i915_debugfs.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/slab.h>
  31. #include <linux/export.h>
  32. #include <drm/drmP.h>
  33. #include "intel_drv.h"
  34. #include "intel_ringbuffer.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DRM_I915_RING_DEBUG 1
  38. #if defined(CONFIG_DEBUG_FS)
  39. enum {
  40. ACTIVE_LIST,
  41. INACTIVE_LIST,
  42. PINNED_LIST,
  43. };
  44. static const char *yesno(int v)
  45. {
  46. return v ? "yes" : "no";
  47. }
  48. static int i915_capabilities(struct seq_file *m, void *data)
  49. {
  50. struct drm_info_node *node = (struct drm_info_node *) m->private;
  51. struct drm_device *dev = node->minor->dev;
  52. const struct intel_device_info *info = INTEL_INFO(dev);
  53. seq_printf(m, "gen: %d\n", info->gen);
  54. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  55. #define DEV_INFO_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  56. #define DEV_INFO_SEP ;
  57. DEV_INFO_FLAGS;
  58. #undef DEV_INFO_FLAG
  59. #undef DEV_INFO_SEP
  60. return 0;
  61. }
  62. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  63. {
  64. if (obj->user_pin_count > 0)
  65. return "P";
  66. else if (obj->pin_count > 0)
  67. return "p";
  68. else
  69. return " ";
  70. }
  71. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  72. {
  73. switch (obj->tiling_mode) {
  74. default:
  75. case I915_TILING_NONE: return " ";
  76. case I915_TILING_X: return "X";
  77. case I915_TILING_Y: return "Y";
  78. }
  79. }
  80. static const char *cache_level_str(int type)
  81. {
  82. switch (type) {
  83. case I915_CACHE_NONE: return " uncached";
  84. case I915_CACHE_LLC: return " snooped (LLC)";
  85. case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)";
  86. default: return "";
  87. }
  88. }
  89. static void
  90. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  91. {
  92. seq_printf(m, "%p: %s%s %8zdKiB %04x %04x %d %d %d%s%s%s",
  93. &obj->base,
  94. get_pin_flag(obj),
  95. get_tiling_flag(obj),
  96. obj->base.size / 1024,
  97. obj->base.read_domains,
  98. obj->base.write_domain,
  99. obj->last_read_seqno,
  100. obj->last_write_seqno,
  101. obj->last_fenced_seqno,
  102. cache_level_str(obj->cache_level),
  103. obj->dirty ? " dirty" : "",
  104. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  105. if (obj->base.name)
  106. seq_printf(m, " (name: %d)", obj->base.name);
  107. if (obj->pin_count)
  108. seq_printf(m, " (pinned x %d)", obj->pin_count);
  109. if (obj->fence_reg != I915_FENCE_REG_NONE)
  110. seq_printf(m, " (fence: %d)", obj->fence_reg);
  111. if (obj->gtt_space != NULL)
  112. seq_printf(m, " (gtt offset: %08x, size: %08x)",
  113. obj->gtt_offset, (unsigned int)obj->gtt_space->size);
  114. if (obj->pin_mappable || obj->fault_mappable) {
  115. char s[3], *t = s;
  116. if (obj->pin_mappable)
  117. *t++ = 'p';
  118. if (obj->fault_mappable)
  119. *t++ = 'f';
  120. *t = '\0';
  121. seq_printf(m, " (%s mappable)", s);
  122. }
  123. if (obj->ring != NULL)
  124. seq_printf(m, " (%s)", obj->ring->name);
  125. }
  126. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  127. {
  128. struct drm_info_node *node = (struct drm_info_node *) m->private;
  129. uintptr_t list = (uintptr_t) node->info_ent->data;
  130. struct list_head *head;
  131. struct drm_device *dev = node->minor->dev;
  132. drm_i915_private_t *dev_priv = dev->dev_private;
  133. struct drm_i915_gem_object *obj;
  134. size_t total_obj_size, total_gtt_size;
  135. int count, ret;
  136. ret = mutex_lock_interruptible(&dev->struct_mutex);
  137. if (ret)
  138. return ret;
  139. switch (list) {
  140. case ACTIVE_LIST:
  141. seq_printf(m, "Active:\n");
  142. head = &dev_priv->mm.active_list;
  143. break;
  144. case INACTIVE_LIST:
  145. seq_printf(m, "Inactive:\n");
  146. head = &dev_priv->mm.inactive_list;
  147. break;
  148. default:
  149. mutex_unlock(&dev->struct_mutex);
  150. return -EINVAL;
  151. }
  152. total_obj_size = total_gtt_size = count = 0;
  153. list_for_each_entry(obj, head, mm_list) {
  154. seq_printf(m, " ");
  155. describe_obj(m, obj);
  156. seq_printf(m, "\n");
  157. total_obj_size += obj->base.size;
  158. total_gtt_size += obj->gtt_space->size;
  159. count++;
  160. }
  161. mutex_unlock(&dev->struct_mutex);
  162. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  163. count, total_obj_size, total_gtt_size);
  164. return 0;
  165. }
  166. #define count_objects(list, member) do { \
  167. list_for_each_entry(obj, list, member) { \
  168. size += obj->gtt_space->size; \
  169. ++count; \
  170. if (obj->map_and_fenceable) { \
  171. mappable_size += obj->gtt_space->size; \
  172. ++mappable_count; \
  173. } \
  174. } \
  175. } while (0)
  176. static int i915_gem_object_info(struct seq_file *m, void* data)
  177. {
  178. struct drm_info_node *node = (struct drm_info_node *) m->private;
  179. struct drm_device *dev = node->minor->dev;
  180. struct drm_i915_private *dev_priv = dev->dev_private;
  181. u32 count, mappable_count, purgeable_count;
  182. size_t size, mappable_size, purgeable_size;
  183. struct drm_i915_gem_object *obj;
  184. int ret;
  185. ret = mutex_lock_interruptible(&dev->struct_mutex);
  186. if (ret)
  187. return ret;
  188. seq_printf(m, "%u objects, %zu bytes\n",
  189. dev_priv->mm.object_count,
  190. dev_priv->mm.object_memory);
  191. size = count = mappable_size = mappable_count = 0;
  192. count_objects(&dev_priv->mm.bound_list, gtt_list);
  193. seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
  194. count, mappable_count, size, mappable_size);
  195. size = count = mappable_size = mappable_count = 0;
  196. count_objects(&dev_priv->mm.active_list, mm_list);
  197. seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
  198. count, mappable_count, size, mappable_size);
  199. size = count = mappable_size = mappable_count = 0;
  200. count_objects(&dev_priv->mm.inactive_list, mm_list);
  201. seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
  202. count, mappable_count, size, mappable_size);
  203. size = count = purgeable_size = purgeable_count = 0;
  204. list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list) {
  205. size += obj->base.size, ++count;
  206. if (obj->madv == I915_MADV_DONTNEED)
  207. purgeable_size += obj->base.size, ++purgeable_count;
  208. }
  209. seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
  210. size = count = mappable_size = mappable_count = 0;
  211. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) {
  212. if (obj->fault_mappable) {
  213. size += obj->gtt_space->size;
  214. ++count;
  215. }
  216. if (obj->pin_mappable) {
  217. mappable_size += obj->gtt_space->size;
  218. ++mappable_count;
  219. }
  220. if (obj->madv == I915_MADV_DONTNEED) {
  221. purgeable_size += obj->base.size;
  222. ++purgeable_count;
  223. }
  224. }
  225. seq_printf(m, "%u purgeable objects, %zu bytes\n",
  226. purgeable_count, purgeable_size);
  227. seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
  228. mappable_count, mappable_size);
  229. seq_printf(m, "%u fault mappable objects, %zu bytes\n",
  230. count, size);
  231. seq_printf(m, "%zu [%zu] gtt total\n",
  232. dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total);
  233. mutex_unlock(&dev->struct_mutex);
  234. return 0;
  235. }
  236. static int i915_gem_gtt_info(struct seq_file *m, void* data)
  237. {
  238. struct drm_info_node *node = (struct drm_info_node *) m->private;
  239. struct drm_device *dev = node->minor->dev;
  240. uintptr_t list = (uintptr_t) node->info_ent->data;
  241. struct drm_i915_private *dev_priv = dev->dev_private;
  242. struct drm_i915_gem_object *obj;
  243. size_t total_obj_size, total_gtt_size;
  244. int count, ret;
  245. ret = mutex_lock_interruptible(&dev->struct_mutex);
  246. if (ret)
  247. return ret;
  248. total_obj_size = total_gtt_size = count = 0;
  249. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) {
  250. if (list == PINNED_LIST && obj->pin_count == 0)
  251. continue;
  252. seq_printf(m, " ");
