybridge
  259. *
  260. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  261. * the range value for them is (actual_value - 2).
  262. */
  263. static const intel_limit_t intel_limits_ironlake_dac = {
  264. .dot = { .min = 25000, .max = 350000 },
  265. .vco = { .min = 1760000, .max = 3510000 },
  266. .n = { .min = 1, .max = 5 },
  267. .m = { .min = 79, .max = 127 },
  268. .m1 = { .min = 12, .max = 22 },
  269. .m2 = { .min = 5, .max = 9 },
  270. .p = { .min = 5, .max = 80 },
  271. .p1 = { .min = 1, .max = 8 },
  272. .p2 = { .dot_limit = 225000,
  273. .p2_slow = 10, .p2_fast = 5 },
  274. .find_pll = intel_g4x_find_best_PLL,
  275. };
  276. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  277. .dot = { .min = 25000, .max = 350000 },
  278. .vco = { .min = 1760000, .max = 3510000 },
  279. .n = { .min = 1, .max = 3 },
  280. .m = { .min = 79, .max = 118 },
  281. .m1 = { .min = 12, .max = 22 },
  282. .m2 = { .min = 5, .max = 9 },
  283. .p = { .min = 28, .max = 112 },
  284. .p1 = { .min = 2, .max = 8 },
  285. .p2 = { .dot_limit = 225000,
  286. .p2_slow = 14, .p2_fast = 14 },
  287. .find_pll = intel_g4x_find_best_PLL,
  288. };
  289. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  290. .dot = { .min = 25000, .max = 350000 },
  291. .vco = { .min = 1760000, .max = 3510000 },
  292. .n = { .min = 1, .max = 3 },
  293. .m = { .min = 79, .max = 127 },
  294. .m1 = { .min = 12, .max = 22 },
  295. .m2 = { .min = 5, .max = 9 },
  296. .p = { .min = 14, .max = 56 },
  297. .p1 = { .min = 2, .max = 8 },
  298. .p2 = { .dot_limit = 225000,
  299. .p2_slow = 7, .p2_fast = 7 },
  300. .find_pll = intel_g4x_find_best_PLL,
  301. };
  302. /* LVDS 100mhz refclk limits. */
  303. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  304. .dot = { .min = 25000, .max = 350000 },
  305. .vco = { .min = 1760000, .max = 3510000 },
  306. .n = { .min = 1, .max = 2 },
  307. .m = { .min = 79, .max = 126 },
  308. .m1 = { .min = 12, .max = 22 },
  309. .m2 = { .min = 5, .max = 9 },
  310. .p = { .min = 28, .max = 112 },
  311. .p1 = { .min = 2, .max = 8 },
  312. .p2 = { .dot_limit = 225000,
  313. .p2_slow = 14, .p2_fast = 14 },
  314. .find_pll = intel_g4x_find_best_PLL,
  315. };
  316. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  317. .dot = { .min = 25000, .max = 350000 },
  318. .vco = { .min = 1760000, .max = 3510000 },
  319. .n = { .min = 1, .max = 3 },
  320. .m = { .min = 79, .max = 126 },
  321. .m1 = { .min = 12, .max = 22 },
  322. .m2 = { .min = 5, .max = 9 },
  323. .p = { .min = 14, .max = 42 },
  324. .p1 = { .min = 2, .max = 6 },
  325. .p2 = { .dot_limit = 225000,
  326. .p2_slow = 7, .p2_fast = 7 },
  327. .find_pll = intel_g4x_find_best_PLL,
  328. };
  329. static const intel_limit_t intel_limits_ironlake_display_port = {
  330. .dot = { .min = 25000, .max = 350000 },
  331. .vco = { .min = 1760000, .max = 3510000},
  332. .n = { .min = 1, .max = 2 },
  333. .m = { .min = 81, .max = 90 },
  334. .m1 = { .min = 12, .max = 22 },
  335. .m2 = { .min = 5, .max = 9 },
  336. .p = { .min = 10, .max = 20 },
  337. .p1 = { .min = 1, .max = 2},
  338. .p2 = { .dot_limit = 0,
  339. .p2_slow = 10, .p2_fast = 10 },
  340. .find_pll = intel_find_pll_ironlake_dp,
  341. };
  342. static const intel_limit_t intel_limits_vlv_dac = {
  343. .dot = { .min = 25000, .max = 270000 },
  344. .vco = { .min = 4000000, .max = 6000000 },
  345. .n = { .min = 1, .max = 7 },
  346. .m = { .min = 22, .max = 450 }, /* guess */
  347. .m1 = { .min = 2, .max = 3 },
  348. .m2 = { .min = 11, .max = 156 },
  349. .p = { .min = 10, .max = 30 },
  350. .p1 = { .min = 2, .max = 3 },
  351. .p2 = { .dot_limit = 270000,
  352. .p2_slow = 2, .p2_fast = 20 },
  353. .find_pll = intel_vlv_find_best_pll,
  354. };
  355. static const intel_limit_t intel_limits_vlv_hdmi = {
  356. .dot = { .min = 20000, .max = 165000 },
  357. .vco = { .min = 4000000, .max = 5994000},
  358. .n = { .min = 1, .max = 7 },
  359. .m = { .min = 60, .max = 300 }, /* guess */
  360. .m1 = { .min = 2, .max = 3 },
  361. .m2 = { .min = 11, .max = 156 },
  362. .p = { .min = 10, .max = 30 },
  363. .p1 = { .min = 2, .max = 3 },
  364. .p2 = { .dot_limit = 270000,
  365. .p2_slow = 2, .p2_fast = 20 },
  366. .find_pll = intel_vlv_find_best_pll,
  367. };
  368. static const intel_limit_t intel_limits_vlv_dp = {
  369. .dot = { .min = 25000, .max = 270000 },
  370. .vco = { .min = 4000000, .max = 6000000 },
  371. .n = { .min = 1, .max = 7 },
  372. .m = { .min = 22, .max = 450 },
  373. .m1 = { .min = 2, .max = 3 },
  374. .m2 = { .min = 11, .max = 156 },
  375. .p = { .min = 10, .max = 30 },
  376. .p1 = { .min = 2, .max = 3 },
  377. .p2 = { .dot_limit = 270000,
  378. .p2_slow = 2, .p2_fast = 20 },
  379. .find_pll = intel_vlv_find_best_pll,
  380. };
  381. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  382. {
  383. unsigned long flags;
  384. u32 val = 0;
  385. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  386. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  387. DRM_ERROR("DPIO idle wait timed out\n");
  388. goto out_unlock;
  389. }
  390. I915_WRITE(DPIO_REG, reg);
  391. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  392. DPIO_BYTE);
  393. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  394. DRM_ERROR("DPIO read wait timed out\n");
  395. goto out_unlock;
  396. }
  397. val = I915_READ(DPIO_DATA);
  398. out_unlock:
  399. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  400. return val;
  401. }
  402. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  403. u32 val)
  404. {
  405. unsigned long flags;
  406. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  407. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  408. DRM_ERROR("DPIO idle wait timed out\n");
  409. goto out_unlock;
  410. }
  411. I915_WRITE(DPIO_DATA, val);
  412. I915_WRITE(DPIO_REG, reg);
  413. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  414. DPIO_BYTE);
  415. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  416. DRM_ERROR("DPIO write wait timed out\n");
  417. out_unlock:
  418. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  419. }
  420. static void vlv_init_dpio(struct drm_device *dev)
  421. {
  422. struct drm_i915_private *dev_priv = dev->dev_private;
  423. /* Reset the DPIO config */
  424. I915_WRITE(DPIO_CTL, 0);
  425. POSTING_READ(DPIO_CTL);
  426. I915_WRITE(DPIO_CTL, 1);
  427. POSTING_READ(DPIO_CTL);
  428. }
  429. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  430. {
  431. DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  432. return 1;
  433. }
  434. static const struct dmi_system_id intel_dual_link_lvds[] = {
  435. {
  436. .callback = intel_dual_link_lvds_callback,
  437. .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  438. .matches = {
  439. DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  440. DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  441. },
  442. },
  443. { } /* terminating entry */
  444. };
  445. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  446. unsigned int reg)
  447. {
  448. unsigned int val;
  449. /* use the module option value if specified */
  450. if (i915_lvds_channel_mode > 0)
  451. return i915_lvds_channel_mode == 2;
  452. if (dmi_check_system(intel_dual_link_lvds))
  453. return true;
  454. if (dev_priv->lvds_val)
  455. val = dev_priv->lvds_val;
  456. else {
  457. /* BIOS should set the proper LVDS register value at boot, but
  458. * in reality, it doesn't set the value when the lid is closed;
  459. * we need to check "the value to be set" in VBT when LVDS
  460. * register is uninitialized.
  461. */
  462. val = I915_READ(reg);
  463. if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
  464. val = dev_priv->bios_lvds_val;
  465. dev_priv->lvds_val = val;
  466. }
  467. return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  468. }
  469. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  470. int refclk)
  471. {
  472. struct drm_device *dev = crtc->dev;
  473. struct drm_i915_private *dev_priv = dev->dev_private;
  474. const intel_limit_t *limit;
  475. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  476. if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  477. /* LVDS dual channel */
  478. if (refclk == 100000)
  479. limit = &intel_limits_ironlake_dual_lvds_100m;
  480. else
  481. limit = &intel_limits_ironlake_dual_lvds;
  482. } else {
  483. if (refclk == 100000)
  484. limit = &intel_limits_ironlake_single_lvds_100m;
  485. else
  486. limit = &intel_limits_ironlake_single_lvds;
  487. }
  488. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  489. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  490. limit = &intel_limits_ironlake_display_port;
  491. else
  492. limit = &intel_limits_ironlake_dac;
  493. return limit;
  494. }
  495. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  496. {
  497. struct drm_device *dev = crtc->dev;
  498. struct drm_i915_private *dev_priv = dev->dev_private;
  499. const intel_limit_t *limit;
  500. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  501. if (is_dual_link_lvds(dev_priv, LVDS))
  502. /* LVDS with dual channel */
  503. limit = &intel_limits_g4x_dual_channel_lvds;
  504. else
  505. /* LVDS with dual channel */
  506. limit = &intel_limits_g4x_single_channel_lvds;
  507. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  508. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  509. limit = &intel_limits_g4x_hdmi;
  510. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  511. limit = &intel_limits_g4x_sdvo;
  512. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  513. limit = &intel_limits_g4x_display_port;
  514. } else /* The option is for other outputs */
  515. limit = &intel_limits_i9xx_sdvo;
  516. return limit;
  517. }
  518. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  519. {
  520. struct drm_device *dev = crtc->dev;
  521. const intel_limit_t *limit;
  522. if (HAS_PCH_SPLIT(dev))
  523. limit = intel_ironlake_limit(crtc, refclk);
  524. else if (IS_G4X(dev)) {
  525. limit = intel_g4x_limit(crtc);
  526. } else if (IS_PINEVIEW(dev)) {
  527. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  528. limit = &intel_limits_pineview_lvds;
  529. else
  530. limit = &intel_limits_pineview_sdvo;
  531. } else if (IS_VALLEYVIEW(dev)) {
  532. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  533. limit = &intel_limits_vlv_dac;
  534. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  535. limit = &intel_limits_vlv_hdmi;
  536. else
  537. limit = &intel_limits_vlv_dp;
  538. } else if (!IS_GEN2(dev)) {
  539. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  540. limit = &intel_limits_i9xx_lvds;
  541. else
  542. limit = &intel_limits_i9xx_sdvo;
  543. } else {
  544. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  545. limit = &intel_limits_i8xx_lvds;
  546. else
  547. limit = &intel_limits_i8xx_dvo;
  548. }
  549. return limit;
  550. }
  551. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  552. static void pineview_clock(int refclk, intel_clock_t *clock)
  553. {
  554. clock->m = clock->m2 + 2;
  555. clock->p = clock->p1 * clock->p2;
  556. clock->vco = refclk * clock->m / clock->n;
  557. clock->dot = clock->vco / clock->p;
  558. }
  559. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  560. {
  561. if (IS_PINEVIEW(dev)) {
  562. pineview_clock(refclk, clock);
  563. return;
  564. }
  565. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  566. clock->p = clock->p1 * clock->p2;
  567. clock->vco = refclk * clock->m / (clock->n + 2);
  568. clock->dot = clock->vco / clock->p;
  569. }
  570. /**
  571. * Returns whether any output on the specified pipe is of the specified type
  572. */
  573. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  574. {
  575. struct drm_device *dev = crtc->dev;
  576. struct intel_encoder *encoder;
  577. for_each_encoder_on_crtc(dev, crtc, encoder)
  578. if (encoder->type == type)
  579. return true;
  580. return false;
  581. }
  582. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  583. /**
  584. * Returns whether the given set of divisors are valid for a given refclk with
  585. * the given connectors.
  586. */
  587. static bool intel_PLL_is_valid(struct drm_device *dev,
  588. const intel_limit_t *limit,
  589. const intel_clock_t *clock)
  590. {
  591. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  592. INTELPllInvalid("p1 out of range\n");
  593. if (clock->p < limit->p.min || limit->p.max < clock->p)
  594. INTELPllInvalid("p out of range\n");
  595. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  596. INTELPllInvalid("m2 out of range\n");
  597. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  598. INTELPllInvalid("m1 out of range\n");
  599. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  600. INTELPllInvalid("m1 <= m2\n");
  601. if (clock->m < limit->m.min || limit->m.max < clock->m)
  602. INTELPllInvalid("m out of range\n");
  603. if (clock->n < limit->n.min || limit->n.max < clock->n)
  604. INTELPllInvalid("n out of range\n");
  605. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  606. INTELPllInvalid("vco out of range\n");
  607. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  608. * connector, etc., rather than just a single range.
  609. */
  610. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  611. INTELPllInvalid("dot out of range\n");
  612. return true;
  613. }
  614. static bool
  615. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  616. int target, int refclk, intel_clock_t *match_clock,
  617. intel_clock_t *best_clock)
  618. {
  619. struct drm_device *dev = crtc->dev;
  620. struct drm_i915_private *dev_priv = dev->dev_private;
  621. intel_clock_t clock;
  622. int err = target;
  623. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  624. (I915_READ(LVDS)) != 0) {
  625. /*
  626. * For LVDS, if the panel is on, just rely on its current
  627. * settings for dual-channel. We haven't figured out how to
  628. * reliably set up different single/dual channel state, if we
  629. * even can.
  630. */
  631. if (is_dual_link_lvds(dev_priv, LVDS))
  632. clock.p2 = limit->p2.p2_fast;
  633. else
  634. clock.p2 = limit->p2.p2_slow;
  635. } else {
  636. if (target < limit->p2.dot_limit)
  637. clock.p2 = limit->p2.p2_slow;
  638. else
  639. clock.p2 = limit->p2.p2_fast;
  640. }
  641. memset(best_clock, 0, sizeof(*best_clock));
  642. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  643. clock.m1++) {
  644. for (clock.m2 = limit->m2.min;
  645. clock.m2 <= limit->m2.max; clock.m2++) {
  646. /* m1 is always 0 in Pineview */
  647. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  648. break;
  649. for (clock.n = limit->n.min;
  650. clock.n <= limit->n.max; clock.n++) {
  651. for (clock.p1 = limit->p1.min;
  652. clock.p1 <= limit->p1.max; clock.p1++) {
  653. int this_err;
  654. intel_clock(dev, refclk, &clock);
  655. if (!intel_PLL_is_valid(dev, limit,
  656. &clock))
  657. continue;
  658. if (match_clock &&
  659. clock.p != match_clock->p)
  660. continue;
  661. this_err = abs(clock.dot - target);
  662. if (this_err < err) {
  663. *best_clock = clock;
  664. err = this_err;
  665. }
  666. }
  667. }
  668. }
  669. }
  670. return (err != target);
  671. }
  672. static bool
  673. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  674. int target, int refclk, intel_clock_t *match_clock,
  675. intel_clock_t *best_clock)
  676. {
  677. struct drm_device *dev = crtc->dev;
  678. struct drm_i915_private *dev_priv = dev->dev_private;
  679. intel_clock_t clock;
  680. int max_n;
  681. bool found;
  682. /* approximately equals target * 0.00585 */
  683. int err_most = (target >> 8) + (target >> 9);
  684. found = false;
  685. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  686. int lvds_reg;
  687. if (HAS_PCH_SPLIT(dev))
  688. lvds_reg = PCH_LVDS;
  689. else
  690. lvds_reg = LVDS;
  691. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  692. LVDS_CLKB_POWER_UP)
  693. clock.p2 = limit->p2.p2_fast;
  694. else
  695. clock.p2 = limit->p2.p2_slow;
  696. } else {
  697. if (target < limit->p2.dot_limit)
  698. clock.p2 = limit->p2.p2_slow;
  699. else
  700. clock.p2 = limit->p2.p2_fast;
  701. }
  702. memset(best_clock, 0, sizeof(*best_clock));
  703. max_n = limit->n.max;
  704. /* based on hardware requirement, prefer smaller n to precision */
  705. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  706. /* based on hardware requirement, prefere larger m1,m2 */
  707. for (clock.m1 = limit->m1.max;
  708. clock.m1 >= limit->m1.min; clock.m1--) {
  709. for (clock.m2 = limit->m2.max;
  710. clock.m2 >= limit->m2.min; clock.m2--) {
  711. for (clock.p1 = limit->p1.max;
  712. clock.p1 >= limit->p1.min; clock.p1--) {
  713. int this_err;
  714. intel_clock(dev, refclk, &clock);
  715. if (!intel_PLL_is_valid(dev, limit,
  716. &clock))
  717. continue;
  718. if (match_clock &&
  719. clock.p != match_clock->p)
  720. continue;
  721. this_err = abs(clock.dot - target);
  722. if (this_err < err_most) {
  723. *best_clock = clock;
  724. err_most = this_err;
  725. max_n = clock.n;
  726. found = true;
  727. }
  728. }
  729. }
  730. }
  731. }
  732. return found;
  733. }
  734. static bool
  735. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  736. int target, int refclk, intel_clock_t *match_clock,
  737. intel_clock_t *best_clock)
  738. {
  739. struct drm_device *dev = crtc->dev;
  740. intel_clock_t clock;
  741. if (target < 200000) {
  742. clock.n = 1;
  743. clock.p1 = 2;
  744. clock.p2 = 10;
  745. clock.m1 = 12;
  746. clock.m2 = 9;
  747. } else {
  748. clock.n = 2;
  749. clock.p1 = 1;
  750. clock.p2 = 10;
  751. clock.m1 = 14;
  752. clock.m2 = 8;
  753. }
  754. intel_clock(dev, refclk, &clock);
  755. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  756. return true;
  757. }
  758. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  759. static bool
  760. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  761. int target, int refclk, intel_clock_t *match_clock,
  762. intel_clock_t *best_clock)
  763. {
  764. intel_clock_t clock;
  765. if (target < 200000) {
  766. clock.p1 = 2;
  767. clock.p2 = 10;
  768. clock.n = 2;
  769. clock.m1 = 23;
  770. clock.m2 = 8;
  771. } else {
  772. clock.p1 = 1;
  773. clock.p2 = 10;
  774. clock.n = 1;
  775. clock.m1 = 14;
  776. clock.m2 = 2;
  777. }
  778. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  779. clock.p = (clock.p1 * clock.p2);
  780. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  781. clock.vco = 0;
  782. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  783. return true;
  784. }
  785. static bool
  786. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  787. int target, int refclk, intel_clock_t *match_clock,
  788. intel_clock_t *best_clock)
  789. {
  790. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  791. u32 m, n, fastclk;
  792. u32 updrate, minupdate, fracbits, p;
  793. unsigned long bestppm, ppm, absppm;
  794. int dotclk, flag;
  795. flag = 0;
  796. dotclk = target * 1000;
  797. bestppm = 1000000;
  798. ppm = absppm = 0;
  799. fastclk = dotclk / (2*100);
  800. updrate = 0;
  801. minupdate = 19200;
  802. fracbits = 1;
  803. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  804. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  805. /* based on hardware requirement, prefer smaller n to precision */
  806. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  807. updrate = refclk / n;
  808. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  809. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  810. if (p2 > 10)
  811. p2 = p2 - 1;
  812. p = p1 * p2;
  813. /* based on hardware requirement, prefer bigger m1,m2 values */
  814. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  815. m2 = (((2*(fastclk * p * n / m1 )) +
  816. refclk) / (2*refclk));
  817. m = m1 * m2;
  818. vco = updrate * m;
  819. if (vco >= limit->vco.min && vco < limit->vco.max) {
  820. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  821. absppm = (ppm > 0) ? ppm : (-ppm);
  822. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  823. bestppm = 0;
  824. flag = 1;
  825. }
  826. if (absppm < bestppm - 10) {
  827. bestppm = absppm;
  828. flag = 1;
  829. }
  830. if (flag) {
  831. bestn = n;
  832. bestm1 = m1;
  833. bestm2 = m2;
  834. bestp1 = p1;
  835. bestp2 = p2;
  836. flag = 0;
  837. }
  838. }
  839. }
  840. }
  841. }
  842. }
  843. best_clock->n = bestn;
  844. best_clock->m1 = bestm1;
  845. best_clock->m2 = bestm2;
  846. best_clock->p1 = bestp1;
  847. best_clock->p2 = bestp2;
  848. return true;
  849. }
  850. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  851. enum pipe pipe)
  852. {
  853. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  854. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  855. return intel_crtc->cpu_transcoder;
  856. }
  857. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  858. {
  859. struct drm_i915_private *dev_priv = dev->dev_private;
  860. u32 frame, frame_reg = PIPEFRAME(pipe);
  861. frame = I915_READ(frame_reg);
  862. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  863. DRM_DEBUG_KMS("vblank wait timed out\n");
  864. }
  865. /**
  866. * intel_wait_for_vblank - wait for vblank on a given pipe
  867. * @dev: drm device
  868. * @pipe: pipe to wait for
  869. *
  870. * Wait for vblank to occur on a given pipe. Needed for various bits of
  871. * mode setting code.
  872. */
  873. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  874. {
  875. struct drm_i915_private *dev_priv = dev->dev_private;
  876. int pipestat_reg = PIPESTAT(pipe);
  877. if (INTEL_INFO(dev)->gen >= 5) {
  878. ironlake_wait_for_vblank(dev, pipe);
  879. return;
  880. }
  881. /* Clear existing vblank status. Note this will clear any other
  882. * sticky status fields as well.
  883. *
  884. * This races with i915_driver_irq_handler() with the result
  885. * that either function could miss a vblank event. Here it is not
  886. * fatal, as we will either wait upon the next vblank interrupt or
  887. * timeout. Generally speaking intel_wait_for_vblank() is only
  888. * called during modeset at which time the GPU should be idle and
  889. * should *not* be performing page flips and thus not waiting on
  890. * vblanks...
  891. * Currently, the result of us stealing a vblank from the irq
  892. * handler is that a single frame will be skipped during swapbuffers.
  893. */
  894. I915_WRITE(pipestat_reg,
  895. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  896. /* Wait for vblank interrupt bit to set */
  897. if (wait_for(I915_READ(pipestat_reg) &
  898. PIPE_VBLANK_INTERRUPT_STATUS,
  899. 50))
  900. DRM_DEBUG_KMS("vblank wait timed out\n");
  901. }
  902. /*
  903. * intel_wait_for_pipe_off - wait for pipe to turn off
  904. * @dev: drm device
  905. * @pipe: pipe to wait for
  906. *
  907. * After disabling a pipe, we can't wait for vblank in the usual way,
  908. * spinning on the vblank interrupt status bit, since we won't actually
  909. * see an interrupt when the pipe is disabled.
  910. *
  911. * On Gen4 and above:
  912. * wait for the pipe register state bit to turn off
  913. *
  914. * Otherwise:
  915. * wait for the display line value to settle (it usually
  916. * ends up stopping at the start of the next frame).
  917. *
  918. */
  919. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  920. {
  921. struct drm_i915_private *dev_priv = dev->dev_private;
  922. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  923. pipe);
  924. if (INTEL_INFO(dev)->gen >= 4) {
  925. int reg = PIPECONF(cpu_transcoder);
  926. /* Wait for the Pipe State to go off */
  927. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  928. 100))
  929. WARN(1, "pipe_off wait timed out\n");
  930. } else {
  931. u32 last_line, line_mask;
  932. int reg = PIPEDSL(pipe);
  933. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  934. if (IS_GEN2(dev))
  935. line_mask = DSL_LINEMASK_GEN2;
  936. else
  937. line_mask = DSL_LINEMASK_GEN3;
  938. /* Wait for the display line to settle */
  939. do {
  940. last_line = I915_READ(reg) & line_mask;
  941. mdelay(5);
  942. } while (((I915_READ(reg) & line_mask) != last_line) &&
  943. time_after(timeout, jiffies));
  944. if (time_after(jiffies, timeout))
  945. WARN(1, "pipe_off wait timed out\n");
  946. }
  947. }
  948. static const char *state_string(bool enabled)
  949. {
  950. return enabled ? "on" : "off";
  951. }
  952. /* Only for pre-ILK configs */
  953. static void assert_pll(struct drm_i915_private *dev_priv,
  954. enum pipe pipe, bool state)
  955. {
  956. int reg;
  957. u32 val;
  958. bool cur_state;
  959. reg = DPLL(pipe);
  960. val = I915_READ(reg);
  961. cur_state = !!(val & DPLL_VCO_ENABLE);
  962. WARN(cur_state != state,
  963. "PLL state assertion failure (expected %s, current %s)\n",
  964. state_string(state), state_string(cur_state));
  965. }
  966. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  967. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  968. /* For ILK+ */
  969. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  970. struct intel_pch_pll *pll,
  971. struct intel_crtc *crtc,
  972. bool state)
  973. {
  974. u32 val;
  975. bool cur_state;
  976. if (HAS_PCH_LPT(dev_priv->dev)) {
  977. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  978. return;
  979. }
  980. if (WARN (!pll,
  981. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  982. return;
  983. val = I915_READ(pll->pll_reg);
  984. cur_state = !!(val & DPLL_VCO_ENABLE);
  985. WARN(cur_state != state,
  986. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  987. pll->pll_reg, state_string(state), state_string(cur_state), val);
  988. /* Make sure the selected PLL is correctly attached to the transcoder */
  989. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  990. u32 pch_dpll;
  991. pch_dpll = I915_READ(PCH_DPLL_SEL);
  992. cur_state = pll->pll_reg == _PCH_DPLL_B;
  993. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  994. "PLL[%d] not attached to this transcoder %d: %08x\n",
  995. cur_state, crtc->pipe, pch_dpll)) {
  996. cur_state = !!(val >> (4*crtc->pipe + 3));
  997. WARN(cur_state != state,
  998. "PLL[%d] not %s on this transcoder %d: %08x\n",
  999. pll->pll_reg == _PCH_DPLL_B,
  1000. state_string(state),
  1001. crtc->pipe,
  1002. val);
  1003. }
  1004. }
  1005. }
  1006. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  1007. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  1008. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  1009. enum pipe pipe, bool state)
  1010. {
  1011. int reg;
  1012. u32 val;
  1013. bool cur_state;
  1014. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1015. pipe);
  1016. if (IS_HASWELL(dev_priv->dev)) {
  1017. /* On Haswell, DDI is used instead of FDI_TX_CTL */
  1018. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1019. val = I915_READ(reg);
  1020. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  1021. } else {
  1022. reg = FDI_TX_CTL(pipe);
  1023. val = I915_READ(reg);
  1024. cur_state = !!(val & FDI_TX_ENABLE);
  1025. }
  1026. WARN(cur_state != state,
  1027. "FDI TX state assertion failure (expected %s, current %s)\n",
  1028. state_string(state), state_string(cur_state));
  1029. }
  1030. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1031. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1032. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1033. enum pipe pipe, bool state)
  1034. {
  1035. int reg;
  1036. u32 val;
  1037. bool cur_state;
  1038. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1039. DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
  1040. return;
  1041. } else {
  1042. reg = FDI_RX_CTL(pipe);
  1043. val = I915_READ(reg);
  1044. cur_state = !!(val & FDI_RX_ENABLE);
  1045. }
  1046. WARN(cur_state != state,
  1047. "FDI RX state assertion failure (expected %s, current %s)\n",
  1048. state_string(state), state_string(cur_state));
  1049. }
  1050. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1051. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1052. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1053. enum pipe pipe)
  1054. {
  1055. int reg;
  1056. u32 val;
  1057. /* ILK FDI PLL is always enabled */
  1058. if (dev_priv->info->gen == 5)
  1059. return;
  1060. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1061. if (IS_HASWELL(dev_priv->dev))
  1062. return;
  1063. reg = FDI_TX_CTL(pipe);
  1064. val = I915_READ(reg);
  1065. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1066. }
  1067. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1068. enum pipe pipe)
  1069. {
  1070. int reg;
  1071. u32 val;
  1072. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1073. DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
  1074. return;
  1075. }
  1076. reg = FDI_RX_CTL(pipe);
  1077. val = I915_READ(reg);
  1078. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1079. }
  1080. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1081. enum pipe pipe)
  1082. {
  1083. int pp_reg, lvds_reg;
  1084. u32 val;
  1085. enum pipe panel_pipe = PIPE_A;
  1086. bool locked = true;
  1087. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1088. pp_reg = PCH_PP_CONTROL;
  1089. lvds_reg = PCH_LVDS;
  1090. } else {
  1091. pp_reg = PP_CONTROL;
  1092. lvds_reg = LVDS;
  1093. }
  1094. val = I915_READ(pp_reg);
  1095. if (!(val & PANEL_POWER_ON) ||
  1096. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1097. locked = false;
  1098. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1099. panel_pipe = PIPE_B;
  1100. WARN(panel_pipe == pipe && locked,
  1101. "panel assertion failure, pipe %c regs locked\n",
  1102. pipe_name(pipe));
  1103. }
  1104. void assert_pipe(struct drm_i915_private *dev_priv,
  1105. enum pipe pipe, bool state)
  1106. {
  1107. int reg;
  1108. u32 val;
  1109. bool cur_state;
  1110. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1111. pipe);
  1112. /* if we need the pipe A quirk it must be always on */
  1113. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1114. state = true;
  1115. reg = PIPECONF(cpu_transcoder);
  1116. val = I915_READ(reg);
  1117. cur_state = !!(val & PIPECONF_ENABLE);
  1118. WARN(cur_state != state,
  1119. "pipe %c assertion failure (expected %s, current %s)\n",
  1120. pipe_name(pipe), state_string(state), state_string(cur_state));
  1121. }
  1122. static void assert_plane(struct drm_i915_private *dev_priv,
  1123. enum plane plane, bool state)
  1124. {
  1125. int reg;
  1126. u32 val;
  1127. bool cur_state;
  1128. reg = DSPCNTR(plane);
  1129. val = I915_READ(reg);
  1130. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1131. WARN(cur_state != state,
  1132. "plane %c assertion failure (expected %s, current %s)\n",
  1133. plane_name(plane), state_string(state), state_string(cur_state));
  1134. }
  1135. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1136. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1137. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1138. enum pipe pipe)
  1139. {
  1140. int reg, i;
  1141. u32 val;
  1142. int cur_pipe;
  1143. /* Planes are fixed to pipes on ILK+ */
  1144. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1145. reg = DSPCNTR(pipe);
  1146. val = I915_READ(reg);
  1147. WARN((val & DISPLAY_PLANE_ENABLE),
  1148. "plane %c assertion failure, should be disabled but not\n",
  1149. plane_name(pipe));
  1150. return;
  1151. }
  1152. /* Need to check both planes against the pipe */
  1153. for (i = 0; i < 2; i++) {
  1154. reg = DSPCNTR(i);
  1155. val = I915_READ(reg);
  1156. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1157. DISPPLANE_SEL_PIPE_SHIFT;
  1158. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1159. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1160. plane_name(i), pipe_name(pipe));
  1161. }
  1162. }
  1163. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1164. {
  1165. u32 val;
  1166. bool enabled;
  1167. if (HAS_PCH_LPT(dev_priv->dev)) {
  1168. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1169. return;
  1170. }
  1171. val = I915_READ(PCH_DREF_CONTROL);
  1172. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1173. DREF_SUPERSPREAD_SOURCE_MASK));
  1174. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1175. }
  1176. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1177. enum pipe pipe)
  1178. {
  1179. int reg;
  1180. u32 val;
  1181. bool enabled;
  1182. reg = TRANSCONF(pipe);
  1183. val = I915_READ(reg);
  1184. enabled = !!(val & TRANS_ENABLE);
  1185. WARN(enabled,
  1186. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1187. pipe_name(pipe));
  1188. }
  1189. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1190. enum pipe pipe, u32 port_sel, u32 val)
  1191. {
  1192. if ((val & DP_PORT_EN) == 0)
  1193. return false;
  1194. if (HAS_PCH_CPT(dev_priv->dev)) {
  1195. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1196. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1197. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1198. return false;
  1199. } else {
  1200. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1201. return false;
  1202. }
  1203. return true;
  1204. }
  1205. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1206. enum pipe pipe, u32 val)
  1207. {
  1208. if ((val & PORT_ENABLE) == 0)
  1209. return false;
  1210. if (HAS_PCH_CPT(dev_priv->dev)) {
  1211. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1212. return false;
  1213. } else {
  1214. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1215. return false;
  1216. }
  1217. return true;
  1218. }
  1219. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1220. enum pipe pipe, u32 val)
  1221. {
  1222. if ((val & LVDS_PORT_EN) == 0)
  1223. return false;
  1224. if (HAS_PCH_CPT(dev_priv->dev)) {
  1225. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1226. return false;
  1227. } else {
  1228. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1229. return false;
  1230. }
  1231. return true;
  1232. }
  1233. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1234. enum pipe pipe, u32 val)
  1235. {
  1236. if ((val & ADPA_DAC_ENABLE) == 0)
  1237. return false;
  1238. if (HAS_PCH_CPT(dev_priv->dev)) {
  1239. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1240. return false;
  1241. } else {
  1242. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1243. return false;
  1244. }
  1245. return true;
  1246. }
  1247. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1248. enum pipe pipe, int reg, u32 port_sel)
  1249. {
  1250. u32 val = I915_READ(reg);
  1251. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1252. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1253. reg, pipe_name(pipe));
  1254. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1255. && (val & DP_PIPEB_SELECT),
  1256. "IBX PCH dp port still using transcoder B\n");
  1257. }
  1258. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1259. enum pipe pipe, int reg)
  1260. {
  1261. u32 val = I915_READ(reg);
  1262. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1263. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1264. reg, pipe_name(pipe));
  1265. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
  1266. && (val & SDVO_PIPE_B_SELECT),
  1267. "IBX PCH hdmi port still using transcoder B\n");
  1268. }
  1269. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1270. enum pipe pipe)
  1271. {
  1272. int reg;
  1273. u32 val;
  1274. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1275. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1276. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1277. reg = PCH_ADPA;
  1278. val = I915_READ(reg);
  1279. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1280. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1281. pipe_name(pipe));
  1282. reg = PCH_LVDS;
  1283. val = I915_READ(reg);
  1284. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1285. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1286. pipe_name(pipe));
  1287. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1288. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1289. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1290. }
  1291. /**
  1292. * intel_enable_pll - enable a PLL
  1293. * @dev_priv: i915 private structure
  1294. * @pipe: pipe PLL to enable
  1295. *
  1296. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1297. * make sure the PLL reg is writable first though, since the panel write
  1298. * protect mechanism may be enabled.
