md.c 215 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/mutex.h>
  31. #include <linux/buffer_head.h> /* for invalidate_bdev */
  32. #include <linux/poll.h>
  33. #include <linux/ctype.h>
  34. #include <linux/string.h>
  35. #include <linux/hdreg.h>
  36. #include <linux/proc_fs.h>
  37. #include <linux/random.h>
  38. #include <linux/module.h>
  39. #include <linux/reboot.h>
  40. #include <linux/file.h>
  41. #include <linux/compat.h>
  42. #include <linux/delay.h>
  43. #include <linux/raid/md_p.h>
  44. #include <linux/raid/md_u.h>
  45. #include <linux/slab.h>
  46. #include "md.h"
  47. #include "bitmap.h"
  48. #ifndef MODULE
  49. static void autostart_arrays(int part);
  50. #endif
  51. /* pers_list is a list of registered personalities protected
  52. * by pers_lock.
  53. * pers_lock does extra service to protect accesses to
  54. * mddev->thread when the mutex cannot be held.
  55. */
  56. static LIST_HEAD(pers_list);
  57. static DEFINE_SPINLOCK(pers_lock);
  58. static void md_print_devices(void);
  59. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  60. static struct workqueue_struct *md_wq;
  61. static struct workqueue_struct *md_misc_wq;
  62. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  63. /*
  64. * Default number of read corrections we'll attempt on an rdev
  65. * before ejecting it from the array. We divide the read error
  66. * count by 2 for every hour elapsed between read errors.
  67. */
  68. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  69. /*
  70. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  71. * is 1000 KB/sec, so the extra system load does not show up that much.
  72. * Increase it if you want to have more _guaranteed_ speed. Note that
  73. * the RAID driver will use the maximum available bandwidth if the IO
  74. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  75. * speed limit - in case reconstruction slows down your system despite
  76. * idle IO detection.
  77. *
  78. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  79. * or /sys/block/mdX/md/sync_speed_{min,max}
  80. */
  81. static int sysctl_speed_limit_min = 1000;
  82. static int sysctl_speed_limit_max = 200000;
  83. static inline int speed_min(struct mddev *mddev)
  84. {
  85. return mddev->sync_speed_min ?
  86. mddev->sync_speed_min : sysctl_speed_limit_min;
  87. }
  88. static inline int speed_max(struct mddev *mddev)
  89. {
  90. return mddev->sync_speed_max ?
  91. mddev->sync_speed_max : sysctl_speed_limit_max;
  92. }
  93. static struct ctl_table_header *raid_table_header;
  94. static ctl_table raid_table[] = {
  95. {
  96. .procname = "speed_limit_min",
  97. .data = &sysctl_speed_limit_min,
  98. .maxlen = sizeof(int),
  99. .mode = S_IRUGO|S_IWUSR,
  100. .proc_handler = proc_dointvec,
  101. },
  102. {
  103. .procname = "speed_limit_max",
  104. .data = &sysctl_speed_limit_max,
  105. .maxlen = sizeof(int),
  106. .mode = S_IRUGO|S_IWUSR,
  107. .proc_handler = proc_dointvec,
  108. },
  109. { }
  110. };
  111. static ctl_table raid_dir_table[] = {
  112. {
  113. .procname = "raid",
  114. .maxlen = 0,
  115. .mode = S_IRUGO|S_IXUGO,
  116. .child = raid_table,
  117. },
  118. { }
  119. };
  120. static ctl_table raid_root_table[] = {
  121. {
  122. .procname = "dev",
  123. .maxlen = 0,
  124. .mode = 0555,
  125. .child = raid_dir_table,
  126. },
  127. { }
  128. };
  129. static const struct block_device_operations md_fops;
  130. static int start_readonly;
  131. /* bio_clone_mddev
  132. * like bio_clone, but with a local bio set
  133. */
  134. static void mddev_bio_destructor(struct bio *bio)
  135. {
  136. struct mddev *mddev, **mddevp;
  137. mddevp = (void*)bio;
  138. mddev = mddevp[-1];
  139. bio_free(bio, mddev->bio_set);
  140. }
  141. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  142. struct mddev *mddev)
  143. {
  144. struct bio *b;
  145. struct mddev **mddevp;
  146. if (!mddev || !mddev->bio_set)