  253. describe_obj(m, obj);
  254. seq_printf(m, "\n");
  255. total_obj_size += obj->base.size;
  256. total_gtt_size += obj->gtt_space->size;
  257. count++;
  258. }
  259. mutex_unlock(&dev->struct_mutex);
  260. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  261. count, total_obj_size, total_gtt_size);
  262. return 0;
  263. }
  264. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  265. {
  266. struct drm_info_node *node = (struct drm_info_node *) m->private;
  267. struct drm_device *dev = node->minor->dev;
  268. unsigned long flags;
  269. struct intel_crtc *crtc;
  270. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  271. const char pipe = pipe_name(crtc->pipe);
  272. const char plane = plane_name(crtc->plane);
  273. struct intel_unpin_work *work;
  274. spin_lock_irqsave(&dev->event_lock, flags);
  275. work = crtc->unpin_work;
  276. if (work == NULL) {
  277. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  278. pipe, plane);
  279. } else {
  280. if (!work->pending) {
  281. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  282. pipe, plane);
  283. } else {
  284. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  285. pipe, plane);
  286. }
  287. if (work->enable_stall_check)
  288. seq_printf(m, "Stall check enabled, ");
  289. else
  290. seq_printf(m, "Stall check waiting for page flip ioctl, ");
  291. seq_printf(m, "%d prepares\n", work->pending);
  292. if (work->old_fb_obj) {
  293. struct drm_i915_gem_object *obj = work->old_fb_obj;
  294. if (obj)
  295. seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
  296. }
  297. if (work->pending_flip_obj) {
  298. struct drm_i915_gem_object *obj = work->pending_flip_obj;
  299. if (obj)
  300. seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
  301. }
  302. }
  303. spin_unlock_irqrestore(&dev->event_lock, flags);
  304. }
  305. return 0;
  306. }
  307. static int i915_gem_request_info(struct seq_file *m, void *data)
  308. {
  309. struct drm_info_node *node = (struct drm_info_node *) m->private;
  310. struct drm_device *dev = node->minor->dev;
  311. drm_i915_private_t *dev_priv = dev->dev_private;
  312. struct intel_ring_buffer *ring;
  313. struct drm_i915_gem_request *gem_request;
  314. int ret, count, i;
  315. ret = mutex_lock_interruptible(&dev->struct_mutex);
  316. if (ret)
  317. return ret;
  318. count = 0;
  319. for_each_ring(ring, dev_priv, i) {
  320. if (list_empty(&ring->request_list))
  321. continue;
  322. seq_printf(m, "%s requests:\n", ring->name);
  323. list_for_each_entry(gem_request,
  324. &ring->request_list,
  325. list) {
  326. seq_printf(m, " %d @ %d\n",
  327. gem_request->seqno,
  328. (int) (jiffies - gem_request->emitted_jiffies));
  329. }
  330. count++;
  331. }
  332. mutex_unlock(&dev->struct_mutex);
  333. if (count == 0)
  334. seq_printf(m, "No requests\n");
  335. return 0;
  336. }
  337. static void i915_ring_seqno_info(struct seq_file *m,
  338. struct intel_ring_buffer *ring)
  339. {
  340. if (ring->get_seqno) {
  341. seq_printf(m, "Current sequence (%s): %d\n",
  342. ring->name, ring->get_seqno(ring, false));
  343. }
  344. }
  345. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  346. {
  347. struct drm_info_node *node = (struct drm_info_node *) m->private;
  348. struct drm_device *dev = node->minor->dev;
  349. drm_i915_private_t *dev_priv = dev->dev_private;
  350. struct intel_ring_buffer *ring;
  351. int ret, i;
  352. ret = mutex_lock_interruptible(&dev->struct_mutex);
  353. if (ret)
  354. return ret;
  355. for_each_ring(ring, dev_priv, i)
  356. i915_ring_seqno_info(m, ring);
  357. mutex_unlock(&dev->struct_mutex);
  358. return 0;
  359. }
  360. static int i915_interrupt_info(struct seq_file *m, void *data)
  361. {
  362. struct drm_info_node *node = (struct drm_info_node *) m->private;
  363. struct drm_device *dev = node->minor->dev;
  364. drm_i915_private_t *dev_priv = dev->dev_private;
  365. struct intel_ring_buffer *ring;
  366. int ret, i, pipe;
  367. ret = mutex_lock_interruptible(&dev->struct_mutex);
  368. if (ret)
  369. return ret;
  370. if (IS_VALLEYVIEW(dev)) {
  371. seq_printf(m, "Display IER:\t%08x\n",
  372. I915_READ(VLV_IER));
  373. seq_printf(m, "Display IIR:\t%08x\n",
  374. I915_READ(VLV_IIR));
  375. seq_printf(m, "Display IIR_RW:\t%08x\n",
  376. I915_READ(VLV_IIR_RW));
  377. seq_printf(m, "Display IMR:\t%08x\n",
  378. I915_READ(VLV_IMR));
  379. for_each_pipe(pipe)
  380. seq_printf(m, "Pipe %c stat:\t%08x\n",
  381. pipe_name(pipe),
  382. I915_READ(PIPESTAT(pipe)));
  383. seq_printf(m, "Master IER:\t%08x\n",
  384. I915_READ(VLV_MASTER_IER));
  385. seq_printf(m, "Render IER:\t%08x\n",
  386. I915_READ(GTIER));
  387. seq_printf(m, "Render IIR:\t%08x\n",
  388. I915_READ(GTIIR));
  389. seq_printf(m, "Render IMR:\t%08x\n",
  390. I915_READ(GTIMR));
  391. seq_printf(m, "PM IER:\t\t%08x\n",
  392. I915_READ(GEN6_PMIER));
  393. seq_printf(m, "PM IIR:\t\t%08x\n",
  394. I915_READ(GEN6_PMIIR));
  395. seq_printf(m, "PM IMR:\t\t%08x\n",
  396. I915_READ(GEN6_PMIMR));
  397. seq_printf(m, "Port hotplug:\t%08x\n",
  398. I915_READ(PORT_HOTPLUG_EN));
  399. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  400. I915_READ(VLV_DPFLIPSTAT));
  401. seq_printf(m, "DPINVGTT:\t%08x\n",
  402. I915_READ(DPINVGTT));
  403. } else if (!HAS_PCH_SPLIT(dev)) {
  404. seq_printf(m, "Interrupt enable: %08x\n",
  405. I915_READ(IER));
  406. seq_printf(m, "Interrupt identity: %08x\n",
  407. I915_READ(IIR));
  408. seq_printf(m, "Interrupt mask: %08x\n",
  409. I915_READ(IMR));
  410. for_each_pipe(pipe)
  411. seq_printf(m, "Pipe %c stat: %08x\n",
  412. pipe_name(pipe),
  413. I915_READ(PIPESTAT(pipe)));
  414. } else {
  415. seq_printf(m, "North Display Interrupt enable: %08x\n",
  416. I915_READ(DEIER));
  417. seq_printf(m, "North Display Interrupt identity: %08x\n",
  418. I915_READ(DEIIR));
  419. seq_printf(m, "North Display Interrupt mask: %08x\n",
  420. I915_READ(DEIMR));
  421. seq_printf(m, "South Display Interrupt enable: %08x\n",
  422. I915_READ(SDEIER));
  423. seq_printf(m, "South Display Interrupt identity: %08x\n",
  424. I915_READ(SDEIIR));
  425. seq_printf(m, "South Display Interrupt mask: %08x\n",
  426. I915_READ(SDEIMR));
  427. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  428. I915_READ(GTIER));
  429. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  430. I915_READ(GTIIR));
  431. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  432. I915_READ(GTIMR));
  433. }
  434. seq_printf(m, "Interrupts received: %d\n",
  435. atomic_read(&dev_priv->irq_received));
  436. for_each_ring(ring, dev_priv, i) {
  437. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  438. seq_printf(m,
  439. "Graphics Interrupt mask (%s): %08x\n",
  440. ring->name, I915_READ_IMR(ring));
  441. }
  442. i915_ring_seqno_info(m, ring);
  443. }
  444. mutex_unlock(&dev->struct_mutex);
  445. return 0;
  446. }
  447. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  448. {
  449. struct drm_info_node *node = (struct drm_info_node *) m->private;
  450. struct drm_device *dev = node->minor->dev;
  451. drm_i915_private_t *dev_priv = dev->dev_private;
  452. int i, ret;
  453. ret = mutex_lock_interruptible(&dev->struct_mutex);
  454. if (ret)
  455. return ret;
  456. seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
  457. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  458. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  459. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  460. seq_printf(m, "Fence %d, pin count = %d, object = ",
  461. i, dev_priv->fence_regs[i].pin_count);
  462. if (obj == NULL)
  463. seq_printf(m, "unused");
  464. else
  465. describe_obj(m, obj);
  466. seq_printf(m, "\n");
  467. }
  468. mutex_unlock(&dev->struct_mutex);
  469. return 0;
  470. }
  471. static int i915_hws_info(struct seq_file *m, void *data)
  472. {
  473. struct drm_info_node *node = (struct drm_info_node *) m->private;
  474. struct drm_device *dev = node->minor->dev;