  1299. *
  1300. * Note! This is for pre-ILK only.
  1301. *
  1302. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1303. */
  1304. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1305. {
  1306. int reg;
  1307. u32 val;
  1308. /* No really, not for ILK+ */
  1309. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1310. /* PLL is protected by panel, make sure we can write it */
  1311. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1312. assert_panel_unlocked(dev_priv, pipe);
  1313. reg = DPLL(pipe);
  1314. val = I915_READ(reg);
  1315. val |= DPLL_VCO_ENABLE;
  1316. /* We do this three times for luck */
  1317. I915_WRITE(reg, val);
  1318. POSTING_READ(reg);
  1319. udelay(150); /* wait for warmup */
  1320. I915_WRITE(reg, val);
  1321. POSTING_READ(reg);
  1322. udelay(150); /* wait for warmup */
  1323. I915_WRITE(reg, val);
  1324. POSTING_READ(reg);
  1325. udelay(150); /* wait for warmup */
  1326. }
  1327. /**
  1328. * intel_disable_pll - disable a PLL
  1329. * @dev_priv: i915 private structure
  1330. * @pipe: pipe PLL to disable
  1331. *
  1332. * Disable the PLL for @pipe, making sure the pipe is off first.
  1333. *
  1334. * Note! This is for pre-ILK only.
  1335. */
  1336. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1337. {
  1338. int reg;
  1339. u32 val;
  1340. /* Don't disable pipe A or pipe A PLLs if needed */
  1341. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1342. return;
  1343. /* Make sure the pipe isn't still relying on us */
  1344. assert_pipe_disabled(dev_priv, pipe);
  1345. reg = DPLL(pipe);
  1346. val = I915_READ(reg);
  1347. val &= ~DPLL_VCO_ENABLE;
  1348. I915_WRITE(reg, val);
  1349. POSTING_READ(reg);
  1350. }
  1351. /* SBI access */
  1352. static void
  1353. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
  1354. {
  1355. unsigned long flags;
  1356. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1357. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1358. 100)) {
  1359. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1360. goto out_unlock;
  1361. }
  1362. I915_WRITE(SBI_ADDR,
  1363. (reg << 16));
  1364. I915_WRITE(SBI_DATA,
  1365. value);
  1366. I915_WRITE(SBI_CTL_STAT,
  1367. SBI_BUSY |
  1368. SBI_CTL_OP_CRWR);
  1369. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1370. 100)) {
  1371. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1372. goto out_unlock;
  1373. }
  1374. out_unlock:
  1375. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1376. }
  1377. static u32
  1378. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
  1379. {
  1380. unsigned long flags;
  1381. u32 value = 0;
  1382. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1383. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1384. 100)) {
  1385. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1386. goto out_unlock;
  1387. }
  1388. I915_WRITE(SBI_ADDR,
  1389. (reg << 16));
  1390. I915_WRITE(SBI_CTL_STAT,
  1391. SBI_BUSY |
  1392. SBI_CTL_OP_CRRD);
  1393. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1394. 100)) {
  1395. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1396. goto out_unlock;
  1397. }
  1398. value = I915_READ(SBI_DATA);
  1399. out_unlock:
  1400. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1401. return value;
  1402. }
  1403. /**
  1404. * ironlake_enable_pch_pll - enable PCH PLL
  1405. * @dev_priv: i915 private structure
  1406. * @pipe: pipe PLL to enable
  1407. *
  1408. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1409. * drives the transcoder clock.
  1410. */
  1411. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1412. {
  1413. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1414. struct intel_pch_pll *pll;
  1415. int reg;
  1416. u32 val;
  1417. /* PCH PLLs only available on ILK, SNB and IVB */
  1418. BUG_ON(dev_priv->info->gen < 5);
  1419. pll = intel_crtc->pch_pll;
  1420. if (pll == NULL)
  1421. return;
  1422. if (WARN_ON(pll->refcount == 0))
  1423. return;
  1424. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1425. pll->pll_reg, pll->active, pll->on,
  1426. intel_crtc->base.base.id);
  1427. /* PCH refclock must be enabled first */
  1428. assert_pch_refclk_enabled(dev_priv);
  1429. if (pll->active++ && pll->on) {
  1430. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1431. return;
  1432. }
  1433. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1434. reg = pll->pll_reg;
  1435. val = I915_READ(reg);
  1436. val |= DPLL_VCO_ENABLE;
  1437. I915_WRITE(reg, val);
  1438. POSTING_READ(reg);
  1439. udelay(200);
  1440. pll->on = true;
  1441. }
  1442. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1443. {
  1444. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1445. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1446. int reg;
  1447. u32 val;
  1448. /* PCH only available on ILK+ */
  1449. BUG_ON(dev_priv->info->gen < 5);
  1450. if (pll == NULL)
  1451. return;
  1452. if (WARN_ON(pll->refcount == 0))
  1453. return;
  1454. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1455. pll->pll_reg, pll->active, pll->on,
  1456. intel_crtc->base.base.id);
  1457. if (WARN_ON(pll->active == 0)) {
  1458. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1459. return;
  1460. }
  1461. if (--pll->active) {
  1462. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1463. return;
  1464. }
  1465. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1466. /* Make sure transcoder isn't still depending on us */
  1467. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1468. reg = pll->pll_reg;
  1469. val = I915_READ(reg);
  1470. val &= ~DPLL_VCO_ENABLE;
  1471. I915_WRITE(reg, val);
  1472. POSTING_READ(reg);
  1473. udelay(200);
  1474. pll->on = false;
  1475. }
  1476. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1477. enum pipe pipe)
  1478. {
  1479. struct drm_device *dev = dev_priv->dev;
  1480. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1481. uint32_t reg, val, pipeconf_val;
  1482. /* PCH only available on ILK+ */
  1483. BUG_ON(dev_priv->info->gen < 5);
  1484. /* Make sure PCH DPLL is enabled */
  1485. assert_pch_pll_enabled(dev_priv,
  1486. to_intel_crtc(crtc)->pch_pll,
  1487. to_intel_crtc(crtc));
  1488. /* FDI must be feeding us bits for PCH ports */
  1489. assert_fdi_tx_enabled(dev_priv, pipe);
  1490. assert_fdi_rx_enabled(dev_priv, pipe);
  1491. if (HAS_PCH_CPT(dev)) {
  1492. /* Workaround: Set the timing override bit before enabling the
  1493. * pch transcoder. */
  1494. reg = TRANS_CHICKEN2(pipe);
  1495. val = I915_READ(reg);
  1496. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1497. I915_WRITE(reg, val);
  1498. }
  1499. reg = TRANSCONF(pipe);
  1500. val = I915_READ(reg);
  1501. pipeconf_val = I915_READ(PIPECONF(pipe));
  1502. if (HAS_PCH_IBX(dev_priv->dev)) {
  1503. /*
  1504. * make the BPC in transcoder be consistent with
  1505. * that in pipeconf reg.
  1506. */
  1507. val &= ~PIPE_BPC_MASK;
  1508. val |= pipeconf_val & PIPE_BPC_MASK;
  1509. }
  1510. val &= ~TRANS_INTERLACE_MASK;
  1511. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1512. if (HAS_PCH_IBX(dev_priv->dev) &&
  1513. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1514. val |= TRANS_LEGACY_INTERLACED_ILK;
  1515. else
  1516. val |= TRANS_INTERLACED;
  1517. else
  1518. val |= TRANS_PROGRESSIVE;
  1519. I915_WRITE(reg, val | TRANS_ENABLE);
  1520. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1521. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1522. }
  1523. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1524. enum transcoder cpu_transcoder)
  1525. {
  1526. u32 val, pipeconf_val;
  1527. /* PCH only available on ILK+ */
  1528. BUG_ON(dev_priv->info->gen < 5);
  1529. /* FDI must be feeding us bits for PCH ports */
  1530. assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
  1531. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1532. /* Workaround: set timing override bit. */
  1533. val = I915_READ(_TRANSA_CHICKEN2);
  1534. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1535. I915_WRITE(_TRANSA_CHICKEN2, val);
  1536. val = TRANS_ENABLE;
  1537. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1538. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1539. PIPECONF_INTERLACED_ILK)
  1540. val |= TRANS_INTERLACED;
  1541. else
  1542. val |= TRANS_PROGRESSIVE;
  1543. I915_WRITE(TRANSCONF(TRANSCODER_A), val);
  1544. if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
  1545. DRM_ERROR("Failed to enable PCH transcoder\n");
  1546. }
  1547. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1548. enum pipe pipe)
  1549. {
  1550. struct drm_device *dev = dev_priv->dev;
  1551. uint32_t reg, val;
  1552. /* FDI relies on the transcoder */
  1553. assert_fdi_tx_disabled(dev_priv, pipe);
  1554. assert_fdi_rx_disabled(dev_priv, pipe);
  1555. /* Ports must be off as well */
  1556. assert_pch_ports_disabled(dev_priv, pipe);
  1557. reg = TRANSCONF(pipe);
  1558. val = I915_READ(reg);
  1559. val &= ~TRANS_ENABLE;
  1560. I915_WRITE(reg, val);
  1561. /* wait for PCH transcoder off, transcoder state */
  1562. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1563. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1564. if (!HAS_PCH_IBX(dev)) {
  1565. /* Workaround: Clear the timing override chicken bit again. */
  1566. reg = TRANS_CHICKEN2(pipe);
  1567. val = I915_READ(reg);
  1568. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1569. I915_WRITE(reg, val);
  1570. }
  1571. }
  1572. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1573. {
  1574. u32 val;
  1575. val = I915_READ(_TRANSACONF);
  1576. val &= ~TRANS_ENABLE;
  1577. I915_WRITE(_TRANSACONF, val);
  1578. /* wait for PCH transcoder off, transcoder state */
  1579. if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
  1580. DRM_ERROR("Failed to disable PCH transcoder\n");
  1581. /* Workaround: clear timing override bit. */
  1582. val = I915_READ(_TRANSA_CHICKEN2);
  1583. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1584. I915_WRITE(_TRANSA_CHICKEN2, val);
  1585. }
  1586. /**
  1587. * intel_enable_pipe - enable a pipe, asserting requirements
  1588. * @dev_priv: i915 private structure
  1589. * @pipe: pipe to enable
  1590. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1591. *
  1592. * Enable @pipe, making sure that various hardware specific requirements
  1593. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1594. *
  1595. * @pipe should be %PIPE_A or %PIPE_B.
  1596. *
  1597. * Will wait until the pipe is actually running (i.e. first vblank) before
  1598. * returning.
  1599. */
  1600. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1601. bool pch_port)
  1602. {
  1603. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1604. pipe);
  1605. int reg;
  1606. u32 val;
  1607. /*
  1608. * A pipe without a PLL won't actually be able to drive bits from
  1609. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1610. * need the check.
  1611. */
  1612. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1613. assert_pll_enabled(dev_priv, pipe);
  1614. else {
  1615. if (pch_port) {
  1616. /* if driving the PCH, we need FDI enabled */
  1617. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1618. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1619. }
  1620. /* FIXME: assert CPU port conditions for SNB+ */
  1621. }
  1622. reg = PIPECONF(cpu_transcoder);
  1623. val = I915_READ(reg);
  1624. if (val & PIPECONF_ENABLE)
  1625. return;
  1626. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1627. intel_wait_for_vblank(dev_priv->dev, pipe);
  1628. }
  1629. /**
  1630. * intel_disable_pipe - disable a pipe, asserting requirements
  1631. * @dev_priv: i915 private structure
  1632. * @pipe: pipe to disable
  1633. *
  1634. * Disable @pipe, making sure that various hardware specific requirements
  1635. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1636. *
  1637. * @pipe should be %PIPE_A or %PIPE_B.
  1638. *
  1639. * Will wait until the pipe has shut down before returning.
  1640. */
  1641. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1642. enum pipe pipe)
  1643. {
  1644. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1645. pipe);
  1646. int reg;
  1647. u32 val;
  1648. /*
  1649. * Make sure planes won't keep trying to pump pixels to us,
  1650. * or we might hang the display.
  1651. */
  1652. assert_planes_disabled(dev_priv, pipe);
  1653. /* Don't disable pipe A or pipe A PLLs if needed */
  1654. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1655. return;
  1656. reg = PIPECONF(cpu_transcoder);
  1657. val = I915_READ(reg);
  1658. if ((val & PIPECONF_ENABLE) == 0)
  1659. return;
  1660. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1661. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1662. }
  1663. /*
  1664. * Plane regs are double buffered, going from enabled->disabled needs a
  1665. * trigger in order to latch. The display address reg provides this.
  1666. */
  1667. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1668. enum plane plane)
  1669. {
  1670. if (dev_priv->info->gen >= 4)
  1671. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1672. else
  1673. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1674. }
  1675. /**
  1676. * intel_enable_plane - enable a display plane on a given pipe
  1677. * @dev_priv: i915 private structure
  1678. * @plane: plane to enable
  1679. * @pipe: pipe being fed
  1680. *
  1681. * Enable @plane on @pipe, making sure that @pipe is running first.
  1682. */
  1683. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1684. enum plane plane, enum pipe pipe)
  1685. {
  1686. int reg;
  1687. u32 val;
  1688. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1689. assert_pipe_enabled(dev_priv, pipe);
  1690. reg = DSPCNTR(plane);
  1691. val = I915_READ(reg);
  1692. if (val & DISPLAY_PLANE_ENABLE)
  1693. return;
  1694. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1695. intel_flush_display_plane(dev_priv, plane);
  1696. intel_wait_for_vblank(dev_priv->dev, pipe);
  1697. }
  1698. /**
  1699. * intel_disable_plane - disable a display plane
  1700. * @dev_priv: i915 private structure
  1701. * @plane: plane to disable
  1702. * @pipe: pipe consuming the data
  1703. *
  1704. * Disable @plane; should be an independent operation.
  1705. */
  1706. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1707. enum plane plane, enum pipe pipe)
  1708. {
  1709. int reg;
  1710. u32 val;
  1711. reg = DSPCNTR(plane);
  1712. val = I915_READ(reg);
  1713. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1714. return;
  1715. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1716. intel_flush_display_plane(dev_priv, plane);
  1717. intel_wait_for_vblank(dev_priv->dev, pipe);
  1718. }
  1719. int
  1720. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1721. struct drm_i915_gem_object *obj,
  1722. struct intel_ring_buffer *pipelined)
  1723. {
  1724. struct drm_i915_private *dev_priv = dev->dev_private;
  1725. u32 alignment;
  1726. int ret;
  1727. switch (obj->tiling_mode) {
  1728. case I915_TILING_NONE:
  1729. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1730. alignment = 128 * 1024;
  1731. else if (INTEL_INFO(dev)->gen >= 4)
  1732. alignment = 4 * 1024;
  1733. else
  1734. alignment = 64 * 1024;
  1735. break;
  1736. case I915_TILING_X:
  1737. /* pin() will align the object as required by fence */
  1738. alignment = 0;
  1739. break;
  1740. case I915_TILING_Y:
  1741. /* FIXME: Is this true? */
  1742. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1743. return -EINVAL;
  1744. default:
  1745. BUG();
  1746. }
  1747. dev_priv->mm.interruptible = false;
  1748. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1749. if (ret)
  1750. goto err_interruptible;
  1751. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1752. * fence, whereas 965+ only requires a fence if using
  1753. * framebuffer compression. For simplicity, we always install
  1754. * a fence as the cost is not that onerous.
  1755. */
  1756. ret = i915_gem_object_get_fence(obj);
  1757. if (ret)
  1758. goto err_unpin;
  1759. i915_gem_object_pin_fence(obj);
  1760. dev_priv->mm.interruptible = true;
  1761. return 0;
  1762. err_unpin:
  1763. i915_gem_object_unpin(obj);
  1764. err_interruptible:
  1765. dev_priv->mm.interruptible = true;
  1766. return ret;
  1767. }
  1768. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1769. {
  1770. i915_gem_object_unpin_fence(obj);
  1771. i915_gem_object_unpin(obj);
  1772. }
  1773. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1774. * is assumed to be a power-of-two. */
  1775. unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
  1776. unsigned int bpp,
  1777. unsigned int pitch)
  1778. {
  1779. int tile_rows, tiles;
  1780. tile_rows = *y / 8;
  1781. *y %= 8;
  1782. tiles = *x / (512/bpp);
  1783. *x %= 512/bpp;
  1784. return tile_rows * pitch * 8 + tiles * 4096;
  1785. }
  1786. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1787. int x, int y)
  1788. {
  1789. struct drm_device *dev = crtc->dev;
  1790. struct drm_i915_private *dev_priv = dev->dev_private;
  1791. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1792. struct intel_framebuffer *intel_fb;
  1793. struct drm_i915_gem_object *obj;
  1794. int plane = intel_crtc->plane;
  1795. unsigned long linear_offset;
  1796. u32 dspcntr;
  1797. u32 reg;
  1798. switch (plane) {
  1799. case 0:
  1800. case 1:
  1801. break;
  1802. default:
  1803. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1804. return -EINVAL;
  1805. }
  1806. intel_fb = to_intel_framebuffer(fb);
  1807. obj = intel_fb->obj;
  1808. reg = DSPCNTR(plane);
  1809. dspcntr = I915_READ(reg);
  1810. /* Mask out pixel format bits in case we change it */
  1811. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1812. switch (fb->pixel_format) {
  1813. case DRM_FORMAT_C8:
  1814. dspcntr |= DISPPLANE_8BPP;
  1815. break;
  1816. case DRM_FORMAT_XRGB1555:
  1817. case DRM_FORMAT_ARGB1555:
  1818. dspcntr |= DISPPLANE_BGRX555;
  1819. break;
  1820. case DRM_FORMAT_RGB565:
  1821. dspcntr |= DISPPLANE_BGRX565;
  1822. break;
  1823. case DRM_FORMAT_XRGB8888:
  1824. case DRM_FORMAT_ARGB8888:
  1825. dspcntr |= DISPPLANE_BGRX888;
  1826. break;
  1827. case DRM_FORMAT_XBGR8888:
  1828. case DRM_FORMAT_ABGR8888:
  1829. dspcntr |= DISPPLANE_RGBX888;
  1830. break;
  1831. case DRM_FORMAT_XRGB2101010:
  1832. case DRM_FORMAT_ARGB2101010:
  1833. dspcntr |= DISPPLANE_BGRX101010;
  1834. break;
  1835. case DRM_FORMAT_XBGR2101010:
  1836. case DRM_FORMAT_ABGR2101010:
  1837. dspcntr |= DISPPLANE_RGBX101010;
  1838. break;
  1839. default:
  1840. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1841. return -EINVAL;
  1842. }
  1843. if (INTEL_INFO(dev)->gen >= 4) {
  1844. if (obj->tiling_mode != I915_TILING_NONE)
  1845. dspcntr |= DISPPLANE_TILED;
  1846. else
  1847. dspcntr &= ~DISPPLANE_TILED;
  1848. }
  1849. I915_WRITE(reg, dspcntr);
  1850. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1851. if (INTEL_INFO(dev)->gen >= 4) {
  1852. intel_crtc->dspaddr_offset =
  1853. intel_gen4_compute_offset_xtiled(&x, &y,
  1854. fb->bits_per_pixel / 8,
  1855. fb->pitches[0]);
  1856. linear_offset -= intel_crtc->dspaddr_offset;
  1857. } else {
  1858. intel_crtc->dspaddr_offset = linear_offset;
  1859. }
  1860. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1861. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1862. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1863. if (INTEL_INFO(dev)->gen >= 4) {
  1864. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1865. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1866. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1867. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1868. } else
  1869. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1870. POSTING_READ(reg);
  1871. return 0;
  1872. }
  1873. static int ironlake_update_plane(struct drm_crtc *crtc,
  1874. struct drm_framebuffer *fb, int x, int y)
  1875. {
  1876. struct drm_device *dev = crtc->dev;
  1877. struct drm_i915_private *dev_priv = dev->dev_private;
  1878. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1879. struct intel_framebuffer *intel_fb;
  1880. struct drm_i915_gem_object *obj;
  1881. int plane = intel_crtc->plane;
  1882. unsigned long linear_offset;
  1883. u32 dspcntr;
  1884. u32 reg;
  1885. switch (plane) {
  1886. case 0:
  1887. case 1:
  1888. case 2:
  1889. break;
  1890. default:
  1891. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1892. return -EINVAL;
  1893. }
  1894. intel_fb = to_intel_framebuffer(fb);
  1895. obj = intel_fb->obj;
  1896. reg = DSPCNTR(plane);
  1897. dspcntr = I915_READ(reg);
  1898. /* Mask out pixel format bits in case we change it */
  1899. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1900. switch (fb->pixel_format) {
  1901. case DRM_FORMAT_C8:
  1902. dspcntr |= DISPPLANE_8BPP;
  1903. break;
  1904. case DRM_FORMAT_RGB565:
  1905. dspcntr |= DISPPLANE_BGRX565;
  1906. break;
  1907. case DRM_FORMAT_XRGB8888:
  1908. case DRM_FORMAT_ARGB8888:
  1909. dspcntr |= DISPPLANE_BGRX888;
  1910. break;
  1911. case DRM_FORMAT_XBGR8888:
  1912. case DRM_FORMAT_ABGR8888:
  1913. dspcntr |= DISPPLANE_RGBX888;
  1914. break;
  1915. case DRM_FORMAT_XRGB2101010:
  1916. case DRM_FORMAT_ARGB2101010:
  1917. dspcntr |= DISPPLANE_BGRX101010;
  1918. break;
  1919. case DRM_FORMAT_XBGR2101010:
  1920. case DRM_FORMAT_ABGR2101010:
  1921. dspcntr |= DISPPLANE_RGBX101010;
  1922. break;
  1923. default:
  1924. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1925. return -EINVAL;
  1926. }
  1927. if (obj->tiling_mode != I915_TILING_NONE)
  1928. dspcntr |= DISPPLANE_TILED;
  1929. else
  1930. dspcntr &= ~DISPPLANE_TILED;
  1931. /* must disable */
  1932. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1933. I915_WRITE(reg, dspcntr);
  1934. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1935. intel_crtc->dspaddr_offset =
  1936. intel_gen4_compute_offset_xtiled(&x, &y,
  1937. fb->bits_per_pixel / 8,
  1938. fb->pitches[0]);
  1939. linear_offset -= intel_crtc->dspaddr_offset;
  1940. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1941. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1942. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1943. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1944. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1945. if (IS_HASWELL(dev)) {
  1946. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1947. } else {
  1948. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1949. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1950. }
  1951. POSTING_READ(reg);
  1952. return 0;
  1953. }
  1954. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1955. static int
  1956. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1957. int x, int y, enum mode_set_atomic state)
  1958. {
  1959. struct drm_device *dev = crtc->dev;
  1960. struct drm_i915_private *dev_priv = dev->dev_private;
  1961. if (dev_priv->display.disable_fbc)
  1962. dev_priv->display.disable_fbc(dev);
  1963. intel_increase_pllclock(crtc);
  1964. return dev_priv->display.update_plane(crtc, fb, x, y);
  1965. }
  1966. static int
  1967. intel_finish_fb(struct drm_framebuffer *old_fb)
  1968. {
  1969. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1970. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1971. bool was_interruptible = dev_priv->mm.interruptible;
  1972. int ret;
  1973. wait_event(dev_priv->pending_flip_queue,
  1974. atomic_read(&dev_priv->mm.wedged) ||
  1975. atomic_read(&obj->pending_flip) == 0);
  1976. /* Big Hammer, we also need to ensure that any pending
  1977. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1978. * current scanout is retired before unpinning the old
  1979. * framebuffer.
  1980. *
  1981. * This should only fail upon a hung GPU, in which case we
  1982. * can safely continue.