  147. return bio_alloc(gfp_mask, nr_iovecs);
  148. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  149. mddev->bio_set);
  150. if (!b)
  151. return NULL;
  152. mddevp = (void*)b;
  153. mddevp[-1] = mddev;
  154. b->bi_destructor = mddev_bio_destructor;
  155. return b;
  156. }
  157. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  158. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  159. struct mddev *mddev)
  160. {
  161. struct bio *b;
  162. struct mddev **mddevp;
  163. if (!mddev || !mddev->bio_set)
  164. return bio_clone(bio, gfp_mask);
  165. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  166. mddev->bio_set);
  167. if (!b)
  168. return NULL;
  169. mddevp = (void*)b;
  170. mddevp[-1] = mddev;
  171. b->bi_destructor = mddev_bio_destructor;
  172. __bio_clone(b, bio);
  173. if (bio_integrity(bio)) {
  174. int ret;
  175. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  176. if (ret < 0) {
  177. bio_put(b);
  178. return NULL;
  179. }
  180. }
  181. return b;
  182. }
  183. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  184. void md_trim_bio(struct bio *bio, int offset, int size)
  185. {
  186. /* 'bio' is a cloned bio which we need to trim to match
  187. * the given offset and size.
  188. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  189. */
  190. int i;
  191. struct bio_vec *bvec;
  192. int sofar = 0;
  193. size <<= 9;
  194. if (offset == 0 && size == bio->bi_size)
  195. return;
  196. bio->bi_sector += offset;
  197. bio->bi_size = size;
  198. offset <<= 9;
  199. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  200. while (bio->bi_idx < bio->bi_vcnt &&
  201. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  202. /* remove this whole bio_vec */
  203. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  204. bio->bi_idx++;
  205. }
  206. if (bio->bi_idx < bio->bi_vcnt) {
  207. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  208. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  209. }
  210. /* avoid any complications with bi_idx being non-zero*/
  211. if (bio->bi_idx) {
  212. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  213. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  214. bio->bi_vcnt -= bio->bi_idx;
  215. bio->bi_idx = 0;
  216. }
  217. /* Make sure vcnt and last bv are not too big */
  218. bio_for_each_segment(bvec, bio, i) {
  219. if (sofar + bvec->bv_len > size)
  220. bvec->bv_len = size - sofar;
  221. if (bvec->bv_len == 0) {
  222. bio->bi_vcnt = i;
  223. break;
  224. }
  225. sofar += bvec->bv_len;
  226. }
  227. }
  228. EXPORT_SYMBOL_GPL(md_trim_bio);
  229. /*
  230. * We have a system wide 'event count' that is incremented
  231. * on any 'interesting' event, and readers of /proc/mdstat
  232. * can use 'poll' or 'select' to find out when the event
  233. * count increases.
  234. *
  235. * Events are:
  236. * start array, stop array, error, add device, remove device,
  237. * start build, activate spare
  238. */
  239. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  240. static atomic_t md_event_count;
  241. void md_new_event(struct mddev *mddev)
  242. {
  243. atomic_inc(&md_event_count);
  244. wake_up(&md_event_waiters);
  245. }
  246. EXPORT_SYMBOL_GPL(md_new_event);
  247. /* Alternate version that can be called from interrupts
  248. * when calling sysfs_notify isn't needed.
  249. */
  250. static void md_new_event_inintr(struct mddev *mddev)
  251. {
  252. atomic_inc(&md_event_count);
  253. wake_up(&md_event_waiters);
  254. }
  255. /*
  256. * Enables to iterate over all existing md arrays
  257. * all_mddevs_lock protects this list.
  258. */
  259. static LIST_HEAD(all_mddevs);
  260. static DEFINE_SPINLOCK(all_mddevs_lock);
  261. /*
  262. * iterates through all used mddevs in the system.
  263. * We take care to grab the all_mddevs_lock whenever navigating
  264. * the list, and to always hold a refcount when unlocked.