  475. drm_i915_private_t *dev_priv = dev->dev_private;
  476. struct intel_ring_buffer *ring;
  477. const volatile u32 __iomem *hws;
  478. int i;
  479. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  480. hws = (volatile u32 __iomem *)ring->status_page.page_addr;
  481. if (hws == NULL)
  482. return 0;
  483. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  484. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  485. i * 4,
  486. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  487. }
  488. return 0;
  489. }
  490. static const char *ring_str(int ring)
  491. {
  492. switch (ring) {
  493. case RCS: return "render";
  494. case VCS: return "bsd";
  495. case BCS: return "blt";
  496. default: return "";
  497. }
  498. }
  499. static const char *pin_flag(int pinned)
  500. {
  501. if (pinned > 0)
  502. return " P";
  503. else if (pinned < 0)
  504. return " p";
  505. else
  506. return "";
  507. }
  508. static const char *tiling_flag(int tiling)
  509. {
  510. switch (tiling) {
  511. default:
  512. case I915_TILING_NONE: return "";
  513. case I915_TILING_X: return " X";
  514. case I915_TILING_Y: return " Y";
  515. }
  516. }
  517. static const char *dirty_flag(int dirty)
  518. {
  519. return dirty ? " dirty" : "";
  520. }
  521. static const char *purgeable_flag(int purgeable)
  522. {
  523. return purgeable ? " purgeable" : "";
  524. }
  525. static void print_error_buffers(struct seq_file *m,
  526. const char *name,
  527. struct drm_i915_error_buffer *err,
  528. int count)
  529. {
  530. seq_printf(m, "%s [%d]:\n", name, count);
  531. while (count--) {
  532. seq_printf(m, " %08x %8u %04x %04x %x %x%s%s%s%s%s%s%s",
  533. err->gtt_offset,
  534. err->size,
  535. err->read_domains,
  536. err->write_domain,
  537. err->rseqno, err->wseqno,
  538. pin_flag(err->pinned),
  539. tiling_flag(err->tiling),
  540. dirty_flag(err->dirty),
  541. purgeable_flag(err->purgeable),
  542. err->ring != -1 ? " " : "",
  543. ring_str(err->ring),
  544. cache_level_str(err->cache_level));
  545. if (err->name)
  546. seq_printf(m, " (name: %d)", err->name);
  547. if (err->fence_reg != I915_FENCE_REG_NONE)
  548. seq_printf(m, " (fence: %d)", err->fence_reg);
  549. seq_printf(m, "\n");
  550. err++;
  551. }
  552. }
  553. static void i915_ring_error_state(struct seq_file *m,
  554. struct drm_device *dev,
  555. struct drm_i915_error_state *error,
  556. unsigned ring)
  557. {
  558. BUG_ON(ring >= I915_NUM_RINGS); /* shut up confused gcc */
  559. seq_printf(m, "%s command stream:\n", ring_str(ring));
  560. seq_printf(m, " HEAD: 0x%08x\n", error->head[ring]);
  561. seq_printf(m, " TAIL: 0x%08x\n", error->tail[ring]);
  562. seq_printf(m, " ACTHD: 0x%08x\n", error->acthd[ring]);
  563. seq_printf(m, " IPEIR: 0x%08x\n", error->ipeir[ring]);
  564. seq_printf(m, " IPEHR: 0x%08x\n", error->ipehr[ring]);
  565. seq_printf(m, " INSTDONE: 0x%08x\n", error->instdone[ring]);
  566. if (ring == RCS && INTEL_INFO(dev)->gen >= 4)
  567. seq_printf(m, " BBADDR: 0x%08llx\n", error->bbaddr);
  568. if (INTEL_INFO(dev)->gen >= 4)
  569. seq_printf(m, " INSTPS: 0x%08x\n", error->instps[ring]);
  570. seq_printf(m, " INSTPM: 0x%08x\n", error->instpm[ring]);
  571. seq_printf(m, " FADDR: 0x%08x\n", error->faddr[ring]);
  572. if (INTEL_INFO(dev)->gen >= 6) {
  573. seq_printf(m, " RC PSMI: 0x%08x\n", error->rc_psmi[ring]);
  574. seq_printf(m, " FAULT_REG: 0x%08x\n", error->fault_reg[ring]);
  575. seq_printf(m, " SYNC_0: 0x%08x\n",
  576. error->semaphore_mboxes[ring][0]);
  577. seq_printf(m, " SYNC_1: 0x%08x\n",
  578. error->semaphore_mboxes[ring][1]);
  579. }
  580. seq_printf(m, " seqno: 0x%08x\n", error->seqno[ring]);
  581. seq_printf(m, " waiting: %s\n", yesno(error->waiting[ring]));
  582. seq_printf(m, " ring->head: 0x%08x\n", error->cpu_ring_head[ring]);
  583. seq_printf(m, " ring->tail: 0x%08x\n", error->cpu_ring_tail[ring]);
  584. }
  585. struct i915_error_state_file_priv {
  586. struct drm_device *dev;
  587. struct drm_i915_error_state *error;
  588. };
  589. static int i915_error_state(struct seq_file *m, void *unused)
  590. {
  591. struct i915_error_state_file_priv *error_priv = m->private;
  592. struct drm_device *dev = error_priv->dev;
  593. drm_i915_private_t *dev_priv = dev->dev_private;
  594. struct drm_i915_error_state *error = error_priv->error;
  595. struct intel_ring_buffer *ring;
  596. int i, j, page, offset, elt;
  597. if (!error) {
  598. seq_printf(m, "no error state collected\n");
  599. return 0;
  600. }
  601. seq_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec,
  602. error->time.tv_usec);
  603. seq_printf(m, "PCI ID: 0x%04x\n", dev->pci_device);
  604. seq_printf(m, "EIR: 0x%08x\n", error->eir);
  605. seq_printf(m, "IER: 0x%08x\n", error->ier);
  606. seq_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er);
  607. seq_printf(m, "CCID: 0x%08x\n", error->ccid);
  608. for (i = 0; i < dev_priv->num_fence_regs; i++)
  609. seq_printf(m, " fence[%d] = %08llx\n", i, error->fence[i]);
  610. for (i = 0; i < ARRAY_SIZE(error->extra_instdone); i++)
  611. seq_printf(m, " INSTDONE_%d: 0x%08x\n", i, error->extra_instdone[i]);
  612. if (INTEL_INFO(dev)->gen >= 6) {
  613. seq_printf(m, "ERROR: 0x%08x\n", error->error);
  614. seq_printf(m, "DONE_REG: 0x%08x\n", error->done_reg);
  615. }
  616. if (INTEL_INFO(dev)->gen == 7)
  617. seq_printf(m, "ERR_INT: 0x%08x\n", error->err_int);
  618. for_each_ring(ring, dev_priv, i)
  619. i915_ring_error_state(m, dev, error, i);
  620. if (error->active_bo)
  621. print_error_buffers(m, "Active",
  622. error->active_bo,
  623. error->active_bo_count);
  624. if (error->pinned_bo)
  625. print_error_buffers(m, "Pinned",
  626. error->pinned_bo,
  627. error->pinned_bo_count);
  628. for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
  629. struct drm_i915_error_object *obj;
  630. if ((obj = error->ring[i].batchbuffer)) {
  631. seq_printf(m, "%s --- gtt_offset = 0x%08x\n",
  632. dev_priv->ring[i].name,
  633. obj->gtt_offset);
  634. offset = 0;
  635. for (page = 0; page < obj->page_count; page++) {
  636. for (elt = 0; elt < PAGE_SIZE/4; elt++) {
  637. seq_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]);
  638. offset += 4;
  639. }
  640. }
  641. }
  642. if (error->ring[i].num_requests) {
  643. seq_printf(m, "%s --- %d requests\n",
  644. dev_priv->ring[i].name,
  645. error->ring[i].num_requests);
  646. for (j = 0; j < error->ring[i].num_requests; j++) {
  647. seq_printf(m, " seqno 0x%08x, emitted %ld, tail 0x%08x\n",
  648. error->ring[i].requests[j].seqno,
  649. error->ring[i].requests[j].jiffies,
  650. error->ring[i].requests[j].tail);
  651. }
  652. }
  653. if ((obj = error->ring[i].ringbuffer)) {
  654. seq_printf(m, "%s --- ringbuffer = 0x%08x\n",
  655. dev_priv->ring[i].name,
  656. obj->gtt_offset);
  657. offset = 0;
  658. for (page = 0; page < obj->page_count; page++) {
  659. for (elt = 0; elt < PAGE_SIZE/4; elt++) {
  660. seq_printf(m, "%08x : %08x\n",
  661. offset,
  662. obj->pages[page][elt]);
  663. offset += 4;
  664. }
  665. }
  666. }
  667. }
  668. if (error->overlay)
  669. intel_overlay_print_error_state(m, error->overlay);
  670. if (error->display)
  671. intel_display_print_error_state(m, dev, error->display);
  672. return 0;
  673. }
  674. static ssize_t
  675. i915_error_state_write(struct file *filp,
  676. const char __user *ubuf,
  677. size_t cnt,
  678. loff_t *ppos)
  679. {
  680. struct seq_file *m = filp->private_data;
  681. struct i915_error_state_file_priv *error_priv = m->private;
  682. struct drm_device *dev = error_priv->dev;
  683. int ret;
  684. DRM_DEBUG_DRIVER("Resetting error state\n");
  685. ret = mutex_lock_interruptible(&dev->struct_mutex);
  686. if (ret)
  687. return ret;
  688. i915_destroy_error_state(dev);
  689. mutex_unlock(&dev->struct_mutex);
  690. return cnt;
  691. }
  692. static int i915_error_state_open(struct inode *inode, struct file *file)
  693. {
  694. struct drm_device *dev = inode->i_private;