  1983. */
  1984. dev_priv->mm.interruptible = false;
  1985. ret = i915_gem_object_finish_gpu(obj);
  1986. dev_priv->mm.interruptible = was_interruptible;
  1987. return ret;
  1988. }
  1989. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1990. {
  1991. struct drm_device *dev = crtc->dev;
  1992. struct drm_i915_master_private *master_priv;
  1993. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1994. if (!dev->primary->master)
  1995. return;
  1996. master_priv = dev->primary->master->driver_priv;
  1997. if (!master_priv->sarea_priv)
  1998. return;
  1999. switch (intel_crtc->pipe) {
  2000. case 0:
  2001. master_priv->sarea_priv->pipeA_x = x;
  2002. master_priv->sarea_priv->pipeA_y = y;
  2003. break;
  2004. case 1:
  2005. master_priv->sarea_priv->pipeB_x = x;
  2006. master_priv->sarea_priv->pipeB_y = y;
  2007. break;
  2008. default:
  2009. break;
  2010. }
  2011. }
  2012. static int
  2013. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  2014. struct drm_framebuffer *fb)
  2015. {
  2016. struct drm_device *dev = crtc->dev;
  2017. struct drm_i915_private *dev_priv = dev->dev_private;
  2018. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2019. struct drm_framebuffer *old_fb;
  2020. int ret;
  2021. /* no fb bound */
  2022. if (!fb) {
  2023. DRM_ERROR("No FB bound\n");
  2024. return 0;
  2025. }
  2026. if(intel_crtc->plane > dev_priv->num_pipe) {
  2027. DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  2028. intel_crtc->plane,
  2029. dev_priv->num_pipe);
  2030. return -EINVAL;
  2031. }
  2032. mutex_lock(&dev->struct_mutex);
  2033. ret = intel_pin_and_fence_fb_obj(dev,
  2034. to_intel_framebuffer(fb)->obj,
  2035. NULL);
  2036. if (ret != 0) {
  2037. mutex_unlock(&dev->struct_mutex);
  2038. DRM_ERROR("pin & fence failed\n");
  2039. return ret;
  2040. }
  2041. if (crtc->fb)
  2042. intel_finish_fb(crtc->fb);
  2043. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2044. if (ret) {
  2045. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2046. mutex_unlock(&dev->struct_mutex);
  2047. DRM_ERROR("failed to update base address\n");
  2048. return ret;
  2049. }
  2050. old_fb = crtc->fb;
  2051. crtc->fb = fb;
  2052. crtc->x = x;
  2053. crtc->y = y;
  2054. if (old_fb) {
  2055. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2056. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2057. }
  2058. intel_update_fbc(dev);
  2059. mutex_unlock(&dev->struct_mutex);
  2060. intel_crtc_update_sarea_pos(crtc, x, y);
  2061. return 0;
  2062. }
  2063. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2064. {
  2065. struct drm_device *dev = crtc->dev;
  2066. struct drm_i915_private *dev_priv = dev->dev_private;
  2067. u32 dpa_ctl;
  2068. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2069. dpa_ctl = I915_READ(DP_A);
  2070. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2071. if (clock < 200000) {
  2072. u32 temp;
  2073. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2074. /* workaround for 160Mhz:
  2075. 1) program 0x4600c bits 15:0 = 0x8124
  2076. 2) program 0x46010 bit 0 = 1
  2077. 3) program 0x46034 bit 24 = 1
  2078. 4) program 0x64000 bit 14 = 1
  2079. */
  2080. temp = I915_READ(0x4600c);
  2081. temp &= 0xffff0000;
  2082. I915_WRITE(0x4600c, temp | 0x8124);
  2083. temp = I915_READ(0x46010);
  2084. I915_WRITE(0x46010, temp | 1);
  2085. temp = I915_READ(0x46034);
  2086. I915_WRITE(0x46034, temp | (1 << 24));
  2087. } else {
  2088. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2089. }
  2090. I915_WRITE(DP_A, dpa_ctl);
  2091. POSTING_READ(DP_A);
  2092. udelay(500);
  2093. }
  2094. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2095. {
  2096. struct drm_device *dev = crtc->dev;
  2097. struct drm_i915_private *dev_priv = dev->dev_private;
  2098. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2099. int pipe = intel_crtc->pipe;
  2100. u32 reg, temp;
  2101. /* enable normal train */
  2102. reg = FDI_TX_CTL(pipe);
  2103. temp = I915_READ(reg);
  2104. if (IS_IVYBRIDGE(dev)) {
  2105. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2106. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2107. } else {
  2108. temp &= ~FDI_LINK_TRAIN_NONE;
  2109. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2110. }
  2111. I915_WRITE(reg, temp);
  2112. reg = FDI_RX_CTL(pipe);
  2113. temp = I915_READ(reg);
  2114. if (HAS_PCH_CPT(dev)) {
  2115. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2116. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2117. } else {
  2118. temp &= ~FDI_LINK_TRAIN_NONE;
  2119. temp |= FDI_LINK_TRAIN_NONE;
  2120. }
  2121. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2122. /* wait one idle pattern time */
  2123. POSTING_READ(reg);
  2124. udelay(1000);
  2125. /* IVB wants error correction enabled */
  2126. if (IS_IVYBRIDGE(dev))
  2127. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2128. FDI_FE_ERRC_ENABLE);
  2129. }
  2130. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2131. {
  2132. struct drm_i915_private *dev_priv = dev->dev_private;
  2133. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2134. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2135. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2136. flags |= FDI_PHASE_SYNC_EN(pipe);
  2137. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2138. POSTING_READ(SOUTH_CHICKEN1);
  2139. }
  2140. static void ivb_modeset_global_resources(struct drm_device *dev)
  2141. {
  2142. struct drm_i915_private *dev_priv = dev->dev_private;
  2143. struct intel_crtc *pipe_B_crtc =
  2144. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2145. struct intel_crtc *pipe_C_crtc =
  2146. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2147. uint32_t temp;
  2148. /* When everything is off disable fdi C so that we could enable fdi B
  2149. * with all lanes. XXX: This misses the case where a pipe is not using
  2150. * any pch resources and so doesn't need any fdi lanes. */
  2151. if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
  2152. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2153. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2154. temp = I915_READ(SOUTH_CHICKEN1);
  2155. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2156. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2157. I915_WRITE(SOUTH_CHICKEN1, temp);
  2158. }
  2159. }
  2160. /* The FDI link training functions for ILK/Ibexpeak. */
  2161. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2162. {
  2163. struct drm_device *dev = crtc->dev;
  2164. struct drm_i915_private *dev_priv = dev->dev_private;
  2165. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2166. int pipe = intel_crtc->pipe;
  2167. int plane = intel_crtc->plane;
  2168. u32 reg, temp, tries;
  2169. /* FDI needs bits from pipe & plane first */
  2170. assert_pipe_enabled(dev_priv, pipe);
  2171. assert_plane_enabled(dev_priv, plane);
  2172. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2173. for train result */
  2174. reg = FDI_RX_IMR(pipe);
  2175. temp = I915_READ(reg);
  2176. temp &= ~FDI_RX_SYMBOL_LOCK;
  2177. temp &= ~FDI_RX_BIT_LOCK;
  2178. I915_WRITE(reg, temp);
  2179. I915_READ(reg);
  2180. udelay(150);
  2181. /* enable CPU FDI TX and PCH FDI RX */
  2182. reg = FDI_TX_CTL(pipe);
  2183. temp = I915_READ(reg);
  2184. temp &= ~(7 << 19);
  2185. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2186. temp &= ~FDI_LINK_TRAIN_NONE;
  2187. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2188. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2189. reg = FDI_RX_CTL(pipe);
  2190. temp = I915_READ(reg);
  2191. temp &= ~FDI_LINK_TRAIN_NONE;
  2192. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2193. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2194. POSTING_READ(reg);
  2195. udelay(150);
  2196. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2197. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2198. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2199. FDI_RX_PHASE_SYNC_POINTER_EN);
  2200. reg = FDI_RX_IIR(pipe);
  2201. for (tries = 0; tries < 5; tries++) {
  2202. temp = I915_READ(reg);
  2203. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2204. if ((temp & FDI_RX_BIT_LOCK)) {
  2205. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2206. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2207. break;
  2208. }
  2209. }
  2210. if (tries == 5)
  2211. DRM_ERROR("FDI train 1 fail!\n");
  2212. /* Train 2 */
  2213. reg = FDI_TX_CTL(pipe);
  2214. temp = I915_READ(reg);
  2215. temp &= ~FDI_LINK_TRAIN_NONE;
  2216. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2217. I915_WRITE(reg, temp);
  2218. reg = FDI_RX_CTL(pipe);
  2219. temp = I915_READ(reg);
  2220. temp &= ~FDI_LINK_TRAIN_NONE;
  2221. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2222. I915_WRITE(reg, temp);
  2223. POSTING_READ(reg);
  2224. udelay(150);
  2225. reg = FDI_RX_IIR(pipe);
  2226. for (tries = 0; tries < 5; tries++) {
  2227. temp = I915_READ(reg);
  2228. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2229. if (temp & FDI_RX_SYMBOL_LOCK) {
  2230. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2231. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2232. break;
  2233. }
  2234. }
  2235. if (tries == 5)
  2236. DRM_ERROR("FDI train 2 fail!\n");
  2237. DRM_DEBUG_KMS("FDI train done\n");
  2238. }
  2239. static const int snb_b_fdi_train_param[] = {
  2240. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2241. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2242. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2243. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2244. };
  2245. /* The FDI link training functions for SNB/Cougarpoint. */
  2246. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2247. {
  2248. struct drm_device *dev = crtc->dev;
  2249. struct drm_i915_private *dev_priv = dev->dev_private;
  2250. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2251. int pipe = intel_crtc->pipe;
  2252. u32 reg, temp, i, retry;
  2253. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2254. for train result */
  2255. reg = FDI_RX_IMR(pipe);
  2256. temp = I915_READ(reg);
  2257. temp &= ~FDI_RX_SYMBOL_LOCK;
  2258. temp &= ~FDI_RX_BIT_LOCK;
  2259. I915_WRITE(reg, temp);
  2260. POSTING_READ(reg);
  2261. udelay(150);
  2262. /* enable CPU FDI TX and PCH FDI RX */
  2263. reg = FDI_TX_CTL(pipe);
  2264. temp = I915_READ(reg);
  2265. temp &= ~(7 << 19);
  2266. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2267. temp &= ~FDI_LINK_TRAIN_NONE;
  2268. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2269. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2270. /* SNB-B */
  2271. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2272. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2273. I915_WRITE(FDI_RX_MISC(pipe),
  2274. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2275. reg = FDI_RX_CTL(pipe);
  2276. temp = I915_READ(reg);
  2277. if (HAS_PCH_CPT(dev)) {
  2278. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2279. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2280. } else {
  2281. temp &= ~FDI_LINK_TRAIN_NONE;
  2282. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2283. }
  2284. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2285. POSTING_READ(reg);
  2286. udelay(150);
  2287. cpt_phase_pointer_enable(dev, pipe);
  2288. for (i = 0; i < 4; i++) {
  2289. reg = FDI_TX_CTL(pipe);
  2290. temp = I915_READ(reg);
  2291. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2292. temp |= snb_b_fdi_train_param[i];
  2293. I915_WRITE(reg, temp);
  2294. POSTING_READ(reg);
  2295. udelay(500);
  2296. for (retry = 0; retry < 5; retry++) {
  2297. reg = FDI_RX_IIR(pipe);
  2298. temp = I915_READ(reg);
  2299. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2300. if (temp & FDI_RX_BIT_LOCK) {
  2301. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2302. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2303. break;
  2304. }
  2305. udelay(50);
  2306. }
  2307. if (retry < 5)
  2308. break;
  2309. }
  2310. if (i == 4)
  2311. DRM_ERROR("FDI train 1 fail!\n");
  2312. /* Train 2 */
  2313. reg = FDI_TX_CTL(pipe);
  2314. temp = I915_READ(reg);
  2315. temp &= ~FDI_LINK_TRAIN_NONE;
  2316. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2317. if (IS_GEN6(dev)) {
  2318. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2319. /* SNB-B */
  2320. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2321. }
  2322. I915_WRITE(reg, temp);
  2323. reg = FDI_RX_CTL(pipe);
  2324. temp = I915_READ(reg);
  2325. if (HAS_PCH_CPT(dev)) {
  2326. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2327. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2328. } else {
  2329. temp &= ~FDI_LINK_TRAIN_NONE;
  2330. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2331. }
  2332. I915_WRITE(reg, temp);
  2333. POSTING_READ(reg);
  2334. udelay(150);
  2335. for (i = 0; i < 4; i++) {
  2336. reg = FDI_TX_CTL(pipe);
  2337. temp = I915_READ(reg);
  2338. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2339. temp |= snb_b_fdi_train_param[i];
  2340. I915_WRITE(reg, temp);
  2341. POSTING_READ(reg);
  2342. udelay(500);
  2343. for (retry = 0; retry < 5; retry++) {
  2344. reg = FDI_RX_IIR(pipe);
  2345. temp = I915_READ(reg);
  2346. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2347. if (temp & FDI_RX_SYMBOL_LOCK) {
  2348. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2349. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2350. break;
  2351. }
  2352. udelay(50);
  2353. }
  2354. if (retry < 5)
  2355. break;
  2356. }
  2357. if (i == 4)
  2358. DRM_ERROR("FDI train 2 fail!\n");
  2359. DRM_DEBUG_KMS("FDI train done.\n");
  2360. }
  2361. /* Manual link training for Ivy Bridge A0 parts */
  2362. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2363. {
  2364. struct drm_device *dev = crtc->dev;
  2365. struct drm_i915_private *dev_priv = dev->dev_private;
  2366. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2367. int pipe = intel_crtc->pipe;
  2368. u32 reg, temp, i;
  2369. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2370. for train result */
  2371. reg = FDI_RX_IMR(pipe);
  2372. temp = I915_READ(reg);
  2373. temp &= ~FDI_RX_SYMBOL_LOCK;
  2374. temp &= ~FDI_RX_BIT_LOCK;
  2375. I915_WRITE(reg, temp);
  2376. POSTING_READ(reg);
  2377. udelay(150);
  2378. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2379. I915_READ(FDI_RX_IIR(pipe)));
  2380. /* enable CPU FDI TX and PCH FDI RX */
  2381. reg = FDI_TX_CTL(pipe);
  2382. temp = I915_READ(reg);
  2383. temp &= ~(7 << 19);
  2384. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2385. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2386. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2387. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2388. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2389. temp |= FDI_COMPOSITE_SYNC;
  2390. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2391. I915_WRITE(FDI_RX_MISC(pipe),
  2392. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2393. reg = FDI_RX_CTL(pipe);
  2394. temp = I915_READ(reg);
  2395. temp &= ~FDI_LINK_TRAIN_AUTO;
  2396. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2397. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2398. temp |= FDI_COMPOSITE_SYNC;
  2399. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2400. POSTING_READ(reg);
  2401. udelay(150);
  2402. cpt_phase_pointer_enable(dev, pipe);
  2403. for (i = 0; i < 4; i++) {
  2404. reg = FDI_TX_CTL(pipe);
  2405. temp = I915_READ(reg);
  2406. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2407. temp |= snb_b_fdi_train_param[i];
  2408. I915_WRITE(reg, temp);
  2409. POSTING_READ(reg);
  2410. udelay(500);
  2411. reg = FDI_RX_IIR(pipe);
  2412. temp = I915_READ(reg);
  2413. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2414. if (temp & FDI_RX_BIT_LOCK ||
  2415. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2416. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2417. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2418. break;
  2419. }
  2420. }
  2421. if (i == 4)
  2422. DRM_ERROR("FDI train 1 fail!\n");
  2423. /* Train 2 */
  2424. reg = FDI_TX_CTL(pipe);
  2425. temp = I915_READ(reg);
  2426. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2427. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2428. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2429. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2430. I915_WRITE(reg, temp);
  2431. reg = FDI_RX_CTL(pipe);
  2432. temp = I915_READ(reg);
  2433. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2434. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2435. I915_WRITE(reg, temp);
  2436. POSTING_READ(reg);
  2437. udelay(150);
  2438. for (i = 0; i < 4; i++) {
  2439. reg = FDI_TX_CTL(pipe);
  2440. temp = I915_READ(reg);
  2441. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2442. temp |= snb_b_fdi_train_param[i];
  2443. I915_WRITE(reg, temp);
  2444. POSTING_READ(reg);
  2445. udelay(500);
  2446. reg = FDI_RX_IIR(pipe);
  2447. temp = I915_READ(reg);
  2448. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2449. if (temp & FDI_RX_SYMBOL_LOCK) {
  2450. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2451. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2452. break;
  2453. }
  2454. }
  2455. if (i == 4)
  2456. DRM_ERROR("FDI train 2 fail!\n");
  2457. DRM_DEBUG_KMS("FDI train done.\n");
  2458. }
  2459. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2460. {
  2461. struct drm_device *dev = intel_crtc->base.dev;
  2462. struct drm_i915_private *dev_priv = dev->dev_private;
  2463. int pipe = intel_crtc->pipe;
  2464. u32 reg, temp;
  2465. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2466. reg = FDI_RX_CTL(pipe);
  2467. temp = I915_READ(reg);
  2468. temp &= ~((0x7 << 19) | (0x7 << 16));
  2469. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2470. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2471. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2472. POSTING_READ(reg);
  2473. udelay(200);
  2474. /* Switch from Rawclk to PCDclk */
  2475. temp = I915_READ(reg);
  2476. I915_WRITE(reg, temp | FDI_PCDCLK);
  2477. POSTING_READ(reg);
  2478. udelay(200);
  2479. /* On Haswell, the PLL configuration for ports and pipes is handled
  2480. * separately, as part of DDI setup */
  2481. if (!IS_HASWELL(dev)) {
  2482. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2483. reg = FDI_TX_CTL(pipe);
  2484. temp = I915_READ(reg);
  2485. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2486. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2487. POSTING_READ(reg);
  2488. udelay(100);
  2489. }
  2490. }
  2491. }
  2492. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2493. {
  2494. struct drm_device *dev = intel_crtc->base.dev;
  2495. struct drm_i915_private *dev_priv = dev->dev_private;
  2496. int pipe = intel_crtc->pipe;
  2497. u32 reg, temp;
  2498. /* Switch from PCDclk to Rawclk */
  2499. reg = FDI_RX_CTL(pipe);
  2500. temp = I915_READ(reg);
  2501. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2502. /* Disable CPU FDI TX PLL */
  2503. reg = FDI_TX_CTL(pipe);
  2504. temp = I915_READ(reg);
  2505. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2506. POSTING_READ(reg);
  2507. udelay(100);
  2508. reg = FDI_RX_CTL(pipe);
  2509. temp = I915_READ(reg);
  2510. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2511. /* Wait for the clocks to turn off. */
  2512. POSTING_READ(reg);
  2513. udelay(100);
  2514. }
  2515. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2516. {
  2517. struct drm_i915_private *dev_priv = dev->dev_private;
  2518. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2519. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2520. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2521. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2522. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2523. POSTING_READ(SOUTH_CHICKEN1);
  2524. }
  2525. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2526. {
  2527. struct drm_device *dev = crtc->dev;
  2528. struct drm_i915_private *dev_priv = dev->dev_private;
  2529. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2530. int pipe = intel_crtc->pipe;
  2531. u32 reg, temp;
  2532. /* disable CPU FDI tx and PCH FDI rx */
  2533. reg = FDI_TX_CTL(pipe);
  2534. temp = I915_READ(reg);
  2535. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2536. POSTING_READ(reg);
  2537. reg = FDI_RX_CTL(pipe);
  2538. temp = I915_READ(reg);
  2539. temp &= ~(0x7 << 16);
  2540. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2541. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2542. POSTING_READ(reg);
  2543. udelay(100);
  2544. /* Ironlake workaround, disable clock pointer after downing FDI */
  2545. if (HAS_PCH_IBX(dev)) {
  2546. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2547. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2548. I915_READ(FDI_RX_CHICKEN(pipe) &
  2549. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2550. } else if (HAS_PCH_CPT(dev)) {
  2551. cpt_phase_pointer_disable(dev, pipe);
  2552. }
  2553. /* still set train pattern 1 */
  2554. reg = FDI_TX_CTL(pipe);
  2555. temp = I915_READ(reg);
  2556. temp &= ~FDI_LINK_TRAIN_NONE;
  2557. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2558. I915_WRITE(reg, temp);
  2559. reg = FDI_RX_CTL(pipe);
  2560. temp = I915_READ(reg);
  2561. if (HAS_PCH_CPT(dev)) {
  2562. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2563. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2564. } else {
  2565. temp &= ~FDI_LINK_TRAIN_NONE;
  2566. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2567. }
  2568. /* BPC in FDI rx is consistent with that in PIPECONF */
  2569. temp &= ~(0x07 << 16);
  2570. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2571. I915_WRITE(reg, temp);
  2572. POSTING_READ(reg);
  2573. udelay(100);
  2574. }
  2575. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2576. {
  2577. struct drm_device *dev = crtc->dev;
  2578. struct drm_i915_private *dev_priv = dev->dev_private;
  2579. unsigned long flags;
  2580. bool pending;
  2581. if (atomic_read(&dev_priv->mm.wedged))
  2582. return false;
  2583. spin_lock_irqsave(&dev->event_lock, flags);
  2584. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2585. spin_unlock_irqrestore(&dev->event_lock, flags);
  2586. return pending;
  2587. }
  2588. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2589. {
  2590. struct drm_device *dev = crtc->dev;
  2591. struct drm_i915_private *dev_priv = dev->dev_private;
  2592. if (crtc->fb == NULL)
  2593. return;
  2594. wait_event(dev_priv->pending_flip_queue,
  2595. !intel_crtc_has_pending_flip(crtc));
  2596. mutex_lock(&dev->struct_mutex);
  2597. intel_finish_fb(crtc->fb);
  2598. mutex_unlock(&dev->struct_mutex);
  2599. }
  2600. static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
  2601. {
  2602. struct drm_device *dev = crtc->dev;
  2603. struct intel_encoder *intel_encoder;
  2604. /*
  2605. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2606. * must be driven by its own crtc; no sharing is possible.
  2607. */
  2608. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2609. switch (intel_encoder->type) {
  2610. case INTEL_OUTPUT_EDP:
  2611. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2612. return false;
  2613. continue;
  2614. }
  2615. }
  2616. return true;
  2617. }
  2618. static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
  2619. {
  2620. return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
  2621. }
  2622. /* Program iCLKIP clock to the desired frequency */
  2623. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2624. {
  2625. struct drm_device *dev = crtc->dev;
  2626. struct drm_i915_private *dev_priv = dev->dev_private;
  2627. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2628. u32 temp;
  2629. /* It is necessary to ungate the pixclk gate prior to programming
  2630. * the divisors, and gate it back when it is done.
  2631. */
  2632. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2633. /* Disable SSCCTL */
  2634. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2635. intel_sbi_read(dev_priv, SBI_SSCCTL6) |
  2636. SBI_SSCCTL_DISABLE);
  2637. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2638. if (crtc->mode.clock == 20000) {
  2639. auxdiv = 1;
  2640. divsel = 0x41;
  2641. phaseinc = 0x20;
  2642. } else {
  2643. /* The iCLK virtual clock root frequency is in MHz,
  2644. * but the crtc->mode.clock in in KHz. To get the divisors,
  2645. * it is necessary to divide one by another, so we
  2646. * convert the virtual clock precision to KHz here for higher
  2647. * precision.
  2648. */
  2649. u32 iclk_virtual_root_freq = 172800 * 1000;
  2650. u32 iclk_pi_range = 64;
  2651. u32 desired_divisor, msb_divisor_value, pi_value;
  2652. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2653. msb_divisor_value = desired_divisor / iclk_pi_range;
  2654. pi_value = desired_divisor % iclk_pi_range;
  2655. auxdiv = 0;
  2656. divsel = msb_divisor_value - 2;
  2657. phaseinc = pi_value;
  2658. }
  2659. /* This should not happen with any sane values */
  2660. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2661. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2662. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2663. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2664. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2665. crtc->mode.clock,
  2666. auxdiv,
  2667. divsel,
  2668. phasedir,
  2669. phaseinc);
  2670. /* Program SSCDIVINTPHASE6 */
  2671. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
  2672. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2673. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2674. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2675. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2676. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2677. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2678. intel_sbi_write(dev_priv,
  2679. SBI_SSCDIVINTPHASE6,
  2680. temp);
  2681. /* Program SSCAUXDIV */
  2682. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
  2683. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2684. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2685. intel_sbi_write(dev_priv,
  2686. SBI_SSCAUXDIV6,
  2687. temp);
  2688. /* Enable modulator and associated divider */
  2689. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
  2690. temp &= ~SBI_SSCCTL_DISABLE;
  2691. intel_sbi_write(dev_priv,
  2692. SBI_SSCCTL6,
  2693. temp);
  2694. /* Wait for initialization time */
  2695. udelay(24);
  2696. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2697. }
  2698. /*
  2699. * Enable PCH resources required for PCH ports:
  2700. * - PCH PLLs
  2701. * - FDI training & RX/TX
  2702. * - update transcoder timings
  2703. * - DP transcoding bits
  2704. * - transcoder
  2705. */
  2706. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2707. {
  2708. struct drm_device *dev = crtc->dev;
  2709. struct drm_i915_private *dev_priv = dev->dev_private;
  2710. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2711. int pipe = intel_crtc->pipe;
  2712. u32 reg, temp;
  2713. assert_transcoder_disabled(dev_priv, pipe);
  2714. /* Write the TU size bits before fdi link training, so that error
  2715. * detection works. */
  2716. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2717. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2718. /* For PCH output, training FDI link */
  2719. dev_priv->display.fdi_link_train(crtc);
  2720. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2721. * transcoder, and we actually should do this to not upset any PCH
  2722. * transcoder that already use the clock when we share it.
  2723. *
  2724. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2725. * unconditionally resets the pll - we need that to have the right LVDS
  2726. * enable sequence. */
  2727. ironlake_enable_pch_pll(intel_crtc);
  2728. if (HAS_PCH_CPT(dev)) {
  2729. u32 sel;
  2730. temp = I915_READ(PCH_DPLL_SEL);
  2731. switch (pipe) {
  2732. default:
  2733. case 0:
  2734. temp |= TRANSA_DPLL_ENABLE;
  2735. sel = TRANSA_DPLLB_SEL;
  2736. break;
  2737. case 1:
  2738. temp |= TRANSB_DPLL_ENABLE;
  2739. sel = TRANSB_DPLLB_SEL;
  2740. break;
  2741. case 2:
  2742. temp |= TRANSC_DPLL_ENABLE;
  2743. sel = TRANSC_DPLLB_SEL;
  2744. break;
  2745. }
  2746. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2747. temp |= sel;
  2748. else
  2749. temp &= ~sel;
  2750. I915_WRITE(PCH_DPLL_SEL, temp);
  2751. }
  2752. /* set transcoder timing, panel must allow it */
  2753. assert_panel_unlocked(dev_priv, pipe);
  2754. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2755. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2756. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2757. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2758. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2759. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2760. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2761. intel_fdi_normal_train(crtc);
  2762. /* For PCH DP, enable TRANS_DP_CTL */
  2763. if (HAS_PCH_CPT(dev) &&
  2764. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2765. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2766. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2767. reg = TRANS_DP_CTL(pipe);
  2768. temp = I915_READ(reg);
  2769. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2770. TRANS_DP_SYNC_MASK |
  2771. TRANS_DP_BPC_MASK);
  2772. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2773. TRANS_DP_ENH_FRAMING);
  2774. temp |= bpc << 9; /* same format but at 11:9 */
  2775. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2776. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2777. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2778. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2779. switch (intel_trans_dp_port_sel(crtc)) {
  2780. case PCH_DP_B:
  2781. temp |= TRANS_DP_PORT_SEL_B;
  2782. break;
  2783. case PCH_DP_C:
  2784. temp |= TRANS_DP_PORT_SEL_C;
  2785. break;
  2786. case PCH_DP_D:
  2787. temp |= TRANS_DP_PORT_SEL_D;
  2788. break;
  2789. default:
  2790. BUG();
  2791. }
  2792. I915_WRITE(reg, temp);
  2793. }
  2794. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2795. }
  2796. static void lpt_pch_enable(struct drm_crtc *crtc)
  2797. {
  2798. struct drm_device *dev = crtc->dev;
  2799. struct drm_i915_private *dev_priv = dev->dev_private;
  2800. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2801. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  2802. assert_transcoder_disabled(dev_priv, TRANSCODER_A);
  2803. lpt_program_iclkip(crtc);
  2804. /* Set transcoder timing. */
  2805. I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
  2806. I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
  2807. I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
  2808. I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
  2809. I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
  2810. I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
  2811. I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2812. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2813. }
  2814. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2815. {
  2816. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2817. if (pll == NULL)
  2818. return;
  2819. if (pll->refcount == 0) {
  2820. WARN(1, "bad PCH PLL refcount\n");
  2821. return;
  2822. }
  2823. --pll->refcount;
  2824. intel_crtc->pch_pll = NULL;
  2825. }
  2826. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2827. {
  2828. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2829. struct intel_pch_pll *pll;
  2830. int i;
  2831. pll = intel_crtc->pch_pll;
  2832. if (pll) {
  2833. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2834. intel_crtc->base.base.id, pll->pll_reg);
  2835. goto prepare;
  2836. }
  2837. if (HAS_PCH_IBX(dev_priv->dev)) {
  2838. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2839. i = intel_crtc->pipe;
  2840. pll = &dev_priv->pch_plls[i];
  2841. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2842. intel_crtc->base.base.id, pll->pll_reg);
  2843. goto found;
  2844. }
  2845. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2846. pll = &dev_priv->pch_plls[i];
  2847. /* Only want to check enabled timings first */
  2848. if (pll->refcount == 0)
  2849. continue;
  2850. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2851. fp == I915_READ(pll->fp0_reg)) {
  2852. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2853. intel_crtc->base.base.id,
  2854. pll->pll_reg, pll->refcount, pll->active);
  2855. goto found;
  2856. }
  2857. }
  2858. /* Ok no matching timings, maybe there's a free one? */
  2859. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2860. pll = &dev_priv->pch_plls[i];
  2861. if (pll->refcount == 0) {
  2862. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2863. intel_crtc->base.base.id, pll->pll_reg);
  2864. goto found;
  2865. }
  2866. }
  2867. return NULL;
  2868. found:
  2869. intel_crtc->pch_pll = pll;
  2870. pll->refcount++;
  2871. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2872. prepare: /* separate function? */
  2873. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2874. /* Wait for the clocks to stabilize before rewriting the regs */
  2875. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2876. POSTING_READ(pll->pll_reg);
  2877. udelay(150);
  2878. I915_WRITE(pll->fp0_reg, fp);
  2879. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2880. pll->on = false;
  2881. return pll;
  2882. }
  2883. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2884. {
  2885. struct drm_i915_private *dev_priv = dev->dev_private;
  2886. int dslreg = PIPEDSL(pipe);
  2887. u32 temp;
  2888. temp = I915_READ(dslreg);
  2889. udelay(500);
  2890. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2891. if (wait_for(I915_READ(dslreg) != temp, 5))
  2892. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2893. }
  2894. }
  2895. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2896. {
  2897. struct drm_device *dev = crtc->dev;
  2898. struct drm_i915_private *dev_priv = dev->dev_private;
  2899. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2900. struct intel_encoder *encoder;
  2901. int pipe = intel_crtc->pipe;
  2902. int plane = intel_crtc->plane;
  2903. u32 temp;
  2904. bool is_pch_port;
  2905. WARN_ON(!crtc->enabled);
  2906. if (intel_crtc->active)
  2907. return;
  2908. intel_crtc->active = true;
  2909. intel_update_watermarks(dev);
  2910. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2911. temp = I915_READ(PCH_LVDS);
  2912. if ((temp & LVDS_PORT_EN) == 0)
  2913. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2914. }
  2915. is_pch_port = ironlake_crtc_driving_pch(crtc);
  2916. if (is_pch_port) {
  2917. /* Note: FDI PLL enabling _must_ be done before we enable the
  2918. * cpu pipes, hence this is separate from all the other fdi/pch
  2919. * enabling. */
  2920. ironlake_fdi_pll_enable(intel_crtc);
  2921. } else {
  2922. assert_fdi_tx_disabled(dev_priv, pipe);
  2923. assert_fdi_rx_disabled(dev_priv, pipe);
  2924. }
  2925. for_each_encoder_on_crtc(dev, crtc, encoder)
  2926. if (encoder->pre_enable)
  2927. encoder->pre_enable(encoder);
  2928. /* Enable panel fitting for LVDS */
  2929. if (dev_priv->pch_pf_size &&
  2930. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2931. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2932. /* Force use of hard-coded filter coefficients
  2933. * as some pre-programmed values are broken,
  2934. * e.g. x201.
  2935. */
  2936. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2937. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2938. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2939. }
  2940. /*
  2941. * On ILK+ LUT must be loaded before the pipe is running but with
  2942. * clocks enabled
  2943. */
  2944. intel_crtc_load_lut(crtc);
  2945. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2946. intel_enable_plane(dev_priv, plane, pipe);
  2947. if (is_pch_port)
  2948. ironlake_pch_enable(crtc);
  2949. mutex_lock(&dev->struct_mutex);
  2950. intel_update_fbc(dev);
  2951. mutex_unlock(&dev->struct_mutex);
  2952. intel_crtc_update_cursor(crtc, true);
  2953. for_each_encoder_on_crtc(dev, crtc, encoder)
  2954. encoder->enable(encoder);
  2955. if (HAS_PCH_CPT(dev))
  2956. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2957. /*
  2958. * There seems to be a race in PCH platform hw (at least on some
  2959. * outputs) where an enabled pipe still completes any pageflip right
  2960. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2961. * as the first vblank happend, everything works as expected. Hence just
  2962. * wait for one vblank before returning to avoid strange things
  2963. * happening.
  2964. */
  2965. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2966. }
  2967. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2968. {
  2969. struct drm_device *dev = crtc->dev;
  2970. struct drm_i915_private *dev_priv = dev->dev_private;
  2971. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2972. struct intel_encoder *encoder;
  2973. int pipe = intel_crtc->pipe;
  2974. int plane = intel_crtc->plane;
  2975. bool is_pch_port;
  2976. WARN_ON(!crtc->enabled);
  2977. if (intel_crtc->active)
  2978. return;
  2979. intel_crtc->active = true;
  2980. intel_update_watermarks(dev);
  2981. is_pch_port = haswell_crtc_driving_pch(crtc);
  2982. if (is_pch_port)
  2983. dev_priv->display.fdi_link_train(crtc);
  2984. for_each_encoder_on_crtc(dev, crtc, encoder)
  2985. if (encoder->pre_enable)
  2986. encoder->pre_enable(encoder);
  2987. intel_ddi_enable_pipe_clock(intel_crtc);
  2988. /* Enable panel fitting for eDP */
  2989. if (dev_priv->pch_pf_size &&
  2990. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  2991. /* Force use of hard-coded filter coefficients
  2992. * as some pre-programmed values are broken,
  2993. * e.g. x201.
  2994. */
  2995. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2996. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2997. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2998. }
  2999. /*
  3000. * On ILK+ LUT must be loaded before the pipe is running but with
  3001. * clocks enabled
  3002. */
  3003. intel_crtc_load_lut(crtc);
  3004. intel_ddi_set_pipe_settings(crtc);
  3005. intel_ddi_enable_pipe_func(crtc);
  3006. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  3007. intel_enable_plane(dev_priv, plane, pipe);
  3008. if (is_pch_port)
  3009. lpt_pch_enable(crtc);
  3010. mutex_lock(&dev->struct_mutex);
  3011. intel_update_fbc(dev);
  3012. mutex_unlock(&dev->struct_mutex);
  3013. intel_crtc_update_cursor(crtc, true);
  3014. for_each_encoder_on_crtc(dev, crtc, encoder)
  3015. encoder->enable(encoder);
  3016. /*
  3017. * There seems to be a race in PCH platform hw (at least on some
  3018. * outputs) where an enabled pipe still completes any pageflip right
  3019. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3020. * as the first vblank happend, everything works as expected. Hence just
  3021. * wait for one vblank before returning to avoid strange things
  3022. * happening.
  3023. */
  3024. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3025. }
  3026. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3027. {
  3028. struct drm_device *dev = crtc->dev;
  3029. struct drm_i915_private *dev_priv = dev->dev_private;
  3030. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3031. struct intel_encoder *encoder;
  3032. int pipe = intel_crtc->pipe;
  3033. int plane = intel_crtc->plane;
  3034. u32 reg, temp;
  3035. if (!intel_crtc->active)
  3036. return;
  3037. for_each_encoder_on_crtc(dev, crtc, encoder)
  3038. encoder->disable(encoder);
  3039. intel_crtc_wait_for_pending_flips(crtc);
  3040. drm_vblank_off(dev, pipe);
  3041. intel_crtc_update_cursor(crtc, false);
  3042. intel_disable_plane(dev_priv, plane, pipe);
  3043. if (dev_priv->cfb_plane == plane)
  3044. intel_disable_fbc(dev);
  3045. intel_disable_pipe(dev_priv, pipe);
  3046. /* Disable PF */
  3047. I915_WRITE(PF_CTL(pipe), 0);
  3048. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3049. for_each_encoder_on_crtc(dev, crtc, encoder)
  3050. if (encoder->post_disable)
  3051. encoder->post_disable(encoder);
  3052. ironlake_fdi_disable(crtc);
  3053. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3054. if (HAS_PCH_CPT(dev)) {
  3055. /* disable TRANS_DP_CTL */
  3056. reg = TRANS_DP_CTL(pipe);
  3057. temp = I915_READ(reg);
  3058. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  3059. temp |= TRANS_DP_PORT_SEL_NONE;
  3060. I915_WRITE(reg, temp);
  3061. /* disable DPLL_SEL */
  3062. temp = I915_READ(PCH_DPLL_SEL);
  3063. switch (pipe) {
  3064. case 0:
  3065. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  3066. break;
  3067. case 1:
  3068. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3069. break;
  3070. case 2:
  3071. /* C shares PLL A or B */
  3072. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  3073. break;
  3074. default:
  3075. BUG(); /* wtf */
  3076. }
  3077. I915_WRITE(PCH_DPLL_SEL, temp);
  3078. }
  3079. /* disable PCH DPLL */
  3080. intel_disable_pch_pll(intel_crtc);
  3081. ironlake_fdi_pll_disable(intel_crtc);
  3082. intel_crtc->active = false;
  3083. intel_update_watermarks(dev);
  3084. mutex_lock(&dev->struct_mutex);
  3085. intel_update_fbc(dev);
  3086. mutex_unlock(&dev->struct_mutex);
  3087. }
  3088. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3089. {
  3090. struct drm_device *dev = crtc->dev;
  3091. struct drm_i915_private *dev_priv = dev->dev_private;
  3092. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3093. struct intel_encoder *encoder;
  3094. int pipe = intel_crtc->pipe;
  3095. int plane = intel_crtc->plane;
  3096. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3097. bool is_pch_port;
  3098. if (!intel_crtc->active)
  3099. return;
  3100. is_pch_port = haswell_crtc_driving_pch(crtc);
  3101. for_each_encoder_on_crtc(dev, crtc, encoder)
  3102. encoder->disable(encoder);
  3103. intel_crtc_wait_for_pending_flips(crtc);
  3104. drm_vblank_off(dev, pipe);
  3105. intel_crtc_update_cursor(crtc, false);
  3106. intel_disable_plane(dev_priv, plane, pipe);
  3107. if (dev_priv->cfb_plane == plane)
  3108. intel_disable_fbc(dev);
  3109. intel_disable_pipe(dev_priv, pipe);
  3110. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3111. /* Disable PF */
  3112. I915_WRITE(PF_CTL(pipe), 0);
  3113. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3114. intel_ddi_disable_pipe_clock(intel_crtc);
  3115. for_each_encoder_on_crtc(dev, crtc, encoder)
  3116. if (encoder->post_disable)
  3117. encoder->post_disable(encoder);
  3118. if (is_pch_port) {
  3119. lpt_disable_pch_transcoder(dev_priv);
  3120. intel_ddi_fdi_disable(crtc);
  3121. }
  3122. intel_crtc->active = false;
  3123. intel_update_watermarks(dev);
  3124. mutex_lock(&dev->struct_mutex);
  3125. intel_update_fbc(dev);
  3126. mutex_unlock(&dev->struct_mutex);
  3127. }
  3128. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3129. {
  3130. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3131. intel_put_pch_pll(intel_crtc);
  3132. }
  3133. static void haswell_crtc_off(struct drm_crtc *crtc)
  3134. {
  3135. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3136. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3137. * start using it. */
  3138. intel_crtc->cpu_transcoder = intel_crtc->pipe;
  3139. intel_ddi_put_crtc_pll(crtc);
  3140. }
  3141. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3142. {
  3143. if (!enable && intel_crtc->overlay) {
  3144. struct drm_device *dev = intel_crtc->base.dev;
  3145. struct drm_i915_private *dev_priv = dev->dev_private;
  3146. mutex_lock(&dev->struct_mutex);
  3147. dev_priv->mm.interruptible = false;
  3148. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3149. dev_priv->mm.interruptible = true;
  3150. mutex_unlock(&dev->struct_mutex);
  3151. }
  3152. /* Let userspace switch the overlay on again. In most cases userspace
  3153. * has to recompute where to put it anyway.