  695. drm_i915_private_t *dev_priv = dev->dev_private;
  696. struct i915_error_state_file_priv *error_priv;
  697. unsigned long flags;
  698. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  699. if (!error_priv)
  700. return -ENOMEM;
  701. error_priv->dev = dev;
  702. spin_lock_irqsave(&dev_priv->error_lock, flags);
  703. error_priv->error = dev_priv->first_error;
  704. if (error_priv->error)
  705. kref_get(&error_priv->error->ref);
  706. spin_unlock_irqrestore(&dev_priv->error_lock, flags);
  707. return single_open(file, i915_error_state, error_priv);
  708. }
  709. static int i915_error_state_release(struct inode *inode, struct file *file)
  710. {
  711. struct seq_file *m = file->private_data;
  712. struct i915_error_state_file_priv *error_priv = m->private;
  713. if (error_priv->error)
  714. kref_put(&error_priv->error->ref, i915_error_state_free);
  715. kfree(error_priv);
  716. return single_release(inode, file);
  717. }
  718. static const struct file_operations i915_error_state_fops = {
  719. .owner = THIS_MODULE,
  720. .open = i915_error_state_open,
  721. .read = seq_read,
  722. .write = i915_error_state_write,
  723. .llseek = default_llseek,
  724. .release = i915_error_state_release,
  725. };
  726. static int i915_rstdby_delays(struct seq_file *m, void *unused)
  727. {
  728. struct drm_info_node *node = (struct drm_info_node *) m->private;
  729. struct drm_device *dev = node->minor->dev;
  730. drm_i915_private_t *dev_priv = dev->dev_private;
  731. u16 crstanddelay;
  732. int ret;
  733. ret = mutex_lock_interruptible(&dev->struct_mutex);
  734. if (ret)
  735. return ret;
  736. crstanddelay = I915_READ16(CRSTANDVID);
  737. mutex_unlock(&dev->struct_mutex);
  738. seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
  739. return 0;
  740. }
  741. static int i915_cur_delayinfo(struct seq_file *m, void *unused)
  742. {
  743. struct drm_info_node *node = (struct drm_info_node *) m->private;
  744. struct drm_device *dev = node->minor->dev;
  745. drm_i915_private_t *dev_priv = dev->dev_private;
  746. int ret;
  747. if (IS_GEN5(dev)) {
  748. u16 rgvswctl = I915_READ16(MEMSWCTL);
  749. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  750. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  751. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  752. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  753. MEMSTAT_VID_SHIFT);
  754. seq_printf(m, "Current P-state: %d\n",
  755. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  756. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  757. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  758. u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  759. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  760. u32 rpstat;
  761. u32 rpupei, rpcurup, rpprevup;
  762. u32 rpdownei, rpcurdown, rpprevdown;
  763. int max_freq;
  764. /* RPSTAT1 is in the GT power well */
  765. ret = mutex_lock_interruptible(&dev->struct_mutex);
  766. if (ret)
  767. return ret;
  768. gen6_gt_force_wake_get(dev_priv);
  769. rpstat = I915_READ(GEN6_RPSTAT1);
  770. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  771. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  772. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  773. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  774. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  775. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  776. gen6_gt_force_wake_put(dev_priv);
  777. mutex_unlock(&dev->struct_mutex);
  778. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  779. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  780. seq_printf(m, "Render p-state ratio: %d\n",
  781. (gt_perf_status & 0xff00) >> 8);
  782. seq_printf(m, "Render p-state VID: %d\n",
  783. gt_perf_status & 0xff);
  784. seq_printf(m, "Render p-state limit: %d\n",
  785. rp_state_limits & 0xff);
  786. seq_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >>
  787. GEN6_CAGF_SHIFT) * GT_FREQUENCY_MULTIPLIER);
  788. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  789. GEN6_CURICONT_MASK);
  790. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  791. GEN6_CURBSYTAVG_MASK);
  792. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  793. GEN6_CURBSYTAVG_MASK);
  794. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  795. GEN6_CURIAVG_MASK);
  796. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  797. GEN6_CURBSYTAVG_MASK);
  798. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  799. GEN6_CURBSYTAVG_MASK);
  800. max_freq = (rp_state_cap & 0xff0000) >> 16;
  801. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  802. max_freq * GT_FREQUENCY_MULTIPLIER);
  803. max_freq = (rp_state_cap & 0xff00) >> 8;
  804. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  805. max_freq * GT_FREQUENCY_MULTIPLIER);
  806. max_freq = rp_state_cap & 0xff;
  807. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  808. max_freq * GT_FREQUENCY_MULTIPLIER);
  809. } else {
  810. seq_printf(m, "no P-state info available\n");
  811. }
  812. return 0;
  813. }
  814. static int i915_delayfreq_table(struct seq_file *m, void *unused)
  815. {
  816. struct drm_info_node *node = (struct drm_info_node *) m->private;
  817. struct drm_device *dev = node->minor->dev;
  818. drm_i915_private_t *dev_priv = dev->dev_private;
  819. u32 delayfreq;
  820. int ret, i;
  821. ret = mutex_lock_interruptible(&dev->struct_mutex);
  822. if (ret)
  823. return ret;
  824. for (i = 0; i < 16; i++) {
  825. delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
  826. seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
  827. (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
  828. }
  829. mutex_unlock(&dev->struct_mutex);
  830. return 0;
  831. }
  832. static inline int MAP_TO_MV(int map)
  833. {
  834. return 1250 - (map * 25);
  835. }
  836. static int i915_inttoext_table(struct seq_file *m, void *unused)
  837. {
  838. struct drm_info_node *node = (struct drm_info_node *) m->private;
  839. struct drm_device *dev = node->minor->dev;
  840. drm_i915_private_t *dev_priv = dev->dev_private;
  841. u32 inttoext;
  842. int ret, i;
  843. ret = mutex_lock_interruptible(&dev->struct_mutex);
  844. if (ret)
  845. return ret;
  846. for (i = 1; i <= 32; i++) {
  847. inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
  848. seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
  849. }
  850. mutex_unlock(&dev->struct_mutex);
  851. return 0;
  852. }
  853. static int ironlake_drpc_info(struct seq_file *m)
  854. {
  855. struct drm_info_node *node = (struct drm_info_node *) m->private;
  856. struct drm_device *dev = node->minor->dev;
  857. drm_i915_private_t *dev_priv = dev->dev_private;
  858. u32 rgvmodectl, rstdbyctl;
  859. u16 crstandvid;
  860. int ret;
  861. ret = mutex_lock_interruptible(&dev->struct_mutex);
  862. if (ret)
  863. return ret;
  864. rgvmodectl = I915_READ(MEMMODECTL);
  865. rstdbyctl = I915_READ(RSTDBYCTL);
  866. crstandvid = I915_READ16(CRSTANDVID);
  867. mutex_unlock(&dev->struct_mutex);
  868. seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
  869. "yes" : "no");
  870. seq_printf(m, "Boost freq: %d\n",
  871. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  872. MEMMODE_BOOST_FREQ_SHIFT);
  873. seq_printf(m, "HW control enabled: %s\n",
  874. rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
  875. seq_printf(m, "SW control enabled: %s\n",
  876. rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
  877. seq_printf(m, "Gated voltage change: %s\n",
  878. rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
  879. seq_printf(m, "Starting frequency: P%d\n",
  880. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  881. seq_printf(m, "Max P-state: P%d\n",
  882. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  883. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  884. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  885. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  886. seq_printf(m, "Render standby enabled: %s\n",
  887. (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
  888. seq_printf(m, "Current RS state: ");
  889. switch (rstdbyctl & RSX_STATUS_MASK) {
  890. case RSX_STATUS_ON:
  891. seq_printf(m, "on\n");
  892. break;
  893. case RSX_STATUS_RC1:
  894. seq_printf(m, "RC1\n");
  895. break;
  896. case RSX_STATUS_RC1E:
  897. seq_printf(m, "RC1E\n");
  898. break;
  899. case RSX_STATUS_RS1:
  900. seq_printf(m, "RS1\n");
  901. break;
  902. case RSX_STATUS_RS2:
  903. seq_printf(m, "RS2 (RC6)\n");
  904. break;
  905. case RSX_STATUS_RS3:
  906. seq_printf(m, "RC3 (RC6+)\n");
  907. break;
  908. default:
  909. seq_printf(m, "unknown\n");
  910. break;
  911. }
  912. return 0;
  913. }
  914. static int gen6_drpc_info(struct seq_file *m)
  915. {
  916. struct drm_info_node *node = (struct drm_info_node *) m->private;
  917. struct drm_device *dev = node->minor->dev;
  918. struct drm_i915_private *dev_priv = dev->dev_private;
  919. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  920. unsigned forcewake_count;
  921. int count=0, ret;
  922. ret = mutex_lock_interruptible(&dev->struct_mutex);
  923. if (ret)
  924. return ret;
  925. spin_lock_irq(&dev_priv->gt_lock);
  926. forcewake_count = dev_priv->forcewake_count;
  927. spin_unlock_irq(&dev_priv->gt_lock);
  928. if (forcewake_count) {
  929. seq_printf(m, "RC information inaccurate because somebody "
  930. "holds a forcewake reference \n");
  931. } else {
  932. /* NB: we cannot use forcewake, else we read the wrong values */
  933. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  934. udelay(10);
  935. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  936. }
  937. gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
  938. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4);
  939. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  940. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  941. mutex_unlock(&dev->struct_mutex);
  942. mutex_lock(&dev_priv->rps.hw_lock);
  943. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  944. mutex_unlock(&dev_priv->rps.hw_lock);
  945. seq_printf(m, "Video Turbo Mode: %s\n",
  946. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  947. seq_printf(m, "HW control enabled: %s\n",
  948. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  949. seq_printf(m, "SW control enabled: %s\n",
  950. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  951. GEN6_RP_MEDIA_SW_MODE));
  952. seq_printf(m, "RC1e Enabled: %s\n",
  953. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  954. seq_printf(m, "RC6 Enabled: %s\n",
  955. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  956. seq_printf(m, "Deep RC6 Enabled: %s\n",
  957. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  958. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  959. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  960. seq_printf(m, "Current RC state: ");
  961. switch (gt_core_status & GEN6_RCn_MASK) {
  962. case GEN6_RC0:
  963. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  964. seq_printf(m, "Core Power Down\n");
  965. else
  966. seq_printf(m, "on\n");
  967. break;
  968. case GEN6_RC3:
  969. seq_printf(m, "RC3\n");
  970. break;
  971. case GEN6_RC6:
  972. seq_printf(m, "RC6\n");
  973. break;
  974. case GEN6_RC7:
  975. seq_printf(m, "RC7\n");
  976. break;
  977. default:
  978. seq_printf(m, "Unknown\n");
  979. break;
  980. }
  981. seq_printf(m, "Core Power Down: %s\n",
  982. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  983. /* Not exactly sure what this is */
  984. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  985. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  986. seq_printf(m, "RC6 residency since boot: %u\n",
  987. I915_READ(GEN6_GT_GFX_RC6));
  988. seq_printf(m, "RC6+ residency since boot: %u\n",
  989. I915_READ(GEN6_GT_GFX_RC6p));
  990. seq_printf(m, "RC6++ residency since boot: %u\n",
  991. I915_READ(GEN6_GT_GFX_RC6pp));
  992. seq_printf(m, "RC6 voltage: %dmV\n",
  993. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  994. seq_printf(m, "RC6+ voltage: %dmV\n",
  995. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  996. seq_printf(m, "RC6++ voltage: %dmV\n",
  997. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  998. return 0;
  999. }
  1000. static int i915_drpc_info(struct seq_file *m, void *unused)
  1001. {
  1002. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1003. struct drm_device *dev = node->minor->dev;
  1004. if (IS_GEN6(dev) || IS_GEN7(dev))
  1005. return gen6_drpc_info(m);
  1006. else
  1007. return ironlake_drpc_info(m);
  1008. }
  1009. static int i915_fbc_status(struct seq_file *m, void *unused)
  1010. {
  1011. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1012. struct drm_device *dev = node->minor->dev;
  1013. drm_i915_private_t *dev_priv = dev->dev_private;
  1014. if (!I915_HAS_FBC(dev)) {
  1015. seq_printf(m, "FBC unsupported on this chipset\n");
  1016. return 0;
  1017. }
  1018. if (intel_fbc_enabled(dev)) {
  1019. seq_printf(m, "FBC enabled\n");
  1020. } else {
  1021. seq_printf(m, "FBC disabled: ");
  1022. switch (dev_priv->no_fbc_reason) {
  1023. case FBC_NO_OUTPUT:
  1024. seq_printf(m, "no outputs");
  1025. break;
  1026. case FBC_STOLEN_TOO_SMALL:
  1027. seq_printf(m, "not enough stolen memory");
  1028. break;
  1029. case FBC_UNSUPPORTED_MODE:
  1030. seq_printf(m, "mode not supported");
  1031. break;
  1032. case FBC_MODE_TOO_LARGE:
  1033. seq_printf(m, "mode too large");
  1034. break;
  1035. case FBC_BAD_PLANE:
  1036. seq_printf(m, "FBC unsupported on plane");
  1037. break;
  1038. case FBC_NOT_TILED:
  1039. seq_printf(m, "scanout buffer not tiled");
  1040. break;
  1041. case FBC_MULTIPLE_PIPES:
  1042. seq_printf(m, "multiple pipes are enabled");
  1043. break;
  1044. case FBC_MODULE_PARAM:
  1045. seq_printf(m, "disabled per module param (default off)");
  1046. break;
  1047. default:
  1048. seq_printf(m, "unknown reason");
  1049. }
  1050. seq_printf(m, "\n");
  1051. }
  1052. return 0;
  1053. }
  1054. static int i915_sr_status(struct seq_file *m, void *unused)
  1055. {
  1056. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1057. struct drm_device *dev = node->minor->dev;
  1058. drm_i915_private_t *dev_priv = dev->dev_private;
  1059. bool sr_enabled = false;
  1060. if (HAS_PCH_SPLIT(dev))
  1061. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1062. else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
  1063. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1064. else if (IS_I915GM(dev))
  1065. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1066. else if (IS_PINEVIEW(dev))
  1067. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1068. seq_printf(m, "self-refresh: %s\n",
  1069. sr_enabled ? "enabled" : "disabled");
  1070. return 0;
  1071. }
  1072. static int i915_emon_status(struct seq_file *m, void *unused)
  1073. {
  1074. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1075. struct drm_device *dev = node->minor->dev;
  1076. drm_i915_private_t *dev_priv = dev->dev_private;
  1077. unsigned long temp, chipset, gfx;
  1078. int ret;
  1079. if (!IS_GEN5(dev))
  1080. return -ENODEV;
  1081. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1082. if (ret)
  1083. return ret;
  1084. temp = i915_mch_val(dev_priv);
  1085. chipset = i915_chipset_val(dev_priv);
  1086. gfx = i915_gfx_val(dev_priv);
  1087. mutex_unlock(&dev->struct_mutex);
  1088. seq_printf(m, "GMCH temp: %ld\n", temp);
  1089. seq_printf(m, "Chipset power: %ld\n", chipset);
  1090. seq_printf(m, "GFX power: %ld\n", gfx);
  1091. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1092. return 0;
  1093. }
  1094. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1095. {
  1096. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1097. struct drm_device *dev = node->minor->dev;
  1098. drm_i915_private_t *dev_priv = dev->dev_private;
  1099. int ret;
  1100. int gpu_freq, ia_freq;