  3154. */
  3155. }
  3156. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3157. {
  3158. struct drm_device *dev = crtc->dev;
  3159. struct drm_i915_private *dev_priv = dev->dev_private;
  3160. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3161. struct intel_encoder *encoder;
  3162. int pipe = intel_crtc->pipe;
  3163. int plane = intel_crtc->plane;
  3164. WARN_ON(!crtc->enabled);
  3165. if (intel_crtc->active)
  3166. return;
  3167. intel_crtc->active = true;
  3168. intel_update_watermarks(dev);
  3169. intel_enable_pll(dev_priv, pipe);
  3170. intel_enable_pipe(dev_priv, pipe, false);
  3171. intel_enable_plane(dev_priv, plane, pipe);
  3172. intel_crtc_load_lut(crtc);
  3173. intel_update_fbc(dev);
  3174. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3175. intel_crtc_dpms_overlay(intel_crtc, true);
  3176. intel_crtc_update_cursor(crtc, true);
  3177. for_each_encoder_on_crtc(dev, crtc, encoder)
  3178. encoder->enable(encoder);
  3179. }
  3180. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3181. {
  3182. struct drm_device *dev = crtc->dev;
  3183. struct drm_i915_private *dev_priv = dev->dev_private;
  3184. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3185. struct intel_encoder *encoder;
  3186. int pipe = intel_crtc->pipe;
  3187. int plane = intel_crtc->plane;
  3188. if (!intel_crtc->active)
  3189. return;
  3190. for_each_encoder_on_crtc(dev, crtc, encoder)
  3191. encoder->disable(encoder);
  3192. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3193. intel_crtc_wait_for_pending_flips(crtc);
  3194. drm_vblank_off(dev, pipe);
  3195. intel_crtc_dpms_overlay(intel_crtc, false);
  3196. intel_crtc_update_cursor(crtc, false);
  3197. if (dev_priv->cfb_plane == plane)
  3198. intel_disable_fbc(dev);
  3199. intel_disable_plane(dev_priv, plane, pipe);
  3200. intel_disable_pipe(dev_priv, pipe);
  3201. intel_disable_pll(dev_priv, pipe);
  3202. intel_crtc->active = false;
  3203. intel_update_fbc(dev);
  3204. intel_update_watermarks(dev);
  3205. }
  3206. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3207. {
  3208. }
  3209. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3210. bool enabled)
  3211. {
  3212. struct drm_device *dev = crtc->dev;
  3213. struct drm_i915_master_private *master_priv;
  3214. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3215. int pipe = intel_crtc->pipe;
  3216. if (!dev->primary->master)
  3217. return;
  3218. master_priv = dev->primary->master->driver_priv;
  3219. if (!master_priv->sarea_priv)
  3220. return;
  3221. switch (pipe) {
  3222. case 0:
  3223. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3224. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3225. break;
  3226. case 1:
  3227. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3228. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3229. break;
  3230. default:
  3231. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3232. break;
  3233. }
  3234. }
  3235. /**
  3236. * Sets the power management mode of the pipe and plane.
  3237. */
  3238. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3239. {
  3240. struct drm_device *dev = crtc->dev;
  3241. struct drm_i915_private *dev_priv = dev->dev_private;
  3242. struct intel_encoder *intel_encoder;
  3243. bool enable = false;
  3244. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3245. enable |= intel_encoder->connectors_active;
  3246. if (enable)
  3247. dev_priv->display.crtc_enable(crtc);
  3248. else
  3249. dev_priv->display.crtc_disable(crtc);
  3250. intel_crtc_update_sarea(crtc, enable);
  3251. }
  3252. static void intel_crtc_noop(struct drm_crtc *crtc)
  3253. {
  3254. }
  3255. static void intel_crtc_disable(struct drm_crtc *crtc)
  3256. {
  3257. struct drm_device *dev = crtc->dev;
  3258. struct drm_connector *connector;
  3259. struct drm_i915_private *dev_priv = dev->dev_private;
  3260. /* crtc should still be enabled when we disable it. */
  3261. WARN_ON(!crtc->enabled);
  3262. dev_priv->display.crtc_disable(crtc);
  3263. intel_crtc_update_sarea(crtc, false);
  3264. dev_priv->display.off(crtc);
  3265. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3266. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3267. if (crtc->fb) {
  3268. mutex_lock(&dev->struct_mutex);
  3269. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3270. mutex_unlock(&dev->struct_mutex);
  3271. crtc->fb = NULL;
  3272. }
  3273. /* Update computed state. */
  3274. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3275. if (!connector->encoder || !connector->encoder->crtc)
  3276. continue;
  3277. if (connector->encoder->crtc != crtc)
  3278. continue;
  3279. connector->dpms = DRM_MODE_DPMS_OFF;
  3280. to_intel_encoder(connector->encoder)->connectors_active = false;
  3281. }
  3282. }
  3283. void intel_modeset_disable(struct drm_device *dev)
  3284. {
  3285. struct drm_crtc *crtc;
  3286. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3287. if (crtc->enabled)
  3288. intel_crtc_disable(crtc);
  3289. }
  3290. }
  3291. void intel_encoder_noop(struct drm_encoder *encoder)
  3292. {
  3293. }
  3294. void intel_encoder_destroy(struct drm_encoder *encoder)
  3295. {
  3296. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3297. drm_encoder_cleanup(encoder);
  3298. kfree(intel_encoder);
  3299. }
  3300. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3301. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3302. * state of the entire output pipe. */
  3303. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3304. {
  3305. if (mode == DRM_MODE_DPMS_ON) {
  3306. encoder->connectors_active = true;
  3307. intel_crtc_update_dpms(encoder->base.crtc);
  3308. } else {
  3309. encoder->connectors_active = false;
  3310. intel_crtc_update_dpms(encoder->base.crtc);
  3311. }
  3312. }
  3313. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3314. * internal consistency). */
  3315. static void intel_connector_check_state(struct intel_connector *connector)
  3316. {
  3317. if (connector->get_hw_state(connector)) {
  3318. struct intel_encoder *encoder = connector->encoder;
  3319. struct drm_crtc *crtc;
  3320. bool encoder_enabled;
  3321. enum pipe pipe;
  3322. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3323. connector->base.base.id,
  3324. drm_get_connector_name(&connector->base));
  3325. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3326. "wrong connector dpms state\n");
  3327. WARN(connector->base.encoder != &encoder->base,
  3328. "active connector not linked to encoder\n");
  3329. WARN(!encoder->connectors_active,
  3330. "encoder->connectors_active not set\n");
  3331. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3332. WARN(!encoder_enabled, "encoder not enabled\n");
  3333. if (WARN_ON(!encoder->base.crtc))
  3334. return;
  3335. crtc = encoder->base.crtc;
  3336. WARN(!crtc->enabled, "crtc not enabled\n");
  3337. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3338. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3339. "encoder active on the wrong pipe\n");
  3340. }
  3341. }
  3342. /* Even simpler default implementation, if there's really no special case to
  3343. * consider. */
  3344. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3345. {
  3346. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3347. /* All the simple cases only support two dpms states. */
  3348. if (mode != DRM_MODE_DPMS_ON)
  3349. mode = DRM_MODE_DPMS_OFF;
  3350. if (mode == connector->dpms)
  3351. return;
  3352. connector->dpms = mode;
  3353. /* Only need to change hw state when actually enabled */
  3354. if (encoder->base.crtc)
  3355. intel_encoder_dpms(encoder, mode);
  3356. else
  3357. WARN_ON(encoder->connectors_active != false);
  3358. intel_modeset_check_state(connector->dev);
  3359. }
  3360. /* Simple connector->get_hw_state implementation for encoders that support only
  3361. * one connector and no cloning and hence the encoder state determines the state
  3362. * of the connector. */
  3363. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3364. {
  3365. enum pipe pipe = 0;
  3366. struct intel_encoder *encoder = connector->encoder;
  3367. return encoder->get_hw_state(encoder, &pipe);
  3368. }
  3369. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3370. const struct drm_display_mode *mode,
  3371. struct drm_display_mode *adjusted_mode)
  3372. {
  3373. struct drm_device *dev = crtc->dev;
  3374. if (HAS_PCH_SPLIT(dev)) {
  3375. /* FDI link clock is fixed at 2.7G */
  3376. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3377. return false;
  3378. }
  3379. /* All interlaced capable intel hw wants timings in frames. Note though
  3380. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3381. * timings, so we need to be careful not to clobber these.*/
  3382. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3383. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3384. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3385. * with a hsync front porch of 0.
  3386. */
  3387. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3388. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3389. return false;
  3390. return true;
  3391. }
  3392. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3393. {
  3394. return 400000; /* FIXME */
  3395. }
  3396. static int i945_get_display_clock_speed(struct drm_device *dev)
  3397. {
  3398. return 400000;
  3399. }
  3400. static int i915_get_display_clock_speed(struct drm_device *dev)
  3401. {
  3402. return 333000;
  3403. }
  3404. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3405. {
  3406. return 200000;
  3407. }
  3408. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3409. {
  3410. u16 gcfgc = 0;
  3411. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3412. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3413. return 133000;
  3414. else {
  3415. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3416. case GC_DISPLAY_CLOCK_333_MHZ:
  3417. return 333000;
  3418. default:
  3419. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3420. return 190000;
  3421. }
  3422. }
  3423. }
  3424. static int i865_get_display_clock_speed(struct drm_device *dev)
  3425. {
  3426. return 266000;
  3427. }
  3428. static int i855_get_display_clock_speed(struct drm_device *dev)
  3429. {
  3430. u16 hpllcc = 0;
  3431. /* Assume that the hardware is in the high speed state. This
  3432. * should be the default.
  3433. */
  3434. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3435. case GC_CLOCK_133_200:
  3436. case GC_CLOCK_100_200:
  3437. return 200000;
  3438. case GC_CLOCK_166_250:
  3439. return 250000;
  3440. case GC_CLOCK_100_133:
  3441. return 133000;
  3442. }
  3443. /* Shouldn't happen */
  3444. return 0;
  3445. }
  3446. static int i830_get_display_clock_speed(struct drm_device *dev)
  3447. {
  3448. return 133000;
  3449. }
  3450. struct fdi_m_n {
  3451. u32 tu;
  3452. u32 gmch_m;
  3453. u32 gmch_n;
  3454. u32 link_m;
  3455. u32 link_n;
  3456. };
  3457. static void
  3458. fdi_reduce_ratio(u32 *num, u32 *den)
  3459. {
  3460. while (*num > 0xffffff || *den > 0xffffff) {
  3461. *num >>= 1;
  3462. *den >>= 1;
  3463. }
  3464. }
  3465. static void
  3466. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3467. int link_clock, struct fdi_m_n *m_n)
  3468. {
  3469. m_n->tu = 64; /* default size */
  3470. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3471. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3472. m_n->gmch_n = link_clock * nlanes * 8;
  3473. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3474. m_n->link_m = pixel_clock;
  3475. m_n->link_n = link_clock;
  3476. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3477. }
  3478. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3479. {
  3480. if (i915_panel_use_ssc >= 0)
  3481. return i915_panel_use_ssc != 0;
  3482. return dev_priv->lvds_use_ssc
  3483. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3484. }
  3485. /**
  3486. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3487. * @crtc: CRTC structure
  3488. * @mode: requested mode
  3489. *
  3490. * A pipe may be connected to one or more outputs. Based on the depth of the
  3491. * attached framebuffer, choose a good color depth to use on the pipe.
  3492. *
  3493. * If possible, match the pipe depth to the fb depth. In some cases, this
  3494. * isn't ideal, because the connected output supports a lesser or restricted
  3495. * set of depths. Resolve that here:
  3496. * LVDS typically supports only 6bpc, so clamp down in that case
  3497. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3498. * Displays may support a restricted set as well, check EDID and clamp as
  3499. * appropriate.
  3500. * DP may want to dither down to 6bpc to fit larger modes
  3501. *
  3502. * RETURNS:
  3503. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3504. * true if they don't match).
  3505. */
  3506. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3507. struct drm_framebuffer *fb,
  3508. unsigned int *pipe_bpp,
  3509. struct drm_display_mode *mode)
  3510. {
  3511. struct drm_device *dev = crtc->dev;
  3512. struct drm_i915_private *dev_priv = dev->dev_private;
  3513. struct drm_connector *connector;
  3514. struct intel_encoder *intel_encoder;
  3515. unsigned int display_bpc = UINT_MAX, bpc;
  3516. /* Walk the encoders & connectors on this crtc, get min bpc */
  3517. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3518. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3519. unsigned int lvds_bpc;
  3520. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3521. LVDS_A3_POWER_UP)
  3522. lvds_bpc = 8;
  3523. else
  3524. lvds_bpc = 6;
  3525. if (lvds_bpc < display_bpc) {
  3526. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3527. display_bpc = lvds_bpc;
  3528. }
  3529. continue;
  3530. }
  3531. /* Not one of the known troublemakers, check the EDID */
  3532. list_for_each_entry(connector, &dev->mode_config.connector_list,
  3533. head) {
  3534. if (connector->encoder != &intel_encoder->base)
  3535. continue;
  3536. /* Don't use an invalid EDID bpc value */
  3537. if (connector->display_info.bpc &&
  3538. connector->display_info.bpc < display_bpc) {
  3539. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3540. display_bpc = connector->display_info.bpc;
  3541. }
  3542. }
  3543. /*
  3544. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3545. * through, clamp it down. (Note: >12bpc will be caught below.)
  3546. */
  3547. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3548. if (display_bpc > 8 && display_bpc < 12) {
  3549. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3550. display_bpc = 12;
  3551. } else {
  3552. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3553. display_bpc = 8;
  3554. }
  3555. }
  3556. }
  3557. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3558. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3559. display_bpc = 6;
  3560. }
  3561. /*
  3562. * We could just drive the pipe at the highest bpc all the time and
  3563. * enable dithering as needed, but that costs bandwidth. So choose
  3564. * the minimum value that expresses the full color range of the fb but
  3565. * also stays within the max display bpc discovered above.
  3566. */
  3567. switch (fb->depth) {
  3568. case 8:
  3569. bpc = 8; /* since we go through a colormap */
  3570. break;
  3571. case 15:
  3572. case 16:
  3573. bpc = 6; /* min is 18bpp */
  3574. break;
  3575. case 24:
  3576. bpc = 8;
  3577. break;
  3578. case 30:
  3579. bpc = 10;
  3580. break;
  3581. case 48:
  3582. bpc = 12;
  3583. break;
  3584. default:
  3585. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3586. bpc = min((unsigned int)8, display_bpc);
  3587. break;
  3588. }
  3589. display_bpc = min(display_bpc, bpc);
  3590. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3591. bpc, display_bpc);
  3592. *pipe_bpp = display_bpc * 3;
  3593. return display_bpc != bpc;
  3594. }
  3595. static int vlv_get_refclk(struct drm_crtc *crtc)
  3596. {
  3597. struct drm_device *dev = crtc->dev;
  3598. struct drm_i915_private *dev_priv = dev->dev_private;
  3599. int refclk = 27000; /* for DP & HDMI */
  3600. return 100000; /* only one validated so far */
  3601. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3602. refclk = 96000;
  3603. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3604. if (intel_panel_use_ssc(dev_priv))
  3605. refclk = 100000;
  3606. else
  3607. refclk = 96000;
  3608. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3609. refclk = 100000;
  3610. }
  3611. return refclk;
  3612. }
  3613. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3614. {
  3615. struct drm_device *dev = crtc->dev;
  3616. struct drm_i915_private *dev_priv = dev->dev_private;
  3617. int refclk;
  3618. if (IS_VALLEYVIEW(dev)) {
  3619. refclk = vlv_get_refclk(crtc);
  3620. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3621. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3622. refclk = dev_priv->lvds_ssc_freq * 1000;
  3623. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3624. refclk / 1000);
  3625. } else if (!IS_GEN2(dev)) {
  3626. refclk = 96000;
  3627. } else {
  3628. refclk = 48000;
  3629. }
  3630. return refclk;
  3631. }
  3632. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3633. intel_clock_t *clock)
  3634. {
  3635. /* SDVO TV has fixed PLL values depend on its clock range,
  3636. this mirrors vbios setting. */
  3637. if (adjusted_mode->clock >= 100000
  3638. && adjusted_mode->clock < 140500) {
  3639. clock->p1 = 2;
  3640. clock->p2 = 10;
  3641. clock->n = 3;
  3642. clock->m1 = 16;
  3643. clock->m2 = 8;
  3644. } else if (adjusted_mode->clock >= 140500
  3645. && adjusted_mode->clock <= 200000) {
  3646. clock->p1 = 1;
  3647. clock->p2 = 10;
  3648. clock->n = 6;
  3649. clock->m1 = 12;
  3650. clock->m2 = 8;
  3651. }
  3652. }
  3653. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3654. intel_clock_t *clock,
  3655. intel_clock_t *reduced_clock)
  3656. {
  3657. struct drm_device *dev = crtc->dev;
  3658. struct drm_i915_private *dev_priv = dev->dev_private;
  3659. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3660. int pipe = intel_crtc->pipe;
  3661. u32 fp, fp2 = 0;
  3662. if (IS_PINEVIEW(dev)) {
  3663. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3664. if (reduced_clock)
  3665. fp2 = (1 << reduced_clock->n) << 16 |
  3666. reduced_clock->m1 << 8 | reduced_clock->m2;
  3667. } else {
  3668. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3669. if (reduced_clock)
  3670. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3671. reduced_clock->m2;
  3672. }
  3673. I915_WRITE(FP0(pipe), fp);
  3674. intel_crtc->lowfreq_avail = false;
  3675. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3676. reduced_clock && i915_powersave) {
  3677. I915_WRITE(FP1(pipe), fp2);
  3678. intel_crtc->lowfreq_avail = true;
  3679. } else {
  3680. I915_WRITE(FP1(pipe), fp);
  3681. }
  3682. }
  3683. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  3684. struct drm_display_mode *adjusted_mode)
  3685. {
  3686. struct drm_device *dev = crtc->dev;
  3687. struct drm_i915_private *dev_priv = dev->dev_private;
  3688. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3689. int pipe = intel_crtc->pipe;
  3690. u32 temp;
  3691. temp = I915_READ(LVDS);
  3692. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3693. if (pipe == 1) {
  3694. temp |= LVDS_PIPEB_SELECT;
  3695. } else {
  3696. temp &= ~LVDS_PIPEB_SELECT;
  3697. }
  3698. /* set the corresponsding LVDS_BORDER bit */
  3699. temp |= dev_priv->lvds_border_bits;
  3700. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3701. * set the DPLLs for dual-channel mode or not.
  3702. */
  3703. if (clock->p2 == 7)
  3704. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3705. else
  3706. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3707. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3708. * appropriately here, but we need to look more thoroughly into how
  3709. * panels behave in the two modes.
  3710. */
  3711. /* set the dithering flag on LVDS as needed */
  3712. if (INTEL_INFO(dev)->gen >= 4) {
  3713. if (dev_priv->lvds_dither)
  3714. temp |= LVDS_ENABLE_DITHER;
  3715. else
  3716. temp &= ~LVDS_ENABLE_DITHER;
  3717. }
  3718. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  3719. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  3720. temp |= LVDS_HSYNC_POLARITY;
  3721. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  3722. temp |= LVDS_VSYNC_POLARITY;
  3723. I915_WRITE(LVDS, temp);
  3724. }
  3725. static void vlv_update_pll(struct drm_crtc *crtc,
  3726. struct drm_display_mode *mode,
  3727. struct drm_display_mode *adjusted_mode,
  3728. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3729. int num_connectors)
  3730. {
  3731. struct drm_device *dev = crtc->dev;
  3732. struct drm_i915_private *dev_priv = dev->dev_private;
  3733. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3734. int pipe = intel_crtc->pipe;
  3735. u32 dpll, mdiv, pdiv;
  3736. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3737. bool is_sdvo;
  3738. u32 temp;
  3739. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3740. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3741. dpll = DPLL_VGA_MODE_DIS;
  3742. dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
  3743. dpll |= DPLL_REFA_CLK_ENABLE_VLV;
  3744. dpll |= DPLL_INTEGRATED_CLOCK_VLV;
  3745. I915_WRITE(DPLL(pipe), dpll);
  3746. POSTING_READ(DPLL(pipe));
  3747. bestn = clock->n;
  3748. bestm1 = clock->m1;
  3749. bestm2 = clock->m2;
  3750. bestp1 = clock->p1;
  3751. bestp2 = clock->p2;
  3752. /*
  3753. * In Valleyview PLL and program lane counter registers are exposed
  3754. * through DPIO interface
  3755. */
  3756. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3757. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3758. mdiv |= ((bestn << DPIO_N_SHIFT));
  3759. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3760. mdiv |= (1 << DPIO_K_SHIFT);
  3761. mdiv |= DPIO_ENABLE_CALIBRATION;
  3762. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3763. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3764. pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3765. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3766. (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
  3767. (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3768. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3769. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
  3770. dpll |= DPLL_VCO_ENABLE;
  3771. I915_WRITE(DPLL(pipe), dpll);
  3772. POSTING_READ(DPLL(pipe));
  3773. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3774. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3775. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
  3776. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3777. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3778. I915_WRITE(DPLL(pipe), dpll);
  3779. /* Wait for the clocks to stabilize. */
  3780. POSTING_READ(DPLL(pipe));
  3781. udelay(150);
  3782. temp = 0;
  3783. if (is_sdvo) {
  3784. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3785. if (temp > 1)
  3786. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3787. else
  3788. temp = 0;
  3789. }
  3790. I915_WRITE(DPLL_MD(pipe), temp);
  3791. POSTING_READ(DPLL_MD(pipe));
  3792. /* Now program lane control registers */
  3793. if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
  3794. || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  3795. {
  3796. temp = 0x1000C4;
  3797. if(pipe == 1)
  3798. temp |= (1 << 21);
  3799. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
  3800. }
  3801. if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
  3802. {
  3803. temp = 0x1000C4;
  3804. if(pipe == 1)
  3805. temp |= (1 << 21);
  3806. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
  3807. }
  3808. }
  3809. static void i9xx_update_pll(struct drm_crtc *crtc,
  3810. struct drm_display_mode *mode,
  3811. struct drm_display_mode *adjusted_mode,
  3812. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3813. int num_connectors)
  3814. {
  3815. struct drm_device *dev = crtc->dev;
  3816. struct drm_i915_private *dev_priv = dev->dev_private;
  3817. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3818. int pipe = intel_crtc->pipe;
  3819. u32 dpll;
  3820. bool is_sdvo;
  3821. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3822. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3823. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3824. dpll = DPLL_VGA_MODE_DIS;
  3825. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3826. dpll |= DPLLB_MODE_LVDS;
  3827. else
  3828. dpll |= DPLLB_MODE_DAC_SERIAL;
  3829. if (is_sdvo) {
  3830. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3831. if (pixel_multiplier > 1) {
  3832. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3833. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3834. }
  3835. dpll |= DPLL_DVO_HIGH_SPEED;
  3836. }
  3837. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3838. dpll |= DPLL_DVO_HIGH_SPEED;
  3839. /* compute bitmask from p1 value */
  3840. if (IS_PINEVIEW(dev))
  3841. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3842. else {
  3843. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3844. if (IS_G4X(dev) && reduced_clock)
  3845. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3846. }
  3847. switch (clock->p2) {
  3848. case 5:
  3849. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3850. break;
  3851. case 7:
  3852. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3853. break;
  3854. case 10:
  3855. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3856. break;
  3857. case 14:
  3858. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3859. break;
  3860. }
  3861. if (INTEL_INFO(dev)->gen >= 4)
  3862. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3863. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3864. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3865. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3866. /* XXX: just matching BIOS for now */
  3867. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3868. dpll |= 3;
  3869. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3870. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3871. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3872. else
  3873. dpll |= PLL_REF_INPUT_DREFCLK;
  3874. dpll |= DPLL_VCO_ENABLE;
  3875. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3876. POSTING_READ(DPLL(pipe));
  3877. udelay(150);
  3878. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3879. * This is an exception to the general rule that mode_set doesn't turn
  3880. * things on.
  3881. */
  3882. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3883. intel_update_lvds(crtc, clock, adjusted_mode);
  3884. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3885. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3886. I915_WRITE(DPLL(pipe), dpll);
  3887. /* Wait for the clocks to stabilize. */
  3888. POSTING_READ(DPLL(pipe));
  3889. udelay(150);
  3890. if (INTEL_INFO(dev)->gen >= 4) {
  3891. u32 temp = 0;
  3892. if (is_sdvo) {
  3893. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3894. if (temp > 1)
  3895. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3896. else
  3897. temp = 0;
  3898. }
  3899. I915_WRITE(DPLL_MD(pipe), temp);
  3900. } else {
  3901. /* The pixel multiplier can only be updated once the
  3902. * DPLL is enabled and the clocks are stable.
  3903. *
  3904. * So write it again.
  3905. */
  3906. I915_WRITE(DPLL(pipe), dpll);
  3907. }
  3908. }
  3909. static void i8xx_update_pll(struct drm_crtc *crtc,
  3910. struct drm_display_mode *adjusted_mode,
  3911. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3912. int num_connectors)
  3913. {
  3914. struct drm_device *dev = crtc->dev;
  3915. struct drm_i915_private *dev_priv = dev->dev_private;
  3916. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3917. int pipe = intel_crtc->pipe;
  3918. u32 dpll;
  3919. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3920. dpll = DPLL_VGA_MODE_DIS;
  3921. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3922. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3923. } else {
  3924. if (clock->p1 == 2)
  3925. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3926. else
  3927. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3928. if (clock->p2 == 4)
  3929. dpll |= PLL_P2_DIVIDE_BY_4;
  3930. }
  3931. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3932. /* XXX: just matching BIOS for now */
  3933. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3934. dpll |= 3;
  3935. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3936. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3937. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3938. else
  3939. dpll |= PLL_REF_INPUT_DREFCLK;
  3940. dpll |= DPLL_VCO_ENABLE;
  3941. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3942. POSTING_READ(DPLL(pipe));
  3943. udelay(150);
  3944. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3945. * This is an exception to the general rule that mode_set doesn't turn
  3946. * things on.
  3947. */
  3948. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3949. intel_update_lvds(crtc, clock, adjusted_mode);
  3950. I915_WRITE(DPLL(pipe), dpll);
  3951. /* Wait for the clocks to stabilize. */
  3952. POSTING_READ(DPLL(pipe));
  3953. udelay(150);
  3954. /* The pixel multiplier can only be updated once the
  3955. * DPLL is enabled and the clocks are stable.
  3956. *
  3957. * So write it again.
  3958. */
  3959. I915_WRITE(DPLL(pipe), dpll);
  3960. }
  3961. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3962. struct drm_display_mode *mode,
  3963. struct drm_display_mode *adjusted_mode)
  3964. {
  3965. struct drm_device *dev = intel_crtc->base.dev;
  3966. struct drm_i915_private *dev_priv = dev->dev_private;
  3967. enum pipe pipe = intel_crtc->pipe;
  3968. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3969. uint32_t vsyncshift;
  3970. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3971. /* the chip adds 2 halflines automatically */
  3972. adjusted_mode->crtc_vtotal -= 1;
  3973. adjusted_mode->crtc_vblank_end -= 1;
  3974. vsyncshift = adjusted_mode->crtc_hsync_start
  3975. - adjusted_mode->crtc_htotal / 2;
  3976. } else {
  3977. vsyncshift = 0;
  3978. }
  3979. if (INTEL_INFO(dev)->gen > 3)
  3980. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3981. I915_WRITE(HTOTAL(cpu_transcoder),
  3982. (adjusted_mode->crtc_hdisplay - 1) |
  3983. ((adjusted_mode->crtc_htotal - 1) << 16));
  3984. I915_WRITE(HBLANK(cpu_transcoder),
  3985. (adjusted_mode->crtc_hblank_start - 1) |
  3986. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3987. I915_WRITE(HSYNC(cpu_transcoder),
  3988. (adjusted_mode->crtc_hsync_start - 1) |
  3989. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3990. I915_WRITE(VTOTAL(cpu_transcoder),
  3991. (adjusted_mode->crtc_vdisplay - 1) |
  3992. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3993. I915_WRITE(VBLANK(cpu_transcoder),
  3994. (adjusted_mode->crtc_vblank_start - 1) |
  3995. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3996. I915_WRITE(VSYNC(cpu_transcoder),
  3997. (adjusted_mode->crtc_vsync_start - 1) |
  3998. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3999. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  4000. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  4001. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4002. * bits. */
  4003. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4004. (pipe == PIPE_B || pipe == PIPE_C))
  4005. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4006. /* pipesrc controls the size that is scaled from, which should
  4007. * always be the user's requested size.
  4008. */
  4009. I915_WRITE(PIPESRC(pipe),
  4010. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4011. }
  4012. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4013. struct drm_display_mode *mode,
  4014. struct drm_display_mode *adjusted_mode,
  4015. int x, int y,
  4016. struct drm_framebuffer *fb)
  4017. {
  4018. struct drm_device *dev = crtc->dev;
  4019. struct drm_i915_private *dev_priv = dev->dev_private;
  4020. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4021. int pipe = intel_crtc->pipe;
  4022. int plane = intel_crtc->plane;
  4023. int refclk, num_connectors = 0;
  4024. intel_clock_t clock, reduced_clock;
  4025. u32 dspcntr, pipeconf;
  4026. bool ok, has_reduced_clock = false, is_sdvo = false;
  4027. bool is_lvds = false, is_tv = false, is_dp = false;
  4028. struct intel_encoder *encoder;
  4029. const intel_limit_t *limit;
  4030. int ret;
  4031. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4032. switch (encoder->type) {
  4033. case INTEL_OUTPUT_LVDS:
  4034. is_lvds = true;
  4035. break;
  4036. case INTEL_OUTPUT_SDVO:
  4037. case INTEL_OUTPUT_HDMI:
  4038. is_sdvo = true;
  4039. if (encoder->needs_tv_clock)
  4040. is_tv = true;
  4041. break;
  4042. case INTEL_OUTPUT_TVOUT:
  4043. is_tv = true;
  4044. break;
  4045. case INTEL_OUTPUT_DISPLAYPORT:
  4046. is_dp = true;
  4047. break;
  4048. }
  4049. num_connectors++;
  4050. }
  4051. refclk = i9xx_get_refclk(crtc, num_connectors);
  4052. /*
  4053. * Returns a set of divisors for the desired target clock with the given
  4054. * refclk, or FALSE. The returned values represent the clock equation:
  4055. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4056. */
  4057. limit = intel_limit(crtc, refclk);
  4058. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4059. &clock);
  4060. if (!ok) {
  4061. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4062. return -EINVAL;
  4063. }
  4064. /* Ensure that the cursor is valid for the new mode before changing... */
  4065. intel_crtc_update_cursor(crtc, true);
  4066. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4067. /*
  4068. * Ensure we match the reduced clock's P to the target clock.
  4069. * If the clocks don't match, we can't switch the display clock
  4070. * by using the FP0/FP1. In such case we will disable the LVDS
  4071. * downclock feature.