  1101. if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
  1102. seq_printf(m, "unsupported on this chipset\n");
  1103. return 0;
  1104. }
  1105. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1106. if (ret)
  1107. return ret;
  1108. seq_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n");
  1109. for (gpu_freq = dev_priv->rps.min_delay;
  1110. gpu_freq <= dev_priv->rps.max_delay;
  1111. gpu_freq++) {
  1112. ia_freq = gpu_freq;
  1113. sandybridge_pcode_read(dev_priv,
  1114. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1115. &ia_freq);
  1116. seq_printf(m, "%d\t\t%d\n", gpu_freq * GT_FREQUENCY_MULTIPLIER, ia_freq * 100);
  1117. }
  1118. mutex_unlock(&dev_priv->rps.hw_lock);
  1119. return 0;
  1120. }
  1121. static int i915_gfxec(struct seq_file *m, void *unused)
  1122. {
  1123. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1124. struct drm_device *dev = node->minor->dev;
  1125. drm_i915_private_t *dev_priv = dev->dev_private;
  1126. int ret;
  1127. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1128. if (ret)
  1129. return ret;
  1130. seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
  1131. mutex_unlock(&dev->struct_mutex);
  1132. return 0;
  1133. }
  1134. static int i915_opregion(struct seq_file *m, void *unused)
  1135. {
  1136. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1137. struct drm_device *dev = node->minor->dev;
  1138. drm_i915_private_t *dev_priv = dev->dev_private;
  1139. struct intel_opregion *opregion = &dev_priv->opregion;
  1140. void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
  1141. int ret;
  1142. if (data == NULL)
  1143. return -ENOMEM;
  1144. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1145. if (ret)
  1146. goto out;
  1147. if (opregion->header) {
  1148. memcpy_fromio(data, opregion->header, OPREGION_SIZE);
  1149. seq_write(m, data, OPREGION_SIZE);
  1150. }
  1151. mutex_unlock(&dev->struct_mutex);
  1152. out:
  1153. kfree(data);
  1154. return 0;
  1155. }
  1156. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1157. {
  1158. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1159. struct drm_device *dev = node->minor->dev;
  1160. drm_i915_private_t *dev_priv = dev->dev_private;
  1161. struct intel_fbdev *ifbdev;
  1162. struct intel_framebuffer *fb;
  1163. int ret;
  1164. ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1165. if (ret)
  1166. return ret;
  1167. ifbdev = dev_priv->fbdev;
  1168. fb = to_intel_framebuffer(ifbdev->helper.fb);
  1169. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ",
  1170. fb->base.width,
  1171. fb->base.height,
  1172. fb->base.depth,
  1173. fb->base.bits_per_pixel);
  1174. describe_obj(m, fb->obj);
  1175. seq_printf(m, "\n");
  1176. list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
  1177. if (&fb->base == ifbdev->helper.fb)
  1178. continue;
  1179. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ",
  1180. fb->base.width,
  1181. fb->base.height,
  1182. fb->base.depth,
  1183. fb->base.bits_per_pixel);
  1184. describe_obj(m, fb->obj);
  1185. seq_printf(m, "\n");
  1186. }
  1187. mutex_unlock(&dev->mode_config.mutex);
  1188. return 0;
  1189. }
  1190. static int i915_context_status(struct seq_file *m, void *unused)
  1191. {
  1192. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1193. struct drm_device *dev = node->minor->dev;
  1194. drm_i915_private_t *dev_priv = dev->dev_private;
  1195. int ret;
  1196. ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1197. if (ret)
  1198. return ret;
  1199. if (dev_priv->ips.pwrctx) {
  1200. seq_printf(m, "power context ");
  1201. describe_obj(m, dev_priv->ips.pwrctx);
  1202. seq_printf(m, "\n");
  1203. }
  1204. if (dev_priv->ips.renderctx) {
  1205. seq_printf(m, "render context ");
  1206. describe_obj(m, dev_priv->ips.renderctx);
  1207. seq_printf(m, "\n");
  1208. }
  1209. mutex_unlock(&dev->mode_config.mutex);
  1210. return 0;
  1211. }
  1212. static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
  1213. {
  1214. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1215. struct drm_device *dev = node->minor->dev;
  1216. struct drm_i915_private *dev_priv = dev->dev_private;
  1217. unsigned forcewake_count;
  1218. spin_lock_irq(&dev_priv->gt_lock);
  1219. forcewake_count = dev_priv->forcewake_count;
  1220. spin_unlock_irq(&dev_priv->gt_lock);
  1221. seq_printf(m, "forcewake count = %u\n", forcewake_count);
  1222. return 0;
  1223. }
  1224. static const char *swizzle_string(unsigned swizzle)
  1225. {
  1226. switch(swizzle) {
  1227. case I915_BIT_6_SWIZZLE_NONE:
  1228. return "none";
  1229. case I915_BIT_6_SWIZZLE_9:
  1230. return "bit9";
  1231. case I915_BIT_6_SWIZZLE_9_10:
  1232. return "bit9/bit10";
  1233. case I915_BIT_6_SWIZZLE_9_11:
  1234. return "bit9/bit11";
  1235. case I915_BIT_6_SWIZZLE_9_10_11:
  1236. return "bit9/bit10/bit11";
  1237. case I915_BIT_6_SWIZZLE_9_17:
  1238. return "bit9/bit17";
  1239. case I915_BIT_6_SWIZZLE_9_10_17:
  1240. return "bit9/bit10/bit17";
  1241. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1242. return "unkown";
  1243. }
  1244. return "bug";
  1245. }
  1246. static int i915_swizzle_info(struct seq_file *m, void *data)
  1247. {
  1248. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1249. struct drm_device *dev = node->minor->dev;
  1250. struct drm_i915_private *dev_priv = dev->dev_private;
  1251. int ret;
  1252. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1253. if (ret)
  1254. return ret;
  1255. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1256. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1257. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1258. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1259. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1260. seq_printf(m, "DDC = 0x%08x\n",
  1261. I915_READ(DCC));
  1262. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1263. I915_READ16(C0DRB3));
  1264. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1265. I915_READ16(C1DRB3));
  1266. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1267. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1268. I915_READ(MAD_DIMM_C0));
  1269. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1270. I915_READ(MAD_DIMM_C1));
  1271. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1272. I915_READ(MAD_DIMM_C2));
  1273. seq_printf(m, "TILECTL = 0x%08x\n",
  1274. I915_READ(TILECTL));
  1275. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1276. I915_READ(ARB_MODE));
  1277. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1278. I915_READ(DISP_ARB_CTL));
  1279. }
  1280. mutex_unlock(&dev->struct_mutex);
  1281. return 0;
  1282. }
  1283. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1284. {
  1285. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1286. struct drm_device *dev = node->minor->dev;
  1287. struct drm_i915_private *dev_priv = dev->dev_private;
  1288. struct intel_ring_buffer *ring;
  1289. int i, ret;
  1290. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1291. if (ret)
  1292. return ret;
  1293. if (INTEL_INFO(dev)->gen == 6)
  1294. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1295. for_each_ring(ring, dev_priv, i) {
  1296. seq_printf(m, "%s\n", ring->name);
  1297. if (INTEL_INFO(dev)->gen == 7)
  1298. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1299. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1300. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1301. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1302. }
  1303. if (dev_priv->mm.aliasing_ppgtt) {
  1304. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1305. seq_printf(m, "aliasing PPGTT:\n");
  1306. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
  1307. }
  1308. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1309. mutex_unlock(&dev->struct_mutex);
  1310. return 0;
  1311. }
  1312. static int i915_dpio_info(struct seq_file *m, void *data)
  1313. {
  1314. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1315. struct drm_device *dev = node->minor->dev;
  1316. struct drm_i915_private *dev_priv = dev->dev_private;
  1317. int ret;
  1318. if (!IS_VALLEYVIEW(dev)) {
  1319. seq_printf(m, "unsupported\n");
  1320. return 0;
  1321. }
  1322. ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1323. if (ret)
  1324. return ret;
  1325. seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
  1326. seq_printf(m, "DPIO_DIV_A: 0x%08x\n",
  1327. intel_dpio_read(dev_priv, _DPIO_DIV_A));
  1328. seq_printf(m, "DPIO_DIV_B: 0x%08x\n",
  1329. intel_dpio_read(dev_priv, _DPIO_DIV_B));
  1330. seq_printf(m, "DPIO_REFSFR_A: 0x%08x\n",
  1331. intel_dpio_read(dev_priv, _DPIO_REFSFR_A));
  1332. seq_printf(m, "DPIO_REFSFR_B: 0x%08x\n",
  1333. intel_dpio_read(dev_priv, _DPIO_REFSFR_B));
  1334. seq_printf(m, "DPIO_CORE_CLK_A: 0x%08x\n",
  1335. intel_dpio_read(dev_priv, _DPIO_CORE_CLK_A));
  1336. seq_printf(m, "DPIO_CORE_CLK_B: 0x%08x\n",
  1337. intel_dpio_read(dev_priv, _DPIO_CORE_CLK_B));
  1338. seq_printf(m, "DPIO_LFP_COEFF_A: 0x%08x\n",
  1339. intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_A));
  1340. seq_printf(m, "DPIO_LFP_COEFF_B: 0x%08x\n",
  1341. intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_B));
  1342. seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
  1343. intel_dpio_read(dev_priv, DPIO_FASTCLK_DISABLE));
  1344. mutex_unlock(&dev->mode_config.mutex);
  1345. return 0;
  1346. }
  1347. static ssize_t
  1348. i915_wedged_read(struct file *filp,
  1349. char __user *ubuf,
  1350. size_t max,
  1351. loff_t *ppos)
  1352. {
  1353. struct drm_device *dev = filp->private_data;
  1354. drm_i915_private_t *dev_priv = dev->dev_private;
  1355. char buf[80];
  1356. int len;
  1357. len = snprintf(buf, sizeof(buf),
  1358. "wedged : %d\n",
  1359. atomic_read(&dev_priv->mm.wedged));
  1360. if (len > sizeof(buf))
  1361. len = sizeof(buf);
  1362. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1363. }
  1364. static ssize_t
  1365. i915_wedged_write(struct file *filp,
  1366. const char __user *ubuf,
  1367. size_t cnt,
  1368. loff_t *ppos)
  1369. {
  1370. struct drm_device *dev = filp->private_data;
  1371. char buf[20];
  1372. int val = 1;
  1373. if (cnt > 0) {
  1374. if (cnt > sizeof(buf) - 1)
  1375. return -EINVAL;
  1376. if (copy_from_user(buf, ubuf, cnt))
  1377. return -EFAULT;
  1378. buf[cnt] = 0;
  1379. val = simple_strtoul(buf, NULL, 0);
  1380. }
  1381. DRM_INFO("Manually setting wedged to %d\n", val);
  1382. i915_handle_error(dev, val);
  1383. return cnt;
  1384. }
  1385. static const struct file_operations i915_wedged_fops = {
  1386. .owner = THIS_MODULE,
  1387. .open = simple_open,
  1388. .read = i915_wedged_read,
  1389. .write = i915_wedged_write,
  1390. .llseek = default_llseek,
  1391. };
  1392. static ssize_t
  1393. i915_ring_stop_read(struct file *filp,
  1394. char __user *ubuf,
  1395. size_t max,
  1396. loff_t *ppos)
  1397. {
  1398. struct drm_device *dev = filp->private_data;
  1399. drm_i915_private_t *dev_priv = dev->dev_private;
  1400. char buf[20];
  1401. int len;
  1402. len = snprintf(buf, sizeof(buf),
  1403. "0x%08x\n", dev_priv->stop_rings);
  1404. if (len > sizeof(buf))
  1405. len = sizeof(buf);
  1406. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1407. }
  1408. static ssize_t
  1409. i915_ring_stop_write(struct file *filp,
  1410. const char __user *ubuf,
  1411. size_t cnt,
  1412. loff_t *ppos)
  1413. {
  1414. struct drm_device *dev = filp->private_data;
  1415. struct drm_i915_private *dev_priv = dev->dev_private;
  1416. char buf[20];
  1417. int val = 0, ret;
  1418. if (cnt > 0) {
  1419. if (cnt > sizeof(buf) - 1)
  1420. return -EINVAL;
  1421. if (copy_from_user(buf, ubuf, cnt))
  1422. return -EFAULT;
  1423. buf[cnt] = 0;
  1424. val = simple_strtoul(buf, NULL, 0);
  1425. }
  1426. DRM_DEBUG_DRIVER("Stopping rings 0x%08x\n", val);
  1427. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1428. if (ret)
  1429. return ret;
  1430. dev_priv->stop_rings = val;
  1431. mutex_unlock(&dev->struct_mutex);
  1432. return cnt;
  1433. }
  1434. static const struct file_operations i915_ring_stop_fops = {
  1435. .owner = THIS_MODULE,
  1436. .open = simple_open,
  1437. .read = i915_ring_stop_read,
  1438. .write = i915_ring_stop_write,
  1439. .llseek = default_llseek,
  1440. };
  1441. static ssize_t
  1442. i915_max_freq_read(struct file *filp,
  1443. char __user *ubuf,
  1444. size_t max,
  1445. loff_t *ppos)
  1446. {
  1447. struct drm_device *dev = filp->private_data;
  1448. drm_i915_private_t *dev_priv = dev->dev_private;
  1449. char buf[80];
  1450. int len, ret;
  1451. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  1452. return -ENODEV;
  1453. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1454. if (ret)
  1455. return ret;
  1456. len = snprintf(buf, sizeof(buf),
  1457. "max freq: %d\n", dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER);
  1458. mutex_unlock(&dev_priv->rps.hw_lock);
  1459. if (len > sizeof(buf))
  1460. len = sizeof(buf);
  1461. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1462. }
  1463. static ssize_t
  1464. i915_max_freq_write(struct file *filp,
  1465. const char __user *ubuf,
  1466. size_t cnt,
  1467. loff_t *ppos)
  1468. {
  1469. struct drm_device *dev = filp->private_data;
  1470. struct drm_i915_private *dev_priv = dev->dev_private;
  1471. char buf[20];
  1472. int val = 1, ret;
  1473. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  1474. return -ENODEV;
  1475. if (cnt > 0) {
  1476. if (cnt > sizeof(buf) - 1)
  1477. return -EINVAL;
  1478. if (copy_from_user(buf, ubuf, cnt))
  1479. return -EFAULT;
  1480. buf[cnt] = 0;
  1481. val = simple_strtoul(buf, NULL, 0);
  1482. }
  1483. DRM_DEBUG_DRIVER("Manually setting max freq to %d\n", val);
  1484. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1485. if (ret)
  1486. return ret;
  1487. /*
  1488. * Turbo will still be enabled, but won't go above the set value.
  1489. */
  1490. dev_priv->rps.max_delay = val / GT_FREQUENCY_MULTIPLIER;
  1491. gen6_set_rps(dev, val / GT_FREQUENCY_MULTIPLIER);
  1492. mutex_unlock(&dev_priv->rps.hw_lock);
  1493. return cnt;
  1494. }
  1495. static const struct file_operations i915_max_freq_fops = {
  1496. .owner = THIS_MODULE,
  1497. .open = simple_open,
  1498. .read = i915_max_freq_read,
  1499. .write = i915_max_freq_write,
  1500. .llseek = default_llseek,
  1501. };
  1502. static ssize_t
  1503. i915_min_freq_read(struct file *filp, char __user *ubuf, size_t max,
  1504. loff_t *ppos)
  1505. {
  1506. struct drm_device *dev = filp->private_data;
  1507. drm_i915_private_t *dev_priv = dev->dev_private;
  1508. char buf[80];
  1509. int len, ret;
  1510. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  1511. return -ENODEV;
  1512. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1513. if (ret)
  1514. return ret;
  1515. len = snprintf(buf, sizeof(buf),
  1516. "min freq: %d\n", dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER);
  1517. mutex_unlock(&dev_priv->rps.hw_lock);
  1518. if (len > sizeof(buf))
  1519. len = sizeof(buf);
  1520. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1521. }
  1522. static ssize_t
  1523. i915_min_freq_write(struct file *filp, const char __user *ubuf, size_t cnt,
  1524. loff_t *ppos)
  1525. {
  1526. struct drm_device *dev = filp->private_data;
  1527. struct drm_i915_private *dev_priv = dev->dev_private;
  1528. char buf[20];
  1529. int val = 1, ret;
  1530. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  1531. return -ENODEV;
  1532. if (cnt > 0) {
  1533. if (cnt > sizeof(buf) - 1)
  1534. return -EINVAL;
  1535. if (copy_from_user(buf, ubuf, cnt))
  1536. return -EFAULT;
  1537. buf[cnt] = 0;
  1538. val = simple_strtoul(buf, NULL, 0);
  1539. }
  1540. DRM_DEBUG_DRIVER("Manually setting min freq to %d\n", val);
  1541. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1542. if (ret)
  1543. return ret;
  1544. /*
  1545. * Turbo will still be enabled, but won't go below the set value.