  4072. */
  4073. has_reduced_clock = limit->find_pll(limit, crtc,
  4074. dev_priv->lvds_downclock,
  4075. refclk,
  4076. &clock,
  4077. &reduced_clock);
  4078. }
  4079. if (is_sdvo && is_tv)
  4080. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4081. if (IS_GEN2(dev))
  4082. i8xx_update_pll(crtc, adjusted_mode, &clock,
  4083. has_reduced_clock ? &reduced_clock : NULL,
  4084. num_connectors);
  4085. else if (IS_VALLEYVIEW(dev))
  4086. vlv_update_pll(crtc, mode, adjusted_mode, &clock,
  4087. has_reduced_clock ? &reduced_clock : NULL,
  4088. num_connectors);
  4089. else
  4090. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  4091. has_reduced_clock ? &reduced_clock : NULL,
  4092. num_connectors);
  4093. /* setup pipeconf */
  4094. pipeconf = I915_READ(PIPECONF(pipe));
  4095. /* Set up the display plane register */
  4096. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4097. if (pipe == 0)
  4098. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4099. else
  4100. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4101. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4102. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4103. * core speed.
  4104. *
  4105. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4106. * pipe == 0 check?
  4107. */
  4108. if (mode->clock >
  4109. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4110. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4111. else
  4112. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4113. }
  4114. /* default to 8bpc */
  4115. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4116. if (is_dp) {
  4117. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4118. pipeconf |= PIPECONF_BPP_6 |
  4119. PIPECONF_DITHER_EN |
  4120. PIPECONF_DITHER_TYPE_SP;
  4121. }
  4122. }
  4123. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  4124. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4125. pipeconf |= PIPECONF_BPP_6 |
  4126. PIPECONF_ENABLE |
  4127. I965_PIPECONF_ACTIVE;
  4128. }
  4129. }
  4130. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4131. drm_mode_debug_printmodeline(mode);
  4132. if (HAS_PIPE_CXSR(dev)) {
  4133. if (intel_crtc->lowfreq_avail) {
  4134. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4135. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4136. } else {
  4137. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4138. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4139. }
  4140. }
  4141. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4142. if (!IS_GEN2(dev) &&
  4143. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4144. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4145. else
  4146. pipeconf |= PIPECONF_PROGRESSIVE;
  4147. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4148. /* pipesrc and dspsize control the size that is scaled from,
  4149. * which should always be the user's requested size.
  4150. */
  4151. I915_WRITE(DSPSIZE(plane),
  4152. ((mode->vdisplay - 1) << 16) |
  4153. (mode->hdisplay - 1));
  4154. I915_WRITE(DSPPOS(plane), 0);
  4155. I915_WRITE(PIPECONF(pipe), pipeconf);
  4156. POSTING_READ(PIPECONF(pipe));
  4157. intel_enable_pipe(dev_priv, pipe, false);
  4158. intel_wait_for_vblank(dev, pipe);
  4159. I915_WRITE(DSPCNTR(plane), dspcntr);
  4160. POSTING_READ(DSPCNTR(plane));
  4161. ret = intel_pipe_set_base(crtc, x, y, fb);
  4162. intel_update_watermarks(dev);
  4163. return ret;
  4164. }
  4165. /*
  4166. * Initialize reference clocks when the driver loads
  4167. */
  4168. void ironlake_init_pch_refclk(struct drm_device *dev)
  4169. {
  4170. struct drm_i915_private *dev_priv = dev->dev_private;
  4171. struct drm_mode_config *mode_config = &dev->mode_config;
  4172. struct intel_encoder *encoder;
  4173. u32 temp;
  4174. bool has_lvds = false;
  4175. bool has_cpu_edp = false;
  4176. bool has_pch_edp = false;
  4177. bool has_panel = false;
  4178. bool has_ck505 = false;
  4179. bool can_ssc = false;
  4180. /* We need to take the global config into account */
  4181. list_for_each_entry(encoder, &mode_config->encoder_list,
  4182. base.head) {
  4183. switch (encoder->type) {
  4184. case INTEL_OUTPUT_LVDS:
  4185. has_panel = true;
  4186. has_lvds = true;
  4187. break;
  4188. case INTEL_OUTPUT_EDP:
  4189. has_panel = true;
  4190. if (intel_encoder_is_pch_edp(&encoder->base))
  4191. has_pch_edp = true;
  4192. else
  4193. has_cpu_edp = true;
  4194. break;
  4195. }
  4196. }
  4197. if (HAS_PCH_IBX(dev)) {
  4198. has_ck505 = dev_priv->display_clock_mode;
  4199. can_ssc = has_ck505;
  4200. } else {
  4201. has_ck505 = false;
  4202. can_ssc = true;
  4203. }
  4204. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4205. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4206. has_ck505);
  4207. /* Ironlake: try to setup display ref clock before DPLL
  4208. * enabling. This is only under driver's control after
  4209. * PCH B stepping, previous chipset stepping should be
  4210. * ignoring this setting.
  4211. */
  4212. temp = I915_READ(PCH_DREF_CONTROL);
  4213. /* Always enable nonspread source */
  4214. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4215. if (has_ck505)
  4216. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4217. else
  4218. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4219. if (has_panel) {
  4220. temp &= ~DREF_SSC_SOURCE_MASK;
  4221. temp |= DREF_SSC_SOURCE_ENABLE;
  4222. /* SSC must be turned on before enabling the CPU output */
  4223. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4224. DRM_DEBUG_KMS("Using SSC on panel\n");
  4225. temp |= DREF_SSC1_ENABLE;
  4226. } else
  4227. temp &= ~DREF_SSC1_ENABLE;
  4228. /* Get SSC going before enabling the outputs */
  4229. I915_WRITE(PCH_DREF_CONTROL, temp);
  4230. POSTING_READ(PCH_DREF_CONTROL);
  4231. udelay(200);
  4232. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4233. /* Enable CPU source on CPU attached eDP */
  4234. if (has_cpu_edp) {
  4235. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4236. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4237. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4238. }
  4239. else
  4240. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4241. } else
  4242. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4243. I915_WRITE(PCH_DREF_CONTROL, temp);
  4244. POSTING_READ(PCH_DREF_CONTROL);
  4245. udelay(200);
  4246. } else {
  4247. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4248. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4249. /* Turn off CPU output */
  4250. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4251. I915_WRITE(PCH_DREF_CONTROL, temp);
  4252. POSTING_READ(PCH_DREF_CONTROL);
  4253. udelay(200);
  4254. /* Turn off the SSC source */
  4255. temp &= ~DREF_SSC_SOURCE_MASK;
  4256. temp |= DREF_SSC_SOURCE_DISABLE;
  4257. /* Turn off SSC1 */
  4258. temp &= ~ DREF_SSC1_ENABLE;
  4259. I915_WRITE(PCH_DREF_CONTROL, temp);
  4260. POSTING_READ(PCH_DREF_CONTROL);
  4261. udelay(200);
  4262. }
  4263. }
  4264. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4265. {
  4266. struct drm_device *dev = crtc->dev;
  4267. struct drm_i915_private *dev_priv = dev->dev_private;
  4268. struct intel_encoder *encoder;
  4269. struct intel_encoder *edp_encoder = NULL;
  4270. int num_connectors = 0;
  4271. bool is_lvds = false;
  4272. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4273. switch (encoder->type) {
  4274. case INTEL_OUTPUT_LVDS:
  4275. is_lvds = true;
  4276. break;
  4277. case INTEL_OUTPUT_EDP:
  4278. edp_encoder = encoder;
  4279. break;
  4280. }
  4281. num_connectors++;
  4282. }
  4283. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4284. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4285. dev_priv->lvds_ssc_freq);
  4286. return dev_priv->lvds_ssc_freq * 1000;
  4287. }
  4288. return 120000;
  4289. }
  4290. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4291. struct drm_display_mode *adjusted_mode,
  4292. bool dither)
  4293. {
  4294. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4295. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4296. int pipe = intel_crtc->pipe;
  4297. uint32_t val;
  4298. val = I915_READ(PIPECONF(pipe));
  4299. val &= ~PIPE_BPC_MASK;
  4300. switch (intel_crtc->bpp) {
  4301. case 18:
  4302. val |= PIPE_6BPC;
  4303. break;
  4304. case 24:
  4305. val |= PIPE_8BPC;
  4306. break;
  4307. case 30:
  4308. val |= PIPE_10BPC;
  4309. break;
  4310. case 36:
  4311. val |= PIPE_12BPC;
  4312. break;
  4313. default:
  4314. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4315. BUG();
  4316. }
  4317. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4318. if (dither)
  4319. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4320. val &= ~PIPECONF_INTERLACE_MASK;
  4321. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4322. val |= PIPECONF_INTERLACED_ILK;
  4323. else
  4324. val |= PIPECONF_PROGRESSIVE;
  4325. I915_WRITE(PIPECONF(pipe), val);
  4326. POSTING_READ(PIPECONF(pipe));
  4327. }
  4328. static void haswell_set_pipeconf(struct drm_crtc *crtc,
  4329. struct drm_display_mode *adjusted_mode,
  4330. bool dither)
  4331. {
  4332. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4333. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4334. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4335. uint32_t val;
  4336. val = I915_READ(PIPECONF(cpu_transcoder));
  4337. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4338. if (dither)
  4339. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4340. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4341. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4342. val |= PIPECONF_INTERLACED_ILK;
  4343. else
  4344. val |= PIPECONF_PROGRESSIVE;
  4345. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4346. POSTING_READ(PIPECONF(cpu_transcoder));
  4347. }
  4348. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4349. struct drm_display_mode *adjusted_mode,
  4350. intel_clock_t *clock,
  4351. bool *has_reduced_clock,
  4352. intel_clock_t *reduced_clock)
  4353. {
  4354. struct drm_device *dev = crtc->dev;
  4355. struct drm_i915_private *dev_priv = dev->dev_private;
  4356. struct intel_encoder *intel_encoder;
  4357. int refclk;
  4358. const intel_limit_t *limit;
  4359. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4360. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4361. switch (intel_encoder->type) {
  4362. case INTEL_OUTPUT_LVDS:
  4363. is_lvds = true;
  4364. break;
  4365. case INTEL_OUTPUT_SDVO:
  4366. case INTEL_OUTPUT_HDMI:
  4367. is_sdvo = true;
  4368. if (intel_encoder->needs_tv_clock)
  4369. is_tv = true;
  4370. break;
  4371. case INTEL_OUTPUT_TVOUT:
  4372. is_tv = true;
  4373. break;
  4374. }
  4375. }
  4376. refclk = ironlake_get_refclk(crtc);
  4377. /*
  4378. * Returns a set of divisors for the desired target clock with the given
  4379. * refclk, or FALSE. The returned values represent the clock equation:
  4380. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4381. */
  4382. limit = intel_limit(crtc, refclk);
  4383. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4384. clock);
  4385. if (!ret)
  4386. return false;
  4387. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4388. /*
  4389. * Ensure we match the reduced clock's P to the target clock.
  4390. * If the clocks don't match, we can't switch the display clock
  4391. * by using the FP0/FP1. In such case we will disable the LVDS
  4392. * downclock feature.
  4393. */
  4394. *has_reduced_clock = limit->find_pll(limit, crtc,
  4395. dev_priv->lvds_downclock,
  4396. refclk,
  4397. clock,
  4398. reduced_clock);
  4399. }
  4400. if (is_sdvo && is_tv)
  4401. i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
  4402. return true;
  4403. }
  4404. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4405. {
  4406. struct drm_i915_private *dev_priv = dev->dev_private;
  4407. uint32_t temp;
  4408. temp = I915_READ(SOUTH_CHICKEN1);
  4409. if (temp & FDI_BC_BIFURCATION_SELECT)
  4410. return;
  4411. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4412. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4413. temp |= FDI_BC_BIFURCATION_SELECT;
  4414. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4415. I915_WRITE(SOUTH_CHICKEN1, temp);
  4416. POSTING_READ(SOUTH_CHICKEN1);
  4417. }
  4418. static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
  4419. {
  4420. struct drm_device *dev = intel_crtc->base.dev;
  4421. struct drm_i915_private *dev_priv = dev->dev_private;
  4422. struct intel_crtc *pipe_B_crtc =
  4423. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  4424. DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
  4425. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4426. if (intel_crtc->fdi_lanes > 4) {
  4427. DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
  4428. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4429. /* Clamp lanes to avoid programming the hw with bogus values. */
  4430. intel_crtc->fdi_lanes = 4;
  4431. return false;
  4432. }
  4433. if (dev_priv->num_pipe == 2)
  4434. return true;
  4435. switch (intel_crtc->pipe) {
  4436. case PIPE_A:
  4437. return true;
  4438. case PIPE_B:
  4439. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  4440. intel_crtc->fdi_lanes > 2) {
  4441. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4442. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4443. /* Clamp lanes to avoid programming the hw with bogus values. */
  4444. intel_crtc->fdi_lanes = 2;
  4445. return false;
  4446. }
  4447. if (intel_crtc->fdi_lanes > 2)
  4448. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4449. else
  4450. cpt_enable_fdi_bc_bifurcation(dev);
  4451. return true;
  4452. case PIPE_C:
  4453. if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
  4454. if (intel_crtc->fdi_lanes > 2) {
  4455. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4456. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4457. /* Clamp lanes to avoid programming the hw with bogus values. */
  4458. intel_crtc->fdi_lanes = 2;
  4459. return false;
  4460. }
  4461. } else {
  4462. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  4463. return false;
  4464. }
  4465. cpt_enable_fdi_bc_bifurcation(dev);
  4466. return true;
  4467. default:
  4468. BUG();
  4469. }
  4470. }
  4471. static void ironlake_set_m_n(struct drm_crtc *crtc,
  4472. struct drm_display_mode *mode,
  4473. struct drm_display_mode *adjusted_mode)
  4474. {
  4475. struct drm_device *dev = crtc->dev;
  4476. struct drm_i915_private *dev_priv = dev->dev_private;
  4477. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4478. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4479. struct intel_encoder *intel_encoder, *edp_encoder = NULL;
  4480. struct fdi_m_n m_n = {0};
  4481. int target_clock, pixel_multiplier, lane, link_bw;
  4482. bool is_dp = false, is_cpu_edp = false;
  4483. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4484. switch (intel_encoder->type) {
  4485. case INTEL_OUTPUT_DISPLAYPORT:
  4486. is_dp = true;
  4487. break;
  4488. case INTEL_OUTPUT_EDP:
  4489. is_dp = true;
  4490. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4491. is_cpu_edp = true;
  4492. edp_encoder = intel_encoder;
  4493. break;
  4494. }
  4495. }
  4496. /* FDI link */
  4497. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4498. lane = 0;
  4499. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4500. according to current link config */
  4501. if (is_cpu_edp) {
  4502. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4503. } else {
  4504. /* FDI is a binary signal running at ~2.7GHz, encoding
  4505. * each output octet as 10 bits. The actual frequency
  4506. * is stored as a divider into a 100MHz clock, and the
  4507. * mode pixel clock is stored in units of 1KHz.
  4508. * Hence the bw of each lane in terms of the mode signal
  4509. * is:
  4510. */
  4511. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4512. }
  4513. /* [e]DP over FDI requires target mode clock instead of link clock. */
  4514. if (edp_encoder)
  4515. target_clock = intel_edp_target_clock(edp_encoder, mode);
  4516. else if (is_dp)
  4517. target_clock = mode->clock;
  4518. else
  4519. target_clock = adjusted_mode->clock;
  4520. if (!lane) {
  4521. /*
  4522. * Account for spread spectrum to avoid
  4523. * oversubscribing the link. Max center spread
  4524. * is 2.5%; use 5% for safety's sake.
  4525. */
  4526. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4527. lane = bps / (link_bw * 8) + 1;
  4528. }
  4529. intel_crtc->fdi_lanes = lane;
  4530. if (pixel_multiplier > 1)
  4531. link_bw *= pixel_multiplier;
  4532. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4533. &m_n);
  4534. I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4535. I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
  4536. I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
  4537. I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
  4538. }
  4539. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4540. struct drm_display_mode *adjusted_mode,
  4541. intel_clock_t *clock, u32 fp)
  4542. {
  4543. struct drm_crtc *crtc = &intel_crtc->base;
  4544. struct drm_device *dev = crtc->dev;
  4545. struct drm_i915_private *dev_priv = dev->dev_private;
  4546. struct intel_encoder *intel_encoder;
  4547. uint32_t dpll;
  4548. int factor, pixel_multiplier, num_connectors = 0;
  4549. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4550. bool is_dp = false, is_cpu_edp = false;
  4551. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4552. switch (intel_encoder->type) {
  4553. case INTEL_OUTPUT_LVDS:
  4554. is_lvds = true;
  4555. break;
  4556. case INTEL_OUTPUT_SDVO:
  4557. case INTEL_OUTPUT_HDMI:
  4558. is_sdvo = true;
  4559. if (intel_encoder->needs_tv_clock)
  4560. is_tv = true;
  4561. break;
  4562. case INTEL_OUTPUT_TVOUT:
  4563. is_tv = true;
  4564. break;
  4565. case INTEL_OUTPUT_DISPLAYPORT:
  4566. is_dp = true;
  4567. break;
  4568. case INTEL_OUTPUT_EDP:
  4569. is_dp = true;
  4570. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4571. is_cpu_edp = true;
  4572. break;
  4573. }
  4574. num_connectors++;
  4575. }
  4576. /* Enable autotuning of the PLL clock (if permissible) */
  4577. factor = 21;
  4578. if (is_lvds) {
  4579. if ((intel_panel_use_ssc(dev_priv) &&
  4580. dev_priv->lvds_ssc_freq == 100) ||
  4581. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4582. factor = 25;
  4583. } else if (is_sdvo && is_tv)
  4584. factor = 20;
  4585. if (clock->m < factor * clock->n)
  4586. fp |= FP_CB_TUNE;
  4587. dpll = 0;
  4588. if (is_lvds)
  4589. dpll |= DPLLB_MODE_LVDS;
  4590. else
  4591. dpll |= DPLLB_MODE_DAC_SERIAL;
  4592. if (is_sdvo) {
  4593. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4594. if (pixel_multiplier > 1) {
  4595. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4596. }
  4597. dpll |= DPLL_DVO_HIGH_SPEED;
  4598. }
  4599. if (is_dp && !is_cpu_edp)
  4600. dpll |= DPLL_DVO_HIGH_SPEED;
  4601. /* compute bitmask from p1 value */
  4602. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4603. /* also FPA1 */
  4604. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4605. switch (clock->p2) {
  4606. case 5:
  4607. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4608. break;
  4609. case 7:
  4610. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4611. break;
  4612. case 10:
  4613. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4614. break;
  4615. case 14:
  4616. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4617. break;
  4618. }
  4619. if (is_sdvo && is_tv)
  4620. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4621. else if (is_tv)
  4622. /* XXX: just matching BIOS for now */
  4623. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4624. dpll |= 3;
  4625. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4626. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4627. else
  4628. dpll |= PLL_REF_INPUT_DREFCLK;
  4629. return dpll;
  4630. }
  4631. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4632. struct drm_display_mode *mode,
  4633. struct drm_display_mode *adjusted_mode,
  4634. int x, int y,
  4635. struct drm_framebuffer *fb)
  4636. {
  4637. struct drm_device *dev = crtc->dev;
  4638. struct drm_i915_private *dev_priv = dev->dev_private;
  4639. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4640. int pipe = intel_crtc->pipe;
  4641. int plane = intel_crtc->plane;
  4642. int num_connectors = 0;
  4643. intel_clock_t clock, reduced_clock;
  4644. u32 dpll, fp = 0, fp2 = 0;
  4645. bool ok, has_reduced_clock = false;
  4646. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4647. struct intel_encoder *encoder;
  4648. u32 temp;
  4649. int ret;
  4650. bool dither, fdi_config_ok;
  4651. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4652. switch (encoder->type) {
  4653. case INTEL_OUTPUT_LVDS:
  4654. is_lvds = true;
  4655. break;
  4656. case INTEL_OUTPUT_DISPLAYPORT:
  4657. is_dp = true;
  4658. break;
  4659. case INTEL_OUTPUT_EDP:
  4660. is_dp = true;
  4661. if (!intel_encoder_is_pch_edp(&encoder->base))
  4662. is_cpu_edp = true;
  4663. break;
  4664. }
  4665. num_connectors++;
  4666. }
  4667. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4668. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4669. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4670. &has_reduced_clock, &reduced_clock);
  4671. if (!ok) {
  4672. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4673. return -EINVAL;
  4674. }
  4675. /* Ensure that the cursor is valid for the new mode before changing... */
  4676. intel_crtc_update_cursor(crtc, true);
  4677. /* determine panel color depth */
  4678. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4679. adjusted_mode);
  4680. if (is_lvds && dev_priv->lvds_dither)
  4681. dither = true;
  4682. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4683. if (has_reduced_clock)
  4684. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4685. reduced_clock.m2;
  4686. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
  4687. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4688. drm_mode_debug_printmodeline(mode);
  4689. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4690. if (!is_cpu_edp) {
  4691. struct intel_pch_pll *pll;
  4692. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4693. if (pll == NULL) {
  4694. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4695. pipe);
  4696. return -EINVAL;
  4697. }
  4698. } else
  4699. intel_put_pch_pll(intel_crtc);
  4700. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4701. * This is an exception to the general rule that mode_set doesn't turn
  4702. * things on.
  4703. */
  4704. if (is_lvds) {
  4705. temp = I915_READ(PCH_LVDS);
  4706. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4707. if (HAS_PCH_CPT(dev)) {
  4708. temp &= ~PORT_TRANS_SEL_MASK;
  4709. temp |= PORT_TRANS_SEL_CPT(pipe);
  4710. } else {
  4711. if (pipe == 1)
  4712. temp |= LVDS_PIPEB_SELECT;
  4713. else
  4714. temp &= ~LVDS_PIPEB_SELECT;
  4715. }
  4716. /* set the corresponsding LVDS_BORDER bit */
  4717. temp |= dev_priv->lvds_border_bits;
  4718. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4719. * set the DPLLs for dual-channel mode or not.
  4720. */
  4721. if (clock.p2 == 7)
  4722. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4723. else
  4724. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4725. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4726. * appropriately here, but we need to look more thoroughly into how
  4727. * panels behave in the two modes.
  4728. */
  4729. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4730. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4731. temp |= LVDS_HSYNC_POLARITY;
  4732. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4733. temp |= LVDS_VSYNC_POLARITY;
  4734. I915_WRITE(PCH_LVDS, temp);
  4735. }
  4736. if (is_dp && !is_cpu_edp) {
  4737. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4738. } else {
  4739. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4740. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4741. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4742. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4743. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4744. }
  4745. if (intel_crtc->pch_pll) {
  4746. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4747. /* Wait for the clocks to stabilize. */
  4748. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4749. udelay(150);
  4750. /* The pixel multiplier can only be updated once the
  4751. * DPLL is enabled and the clocks are stable.
  4752. *
  4753. * So write it again.
  4754. */
  4755. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4756. }
  4757. intel_crtc->lowfreq_avail = false;
  4758. if (intel_crtc->pch_pll) {
  4759. if (is_lvds && has_reduced_clock && i915_powersave) {
  4760. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4761. intel_crtc->lowfreq_avail = true;
  4762. } else {
  4763. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4764. }
  4765. }
  4766. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4767. /* Note, this also computes intel_crtc->fdi_lanes which is used below in
  4768. * ironlake_check_fdi_lanes. */
  4769. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4770. fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
  4771. if (is_cpu_edp)
  4772. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4773. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4774. intel_wait_for_vblank(dev, pipe);
  4775. /* Set up the display plane register */
  4776. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4777. POSTING_READ(DSPCNTR(plane));
  4778. ret = intel_pipe_set_base(crtc, x, y, fb);
  4779. intel_update_watermarks(dev);
  4780. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4781. return fdi_config_ok ? ret : -EINVAL;
  4782. }
  4783. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4784. struct drm_display_mode *mode,
  4785. struct drm_display_mode *adjusted_mode,
  4786. int x, int y,
  4787. struct drm_framebuffer *fb)
  4788. {
  4789. struct drm_device *dev = crtc->dev;
  4790. struct drm_i915_private *dev_priv = dev->dev_private;
  4791. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4792. int pipe = intel_crtc->pipe;
  4793. int plane = intel_crtc->plane;
  4794. int num_connectors = 0;
  4795. intel_clock_t clock, reduced_clock;
  4796. u32 dpll = 0, fp = 0, fp2 = 0;
  4797. bool ok, has_reduced_clock = false;
  4798. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4799. struct intel_encoder *encoder;
  4800. u32 temp;
  4801. int ret;
  4802. bool dither;
  4803. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4804. switch (encoder->type) {
  4805. case INTEL_OUTPUT_LVDS:
  4806. is_lvds = true;
  4807. break;
  4808. case INTEL_OUTPUT_DISPLAYPORT:
  4809. is_dp = true;
  4810. break;
  4811. case INTEL_OUTPUT_EDP:
  4812. is_dp = true;
  4813. if (!intel_encoder_is_pch_edp(&encoder->base))
  4814. is_cpu_edp = true;
  4815. break;
  4816. }
  4817. num_connectors++;
  4818. }
  4819. if (is_cpu_edp)
  4820. intel_crtc->cpu_transcoder = TRANSCODER_EDP;
  4821. else
  4822. intel_crtc->cpu_transcoder = pipe;
  4823. /* We are not sure yet this won't happen. */
  4824. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  4825. INTEL_PCH_TYPE(dev));
  4826. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4827. num_connectors, pipe_name(pipe));
  4828. WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
  4829. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  4830. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  4831. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4832. return -EINVAL;
  4833. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4834. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4835. &has_reduced_clock,
  4836. &reduced_clock);
  4837. if (!ok) {
  4838. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4839. return -EINVAL;
  4840. }
  4841. }
  4842. /* Ensure that the cursor is valid for the new mode before changing... */
  4843. intel_crtc_update_cursor(crtc, true);
  4844. /* determine panel color depth */
  4845. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4846. adjusted_mode);
  4847. if (is_lvds && dev_priv->lvds_dither)
  4848. dither = true;
  4849. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4850. drm_mode_debug_printmodeline(mode);
  4851. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4852. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4853. if (has_reduced_clock)
  4854. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4855. reduced_clock.m2;
  4856. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
  4857. fp);
  4858. /* CPU eDP is the only output that doesn't need a PCH PLL of its
  4859. * own on pre-Haswell/LPT generation */
  4860. if (!is_cpu_edp) {
  4861. struct intel_pch_pll *pll;
  4862. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4863. if (pll == NULL) {
  4864. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4865. pipe);
  4866. return -EINVAL;
  4867. }
  4868. } else
  4869. intel_put_pch_pll(intel_crtc);
  4870. /* The LVDS pin pair needs to be on before the DPLLs are
  4871. * enabled. This is an exception to the general rule that
  4872. * mode_set doesn't turn things on.
  4873. */
  4874. if (is_lvds) {
  4875. temp = I915_READ(PCH_LVDS);
  4876. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4877. if (HAS_PCH_CPT(dev)) {
  4878. temp &= ~PORT_TRANS_SEL_MASK;
  4879. temp |= PORT_TRANS_SEL_CPT(pipe);
  4880. } else {
  4881. if (pipe == 1)
  4882. temp |= LVDS_PIPEB_SELECT;
  4883. else
  4884. temp &= ~LVDS_PIPEB_SELECT;
  4885. }
  4886. /* set the corresponsding LVDS_BORDER bit */
  4887. temp |= dev_priv->lvds_border_bits;
  4888. /* Set the B0-B3 data pairs corresponding to whether
  4889. * we're going to set the DPLLs for dual-channel mode or
  4890. * not.
  4891. */
  4892. if (clock.p2 == 7)
  4893. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4894. else
  4895. temp &= ~(LVDS_B0B3_POWER_UP |
  4896. LVDS_CLKB_POWER_UP);
  4897. /* It would be nice to set 24 vs 18-bit mode
  4898. * (LVDS_A3_POWER_UP) appropriately here, but we need to
  4899. * look more thoroughly into how panels behave in the
  4900. * two modes.
  4901. */
  4902. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4903. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4904. temp |= LVDS_HSYNC_POLARITY;
  4905. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4906. temp |= LVDS_VSYNC_POLARITY;
  4907. I915_WRITE(PCH_LVDS, temp);
  4908. }
  4909. }
  4910. if (is_dp && !is_cpu_edp) {
  4911. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4912. } else {
  4913. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4914. /* For non-DP output, clear any trans DP clock recovery
  4915. * setting.*/
  4916. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4917. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4918. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4919. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4920. }
  4921. }
  4922. intel_crtc->lowfreq_avail = false;
  4923. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4924. if (intel_crtc->pch_pll) {
  4925. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4926. /* Wait for the clocks to stabilize. */
  4927. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4928. udelay(150);
  4929. /* The pixel multiplier can only be updated once the
  4930. * DPLL is enabled and the clocks are stable.
  4931. *
  4932. * So write it again.