  1546. */
  1547. dev_priv->rps.min_delay = val / GT_FREQUENCY_MULTIPLIER;
  1548. gen6_set_rps(dev, val / GT_FREQUENCY_MULTIPLIER);
  1549. mutex_unlock(&dev_priv->rps.hw_lock);
  1550. return cnt;
  1551. }
  1552. static const struct file_operations i915_min_freq_fops = {
  1553. .owner = THIS_MODULE,
  1554. .open = simple_open,
  1555. .read = i915_min_freq_read,
  1556. .write = i915_min_freq_write,
  1557. .llseek = default_llseek,
  1558. };
  1559. static ssize_t
  1560. i915_cache_sharing_read(struct file *filp,
  1561. char __user *ubuf,
  1562. size_t max,
  1563. loff_t *ppos)
  1564. {
  1565. struct drm_device *dev = filp->private_data;
  1566. drm_i915_private_t *dev_priv = dev->dev_private;
  1567. char buf[80];
  1568. u32 snpcr;
  1569. int len, ret;
  1570. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  1571. return -ENODEV;
  1572. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1573. if (ret)
  1574. return ret;
  1575. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  1576. mutex_unlock(&dev_priv->dev->struct_mutex);
  1577. len = snprintf(buf, sizeof(buf),
  1578. "%d\n", (snpcr & GEN6_MBC_SNPCR_MASK) >>
  1579. GEN6_MBC_SNPCR_SHIFT);
  1580. if (len > sizeof(buf))
  1581. len = sizeof(buf);
  1582. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1583. }
  1584. static ssize_t
  1585. i915_cache_sharing_write(struct file *filp,
  1586. const char __user *ubuf,
  1587. size_t cnt,
  1588. loff_t *ppos)
  1589. {
  1590. struct drm_device *dev = filp->private_data;
  1591. struct drm_i915_private *dev_priv = dev->dev_private;
  1592. char buf[20];
  1593. u32 snpcr;
  1594. int val = 1;
  1595. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  1596. return -ENODEV;
  1597. if (cnt > 0) {
  1598. if (cnt > sizeof(buf) - 1)
  1599. return -EINVAL;
  1600. if (copy_from_user(buf, ubuf, cnt))
  1601. return -EFAULT;
  1602. buf[cnt] = 0;
  1603. val = simple_strtoul(buf, NULL, 0);
  1604. }
  1605. if (val < 0 || val > 3)
  1606. return -EINVAL;
  1607. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %d\n", val);
  1608. /* Update the cache sharing policy here as well */
  1609. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  1610. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  1611. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  1612. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  1613. return cnt;
  1614. }
  1615. static const struct file_operations i915_cache_sharing_fops = {
  1616. .owner = THIS_MODULE,
  1617. .open = simple_open,
  1618. .read = i915_cache_sharing_read,
  1619. .write = i915_cache_sharing_write,
  1620. .llseek = default_llseek,
  1621. };
  1622. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  1623. * allocated we need to hook into the minor for release. */
  1624. static int
  1625. drm_add_fake_info_node(struct drm_minor *minor,
  1626. struct dentry *ent,
  1627. const void *key)
  1628. {
  1629. struct drm_info_node *node;
  1630. node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL);
  1631. if (node == NULL) {
  1632. debugfs_remove(ent);
  1633. return -ENOMEM;
  1634. }
  1635. node->minor = minor;
  1636. node->dent = ent;
  1637. node->info_ent = (void *) key;
  1638. mutex_lock(&minor->debugfs_lock);
  1639. list_add(&node->list, &minor->debugfs_list);
  1640. mutex_unlock(&minor->debugfs_lock);
  1641. return 0;
  1642. }
  1643. static int i915_forcewake_open(struct inode *inode, struct file *file)
  1644. {
  1645. struct drm_device *dev = inode->i_private;
  1646. struct drm_i915_private *dev_priv = dev->dev_private;
  1647. if (INTEL_INFO(dev)->gen < 6)
  1648. return 0;
  1649. gen6_gt_force_wake_get(dev_priv);
  1650. return 0;
  1651. }
  1652. static int i915_forcewake_release(struct inode *inode, struct file *file)
  1653. {
  1654. struct drm_device *dev = inode->i_private;
  1655. struct drm_i915_private *dev_priv = dev->dev_private;
  1656. if (INTEL_INFO(dev)->gen < 6)
  1657. return 0;
  1658. gen6_gt_force_wake_put(dev_priv);
  1659. return 0;
  1660. }
  1661. static const struct file_operations i915_forcewake_fops = {
  1662. .owner = THIS_MODULE,
  1663. .open = i915_forcewake_open,
  1664. .release = i915_forcewake_release,
  1665. };
  1666. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  1667. {
  1668. struct drm_device *dev = minor->dev;
  1669. struct dentry *ent;
  1670. ent = debugfs_create_file("i915_forcewake_user",
  1671. S_IRUSR,
  1672. root, dev,
  1673. &i915_forcewake_fops);
  1674. if (IS_ERR(ent))
  1675. return PTR_ERR(ent);
  1676. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  1677. }
  1678. static int i915_debugfs_create(struct dentry *root,
  1679. struct drm_minor *minor,
  1680. const char *name,
  1681. const struct file_operations *fops)
  1682. {
  1683. struct drm_device *dev = minor->dev;
  1684. struct dentry *ent;
  1685. ent = debugfs_create_file(name,
  1686. S_IRUGO | S_IWUSR,
  1687. root, dev,
  1688. fops);
  1689. if (IS_ERR(ent))
  1690. return PTR_ERR(ent);
  1691. return drm_add_fake_info_node(minor, ent, fops);
  1692. }
  1693. static struct drm_info_list i915_debugfs_list[] = {
  1694. {"i915_capabilities", i915_capabilities, 0},
  1695. {"i915_gem_objects", i915_gem_object_info, 0},
  1696. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  1697. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  1698. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  1699. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  1700. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  1701. {"i915_gem_request", i915_gem_request_info, 0},
  1702. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  1703. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  1704. {"i915_gem_interrupt", i915_interrupt_info, 0},
  1705. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  1706. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  1707. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  1708. {"i915_rstdby_delays", i915_rstdby_delays, 0},
  1709. {"i915_cur_delayinfo", i915_cur_delayinfo, 0},
  1710. {"i915_delayfreq_table", i915_delayfreq_table, 0},
  1711. {"i915_inttoext_table", i915_inttoext_table, 0},
  1712. {"i915_drpc_info", i915_drpc_info, 0},
  1713. {"i915_emon_status", i915_emon_status, 0},
  1714. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  1715. {"i915_gfxec", i915_gfxec, 0},
  1716. {"i915_fbc_status", i915_fbc_status, 0},
  1717. {"i915_sr_status", i915_sr_status, 0},
  1718. {"i915_opregion", i915_opregion, 0},
  1719. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  1720. {"i915_context_status", i915_context_status, 0},
  1721. {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
  1722. {"i915_swizzle_info", i915_swizzle_info, 0},
  1723. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  1724. {"i915_dpio", i915_dpio_info, 0},
  1725. };
  1726. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  1727. int i915_debugfs_init(struct drm_minor *minor)
  1728. {
  1729. int ret;
  1730. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1731. "i915_wedged",
  1732. &i915_wedged_fops);
  1733. if (ret)
  1734. return ret;
  1735. ret = i915_forcewake_create(minor->debugfs_root, minor);
  1736. if (ret)
  1737. return ret;
  1738. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1739. "i915_max_freq",
  1740. &i915_max_freq_fops);
  1741. if (ret)
  1742. return ret;
  1743. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1744. "i915_min_freq",
  1745. &i915_min_freq_fops);
  1746. if (ret)
  1747. return ret;
  1748. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1749. "i915_cache_sharing",
  1750. &i915_cache_sharing_fops);
  1751. if (ret)
  1752. return ret;
  1753. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1754. "i915_ring_stop",
  1755. &i915_ring_stop_fops);
  1756. if (ret)
  1757. return ret;
  1758. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1759. "i915_error_state",
  1760. &i915_error_state_fops);
  1761. if (ret)
  1762. return ret;
  1763. return drm_debugfs_create_files(i915_debugfs_list,
  1764. I915_DEBUGFS_ENTRIES,
  1765. minor->debugfs_root, minor);
  1766. }
  1767. void i915_debugfs_cleanup(struct drm_minor *minor)
  1768. {
  1769. drm_debugfs_remove_files(i915_debugfs_list,
  1770. I915_DEBUGFS_ENTRIES, minor);
  1771. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  1772. 1, minor);
  1773. drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops,
  1774. 1, minor);
  1775. drm_debugfs_remove_files((struct drm_info_list *) &i915_max_freq_fops,
  1776. 1, minor);
  1777. drm_debugfs_remove_files((struct drm_info_list *) &i915_min_freq_fops,
  1778. 1, minor);
  1779. drm_debugfs_remove_files((struct drm_info_list *) &i915_cache_sharing_fops,
  1780. 1, minor);
  1781. drm_debugfs_remove_files((struct drm_info_list *) &i915_ring_stop_fops,
  1782. 1, minor);
  1783. drm_debugfs_remove_files((struct drm_info_list *) &i915_error_state_fops,
  1784. 1, minor);
  1785. }
  1786. #endif /* CONFIG_DEBUG_FS */