  4933. */
  4934. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4935. }
  4936. if (intel_crtc->pch_pll) {
  4937. if (is_lvds && has_reduced_clock && i915_powersave) {
  4938. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4939. intel_crtc->lowfreq_avail = true;
  4940. } else {
  4941. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4942. }
  4943. }
  4944. }
  4945. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4946. if (!is_dp || is_cpu_edp)
  4947. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4948. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4949. if (is_cpu_edp)
  4950. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4951. haswell_set_pipeconf(crtc, adjusted_mode, dither);
  4952. /* Set up the display plane register */
  4953. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4954. POSTING_READ(DSPCNTR(plane));
  4955. ret = intel_pipe_set_base(crtc, x, y, fb);
  4956. intel_update_watermarks(dev);
  4957. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4958. return ret;
  4959. }
  4960. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4961. struct drm_display_mode *mode,
  4962. struct drm_display_mode *adjusted_mode,
  4963. int x, int y,
  4964. struct drm_framebuffer *fb)
  4965. {
  4966. struct drm_device *dev = crtc->dev;
  4967. struct drm_i915_private *dev_priv = dev->dev_private;
  4968. struct drm_encoder_helper_funcs *encoder_funcs;
  4969. struct intel_encoder *encoder;
  4970. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4971. int pipe = intel_crtc->pipe;
  4972. int ret;
  4973. drm_vblank_pre_modeset(dev, pipe);
  4974. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4975. x, y, fb);
  4976. drm_vblank_post_modeset(dev, pipe);
  4977. if (ret != 0)
  4978. return ret;
  4979. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4980. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  4981. encoder->base.base.id,
  4982. drm_get_encoder_name(&encoder->base),
  4983. mode->base.id, mode->name);
  4984. encoder_funcs = encoder->base.helper_private;
  4985. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  4986. }
  4987. return 0;
  4988. }
  4989. static bool intel_eld_uptodate(struct drm_connector *connector,
  4990. int reg_eldv, uint32_t bits_eldv,
  4991. int reg_elda, uint32_t bits_elda,
  4992. int reg_edid)
  4993. {
  4994. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4995. uint8_t *eld = connector->eld;
  4996. uint32_t i;
  4997. i = I915_READ(reg_eldv);
  4998. i &= bits_eldv;
  4999. if (!eld[0])
  5000. return !i;
  5001. if (!i)
  5002. return false;
  5003. i = I915_READ(reg_elda);
  5004. i &= ~bits_elda;
  5005. I915_WRITE(reg_elda, i);
  5006. for (i = 0; i < eld[2]; i++)
  5007. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5008. return false;
  5009. return true;
  5010. }
  5011. static void g4x_write_eld(struct drm_connector *connector,
  5012. struct drm_crtc *crtc)
  5013. {
  5014. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5015. uint8_t *eld = connector->eld;
  5016. uint32_t eldv;
  5017. uint32_t len;
  5018. uint32_t i;
  5019. i = I915_READ(G4X_AUD_VID_DID);
  5020. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5021. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5022. else
  5023. eldv = G4X_ELDV_DEVCTG;
  5024. if (intel_eld_uptodate(connector,
  5025. G4X_AUD_CNTL_ST, eldv,
  5026. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5027. G4X_HDMIW_HDMIEDID))
  5028. return;
  5029. i = I915_READ(G4X_AUD_CNTL_ST);
  5030. i &= ~(eldv | G4X_ELD_ADDR);
  5031. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5032. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5033. if (!eld[0])
  5034. return;
  5035. len = min_t(uint8_t, eld[2], len);
  5036. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5037. for (i = 0; i < len; i++)
  5038. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5039. i = I915_READ(G4X_AUD_CNTL_ST);
  5040. i |= eldv;
  5041. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5042. }
  5043. static void haswell_write_eld(struct drm_connector *connector,
  5044. struct drm_crtc *crtc)
  5045. {
  5046. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5047. uint8_t *eld = connector->eld;
  5048. struct drm_device *dev = crtc->dev;
  5049. uint32_t eldv;
  5050. uint32_t i;
  5051. int len;
  5052. int pipe = to_intel_crtc(crtc)->pipe;
  5053. int tmp;
  5054. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5055. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5056. int aud_config = HSW_AUD_CFG(pipe);
  5057. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5058. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5059. /* Audio output enable */
  5060. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5061. tmp = I915_READ(aud_cntrl_st2);
  5062. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5063. I915_WRITE(aud_cntrl_st2, tmp);
  5064. /* Wait for 1 vertical blank */
  5065. intel_wait_for_vblank(dev, pipe);
  5066. /* Set ELD valid state */
  5067. tmp = I915_READ(aud_cntrl_st2);
  5068. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5069. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5070. I915_WRITE(aud_cntrl_st2, tmp);
  5071. tmp = I915_READ(aud_cntrl_st2);
  5072. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5073. /* Enable HDMI mode */
  5074. tmp = I915_READ(aud_config);
  5075. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5076. /* clear N_programing_enable and N_value_index */
  5077. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5078. I915_WRITE(aud_config, tmp);
  5079. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5080. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5081. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5082. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5083. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5084. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5085. } else
  5086. I915_WRITE(aud_config, 0);
  5087. if (intel_eld_uptodate(connector,
  5088. aud_cntrl_st2, eldv,
  5089. aud_cntl_st, IBX_ELD_ADDRESS,
  5090. hdmiw_hdmiedid))
  5091. return;
  5092. i = I915_READ(aud_cntrl_st2);
  5093. i &= ~eldv;
  5094. I915_WRITE(aud_cntrl_st2, i);
  5095. if (!eld[0])
  5096. return;
  5097. i = I915_READ(aud_cntl_st);
  5098. i &= ~IBX_ELD_ADDRESS;
  5099. I915_WRITE(aud_cntl_st, i);
  5100. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5101. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5102. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5103. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5104. for (i = 0; i < len; i++)
  5105. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5106. i = I915_READ(aud_cntrl_st2);
  5107. i |= eldv;
  5108. I915_WRITE(aud_cntrl_st2, i);
  5109. }
  5110. static void ironlake_write_eld(struct drm_connector *connector,
  5111. struct drm_crtc *crtc)
  5112. {
  5113. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5114. uint8_t *eld = connector->eld;
  5115. uint32_t eldv;
  5116. uint32_t i;
  5117. int len;
  5118. int hdmiw_hdmiedid;
  5119. int aud_config;
  5120. int aud_cntl_st;
  5121. int aud_cntrl_st2;
  5122. int pipe = to_intel_crtc(crtc)->pipe;
  5123. if (HAS_PCH_IBX(connector->dev)) {
  5124. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5125. aud_config = IBX_AUD_CFG(pipe);
  5126. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5127. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5128. } else {
  5129. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5130. aud_config = CPT_AUD_CFG(pipe);
  5131. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5132. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5133. }
  5134. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5135. i = I915_READ(aud_cntl_st);
  5136. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5137. if (!i) {
  5138. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5139. /* operate blindly on all ports */
  5140. eldv = IBX_ELD_VALIDB;
  5141. eldv |= IBX_ELD_VALIDB << 4;
  5142. eldv |= IBX_ELD_VALIDB << 8;
  5143. } else {
  5144. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5145. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5146. }
  5147. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5148. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5149. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5150. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5151. } else
  5152. I915_WRITE(aud_config, 0);
  5153. if (intel_eld_uptodate(connector,
  5154. aud_cntrl_st2, eldv,
  5155. aud_cntl_st, IBX_ELD_ADDRESS,
  5156. hdmiw_hdmiedid))
  5157. return;
  5158. i = I915_READ(aud_cntrl_st2);
  5159. i &= ~eldv;
  5160. I915_WRITE(aud_cntrl_st2, i);
  5161. if (!eld[0])
  5162. return;
  5163. i = I915_READ(aud_cntl_st);
  5164. i &= ~IBX_ELD_ADDRESS;
  5165. I915_WRITE(aud_cntl_st, i);
  5166. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5167. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5168. for (i = 0; i < len; i++)
  5169. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5170. i = I915_READ(aud_cntrl_st2);
  5171. i |= eldv;
  5172. I915_WRITE(aud_cntrl_st2, i);
  5173. }
  5174. void intel_write_eld(struct drm_encoder *encoder,
  5175. struct drm_display_mode *mode)
  5176. {
  5177. struct drm_crtc *crtc = encoder->crtc;
  5178. struct drm_connector *connector;
  5179. struct drm_device *dev = encoder->dev;
  5180. struct drm_i915_private *dev_priv = dev->dev_private;
  5181. connector = drm_select_eld(encoder, mode);
  5182. if (!connector)
  5183. return;
  5184. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5185. connector->base.id,
  5186. drm_get_connector_name(connector),
  5187. connector->encoder->base.id,
  5188. drm_get_encoder_name(connector->encoder));
  5189. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5190. if (dev_priv->display.write_eld)
  5191. dev_priv->display.write_eld(connector, crtc);
  5192. }
  5193. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5194. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5195. {
  5196. struct drm_device *dev = crtc->dev;
  5197. struct drm_i915_private *dev_priv = dev->dev_private;
  5198. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5199. int palreg = PALETTE(intel_crtc->pipe);
  5200. int i;
  5201. /* The clocks have to be on to load the palette. */
  5202. if (!crtc->enabled || !intel_crtc->active)
  5203. return;
  5204. /* use legacy palette for Ironlake */
  5205. if (HAS_PCH_SPLIT(dev))
  5206. palreg = LGC_PALETTE(intel_crtc->pipe);
  5207. for (i = 0; i < 256; i++) {
  5208. I915_WRITE(palreg + 4 * i,
  5209. (intel_crtc->lut_r[i] << 16) |
  5210. (intel_crtc->lut_g[i] << 8) |
  5211. intel_crtc->lut_b[i]);
  5212. }
  5213. }
  5214. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5215. {
  5216. struct drm_device *dev = crtc->dev;
  5217. struct drm_i915_private *dev_priv = dev->dev_private;
  5218. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5219. bool visible = base != 0;
  5220. u32 cntl;
  5221. if (intel_crtc->cursor_visible == visible)
  5222. return;
  5223. cntl = I915_READ(_CURACNTR);
  5224. if (visible) {
  5225. /* On these chipsets we can only modify the base whilst
  5226. * the cursor is disabled.
  5227. */
  5228. I915_WRITE(_CURABASE, base);
  5229. cntl &= ~(CURSOR_FORMAT_MASK);
  5230. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5231. cntl |= CURSOR_ENABLE |
  5232. CURSOR_GAMMA_ENABLE |
  5233. CURSOR_FORMAT_ARGB;
  5234. } else
  5235. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5236. I915_WRITE(_CURACNTR, cntl);
  5237. intel_crtc->cursor_visible = visible;
  5238. }
  5239. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5240. {
  5241. struct drm_device *dev = crtc->dev;
  5242. struct drm_i915_private *dev_priv = dev->dev_private;
  5243. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5244. int pipe = intel_crtc->pipe;
  5245. bool visible = base != 0;
  5246. if (intel_crtc->cursor_visible != visible) {
  5247. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5248. if (base) {
  5249. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5250. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5251. cntl |= pipe << 28; /* Connect to correct pipe */
  5252. } else {
  5253. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5254. cntl |= CURSOR_MODE_DISABLE;
  5255. }
  5256. I915_WRITE(CURCNTR(pipe), cntl);
  5257. intel_crtc->cursor_visible = visible;
  5258. }
  5259. /* and commit changes on next vblank */
  5260. I915_WRITE(CURBASE(pipe), base);
  5261. }
  5262. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5263. {
  5264. struct drm_device *dev = crtc->dev;
  5265. struct drm_i915_private *dev_priv = dev->dev_private;
  5266. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5267. int pipe = intel_crtc->pipe;
  5268. bool visible = base != 0;
  5269. if (intel_crtc->cursor_visible != visible) {
  5270. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5271. if (base) {
  5272. cntl &= ~CURSOR_MODE;
  5273. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5274. } else {
  5275. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5276. cntl |= CURSOR_MODE_DISABLE;
  5277. }
  5278. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5279. intel_crtc->cursor_visible = visible;
  5280. }
  5281. /* and commit changes on next vblank */
  5282. I915_WRITE(CURBASE_IVB(pipe), base);
  5283. }
  5284. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5285. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5286. bool on)
  5287. {
  5288. struct drm_device *dev = crtc->dev;
  5289. struct drm_i915_private *dev_priv = dev->dev_private;
  5290. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5291. int pipe = intel_crtc->pipe;
  5292. int x = intel_crtc->cursor_x;
  5293. int y = intel_crtc->cursor_y;
  5294. u32 base, pos;
  5295. bool visible;
  5296. pos = 0;
  5297. if (on && crtc->enabled && crtc->fb) {
  5298. base = intel_crtc->cursor_addr;
  5299. if (x > (int) crtc->fb->width)
  5300. base = 0;
  5301. if (y > (int) crtc->fb->height)
  5302. base = 0;
  5303. } else
  5304. base = 0;
  5305. if (x < 0) {
  5306. if (x + intel_crtc->cursor_width < 0)
  5307. base = 0;
  5308. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5309. x = -x;
  5310. }
  5311. pos |= x << CURSOR_X_SHIFT;
  5312. if (y < 0) {
  5313. if (y + intel_crtc->cursor_height < 0)
  5314. base = 0;
  5315. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5316. y = -y;
  5317. }
  5318. pos |= y << CURSOR_Y_SHIFT;
  5319. visible = base != 0;
  5320. if (!visible && !intel_crtc->cursor_visible)
  5321. return;
  5322. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5323. I915_WRITE(CURPOS_IVB(pipe), pos);
  5324. ivb_update_cursor(crtc, base);
  5325. } else {
  5326. I915_WRITE(CURPOS(pipe), pos);
  5327. if (IS_845G(dev) || IS_I865G(dev))
  5328. i845_update_cursor(crtc, base);
  5329. else
  5330. i9xx_update_cursor(crtc, base);
  5331. }
  5332. }
  5333. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5334. struct drm_file *file,
  5335. uint32_t handle,
  5336. uint32_t width, uint32_t height)
  5337. {
  5338. struct drm_device *dev = crtc->dev;
  5339. struct drm_i915_private *dev_priv = dev->dev_private;
  5340. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5341. struct drm_i915_gem_object *obj;
  5342. uint32_t addr;
  5343. int ret;
  5344. /* if we want to turn off the cursor ignore width and height */
  5345. if (!handle) {
  5346. DRM_DEBUG_KMS("cursor off\n");
  5347. addr = 0;
  5348. obj = NULL;
  5349. mutex_lock(&dev->struct_mutex);
  5350. goto finish;
  5351. }
  5352. /* Currently we only support 64x64 cursors */
  5353. if (width != 64 || height != 64) {
  5354. DRM_ERROR("we currently only support 64x64 cursors\n");
  5355. return -EINVAL;
  5356. }
  5357. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5358. if (&obj->base == NULL)
  5359. return -ENOENT;
  5360. if (obj->base.size < width * height * 4) {
  5361. DRM_ERROR("buffer is to small\n");
  5362. ret = -ENOMEM;
  5363. goto fail;
  5364. }
  5365. /* we only need to pin inside GTT if cursor is non-phy */
  5366. mutex_lock(&dev->struct_mutex);
  5367. if (!dev_priv->info->cursor_needs_physical) {
  5368. if (obj->tiling_mode) {
  5369. DRM_ERROR("cursor cannot be tiled\n");
  5370. ret = -EINVAL;
  5371. goto fail_locked;
  5372. }
  5373. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5374. if (ret) {
  5375. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5376. goto fail_locked;
  5377. }
  5378. ret = i915_gem_object_put_fence(obj);
  5379. if (ret) {
  5380. DRM_ERROR("failed to release fence for cursor");
  5381. goto fail_unpin;
  5382. }
  5383. addr = obj->gtt_offset;
  5384. } else {
  5385. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5386. ret = i915_gem_attach_phys_object(dev, obj,
  5387. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5388. align);
  5389. if (ret) {
  5390. DRM_ERROR("failed to attach phys object\n");
  5391. goto fail_locked;
  5392. }
  5393. addr = obj->phys_obj->handle->busaddr;
  5394. }
  5395. if (IS_GEN2(dev))
  5396. I915_WRITE(CURSIZE, (height << 12) | width);
  5397. finish:
  5398. if (intel_crtc->cursor_bo) {
  5399. if (dev_priv->info->cursor_needs_physical) {
  5400. if (intel_crtc->cursor_bo != obj)
  5401. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5402. } else
  5403. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5404. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5405. }
  5406. mutex_unlock(&dev->struct_mutex);
  5407. intel_crtc->cursor_addr = addr;
  5408. intel_crtc->cursor_bo = obj;
  5409. intel_crtc->cursor_width = width;
  5410. intel_crtc->cursor_height = height;
  5411. intel_crtc_update_cursor(crtc, true);
  5412. return 0;
  5413. fail_unpin:
  5414. i915_gem_object_unpin(obj);
  5415. fail_locked:
  5416. mutex_unlock(&dev->struct_mutex);
  5417. fail:
  5418. drm_gem_object_unreference_unlocked(&obj->base);
  5419. return ret;
  5420. }
  5421. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5422. {
  5423. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5424. intel_crtc->cursor_x = x;
  5425. intel_crtc->cursor_y = y;
  5426. intel_crtc_update_cursor(crtc, true);
  5427. return 0;
  5428. }
  5429. /** Sets the color ramps on behalf of RandR */
  5430. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5431. u16 blue, int regno)
  5432. {
  5433. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5434. intel_crtc->lut_r[regno] = red >> 8;
  5435. intel_crtc->lut_g[regno] = green >> 8;
  5436. intel_crtc->lut_b[regno] = blue >> 8;
  5437. }
  5438. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5439. u16 *blue, int regno)
  5440. {
  5441. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5442. *red = intel_crtc->lut_r[regno] << 8;
  5443. *green = intel_crtc->lut_g[regno] << 8;
  5444. *blue = intel_crtc->lut_b[regno] << 8;
  5445. }
  5446. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5447. u16 *blue, uint32_t start, uint32_t size)
  5448. {
  5449. int end = (start + size > 256) ? 256 : start + size, i;
  5450. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5451. for (i = start; i < end; i++) {
  5452. intel_crtc->lut_r[i] = red[i] >> 8;
  5453. intel_crtc->lut_g[i] = green[i] >> 8;
  5454. intel_crtc->lut_b[i] = blue[i] >> 8;
  5455. }
  5456. intel_crtc_load_lut(crtc);
  5457. }
  5458. /**
  5459. * Get a pipe with a simple mode set on it for doing load-based monitor
  5460. * detection.
  5461. *
  5462. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5463. * its requirements. The pipe will be connected to no other encoders.
  5464. *
  5465. * Currently this code will only succeed if there is a pipe with no encoders
  5466. * configured for it. In the future, it could choose to temporarily disable
  5467. * some outputs to free up a pipe for its use.
  5468. *
  5469. * \return crtc, or NULL if no pipes are available.
  5470. */
  5471. /* VESA 640x480x72Hz mode to set on the pipe */
  5472. static struct drm_display_mode load_detect_mode = {
  5473. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5474. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5475. };
  5476. static struct drm_framebuffer *
  5477. intel_framebuffer_create(struct drm_device *dev,
  5478. struct drm_mode_fb_cmd2 *mode_cmd,
  5479. struct drm_i915_gem_object *obj)
  5480. {
  5481. struct intel_framebuffer *intel_fb;
  5482. int ret;
  5483. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5484. if (!intel_fb) {
  5485. drm_gem_object_unreference_unlocked(&obj->base);
  5486. return ERR_PTR(-ENOMEM);
  5487. }
  5488. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5489. if (ret) {
  5490. drm_gem_object_unreference_unlocked(&obj->base);
  5491. kfree(intel_fb);
  5492. return ERR_PTR(ret);
  5493. }
  5494. return &intel_fb->base;
  5495. }
  5496. static u32
  5497. intel_framebuffer_pitch_for_width(int width, int bpp)
  5498. {
  5499. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5500. return ALIGN(pitch, 64);
  5501. }
  5502. static u32
  5503. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5504. {
  5505. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5506. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5507. }
  5508. static struct drm_framebuffer *
  5509. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5510. struct drm_display_mode *mode,
  5511. int depth, int bpp)
  5512. {
  5513. struct drm_i915_gem_object *obj;
  5514. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5515. obj = i915_gem_alloc_object(dev,
  5516. intel_framebuffer_size_for_mode(mode, bpp));
  5517. if (obj == NULL)
  5518. return ERR_PTR(-ENOMEM);
  5519. mode_cmd.width = mode->hdisplay;
  5520. mode_cmd.height = mode->vdisplay;
  5521. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5522. bpp);
  5523. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5524. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5525. }
  5526. static struct drm_framebuffer *
  5527. mode_fits_in_fbdev(struct drm_device *dev,
  5528. struct drm_display_mode *mode)
  5529. {
  5530. struct drm_i915_private *dev_priv = dev->dev_private;
  5531. struct drm_i915_gem_object *obj;
  5532. struct drm_framebuffer *fb;
  5533. if (dev_priv->fbdev == NULL)
  5534. return NULL;
  5535. obj = dev_priv->fbdev->ifb.obj;
  5536. if (obj == NULL)
  5537. return NULL;
  5538. fb = &dev_priv->fbdev->ifb.base;
  5539. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5540. fb->bits_per_pixel))
  5541. return NULL;
  5542. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5543. return NULL;
  5544. return fb;
  5545. }
  5546. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5547. struct drm_display_mode *mode,
  5548. struct intel_load_detect_pipe *old)
  5549. {
  5550. struct intel_crtc *intel_crtc;
  5551. struct intel_encoder *intel_encoder =
  5552. intel_attached_encoder(connector);
  5553. struct drm_crtc *possible_crtc;
  5554. struct drm_encoder *encoder = &intel_encoder->base;
  5555. struct drm_crtc *crtc = NULL;
  5556. struct drm_device *dev = encoder->dev;
  5557. struct drm_framebuffer *fb;
  5558. int i = -1;
  5559. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5560. connector->base.id, drm_get_connector_name(connector),
  5561. encoder->base.id, drm_get_encoder_name(encoder));
  5562. /*
  5563. * Algorithm gets a little messy:
  5564. *
  5565. * - if the connector already has an assigned crtc, use it (but make
  5566. * sure it's on first)
  5567. *
  5568. * - try to find the first unused crtc that can drive this connector,
  5569. * and use that if we find one
  5570. */
  5571. /* See if we already have a CRTC for this connector */
  5572. if (encoder->crtc) {
  5573. crtc = encoder->crtc;
  5574. old->dpms_mode = connector->dpms;
  5575. old->load_detect_temp = false;
  5576. /* Make sure the crtc and connector are running */
  5577. if (connector->dpms != DRM_MODE_DPMS_ON)
  5578. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5579. return true;
  5580. }
  5581. /* Find an unused one (if possible) */
  5582. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5583. i++;
  5584. if (!(encoder->possible_crtcs & (1 << i)))
  5585. continue;
  5586. if (!possible_crtc->enabled) {
  5587. crtc = possible_crtc;
  5588. break;
  5589. }
  5590. }
  5591. /*
  5592. * If we didn't find an unused CRTC, don't use any.
  5593. */
  5594. if (!crtc) {
  5595. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5596. return false;
  5597. }
  5598. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5599. to_intel_connector(connector)->new_encoder = intel_encoder;
  5600. intel_crtc = to_intel_crtc(crtc);
  5601. old->dpms_mode = connector->dpms;
  5602. old->load_detect_temp = true;
  5603. old->release_fb = NULL;
  5604. if (!mode)
  5605. mode = &load_detect_mode;
  5606. /* We need a framebuffer large enough to accommodate all accesses
  5607. * that the plane may generate whilst we perform load detection.
  5608. * We can not rely on the fbcon either being present (we get called
  5609. * during its initialisation to detect all boot displays, or it may
  5610. * not even exist) or that it is large enough to satisfy the
  5611. * requested mode.
  5612. */
  5613. fb = mode_fits_in_fbdev(dev, mode);
  5614. if (fb == NULL) {
  5615. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5616. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5617. old->release_fb = fb;
  5618. } else
  5619. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5620. if (IS_ERR(fb)) {
  5621. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5622. return false;
  5623. }
  5624. if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
  5625. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5626. if (old->release_fb)
  5627. old->release_fb->funcs->destroy(old->release_fb);
  5628. return false;
  5629. }
  5630. /* let the connector get through one full cycle before testing */
  5631. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5632. return true;
  5633. }
  5634. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5635. struct intel_load_detect_pipe *old)
  5636. {
  5637. struct intel_encoder *intel_encoder =
  5638. intel_attached_encoder(connector);
  5639. struct drm_encoder *encoder = &intel_encoder->base;
  5640. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5641. connector->base.id, drm_get_connector_name(connector),
  5642. encoder->base.id, drm_get_encoder_name(encoder));
  5643. if (old->load_detect_temp) {
  5644. struct drm_crtc *crtc = encoder->crtc;
  5645. to_intel_connector(connector)->new_encoder = NULL;
  5646. intel_encoder->new_crtc = NULL;
  5647. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5648. if (old->release_fb)
  5649. old->release_fb->funcs->destroy(old->release_fb);
  5650. return;
  5651. }
  5652. /* Switch crtc and encoder back off if necessary */
  5653. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5654. connector->funcs->dpms(connector, old->dpms_mode);
  5655. }
  5656. /* Returns the clock of the currently programmed mode of the given pipe. */
  5657. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5658. {
  5659. struct drm_i915_private *dev_priv = dev->dev_private;
  5660. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5661. int pipe = intel_crtc->pipe;
  5662. u32 dpll = I915_READ(DPLL(pipe));
  5663. u32 fp;
  5664. intel_clock_t clock;
  5665. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5666. fp = I915_READ(FP0(pipe));
  5667. else
  5668. fp = I915_READ(FP1(pipe));
  5669. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5670. if (IS_PINEVIEW(dev)) {
  5671. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5672. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5673. } else {
  5674. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5675. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5676. }
  5677. if (!IS_GEN2(dev)) {
  5678. if (IS_PINEVIEW(dev))
  5679. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5680. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5681. else
  5682. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5683. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5684. switch (dpll & DPLL_MODE_MASK) {
  5685. case DPLLB_MODE_DAC_SERIAL:
  5686. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5687. 5 : 10;
  5688. break;
  5689. case DPLLB_MODE_LVDS:
  5690. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5691. 7 : 14;
  5692. break;
  5693. default:
  5694. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5695. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5696. return 0;
  5697. }
  5698. /* XXX: Handle the 100Mhz refclk */
  5699. intel_clock(dev, 96000, &clock);
  5700. } else {
  5701. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5702. if (is_lvds) {
  5703. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5704. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5705. clock.p2 = 14;
  5706. if ((dpll & PLL_REF_INPUT_MASK) ==
  5707. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5708. /* XXX: might not be 66MHz */
  5709. intel_clock(dev, 66000, &clock);
  5710. } else
  5711. intel_clock(dev, 48000, &clock);
  5712. } else {
  5713. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5714. clock.p1 = 2;
  5715. else {
  5716. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5717. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5718. }
  5719. if (dpll & PLL_P2_DIVIDE_BY_4)
  5720. clock.p2 = 4;
  5721. else
  5722. clock.p2 = 2;
  5723. intel_clock(dev, 48000, &clock);
  5724. }
  5725. }
  5726. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5727. * i830PllIsValid() because it relies on the xf86_config connector
  5728. * configuration being accurate, which it isn't necessarily.
  5729. */
  5730. return clock.dot;
  5731. }
  5732. /** Returns the currently programmed mode of the given pipe. */
  5733. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5734. struct drm_crtc *crtc)
  5735. {
  5736. struct drm_i915_private *dev_priv = dev->dev_private;
  5737. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5738. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  5739. struct drm_display_mode *mode;
  5740. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5741. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5742. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5743. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5744. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5745. if (!mode)
  5746. return NULL;
  5747. mode->clock = intel_crtc_clock_get(dev, crtc);
  5748. mode->hdisplay = (htot & 0xffff) + 1;
  5749. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5750. mode->hsync_start = (hsync & 0xffff) + 1;
  5751. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5752. mode->vdisplay = (vtot & 0xffff) + 1;
  5753. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5754. mode->vsync_start = (vsync & 0xffff) + 1;
  5755. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5756. drm_mode_set_name(mode);
  5757. return mode;
  5758. }
  5759. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5760. {
  5761. struct drm_device *dev = crtc->dev;
  5762. drm_i915_private_t *dev_priv = dev->dev_private;
  5763. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5764. int pipe = intel_crtc->pipe;
  5765. int dpll_reg = DPLL(pipe);
  5766. int dpll;
  5767. if (HAS_PCH_SPLIT(dev))
  5768. return;
  5769. if (!dev_priv->lvds_downclock_avail)
  5770. return;
  5771. dpll = I915_READ(dpll_reg);
  5772. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5773. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5774. assert_panel_unlocked(dev_priv, pipe);
  5775. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5776. I915_WRITE(dpll_reg, dpll);
  5777. intel_wait_for_vblank(dev, pipe);
  5778. dpll = I915_READ(dpll_reg);
  5779. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5780. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5781. }
  5782. }
  5783. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5784. {
  5785. struct drm_device *dev = crtc->dev;
  5786. drm_i915_private_t *dev_priv = dev->dev_private;
  5787. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5788. if (HAS_PCH_SPLIT(dev))
  5789. return;
  5790. if (!dev_priv->lvds_downclock_avail)
  5791. return;
  5792. /*
  5793. * Since this is called by a timer, we should never get here in
  5794. * the manual case.
  5795. */
  5796. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5797. int pipe = intel_crtc->pipe;
  5798. int dpll_reg = DPLL(pipe);
  5799. int dpll;
  5800. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5801. assert_panel_unlocked(dev_priv, pipe);
  5802. dpll = I915_READ(dpll_reg);
  5803. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5804. I915_WRITE(dpll_reg, dpll);
  5805. intel_wait_for_vblank(dev, pipe);
  5806. dpll = I915_READ(dpll_reg);
  5807. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5808. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5809. }
  5810. }
  5811. void intel_mark_busy(struct drm_device *dev)
  5812. {
  5813. i915_update_gfx_val(dev->dev_private);
  5814. }
  5815. void intel_mark_idle(struct drm_device *dev)
  5816. {
  5817. }
  5818. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5819. {
  5820. struct drm_device *dev = obj->base.dev;
  5821. struct drm_crtc *crtc;
  5822. if (!i915_powersave)
  5823. return;
  5824. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5825. if (!crtc->fb)
  5826. continue;
  5827. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5828. intel_increase_pllclock(crtc);
  5829. }
  5830. }
  5831. void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
  5832. {
  5833. struct drm_device *dev = obj->base.dev;
  5834. struct drm_crtc *crtc;
  5835. if (!i915_powersave)
  5836. return;
  5837. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5838. if (!crtc->fb)
  5839. continue;
  5840. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5841. intel_decrease_pllclock(crtc);
  5842. }
  5843. }
  5844. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5845. {
  5846. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5847. struct drm_device *dev = crtc->dev;
  5848. struct intel_unpin_work *work;
  5849. unsigned long flags;
  5850. spin_lock_irqsave(&dev->event_lock, flags);
  5851. work = intel_crtc->unpin_work;
  5852. intel_crtc->unpin_work = NULL;
  5853. spin_unlock_irqrestore(&dev->event_lock, flags);
  5854. if (work) {
  5855. cancel_work_sync(&work->work);
  5856. kfree(work);
  5857. }
  5858. drm_crtc_cleanup(crtc);
  5859. kfree(intel_crtc);
  5860. }
  5861. static void intel_unpin_work_fn(struct work_struct *__work)
  5862. {
  5863. struct intel_unpin_work *work =
  5864. container_of(__work, struct intel_unpin_work, work);
  5865. mutex_lock(&work->dev->struct_mutex);
  5866. intel_unpin_fb_obj(work->old_fb_obj);
  5867. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5868. drm_gem_object_unreference(&work->old_fb_obj->base);
  5869. intel_update_fbc(work->dev);
  5870. mutex_unlock(&work->dev->struct_mutex);
  5871. kfree(work);
  5872. }
  5873. static void do_intel_finish_page_flip(struct drm_device *dev,
  5874. struct drm_crtc *crtc)
  5875. {
  5876. drm_i915_private_t *dev_priv = dev->dev_private;
  5877. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5878. struct intel_unpin_work *work;
  5879. struct drm_i915_gem_object *obj;
  5880. struct drm_pending_vblank_event *e;
  5881. struct timeval tvbl;
  5882. unsigned long flags;
  5883. /* Ignore early vblank irqs */
  5884. if (intel_crtc == NULL)
  5885. return;
  5886. spin_lock_irqsave(&dev->event_lock, flags);
  5887. work = intel_crtc->unpin_work;
  5888. if (work == NULL || !work->pending) {
  5889. spin_unlock_irqrestore(&dev->event_lock, flags);
  5890. return;
  5891. }
  5892. intel_crtc->unpin_work = NULL;
  5893. if (work->event) {
  5894. e = work->event;
  5895. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  5896. e->event.tv_sec = tvbl.tv_sec;
  5897. e->event.tv_usec = tvbl.tv_usec;
  5898. list_add_tail(&e->base.link,
  5899. &e->base.file_priv->event_list);
  5900. wake_up_interruptible(&e->base.file_priv->event_wait);
  5901. }
  5902. drm_vblank_put(dev, intel_crtc->pipe);
  5903. spin_unlock_irqrestore(&dev->event_lock, flags);
  5904. obj = work->old_fb_obj;
  5905. atomic_clear_mask(1 << intel_crtc->plane,
  5906. &obj->pending_flip.counter);
  5907. wake_up(&dev_priv->pending_flip_queue);
  5908. schedule_work(&work->work);
  5909. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5910. }
  5911. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5912. {
  5913. drm_i915_private_t *dev_priv = dev->dev_private;
  5914. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5915. do_intel_finish_page_flip(dev, crtc);
  5916. }
  5917. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5918. {
  5919. drm_i915_private_t *dev_priv = dev->dev_private;
  5920. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5921. do_intel_finish_page_flip(dev, crtc);
  5922. }
  5923. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5924. {
  5925. drm_i915_private_t *dev_priv = dev->dev_private;
  5926. struct intel_crtc *intel_crtc =
  5927. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5928. unsigned long flags;
  5929. spin_lock_irqsave(&dev->event_lock, flags);
  5930. if (intel_crtc->unpin_work) {
  5931. if ((++intel_crtc->unpin_work->pending) > 1)
  5932. DRM_ERROR("Prepared flip multiple times\n");
  5933. } else {
  5934. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5935. }
  5936. spin_unlock_irqrestore(&dev->event_lock, flags);
  5937. }
  5938. static int intel_gen2_queue_flip(struct drm_device *dev,
  5939. struct drm_crtc *crtc,
  5940. struct drm_framebuffer *fb,
  5941. struct drm_i915_gem_object *obj)
  5942. {
  5943. struct drm_i915_private *dev_priv = dev->dev_private;
  5944. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5945. u32 flip_mask;
  5946. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5947. int ret;
  5948. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5949. if (ret)
  5950. goto err;
  5951. ret = intel_ring_begin(ring, 6);
  5952. if (ret)
  5953. goto err_unpin;
  5954. /* Can't queue multiple flips, so wait for the previous
  5955. * one to finish before executing the next.
  5956. */
  5957. if (intel_crtc->plane)
  5958. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5959. else
  5960. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5961. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5962. intel_ring_emit(ring, MI_NOOP);
  5963. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5964. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5965. intel_ring_emit(ring, fb->pitches[0]);
  5966. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5967. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5968. intel_ring_advance(ring);
  5969. return 0;
  5970. err_unpin:
  5971. intel_unpin_fb_obj(obj);
  5972. err:
  5973. return ret;
  5974. }
  5975. static int intel_gen3_queue_flip(struct drm_device *dev,
  5976. struct drm_crtc *crtc,
  5977. struct drm_framebuffer *fb,
  5978. struct drm_i915_gem_object *obj)
  5979. {
  5980. struct drm_i915_private *dev_priv = dev->dev_private;
  5981. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5982. u32 flip_mask;
  5983. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5984. int ret;
  5985. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5986. if (ret)
  5987. goto err;
  5988. ret = intel_ring_begin(ring, 6);
  5989. if (ret)
  5990. goto err_unpin;
  5991. if (intel_crtc->plane)
  5992. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5993. else
  5994. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5995. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5996. intel_ring_emit(ring, MI_NOOP);
  5997. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  5998. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5999. intel_ring_emit(ring, fb->pitches[0]);
  6000. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6001. intel_ring_emit(ring, MI_NOOP);
  6002. intel_ring_advance(ring);
  6003. return 0;
  6004. err_unpin:
  6005. intel_unpin_fb_obj(obj);
  6006. err:
  6007. return ret;
  6008. }
  6009. static int intel_gen4_queue_flip(struct drm_device *dev,
  6010. struct drm_crtc *crtc,
  6011. struct drm_framebuffer *fb,
  6012. struct drm_i915_gem_object *obj)
  6013. {
  6014. struct drm_i915_private *dev_priv = dev->dev_private;
  6015. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6016. uint32_t pf, pipesrc;
  6017. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6018. int ret;
  6019. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6020. if (ret)
  6021. goto err;
  6022. ret = intel_ring_begin(ring, 4);
  6023. if (ret)
  6024. goto err_unpin;
  6025. /* i965+ uses the linear or tiled offsets from the
  6026. * Display Registers (which do not change across a page-flip)
  6027. * so we need only reprogram the base address.
  6028. */
  6029. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6030. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6031. intel_ring_emit(ring, fb->pitches[0]);
  6032. intel_ring_emit(ring,
  6033. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6034. obj->tiling_mode);
  6035. /* XXX Enabling the panel-fitter across page-flip is so far
  6036. * untested on non-native modes, so ignore it for now.
  6037. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6038. */
  6039. pf = 0;
  6040. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6041. intel_ring_emit(ring, pf | pipesrc);
  6042. intel_ring_advance(ring);
  6043. return 0;
  6044. err_unpin:
  6045. intel_unpin_fb_obj(obj);
  6046. err:
  6047. return ret;
  6048. }
  6049. static int intel_gen6_queue_flip(struct drm_device *dev,
  6050. struct drm_crtc *crtc,
  6051. struct drm_framebuffer *fb,
  6052. struct drm_i915_gem_object *obj)
  6053. {
  6054. struct drm_i915_private *dev_priv = dev->dev_private;
  6055. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6056. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6057. uint32_t pf, pipesrc;
  6058. int ret;
  6059. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6060. if (ret)
  6061. goto err;
  6062. ret = intel_ring_begin(ring, 4);
  6063. if (ret)
  6064. goto err_unpin;
  6065. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6066. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6067. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6068. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6069. /* Contrary to the suggestions in the documentation,
  6070. * "Enable Panel Fitter" does not seem to be required when page
  6071. * flipping with a non-native mode, and worse causes a normal
  6072. * modeset to fail.
  6073. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6074. */
  6075. pf = 0;
  6076. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6077. intel_ring_emit(ring, pf | pipesrc);
  6078. intel_ring_advance(ring);
  6079. return 0;
  6080. err_unpin:
  6081. intel_unpin_fb_obj(obj);
  6082. err:
  6083. return ret;
  6084. }
  6085. /*
  6086. * On gen7 we currently use the blit ring because (in early silicon at least)
  6087. * the render ring doesn't give us interrpts for page flip completion, which
  6088. * means clients will hang after the first flip is queued. Fortunately the
  6089. * blit ring generates interrupts properly, so use it instead.
  6090. */
  6091. static int intel_gen7_queue_flip(struct drm_device *dev,
  6092. struct drm_crtc *crtc,
  6093. struct drm_framebuffer *fb,
  6094. struct drm_i915_gem_object *obj)
  6095. {
  6096. struct drm_i915_private *dev_priv = dev->dev_private;
  6097. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6098. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6099. uint32_t plane_bit = 0;
  6100. int ret;
  6101. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6102. if (ret)
  6103. goto err;
  6104. switch(intel_crtc->plane) {
  6105. case PLANE_A:
  6106. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6107. break;
  6108. case PLANE_B:
  6109. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6110. break;
  6111. case PLANE_C:
  6112. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6113. break;
  6114. default:
  6115. WARN_ONCE(1, "unknown plane in flip command\n");
  6116. ret = -ENODEV;
  6117. goto err_unpin;
  6118. }
  6119. ret = intel_ring_begin(ring, 4);
  6120. if (ret)
  6121. goto err_unpin;
  6122. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6123. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6124. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6125. intel_ring_emit(ring, (MI_NOOP));
  6126. intel_ring_advance(ring);
  6127. return 0;
  6128. err_unpin:
  6129. intel_unpin_fb_obj(obj);
  6130. err:
  6131. return ret;
  6132. }
  6133. static int intel_default_queue_flip(struct drm_device *dev,
  6134. struct drm_crtc *crtc,
  6135. struct drm_framebuffer *fb,
  6136. struct drm_i915_gem_object *obj)
  6137. {
  6138. return -ENODEV;
  6139. }
  6140. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6141. struct drm_framebuffer *fb,
  6142. struct drm_pending_vblank_event *event)
  6143. {
  6144. struct drm_device *dev = crtc->dev;
  6145. struct drm_i915_private *dev_priv = dev->dev_private;
  6146. struct intel_framebuffer *intel_fb;
  6147. struct drm_i915_gem_object *obj;
  6148. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6149. struct intel_unpin_work *work;
  6150. unsigned long flags;
  6151. int ret;
  6152. /* Can't change pixel format via MI display flips. */
  6153. if (fb->pixel_format != crtc->fb->pixel_format)
  6154. return -EINVAL;
  6155. /*
  6156. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6157. * Note that pitch changes could also affect these register.
  6158. */
  6159. if (INTEL_INFO(dev)->gen > 3 &&
  6160. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6161. fb->pitches[0] != crtc->fb->pitches[0]))
  6162. return -EINVAL;
  6163. work = kzalloc(sizeof *work, GFP_KERNEL);
  6164. if (work == NULL)
  6165. return -ENOMEM;
  6166. work->event = event;
  6167. work->dev = crtc->dev;
  6168. intel_fb = to_intel_framebuffer(crtc->fb);
  6169. work->old_fb_obj = intel_fb->obj;
  6170. INIT_WORK(&work->work, intel_unpin_work_fn);
  6171. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6172. if (ret)
  6173. goto free_work;
  6174. /* We borrow the event spin lock for protecting unpin_work */
  6175. spin_lock_irqsave(&dev->event_lock, flags);
  6176. if (intel_crtc->unpin_work) {
  6177. spin_unlock_irqrestore(&dev->event_lock, flags);
  6178. kfree(work);
  6179. drm_vblank_put(dev, intel_crtc->pipe);
  6180. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6181. return -EBUSY;
  6182. }
  6183. intel_crtc->unpin_work = work;
  6184. spin_unlock_irqrestore(&dev->event_lock, flags);
  6185. intel_fb = to_intel_framebuffer(fb);
  6186. obj = intel_fb->obj;
  6187. ret = i915_mutex_lock_interruptible(dev);
  6188. if (ret)
  6189. goto cleanup;
  6190. /* Reference the objects for the scheduled work. */
  6191. drm_gem_object_reference(&work->old_fb_obj->base);
  6192. drm_gem_object_reference(&obj->base);
  6193. crtc->fb = fb;
  6194. work->pending_flip_obj = obj;
  6195. work->enable_stall_check = true;
  6196. /* Block clients from rendering to the new back buffer until
  6197. * the flip occurs and the object is no longer visible.
  6198. */
  6199. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6200. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6201. if (ret)
  6202. goto cleanup_pending;
  6203. intel_disable_fbc(dev);
  6204. intel_mark_fb_busy(obj);
  6205. mutex_unlock(&dev->struct_mutex);
  6206. trace_i915_flip_request(intel_crtc->plane, obj);
  6207. return 0;
  6208. cleanup_pending:
  6209. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6210. drm_gem_object_unreference(&work->old_fb_obj->base);
  6211. drm_gem_object_unreference(&obj->base);
  6212. mutex_unlock(&dev->struct_mutex);
  6213. cleanup:
  6214. spin_lock_irqsave(&dev->event_lock, flags);
  6215. intel_crtc->unpin_work = NULL;
  6216. spin_unlock_irqrestore(&dev->event_lock, flags);
  6217. drm_vblank_put(dev, intel_crtc->pipe);
  6218. free_work:
  6219. kfree(work);
  6220. return ret;
  6221. }
  6222. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6223. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6224. .load_lut = intel_crtc_load_lut,
  6225. .disable = intel_crtc_noop,
  6226. };
  6227. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6228. {
  6229. struct intel_encoder *other_encoder;
  6230. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6231. if (WARN_ON(!crtc))
  6232. return false;
  6233. list_for_each_entry(other_encoder,
  6234. &crtc->dev->mode_config.encoder_list,
  6235. base.head) {
  6236. if (&other_encoder->new_crtc->base != crtc ||
  6237. encoder == other_encoder)
  6238. continue;
  6239. else
  6240. return true;
  6241. }
  6242. return false;
  6243. }
  6244. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6245. struct drm_crtc *crtc)
  6246. {
  6247. struct drm_device *dev;
  6248. struct drm_crtc *tmp;
  6249. int crtc_mask = 1;
  6250. WARN(!crtc, "checking null crtc?\n");
  6251. dev = crtc->dev;
  6252. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6253. if (tmp == crtc)
  6254. break;
  6255. crtc_mask <<= 1;
  6256. }
  6257. if (encoder->possible_crtcs & crtc_mask)
  6258. return true;
  6259. return false;
  6260. }
  6261. /**
  6262. * intel_modeset_update_staged_output_state
  6263. *
  6264. * Updates the staged output configuration state, e.g. after we've read out the
  6265. * current hw state.
  6266. */
  6267. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6268. {
  6269. struct intel_encoder *encoder;
  6270. struct intel_connector *connector;
  6271. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6272. base.head) {
  6273. connector->new_encoder =
  6274. to_intel_encoder(connector->base.encoder);
  6275. }
  6276. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6277. base.head) {
  6278. encoder->new_crtc =
  6279. to_intel_crtc(encoder->base.crtc);
  6280. }
  6281. }
  6282. /**
  6283. * intel_modeset_commit_output_state
  6284. *
  6285. * This function copies the stage display pipe configuration to the real one.
  6286. */
  6287. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6288. {
  6289. struct intel_encoder *encoder;
  6290. struct intel_connector *connector;
  6291. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6292. base.head) {
  6293. connector->base.encoder = &connector->new_encoder->base;
  6294. }
  6295. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6296. base.head) {
  6297. encoder->base.crtc = &encoder->new_crtc->base;
  6298. }
  6299. }
  6300. static struct drm_display_mode *
  6301. intel_modeset_adjusted_mode(struct drm_crtc *crtc,
  6302. struct drm_display_mode *mode)
  6303. {
  6304. struct drm_device *dev = crtc->dev;
  6305. struct drm_display_mode *adjusted_mode;
  6306. struct drm_encoder_helper_funcs *encoder_funcs;
  6307. struct intel_encoder *encoder;
  6308. adjusted_mode = drm_mode_duplicate(dev, mode);
  6309. if (!adjusted_mode)
  6310. return ERR_PTR(-ENOMEM);
  6311. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6312. * adjust it according to limitations or connector properties, and also
  6313. * a chance to reject the mode entirely.
  6314. */
  6315. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6316. base.head) {
  6317. if (&encoder->new_crtc->base != crtc)
  6318. continue;
  6319. encoder_funcs = encoder->base.helper_private;
  6320. if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
  6321. adjusted_mode))) {
  6322. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6323. goto fail;
  6324. }
  6325. }
  6326. if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
  6327. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6328. goto fail;
  6329. }
  6330. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6331. return adjusted_mode;
  6332. fail:
  6333. drm_mode_destroy(dev, adjusted_mode);
  6334. return ERR_PTR(-EINVAL);
  6335. }
  6336. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6337. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6338. static void
  6339. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6340. unsigned *prepare_pipes, unsigned *disable_pipes)
  6341. {
  6342. struct intel_crtc *intel_crtc;
  6343. struct drm_device *dev = crtc->dev;
  6344. struct intel_encoder *encoder;
  6345. struct intel_connector *connector;
  6346. struct drm_crtc *tmp_crtc;
  6347. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6348. /* Check which crtcs have changed outputs connected to them, these need
  6349. * to be part of the prepare_pipes mask. We don't (yet) support global
  6350. * modeset across multiple crtcs, so modeset_pipes will only have one
  6351. * bit set at most. */
  6352. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6353. base.head) {
  6354. if (connector->base.encoder == &connector->new_encoder->base)
  6355. continue;
  6356. if (connector->base.encoder) {
  6357. tmp_crtc = connector->base.encoder->crtc;
  6358. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6359. }
  6360. if (connector->new_encoder)
  6361. *prepare_pipes |=
  6362. 1 << connector->new_encoder->new_crtc->pipe;
  6363. }
  6364. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6365. base.head) {
  6366. if (encoder->base.crtc == &encoder->new_crtc->base)
  6367. continue;
  6368. if (encoder->base.crtc) {
  6369. tmp_crtc = encoder->base.crtc;
  6370. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6371. }
  6372. if (encoder->new_crtc)
  6373. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6374. }
  6375. /* Check for any pipes that will be fully disabled ... */
  6376. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6377. base.head) {
  6378. bool used = false;
  6379. /* Don't try to disable disabled crtcs. */
  6380. if (!intel_crtc->base.enabled)
  6381. continue;
  6382. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6383. base.head) {
  6384. if (encoder->new_crtc == intel_crtc)
  6385. used = true;
  6386. }
  6387. if (!used)
  6388. *disable_pipes |= 1 << intel_crtc->pipe;
  6389. }
  6390. /* set_mode is also used to update properties on life display pipes. */
  6391. intel_crtc = to_intel_crtc(crtc);
  6392. if (crtc->enabled)
  6393. *prepare_pipes |= 1 << intel_crtc->pipe;
  6394. /* We only support modeset on one single crtc, hence we need to do that
  6395. * only for the passed in crtc iff we change anything else than just
  6396. * disable crtcs.
  6397. *
  6398. * This is actually not true, to be fully compatible with the old crtc
  6399. * helper we automatically disable _any_ output (i.e. doesn't need to be
  6400. * connected to the crtc we're modesetting on) if it's disconnected.
  6401. * Which is a rather nutty api (since changed the output configuration
  6402. * without userspace's explicit request can lead to confusion), but
  6403. * alas. Hence we currently need to modeset on all pipes we prepare. */
  6404. if (*prepare_pipes)
  6405. *modeset_pipes = *prepare_pipes;
  6406. /* ... and mask these out. */
  6407. *modeset_pipes &= ~(*disable_pipes);
  6408. *prepare_pipes &= ~(*disable_pipes);
  6409. }
  6410. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6411. {
  6412. struct drm_encoder *encoder;
  6413. struct drm_device *dev = crtc->dev;
  6414. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6415. if (encoder->crtc == crtc)
  6416. return true;
  6417. return false;
  6418. }
  6419. static void
  6420. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6421. {
  6422. struct intel_encoder *intel_encoder;
  6423. struct intel_crtc *intel_crtc;
  6424. struct drm_connector *connector;
  6425. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6426. base.head) {
  6427. if (!intel_encoder->base.crtc)
  6428. continue;
  6429. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6430. if (prepare_pipes & (1 << intel_crtc->pipe))
  6431. intel_encoder->connectors_active = false;
  6432. }
  6433. intel_modeset_commit_output_state(dev);
  6434. /* Update computed state. */
  6435. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6436. base.head) {
  6437. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6438. }
  6439. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6440. if (!connector->encoder || !connector->encoder->crtc)
  6441. continue;
  6442. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6443. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6444. struct drm_property *dpms_property =
  6445. dev->mode_config.dpms_property;
  6446. connector->dpms = DRM_MODE_DPMS_ON;
  6447. drm_connector_property_set_value(connector,
  6448. dpms_property,
  6449. DRM_MODE_DPMS_ON);
  6450. intel_encoder = to_intel_encoder(connector->encoder);
  6451. intel_encoder->connectors_active = true;
  6452. }
  6453. }
  6454. }
  6455. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6456. list_for_each_entry((intel_crtc), \
  6457. &(dev)->mode_config.crtc_list, \
  6458. base.head) \
  6459. if (mask & (1 <<(intel_crtc)->pipe)) \
  6460. void
  6461. intel_modeset_check_state(struct drm_device *dev)
  6462. {
  6463. struct intel_crtc *crtc;
  6464. struct intel_encoder *encoder;
  6465. struct intel_connector *connector;
  6466. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6467. base.head) {
  6468. /* This also checks the encoder/connector hw state with the
  6469. * ->get_hw_state callbacks. */
  6470. intel_connector_check_state(connector);
  6471. WARN(&connector->new_encoder->base != connector->base.encoder,
  6472. "connector's staged encoder doesn't match current encoder\n");
  6473. }
  6474. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6475. base.head) {
  6476. bool enabled = false;
  6477. bool active = false;
  6478. enum pipe pipe, tracked_pipe;
  6479. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6480. encoder->base.base.id,
  6481. drm_get_encoder_name(&encoder->base));
  6482. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6483. "encoder's stage crtc doesn't match current crtc\n");
  6484. WARN(encoder->connectors_active && !encoder->base.crtc,
  6485. "encoder's active_connectors set, but no crtc\n");
  6486. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6487. base.head) {
  6488. if (connector->base.encoder != &encoder->base)
  6489. continue;
  6490. enabled = true;
  6491. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6492. active = true;
  6493. }
  6494. WARN(!!encoder->base.crtc != enabled,
  6495. "encoder's enabled state mismatch "
  6496. "(expected %i, found %i)\n",
  6497. !!encoder->base.crtc, enabled);
  6498. WARN(active && !encoder->base.crtc,
  6499. "active encoder with no crtc\n");
  6500. WARN(encoder->connectors_active != active,
  6501. "encoder's computed active state doesn't match tracked active state "
  6502. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6503. active = encoder->get_hw_state(encoder, &pipe);
  6504. WARN(active != encoder->connectors_active,
  6505. "encoder's hw state doesn't match sw tracking "
  6506. "(expected %i, found %i)\n",
  6507. encoder->connectors_active, active);
  6508. if (!encoder->base.crtc)
  6509. continue;
  6510. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6511. WARN(active && pipe != tracked_pipe,
  6512. "active encoder's pipe doesn't match"
  6513. "(expected %i, found %i)\n",
  6514. tracked_pipe, pipe);
  6515. }
  6516. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6517. base.head) {
  6518. bool enabled = false;
  6519. bool active = false;
  6520. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6521. crtc->base.base.id);
  6522. WARN(crtc->active && !crtc->base.enabled,
  6523. "active crtc, but not enabled in sw tracking\n");
  6524. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6525. base.head) {
  6526. if (encoder->base.crtc != &crtc->base)
  6527. continue;
  6528. enabled = true;
  6529. if (encoder->connectors_active)
  6530. active = true;
  6531. }
  6532. WARN(active != crtc->active,
  6533. "crtc's computed active state doesn't match tracked active state "
  6534. "(expected %i, found %i)\n", active, crtc->active);
  6535. WARN(enabled != crtc->base.enabled,
  6536. "crtc's computed enabled state doesn't match tracked enabled state "
  6537. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6538. assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
  6539. }
  6540. }
  6541. bool intel_set_mode(struct drm_crtc *crtc,
  6542. struct drm_display_mode *mode,
  6543. int x, int y, struct drm_framebuffer *fb)
  6544. {
  6545. struct drm_device *dev = crtc->dev;
  6546. drm_i915_private_t *dev_priv = dev->dev_private;
  6547. struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
  6548. struct intel_crtc *intel_crtc;
  6549. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6550. bool ret = true;
  6551. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6552. &prepare_pipes, &disable_pipes);
  6553. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6554. modeset_pipes, prepare_pipes, disable_pipes);
  6555. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6556. intel_crtc_disable(&intel_crtc->base);
  6557. saved_hwmode = crtc->hwmode;
  6558. saved_mode = crtc->mode;
  6559. /* Hack: Because we don't (yet) support global modeset on multiple
  6560. * crtcs, we don't keep track of the new mode for more than one crtc.
  6561. * Hence simply check whether any bit is set in modeset_pipes in all the
  6562. * pieces of code that are not yet converted to deal with mutliple crtcs
  6563. * changing their mode at the same time. */
  6564. adjusted_mode = NULL;
  6565. if (modeset_pipes) {
  6566. adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
  6567. if (IS_ERR(adjusted_mode)) {
  6568. return false;
  6569. }
  6570. }
  6571. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6572. if (intel_crtc->base.enabled)
  6573. dev_priv->display.crtc_disable(&intel_crtc->base);
  6574. }
  6575. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6576. * to set it here already despite that we pass it down the callchain.
  6577. */
  6578. if (modeset_pipes)
  6579. crtc->mode = *mode;
  6580. /* Only after disabling all output pipelines that will be changed can we
  6581. * update the the output configuration. */
  6582. intel_modeset_update_state(dev, prepare_pipes);
  6583. if (dev_priv->display.modeset_global_resources)
  6584. dev_priv->display.modeset_global_resources(dev);
  6585. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6586. * on the DPLL.
  6587. */
  6588. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6589. ret = !intel_crtc_mode_set(&intel_crtc->base,
  6590. mode, adjusted_mode,
  6591. x, y, fb);
  6592. if (!ret)
  6593. goto done;
  6594. }
  6595. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6596. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6597. dev_priv->display.crtc_enable(&intel_crtc->base);
  6598. if (modeset_pipes) {
  6599. /* Store real post-adjustment hardware mode. */
  6600. crtc->hwmode = *adjusted_mode;
  6601. /* Calculate and store various constants which
  6602. * are later needed by vblank and swap-completion
  6603. * timestamping. They are derived from true hwmode.
  6604. */
  6605. drm_calc_timestamping_constants(crtc);
  6606. }
  6607. /* FIXME: add subpixel order */
  6608. done:
  6609. drm_mode_destroy(dev, adjusted_mode);
  6610. if (!ret && crtc->enabled) {
  6611. crtc->hwmode = saved_hwmode;
  6612. crtc->mode = saved_mode;
  6613. } else {
  6614. intel_modeset_check_state(dev);
  6615. }
  6616. return ret;
  6617. }
  6618. #undef for_each_intel_crtc_masked
  6619. static void intel_set_config_free(struct intel_set_config *config)
  6620. {
  6621. if (!config)
  6622. return;
  6623. kfree(config->save_connector_encoders);
  6624. kfree(config->save_encoder_crtcs);
  6625. kfree(config);
  6626. }
  6627. static int intel_set_config_save_state(struct drm_device *dev,
  6628. struct intel_set_config *config)
  6629. {
  6630. struct drm_encoder *encoder;
  6631. struct drm_connector *connector;
  6632. int count;
  6633. config->save_encoder_crtcs =
  6634. kcalloc(dev->mode_config.num_encoder,
  6635. sizeof(struct drm_crtc *), GFP_KERNEL);
  6636. if (!config->save_encoder_crtcs)
  6637. return -ENOMEM;
  6638. config->save_connector_encoders =
  6639. kcalloc(dev->mode_config.num_connector,
  6640. sizeof(struct drm_encoder *), GFP_KERNEL);
  6641. if (!config->save_connector_encoders)
  6642. return -ENOMEM;
  6643. /* Copy data. Note that driver private data is not affected.
  6644. * Should anything bad happen only the expected state is
  6645. * restored, not the drivers personal bookkeeping.
  6646. */
  6647. count = 0;
  6648. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6649. config->save_encoder_crtcs[count++] = encoder->crtc;
  6650. }
  6651. count = 0;
  6652. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6653. config->save_connector_encoders[count++] = connector->encoder;
  6654. }
  6655. return 0;
  6656. }
  6657. static void intel_set_config_restore_state(struct drm_device *dev,
  6658. struct intel_set_config *config)
  6659. {
  6660. struct intel_encoder *encoder;
  6661. struct intel_connector *connector;
  6662. int count;
  6663. count = 0;
  6664. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6665. encoder->new_crtc =
  6666. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6667. }
  6668. count = 0;
  6669. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6670. connector->new_encoder =
  6671. to_intel_encoder(config->save_connector_encoders[count++]);
  6672. }
  6673. }
  6674. static void
  6675. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6676. struct intel_set_config *config)
  6677. {
  6678. /* We should be able to check here if the fb has the same properties
  6679. * and then just flip_or_move it */
  6680. if (set->crtc->fb != set->fb) {
  6681. /* If we have no fb then treat it as a full mode set */
  6682. if (set->crtc->fb == NULL) {
  6683. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6684. config->mode_changed = true;
  6685. } else if (set->fb == NULL) {
  6686. config->mode_changed = true;
  6687. } else if (set->fb->depth != set->crtc->fb->depth) {
  6688. config->mode_changed = true;
  6689. } else if (set->fb->bits_per_pixel !=
  6690. set->crtc->fb->bits_per_pixel) {
  6691. config->mode_changed = true;
  6692. } else
  6693. config->fb_changed = true;
  6694. }
  6695. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6696. config->fb_changed = true;
  6697. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6698. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6699. drm_mode_debug_printmodeline(&set->crtc->mode);
  6700. drm_mode_debug_printmodeline(set->mode);
  6701. config->mode_changed = true;
  6702. }
  6703. }
  6704. static int
  6705. intel_modeset_stage_output_state(struct drm_device *dev,
  6706. struct drm_mode_set *set,
  6707. struct intel_set_config *config)
  6708. {
  6709. struct drm_crtc *new_crtc;
  6710. struct intel_connector *connector;
  6711. struct intel_encoder *encoder;
  6712. int count, ro;
  6713. /* The upper layers ensure that we either disabl a crtc or have a list
  6714. * of connectors. For paranoia, double-check this. */
  6715. WARN_ON(!set->fb && (set->num_connectors != 0));
  6716. WARN_ON(set->fb && (set->num_connectors == 0));
  6717. count = 0;
  6718. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6719. base.head) {
  6720. /* Otherwise traverse passed in connector list and get encoders
  6721. * for them. */
  6722. for (ro = 0; ro < set->num_connectors; ro++) {
  6723. if (set->connectors[ro] == &connector->base) {
  6724. connector->new_encoder = connector->encoder;
  6725. break;
  6726. }
  6727. }
  6728. /* If we disable the crtc, disable all its connectors. Also, if
  6729. * the connector is on the changing crtc but not on the new
  6730. * connector list, disable it. */
  6731. if ((!set->fb || ro == set->num_connectors) &&
  6732. connector->base.encoder &&
  6733. connector->base.encoder->crtc == set->crtc) {
  6734. connector->new_encoder = NULL;
  6735. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6736. connector->base.base.id,
  6737. drm_get_connector_name(&connector->base));
  6738. }
  6739. if (&connector->new_encoder->base != connector->base.encoder) {
  6740. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6741. config->mode_changed = true;
  6742. }
  6743. /* Disable all disconnected encoders. */
  6744. if (connector->base.status == connector_status_disconnected)
  6745. connector->new_encoder = NULL;
  6746. }
  6747. /* connector->new_encoder is now updated for all connectors. */
  6748. /* Update crtc of enabled connectors. */
  6749. count = 0;
  6750. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6751. base.head) {
  6752. if (!connector->new_encoder)
  6753. continue;
  6754. new_crtc = connector->new_encoder->base.crtc;
  6755. for (ro = 0; ro < set->num_connectors; ro++) {
  6756. if (set->connectors[ro] == &connector->base)
  6757. new_crtc = set->crtc;
  6758. }
  6759. /* Make sure the new CRTC will work with the encoder */
  6760. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6761. new_crtc)) {
  6762. return -EINVAL;
  6763. }
  6764. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6765. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6766. connector->base.base.id,
  6767. drm_get_connector_name(&connector->base),
  6768. new_crtc->base.id);
  6769. }
  6770. /* Check for any encoders that needs to be disabled. */
  6771. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6772. base.head) {
  6773. list_for_each_entry(connector,
  6774. &dev->mode_config.connector_list,
  6775. base.head) {
  6776. if (connector->new_encoder == encoder) {
  6777. WARN_ON(!connector->new_encoder->new_crtc);
  6778. goto next_encoder;
  6779. }
  6780. }
  6781. encoder->new_crtc = NULL;
  6782. next_encoder:
  6783. /* Only now check for crtc changes so we don't miss encoders
  6784. * that will be disabled. */
  6785. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6786. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6787. config->mode_changed = true;
  6788. }
  6789. }
  6790. /* Now we've also updated encoder->new_crtc for all encoders. */
  6791. return 0;
  6792. }
  6793. static int intel_crtc_set_config(struct drm_mode_set *set)
  6794. {
  6795. struct drm_device *dev;
  6796. struct drm_mode_set save_set;
  6797. struct intel_set_config *config;
  6798. int ret;
  6799. BUG_ON(!set);
  6800. BUG_ON(!set->crtc);
  6801. BUG_ON(!set->crtc->helper_private);
  6802. if (!set->mode)
  6803. set->fb = NULL;
  6804. /* The fb helper likes to play gross jokes with ->mode_set_config.
  6805. * Unfortunately the crtc helper doesn't do much at all for this case,
  6806. * so we have to cope with this madness until the fb helper is fixed up. */
  6807. if (set->fb && set->num_connectors == 0)
  6808. return 0;
  6809. if (set->fb) {
  6810. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6811. set->crtc->base.id, set->fb->base.id,
  6812. (int)set->num_connectors, set->x, set->y);
  6813. } else {
  6814. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6815. }
  6816. dev = set->crtc->dev;
  6817. ret = -ENOMEM;
  6818. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6819. if (!config)
  6820. goto out_config;
  6821. ret = intel_set_config_save_state(dev, config);
  6822. if (ret)
  6823. goto out_config;
  6824. save_set.crtc = set->crtc;
  6825. save_set.mode = &set->crtc->mode;
  6826. save_set.x = set->crtc->x;
  6827. save_set.y = set->crtc->y;
  6828. save_set.fb = set->crtc->fb;
  6829. /* Compute whether we need a full modeset, only an fb base update or no
  6830. * change at all. In the future we might also check whether only the
  6831. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6832. * such cases. */
  6833. intel_set_config_compute_mode_changes(set, config);
  6834. ret = intel_modeset_stage_output_state(dev, set, config);
  6835. if (ret)
  6836. goto fail;
  6837. if (config->mode_changed) {
  6838. if (set->mode) {
  6839. DRM_DEBUG_KMS("attempting to set mode from"
  6840. " userspace\n");
  6841. drm_mode_debug_printmodeline(set->mode);
  6842. }
  6843. if (!intel_set_mode(set->crtc, set->mode,
  6844. set->x, set->y, set->fb)) {
  6845. DRM_ERROR("failed to set mode on [CRTC:%d]\n",
  6846. set->crtc->base.id);
  6847. ret = -EINVAL;
  6848. goto fail;
  6849. }
  6850. } else if (config->fb_changed) {
  6851. ret = intel_pipe_set_base(set->crtc,
  6852. set->x, set->y, set->fb);
  6853. }
  6854. intel_set_config_free(config);
  6855. return 0;
  6856. fail:
  6857. intel_set_config_restore_state(dev, config);
  6858. /* Try to restore the config */
  6859. if (config->mode_changed &&
  6860. !intel_set_mode(save_set.crtc, save_set.mode,
  6861. save_set.x, save_set.y, save_set.fb))
  6862. DRM_ERROR("failed to restore config after modeset failure\n");
  6863. out_config:
  6864. intel_set_config_free(config);
  6865. return ret;
  6866. }
  6867. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6868. .cursor_set = intel_crtc_cursor_set,
  6869. .cursor_move = intel_crtc_cursor_move,
  6870. .gamma_set = intel_crtc_gamma_set,
  6871. .set_config = intel_crtc_set_config,
  6872. .destroy = intel_crtc_destroy,
  6873. .page_flip = intel_crtc_page_flip,
  6874. };
  6875. static void intel_cpu_pll_init(struct drm_device *dev)
  6876. {
  6877. if (IS_HASWELL(dev))
  6878. intel_ddi_pll_init(dev);
  6879. }
  6880. static void intel_pch_pll_init(struct drm_device *dev)
  6881. {
  6882. drm_i915_private_t *dev_priv = dev->dev_private;
  6883. int i;
  6884. if (dev_priv->num_pch_pll == 0) {
  6885. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  6886. return;
  6887. }
  6888. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  6889. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  6890. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  6891. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  6892. }
  6893. }
  6894. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6895. {
  6896. drm_i915_private_t *dev_priv = dev->dev_private;
  6897. struct intel_crtc *intel_crtc;
  6898. int i;
  6899. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6900. if (intel_crtc == NULL)
  6901. return;
  6902. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6903. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6904. for (i = 0; i < 256; i++) {
  6905. intel_crtc->lut_r[i] = i;
  6906. intel_crtc->lut_g[i] = i;
  6907. intel_crtc->lut_b[i] = i;
  6908. }
  6909. /* Swap pipes & planes for FBC on pre-965 */
  6910. intel_crtc->pipe = pipe;
  6911. intel_crtc->plane = pipe;
  6912. intel_crtc->cpu_transcoder = pipe;
  6913. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6914. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6915. intel_crtc->plane = !pipe;
  6916. }
  6917. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6918. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6919. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6920. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6921. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6922. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6923. }
  6924. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6925. struct drm_file *file)
  6926. {
  6927. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6928. struct drm_mode_object *drmmode_obj;
  6929. struct intel_crtc *crtc;
  6930. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6931. return -ENODEV;
  6932. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6933. DRM_MODE_OBJECT_CRTC);
  6934. if (!drmmode_obj) {
  6935. DRM_ERROR("no such CRTC id\n");
  6936. return -EINVAL;
  6937. }
  6938. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6939. pipe_from_crtc_id->pipe = crtc->pipe;
  6940. return 0;
  6941. }
  6942. static int intel_encoder_clones(struct intel_encoder *encoder)
  6943. {
  6944. struct drm_device *dev = encoder->base.dev;
  6945. struct intel_encoder *source_encoder;
  6946. int index_mask = 0;
  6947. int entry = 0;
  6948. list_for_each_entry(source_encoder,
  6949. &dev->mode_config.encoder_list, base.head) {
  6950. if (encoder == source_encoder)
  6951. index_mask |= (1 << entry);
  6952. /* Intel hw has only one MUX where enocoders could be cloned. */
  6953. if (encoder->cloneable && source_encoder->cloneable)
  6954. index_mask |= (1 << entry);
  6955. entry++;
  6956. }
  6957. return index_mask;
  6958. }
  6959. static bool has_edp_a(struct drm_device *dev)
  6960. {
  6961. struct drm_i915_private *dev_priv = dev->dev_private;
  6962. if (!IS_MOBILE(dev))
  6963. return false;
  6964. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6965. return false;
  6966. if (IS_GEN5(dev) &&
  6967. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6968. return false;
  6969. return true;
  6970. }
  6971. static void intel_setup_outputs(struct drm_device *dev)
  6972. {
  6973. struct drm_i915_private *dev_priv = dev->dev_private;
  6974. struct intel_encoder *encoder;
  6975. bool dpd_is_edp = false;
  6976. bool has_lvds;
  6977. has_lvds = intel_lvds_init(dev);
  6978. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6979. /* disable the panel fitter on everything but LVDS */
  6980. I915_WRITE(PFIT_CONTROL, 0);
  6981. }
  6982. intel_crt_init(dev);
  6983. if (IS_HASWELL(dev)) {
  6984. int found;
  6985. /* Haswell uses DDI functions to detect digital outputs */
  6986. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  6987. /* DDI A only supports eDP */
  6988. if (found)
  6989. intel_ddi_init(dev, PORT_A);
  6990. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  6991. * register */
  6992. found = I915_READ(SFUSE_STRAP);
  6993. if (found & SFUSE_STRAP_DDIB_DETECTED)
  6994. intel_ddi_init(dev, PORT_B);
  6995. if (found & SFUSE_STRAP_DDIC_DETECTED)
  6996. intel_ddi_init(dev, PORT_C);
  6997. if (found & SFUSE_STRAP_DDID_DETECTED)
  6998. intel_ddi_init(dev, PORT_D);
  6999. } else if (HAS_PCH_SPLIT(dev)) {
  7000. int found;
  7001. dpd_is_edp = intel_dpd_is_edp(dev);
  7002. if (has_edp_a(dev))
  7003. intel_dp_init(dev, DP_A, PORT_A);
  7004. if (I915_READ(HDMIB) & PORT_DETECTED) {
  7005. /* PCH SDVOB multiplex with HDMIB */
  7006. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7007. if (!found)
  7008. intel_hdmi_init(dev, HDMIB, PORT_B);
  7009. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7010. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7011. }
  7012. if (I915_READ(HDMIC) & PORT_DETECTED)
  7013. intel_hdmi_init(dev, HDMIC, PORT_C);
  7014. if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  7015. intel_hdmi_init(dev, HDMID, PORT_D);
  7016. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7017. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7018. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7019. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7020. } else if (IS_VALLEYVIEW(dev)) {
  7021. int found;
  7022. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7023. if (I915_READ(DP_C) & DP_DETECTED)
  7024. intel_dp_init(dev, DP_C, PORT_C);
  7025. if (I915_READ(SDVOB) & PORT_DETECTED) {
  7026. /* SDVOB multiplex with HDMIB */
  7027. found = intel_sdvo_init(dev, SDVOB, true);
  7028. if (!found)
  7029. intel_hdmi_init(dev, SDVOB, PORT_B);
  7030. if (!found && (I915_READ(DP_B) & DP_DETECTED))
  7031. intel_dp_init(dev, DP_B, PORT_B);
  7032. }
  7033. if (I915_READ(SDVOC) & PORT_DETECTED)
  7034. intel_hdmi_init(dev, SDVOC, PORT_C);
  7035. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7036. bool found = false;
  7037. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  7038. DRM_DEBUG_KMS("probing SDVOB\n");
  7039. found = intel_sdvo_init(dev, SDVOB, true);
  7040. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7041. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7042. intel_hdmi_init(dev, SDVOB, PORT_B);
  7043. }
  7044. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  7045. DRM_DEBUG_KMS("probing DP_B\n");
  7046. intel_dp_init(dev, DP_B, PORT_B);
  7047. }
  7048. }
  7049. /* Before G4X SDVOC doesn't have its own detect register */
  7050. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  7051. DRM_DEBUG_KMS("probing SDVOC\n");
  7052. found = intel_sdvo_init(dev, SDVOC, false);
  7053. }
  7054. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  7055. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7056. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7057. intel_hdmi_init(dev, SDVOC, PORT_C);
  7058. }
  7059. if (SUPPORTS_INTEGRATED_DP(dev)) {
  7060. DRM_DEBUG_KMS("probing DP_C\n");
  7061. intel_dp_init(dev, DP_C, PORT_C);
  7062. }
  7063. }
  7064. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7065. (I915_READ(DP_D) & DP_DETECTED)) {
  7066. DRM_DEBUG_KMS("probing DP_D\n");
  7067. intel_dp_init(dev, DP_D, PORT_D);
  7068. }
  7069. } else if (IS_GEN2(dev))
  7070. intel_dvo_init(dev);
  7071. if (SUPPORTS_TV(dev))
  7072. intel_tv_init(dev);
  7073. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7074. encoder->base.possible_crtcs = encoder->crtc_mask;
  7075. encoder->base.possible_clones =
  7076. intel_encoder_clones(encoder);
  7077. }
  7078. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7079. ironlake_init_pch_refclk(dev);
  7080. drm_helper_move_panel_connectors_to_head(dev);
  7081. }
  7082. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7083. {
  7084. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7085. drm_framebuffer_cleanup(fb);
  7086. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7087. kfree(intel_fb);
  7088. }
  7089. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7090. struct drm_file *file,
  7091. unsigned int *handle)
  7092. {
  7093. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7094. struct drm_i915_gem_object *obj = intel_fb->obj;
  7095. return drm_gem_handle_create(file, &obj->base, handle);
  7096. }
  7097. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7098. .destroy = intel_user_framebuffer_destroy,
  7099. .create_handle = intel_user_framebuffer_create_handle,
  7100. };
  7101. int intel_framebuffer_init(struct drm_device *dev,
  7102. struct intel_framebuffer *intel_fb,
  7103. struct drm_mode_fb_cmd2 *mode_cmd,
  7104. struct drm_i915_gem_object *obj)
  7105. {
  7106. int ret;
  7107. if (obj->tiling_mode == I915_TILING_Y)
  7108. return -EINVAL;
  7109. if (mode_cmd->pitches[0] & 63)
  7110. return -EINVAL;
  7111. /* FIXME <= Gen4 stride limits are bit unclear */
  7112. if (mode_cmd->pitches[0] > 32768)
  7113. return -EINVAL;
  7114. if (obj->tiling_mode != I915_TILING_NONE &&
  7115. mode_cmd->pitches[0] != obj->stride)
  7116. return -EINVAL;
  7117. /* Reject formats not supported by any plane early. */
  7118. switch (mode_cmd->pixel_format) {
  7119. case DRM_FORMAT_C8:
  7120. case DRM_FORMAT_RGB565:
  7121. case DRM_FORMAT_XRGB8888:
  7122. case DRM_FORMAT_ARGB8888:
  7123. break;
  7124. case DRM_FORMAT_XRGB1555:
  7125. case DRM_FORMAT_ARGB1555:
  7126. if (INTEL_INFO(dev)->gen > 3)
  7127. return -EINVAL;
  7128. break;
  7129. case DRM_FORMAT_XBGR8888:
  7130. case DRM_FORMAT_ABGR8888:
  7131. case DRM_FORMAT_XRGB2101010:
  7132. case DRM_FORMAT_ARGB2101010:
  7133. case DRM_FORMAT_XBGR2101010:
  7134. case DRM_FORMAT_ABGR2101010:
  7135. if (INTEL_INFO(dev)->gen < 4)
  7136. return -EINVAL;
  7137. break;
  7138. case DRM_FORMAT_YUYV:
  7139. case DRM_FORMAT_UYVY:
  7140. case DRM_FORMAT_YVYU:
  7141. case DRM_FORMAT_VYUY:
  7142. if (INTEL_INFO(dev)->gen < 6)
  7143. return -EINVAL;
  7144. break;
  7145. default:
  7146. DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7147. return -EINVAL;
  7148. }
  7149. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7150. if (mode_cmd->offsets[0] != 0)
  7151. return -EINVAL;
  7152. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7153. if (ret) {
  7154. DRM_ERROR("framebuffer init failed %d\n", ret);
  7155. return ret;
  7156. }
  7157. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7158. intel_fb->obj = obj;
  7159. return 0;
  7160. }
  7161. static struct drm_framebuffer *
  7162. intel_user_framebuffer_create(struct drm_device *dev,
  7163. struct drm_file *filp,
  7164. struct drm_mode_fb_cmd2 *mode_cmd)
  7165. {
  7166. struct drm_i915_gem_object *obj;
  7167. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7168. mode_cmd->handles[0]));
  7169. if (&obj->base == NULL)
  7170. return ERR_PTR(-ENOENT);
  7171. return intel_framebuffer_create(dev, mode_cmd, obj);
  7172. }
  7173. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7174. .fb_create = intel_user_framebuffer_create,
  7175. .output_poll_changed = intel_fb_output_poll_changed,
  7176. };
  7177. /* Set up chip specific display functions */
  7178. static void intel_init_display(struct drm_device *dev)
  7179. {
  7180. struct drm_i915_private *dev_priv = dev->dev_private;
  7181. /* We always want a DPMS function */
  7182. if (IS_HASWELL(dev)) {
  7183. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7184. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7185. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7186. dev_priv->display.off = haswell_crtc_off;
  7187. dev_priv->display.update_plane = ironlake_update_plane;
  7188. } else if (HAS_PCH_SPLIT(dev)) {
  7189. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7190. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7191. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7192. dev_priv->display.off = ironlake_crtc_off;
  7193. dev_priv->display.update_plane = ironlake_update_plane;
  7194. } else {
  7195. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7196. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7197. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7198. dev_priv->display.off = i9xx_crtc_off;
  7199. dev_priv->display.update_plane = i9xx_update_plane;
  7200. }
  7201. /* Returns the core display clock speed */
  7202. if (IS_VALLEYVIEW(dev))
  7203. dev_priv->display.get_display_clock_speed =
  7204. valleyview_get_display_clock_speed;
  7205. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7206. dev_priv->display.get_display_clock_speed =
  7207. i945_get_display_clock_speed;
  7208. else if (IS_I915G(dev))
  7209. dev_priv->display.get_display_clock_speed =
  7210. i915_get_display_clock_speed;
  7211. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7212. dev_priv->display.get_display_clock_speed =
  7213. i9xx_misc_get_display_clock_speed;
  7214. else if (IS_I915GM(dev))
  7215. dev_priv->display.get_display_clock_speed =
  7216. i915gm_get_display_clock_speed;
  7217. else if (IS_I865G(dev))
  7218. dev_priv->display.get_display_clock_speed =
  7219. i865_get_display_clock_speed;
  7220. else if (IS_I85X(dev))
  7221. dev_priv->display.get_display_clock_speed =
  7222. i855_get_display_clock_speed;
  7223. else /* 852, 830 */
  7224. dev_priv->display.get_display_clock_speed =
  7225. i830_get_display_clock_speed;
  7226. if (HAS_PCH_SPLIT(dev)) {
  7227. if (IS_GEN5(dev)) {
  7228. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7229. dev_priv->display.write_eld = ironlake_write_eld;
  7230. } else if (IS_GEN6(dev)) {
  7231. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7232. dev_priv->display.write_eld = ironlake_write_eld;
  7233. } else if (IS_IVYBRIDGE(dev)) {
  7234. /* FIXME: detect B0+ stepping and use auto training */
  7235. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7236. dev_priv->display.write_eld = ironlake_write_eld;
  7237. dev_priv->display.modeset_global_resources =
  7238. ivb_modeset_global_resources;
  7239. } else if (IS_HASWELL(dev)) {
  7240. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7241. dev_priv->display.write_eld = haswell_write_eld;
  7242. } else
  7243. dev_priv->display.update_wm = NULL;
  7244. } else if (IS_G4X(dev)) {
  7245. dev_priv->display.write_eld = g4x_write_eld;
  7246. }
  7247. /* Default just returns -ENODEV to indicate unsupported */
  7248. dev_priv->display.queue_flip = intel_default_queue_flip;
  7249. switch (INTEL_INFO(dev)->gen) {
  7250. case 2:
  7251. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7252. break;
  7253. case 3:
  7254. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7255. break;
  7256. case 4:
  7257. case 5:
  7258. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7259. break;
  7260. case 6:
  7261. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7262. break;
  7263. case 7:
  7264. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7265. break;
  7266. }
  7267. }
  7268. /*
  7269. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7270. * resume, or other times. This quirk makes sure that's the case for
  7271. * affected systems.
  7272. */
  7273. static void quirk_pipea_force(struct drm_device *dev)
  7274. {
  7275. struct drm_i915_private *dev_priv = dev->dev_private;
  7276. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7277. DRM_INFO("applying pipe a force quirk\n");
  7278. }
  7279. /*
  7280. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7281. */
  7282. static void quirk_ssc_force_disable(struct drm_device *dev)
  7283. {
  7284. struct drm_i915_private *dev_priv = dev->dev_private;
  7285. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7286. DRM_INFO("applying lvds SSC disable quirk\n");
  7287. }
  7288. /*
  7289. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7290. * brightness value
  7291. */
  7292. static void quirk_invert_brightness(struct drm_device *dev)
  7293. {
  7294. struct drm_i915_private *dev_priv = dev->dev_private;
  7295. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7296. DRM_INFO("applying inverted panel brightness quirk\n");
  7297. }
  7298. struct intel_quirk {
  7299. int device;
  7300. int subsystem_vendor;
  7301. int subsystem_device;
  7302. void (*hook)(struct drm_device *dev);
  7303. };
  7304. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7305. struct intel_dmi_quirk {
  7306. void (*hook)(struct drm_device *dev);
  7307. const struct dmi_system_id (*dmi_id_list)[];
  7308. };
  7309. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7310. {
  7311. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7312. return 1;
  7313. }
  7314. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7315. {
  7316. .dmi_id_list = &(const struct dmi_system_id[]) {
  7317. {
  7318. .callback = intel_dmi_reverse_brightness,
  7319. .ident = "NCR Corporation",
  7320. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7321. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7322. },
  7323. },
  7324. { } /* terminating entry */
  7325. },
  7326. .hook = quirk_invert_brightness,
  7327. },
  7328. };
  7329. static struct intel_quirk intel_quirks[] = {
  7330. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7331. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7332. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7333. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7334. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7335. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7336. /* 830/845 need to leave pipe A & dpll A up */
  7337. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7338. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7339. /* Lenovo U160 cannot use SSC on LVDS */
  7340. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7341. /* Sony Vaio Y cannot use SSC on LVDS */
  7342. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7343. /* Acer Aspire 5734Z must invert backlight brightness */
  7344. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7345. };
  7346. static void intel_init_quirks(struct drm_device *dev)
  7347. {
  7348. struct pci_dev *d = dev->pdev;
  7349. int i;
  7350. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7351. struct intel_quirk *q = &intel_quirks[i];
  7352. if (d->device == q->device &&
  7353. (d->subsystem_vendor == q->subsystem_vendor ||
  7354. q->subsystem_vendor == PCI_ANY_ID) &&
  7355. (d->subsystem_device == q->subsystem_device ||
  7356. q->subsystem_device == PCI_ANY_ID))
  7357. q->hook(dev);
  7358. }
  7359. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7360. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7361. intel_dmi_quirks[i].hook(dev);
  7362. }
  7363. }
  7364. /* Disable the VGA plane that we never use */
  7365. static void i915_disable_vga(struct drm_device *dev)
  7366. {
  7367. struct drm_i915_private *dev_priv = dev->dev_private;
  7368. u8 sr1;
  7369. u32 vga_reg;
  7370. if (HAS_PCH_SPLIT(dev))
  7371. vga_reg = CPU_VGACNTRL;
  7372. else
  7373. vga_reg = VGACNTRL;
  7374. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7375. outb(SR01, VGA_SR_INDEX);
  7376. sr1 = inb(VGA_SR_DATA);
  7377. outb(sr1 | 1<<5, VGA_SR_DATA);
  7378. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7379. udelay(300);
  7380. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7381. POSTING_READ(vga_reg);
  7382. }
  7383. void intel_modeset_init_hw(struct drm_device *dev)
  7384. {
  7385. /* We attempt to init the necessary power wells early in the initialization
  7386. * time, so the subsystems that expect power to be enabled can work.
  7387. */
  7388. intel_init_power_wells(dev);
  7389. intel_prepare_ddi(dev);
  7390. intel_init_clock_gating(dev);
  7391. mutex_lock(&dev->struct_mutex);
  7392. intel_enable_gt_powersave(dev);
  7393. mutex_unlock(&dev->struct_mutex);
  7394. }
  7395. void intel_modeset_init(struct drm_device *dev)
  7396. {
  7397. struct drm_i915_private *dev_priv = dev->dev_private;
  7398. int i, ret;
  7399. drm_mode_config_init(dev);
  7400. dev->mode_config.min_width = 0;
  7401. dev->mode_config.min_height = 0;
  7402. dev->mode_config.preferred_depth = 24;
  7403. dev->mode_config.prefer_shadow = 1;
  7404. dev->mode_config.funcs = &intel_mode_funcs;
  7405. intel_init_quirks(dev);
  7406. intel_init_pm(dev);
  7407. intel_init_display(dev);
  7408. if (IS_GEN2(dev)) {
  7409. dev->mode_config.max_width = 2048;
  7410. dev->mode_config.max_height = 2048;
  7411. } else if (IS_GEN3(dev)) {
  7412. dev->mode_config.max_width = 4096;
  7413. dev->mode_config.max_height = 4096;
  7414. } else {
  7415. dev->mode_config.max_width = 8192;
  7416. dev->mode_config.max_height = 8192;
  7417. }
  7418. dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
  7419. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7420. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7421. for (i = 0; i < dev_priv->num_pipe; i++) {
  7422. intel_crtc_init(dev, i);
  7423. ret = intel_plane_init(dev, i);
  7424. if (ret)
  7425. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7426. }
  7427. intel_cpu_pll_init(dev);
  7428. intel_pch_pll_init(dev);
  7429. /* Just disable it once at startup */
  7430. i915_disable_vga(dev);
  7431. intel_setup_outputs(dev);
  7432. }
  7433. static void
  7434. intel_connector_break_all_links(struct intel_connector *connector)
  7435. {
  7436. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7437. connector->base.encoder = NULL;
  7438. connector->encoder->connectors_active = false;
  7439. connector->encoder->base.crtc = NULL;
  7440. }
  7441. static void intel_enable_pipe_a(struct drm_device *dev)
  7442. {
  7443. struct intel_connector *connector;
  7444. struct drm_connector *crt = NULL;
  7445. struct intel_load_detect_pipe load_detect_temp;
  7446. /* We can't just switch on the pipe A, we need to set things up with a
  7447. * proper mode and output configuration. As a gross hack, enable pipe A
  7448. * by enabling the load detect pipe once. */
  7449. list_for_each_entry(connector,
  7450. &dev->mode_config.connector_list,
  7451. base.head) {
  7452. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7453. crt = &connector->base;
  7454. break;
  7455. }
  7456. }
  7457. if (!crt)
  7458. return;
  7459. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7460. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7461. }
  7462. static bool
  7463. intel_check_plane_mapping(struct intel_crtc *crtc)
  7464. {
  7465. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  7466. u32 reg, val;
  7467. if (dev_priv->num_pipe == 1)
  7468. return true;
  7469. reg = DSPCNTR(!crtc->plane);
  7470. val = I915_READ(reg);
  7471. if ((val & DISPLAY_PLANE_ENABLE) &&
  7472. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7473. return false;
  7474. return true;
  7475. }
  7476. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7477. {
  7478. struct drm_device *dev = crtc->base.dev;
  7479. struct drm_i915_private *dev_priv = dev->dev_private;
  7480. u32 reg;
  7481. /* Clear any frame start delays used for debugging left by the BIOS */
  7482. reg = PIPECONF(crtc->cpu_transcoder);
  7483. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7484. /* We need to sanitize the plane -> pipe mapping first because this will
  7485. * disable the crtc (and hence change the state) if it is wrong. Note
  7486. * that gen4+ has a fixed plane -> pipe mapping. */
  7487. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7488. struct intel_connector *connector;
  7489. bool plane;
  7490. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7491. crtc->base.base.id);
  7492. /* Pipe has the wrong plane attached and the plane is active.
  7493. * Temporarily change the plane mapping and disable everything
  7494. * ... */
  7495. plane = crtc->plane;
  7496. crtc->plane = !plane;
  7497. dev_priv->display.crtc_disable(&crtc->base);
  7498. crtc->plane = plane;
  7499. /* ... and break all links. */
  7500. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7501. base.head) {
  7502. if (connector->encoder->base.crtc != &crtc->base)
  7503. continue;
  7504. intel_connector_break_all_links(connector);
  7505. }
  7506. WARN_ON(crtc->active);
  7507. crtc->base.enabled = false;
  7508. }
  7509. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7510. crtc->pipe == PIPE_A && !crtc->active) {
  7511. /* BIOS forgot to enable pipe A, this mostly happens after
  7512. * resume. Force-enable the pipe to fix this, the update_dpms
  7513. * call below we restore the pipe to the right state, but leave
  7514. * the required bits on. */
  7515. intel_enable_pipe_a(dev);
  7516. }
  7517. /* Adjust the state of the output pipe according to whether we
  7518. * have active connectors/encoders. */
  7519. intel_crtc_update_dpms(&crtc->base);
  7520. if (crtc->active != crtc->base.enabled) {
  7521. struct intel_encoder *encoder;
  7522. /* This can happen either due to bugs in the get_hw_state
  7523. * functions or because the pipe is force-enabled due to the
  7524. * pipe A quirk. */
  7525. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7526. crtc->base.base.id,
  7527. crtc->base.enabled ? "enabled" : "disabled",
  7528. crtc->active ? "enabled" : "disabled");
  7529. crtc->base.enabled = crtc->active;
  7530. /* Because we only establish the connector -> encoder ->
  7531. * crtc links if something is active, this means the
  7532. * crtc is now deactivated. Break the links. connector
  7533. * -> encoder links are only establish when things are
  7534. * actually up, hence no need to break them. */
  7535. WARN_ON(crtc->active);
  7536. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7537. WARN_ON(encoder->connectors_active);
  7538. encoder->base.crtc = NULL;
  7539. }
  7540. }
  7541. }
  7542. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7543. {
  7544. struct intel_connector *connector;
  7545. struct drm_device *dev = encoder->base.dev;
  7546. /* We need to check both for a crtc link (meaning that the
  7547. * encoder is active and trying to read from a pipe) and the
  7548. * pipe itself being active. */
  7549. bool has_active_crtc = encoder->base.crtc &&
  7550. to_intel_crtc(encoder->base.crtc)->active;
  7551. if (encoder->connectors_active && !has_active_crtc) {
  7552. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7553. encoder->base.base.id,
  7554. drm_get_encoder_name(&encoder->base));
  7555. /* Connector is active, but has no active pipe. This is
  7556. * fallout from our resume register restoring. Disable
  7557. * the encoder manually again. */
  7558. if (encoder->base.crtc) {
  7559. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7560. encoder->base.base.id,
  7561. drm_get_encoder_name(&encoder->base));
  7562. encoder->disable(encoder);
  7563. }
  7564. /* Inconsistent output/port/pipe state happens presumably due to
  7565. * a bug in one of the get_hw_state functions. Or someplace else
  7566. * in our code, like the register restore mess on resume. Clamp
  7567. * things to off as a safer default. */
  7568. list_for_each_entry(connector,
  7569. &dev->mode_config.connector_list,
  7570. base.head) {
  7571. if (connector->encoder != encoder)
  7572. continue;
  7573. intel_connector_break_all_links(connector);
  7574. }
  7575. }
  7576. /* Enabled encoders without active connectors will be fixed in
  7577. * the crtc fixup. */
  7578. }
  7579. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7580. * and i915 state tracking structures. */
  7581. void intel_modeset_setup_hw_state(struct drm_device *dev)
  7582. {
  7583. struct drm_i915_private *dev_priv = dev->dev_private;
  7584. enum pipe pipe;
  7585. u32 tmp;
  7586. struct intel_crtc *crtc;
  7587. struct intel_encoder *encoder;
  7588. struct intel_connector *connector;
  7589. if (IS_HASWELL(dev)) {
  7590. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7591. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7592. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7593. case TRANS_DDI_EDP_INPUT_A_ON:
  7594. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7595. pipe = PIPE_A;
  7596. break;
  7597. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7598. pipe = PIPE_B;
  7599. break;
  7600. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7601. pipe = PIPE_C;
  7602. break;
  7603. }
  7604. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7605. crtc->cpu_transcoder = TRANSCODER_EDP;
  7606. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7607. pipe_name(pipe));
  7608. }
  7609. }
  7610. for_each_pipe(pipe) {
  7611. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7612. tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
  7613. if (tmp & PIPECONF_ENABLE)
  7614. crtc->active = true;
  7615. else
  7616. crtc->active = false;
  7617. crtc->base.enabled = crtc->active;
  7618. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7619. crtc->base.base.id,
  7620. crtc->active ? "enabled" : "disabled");
  7621. }
  7622. if (IS_HASWELL(dev))
  7623. intel_ddi_setup_hw_pll_state(dev);
  7624. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7625. base.head) {
  7626. pipe = 0;
  7627. if (encoder->get_hw_state(encoder, &pipe)) {
  7628. encoder->base.crtc =
  7629. dev_priv->pipe_to_crtc_mapping[pipe];
  7630. } else {
  7631. encoder->base.crtc = NULL;
  7632. }
  7633. encoder->connectors_active = false;
  7634. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7635. encoder->base.base.id,
  7636. drm_get_encoder_name(&encoder->base),
  7637. encoder->base.crtc ? "enabled" : "disabled",
  7638. pipe);
  7639. }
  7640. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7641. base.head) {
  7642. if (connector->get_hw_state(connector)) {
  7643. connector->base.dpms = DRM_MODE_DPMS_ON;
  7644. connector->encoder->connectors_active = true;
  7645. connector->base.encoder = &connector->encoder->base;
  7646. } else {
  7647. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7648. connector->base.encoder = NULL;
  7649. }
  7650. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7651. connector->base.base.id,
  7652. drm_get_connector_name(&connector->base),
  7653. connector->base.encoder ? "enabled" : "disabled");
  7654. }
  7655. /* HW state is read out, now we need to sanitize this mess. */
  7656. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7657. base.head) {
  7658. intel_sanitize_encoder(encoder);
  7659. }
  7660. for_each_pipe(pipe) {
  7661. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7662. intel_sanitize_crtc(crtc);
  7663. }
  7664. intel_modeset_update_staged_output_state(dev);
  7665. intel_modeset_check_state(dev);
  7666. drm_mode_config_reset(dev);
  7667. }
  7668. void intel_modeset_gem_init(struct drm_device *dev)
  7669. {
  7670. intel_modeset_init_hw(dev);
  7671. intel_setup_overlay(dev);
  7672. intel_modeset_setup_hw_state(dev);
  7673. }
  7674. void intel_modeset_cleanup(struct drm_device *dev)
  7675. {
  7676. struct drm_i915_private *dev_priv = dev->dev_private;
  7677. struct drm_crtc *crtc;
  7678. struct intel_crtc *intel_crtc;
  7679. drm_kms_helper_poll_fini(dev);
  7680. mutex_lock(&dev->struct_mutex);
  7681. intel_unregister_dsm_handler();
  7682. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7683. /* Skip inactive CRTCs */
  7684. if (!crtc->fb)
  7685. continue;
  7686. intel_crtc = to_intel_crtc(crtc);
  7687. intel_increase_pllclock(crtc);
  7688. }
  7689. intel_disable_fbc(dev);
  7690. intel_disable_gt_powersave(dev);
  7691. ironlake_teardown_rc6(dev);
  7692. if (IS_VALLEYVIEW(dev))
  7693. vlv_init_dpio(dev);
  7694. mutex_unlock(&dev->struct_mutex);
  7695. /* Disable the irq before mode object teardown, for the irq might
  7696. * enqueue unpin/hotplug work. */
  7697. drm_irq_uninstall(dev);
  7698. cancel_work_sync(&dev_priv->hotplug_work);
  7699. cancel_work_sync(&dev_priv->rps.work);
  7700. /* flush any delayed tasks or pending work */
  7701. flush_scheduled_work();
  7702. drm_mode_config_cleanup(dev);
  7703. }
  7704. /*
  7705. * Return which encoder is currently attached for connector.
  7706. */
  7707. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7708. {
  7709. return &intel_attached_encoder(connector)->base;
  7710. }
  7711. void intel_connector_attach_encoder(struct intel_connector *connector,
  7712. struct intel_encoder *encoder)
  7713. {
  7714. connector->encoder = encoder;
  7715. drm_mode_connector_attach_encoder(&connector->base,
  7716. &encoder->base);
  7717. }
  7718. /*
  7719. * set vga decode state - true == enable VGA decode
  7720. */
  7721. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7722. {
  7723. struct drm_i915_private *dev_priv = dev->dev_private;
  7724. u16 gmch_ctrl;
  7725. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7726. if (state)
  7727. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7728. else
  7729. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7730. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7731. return 0;
  7732. }
  7733. #ifdef CONFIG_DEBUG_FS
  7734. #include <linux/seq_file.h>
  7735. struct intel_display_error_state {
  7736. struct intel_cursor_error_state {
  7737. u32 control;
  7738. u32 position;
  7739. u32 base;
  7740. u32 size;
  7741. } cursor[I915_MAX_PIPES];
  7742. struct intel_pipe_error_state {
  7743. u32 conf;
  7744. u32 source;
  7745. u32 htotal;
  7746. u32 hblank;
  7747. u32 hsync;
  7748. u32 vtotal;
  7749. u32 vblank;
  7750. u32 vsync;
  7751. } pipe[I915_MAX_PIPES];
  7752. struct intel_plane_error_state {
  7753. u32 control;
  7754. u32 stride;
  7755. u32 size;
  7756. u32 pos;
  7757. u32 addr;
  7758. u32 surface;
  7759. u32 tile_offset;
  7760. } plane[I915_MAX_PIPES];
  7761. };
  7762. struct intel_display_error_state *
  7763. intel_display_capture_error_state(struct drm_device *dev)
  7764. {
  7765. drm_i915_private_t *dev_priv = dev->dev_private;
  7766. struct intel_display_error_state *error;
  7767. enum transcoder cpu_transcoder;
  7768. int i;
  7769. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7770. if (error == NULL)
  7771. return NULL;
  7772. for_each_pipe(i) {
  7773. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  7774. error->cursor[i].control = I915_READ(CURCNTR(i));
  7775. error->cursor[i].position = I915_READ(CURPOS(i));
  7776. error->cursor[i].base = I915_READ(CURBASE(i));
  7777. error->plane[i].control = I915_READ(DSPCNTR(i));
  7778. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7779. error->plane[i].size = I915_READ(DSPSIZE(i));
  7780. error->plane[i].pos = I915_READ(DSPPOS(i));
  7781. error->plane[i].addr = I915_READ(DSPADDR(i));
  7782. if (INTEL_INFO(dev)->gen >= 4) {
  7783. error->plane[i].surface = I915_READ(DSPSURF(i));
  7784. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7785. }
  7786. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  7787. error->pipe[i].source = I915_READ(PIPESRC(i));
  7788. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  7789. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  7790. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  7791. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  7792. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  7793. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  7794. }
  7795. return error;
  7796. }
  7797. void
  7798. intel_display_print_error_state(struct seq_file *m,
  7799. struct drm_device *dev,
  7800. struct intel_display_error_state *error)
  7801. {
  7802. drm_i915_private_t *dev_priv = dev->dev_private;
  7803. int i;
  7804. seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  7805. for_each_pipe(i) {
  7806. seq_printf(m, "Pipe [%d]:\n", i);
  7807. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7808. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7809. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7810. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7811. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7812. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7813. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7814. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7815. seq_printf(m, "Plane [%d]:\n", i);
  7816. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7817. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7818. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7819. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7820. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7821. if (INTEL_INFO(dev)->gen >= 4) {
  7822. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7823. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7824. }
  7825. seq_printf(m, "Cursor [%d]:\n", i);
  7826. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7827. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7828. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7829. }
  7830. }
  7831. #endif