  265. * Any code which breaks out of this loop while own
  266. * a reference to the current mddev and must mddev_put it.
  267. */
  268. #define for_each_mddev(_mddev,_tmp) \
  269. \
  270. for (({ spin_lock(&all_mddevs_lock); \
  271. _tmp = all_mddevs.next; \
  272. _mddev = NULL;}); \
  273. ({ if (_tmp != &all_mddevs) \
  274. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  275. spin_unlock(&all_mddevs_lock); \
  276. if (_mddev) mddev_put(_mddev); \
  277. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  278. _tmp != &all_mddevs;}); \
  279. ({ spin_lock(&all_mddevs_lock); \
  280. _tmp = _tmp->next;}) \
  281. )
  282. /* Rather than calling directly into the personality make_request function,
  283. * IO requests come here first so that we can check if the device is
  284. * being suspended pending a reconfiguration.
  285. * We hold a refcount over the call to ->make_request. By the time that
  286. * call has finished, the bio has been linked into some internal structure
  287. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  288. */
  289. static void md_make_request(struct request_queue *q, struct bio *bio)
  290. {
  291. const int rw = bio_data_dir(bio);
  292. struct mddev *mddev = q->queuedata;
  293. int cpu;
  294. unsigned int sectors;
  295. if (mddev == NULL || mddev->pers == NULL
  296. || !mddev->ready) {
  297. bio_io_error(bio);
  298. return;
  299. }
  300. smp_rmb(); /* Ensure implications of 'active' are visible */
  301. rcu_read_lock();
  302. if (mddev->suspended) {
  303. DEFINE_WAIT(__wait);
  304. for (;;) {
  305. prepare_to_wait(&mddev->sb_wait, &__wait,
  306. TASK_UNINTERRUPTIBLE);
  307. if (!mddev->suspended)
  308. break;
  309. rcu_read_unlock();
  310. schedule();
  311. rcu_read_lock();
  312. }
  313. finish_wait(&mddev->sb_wait, &__wait);
  314. }
  315. atomic_inc(&mddev->active_io);
  316. rcu_read_unlock();
  317. /*
  318. * save the sectors now since our bio can
  319. * go away inside make_request
  320. */
  321. sectors = bio_sectors(bio);
  322. mddev->pers->make_request(mddev, bio);
  323. cpu = part_stat_lock();
  324. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  325. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  326. part_stat_unlock();
  327. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  328. wake_up(&mddev->sb_wait);
  329. }
  330. /* mddev_suspend makes sure no new requests are submitted
  331. * to the device, and that any requests that have been submitted
  332. * are completely handled.
  333. * Once ->stop is called and completes, the module will be completely
  334. * unused.
  335. */
  336. void mddev_suspend(struct mddev *mddev)
  337. {
  338. BUG_ON(mddev->suspended);
  339. mddev->suspended = 1;
  340. synchronize_rcu();
  341. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  342. mddev->pers->quiesce(mddev, 1);
  343. }
  344. EXPORT_SYMBOL_GPL(mddev_suspend);
  345. void mddev_resume(struct mddev *mddev)
  346. {
  347. mddev->suspended = 0;
  348. wake_up(&mddev->sb_wait);
  349. mddev->pers->quiesce(mddev, 0);
  350. md_wakeup_thread(mddev->thread);
  351. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  352. }
  353. EXPORT_SYMBOL_GPL(mddev_resume);
  354. int mddev_congested(struct mddev *mddev, int bits)
  355. {
  356. return mddev->suspended;
  357. }
  358. EXPORT_SYMBOL(mddev_congested);
  359. /*
  360. * Generic flush handling for md
  361. */
  362. static void md_end_flush(struct bio *bio, int err)
  363. {
  364. struct md_rdev *rdev = bio->bi_private;
  365. struct mddev *mddev = rdev->mddev;
  366. rdev_dec_pending(rdev, mddev);
  367. if (atomic_dec_and_test(&mddev->flush_pending)) {
  368. /* The pre-request flush has finished */
  369. queue_work(md_wq, &mddev->flush_work);
  370. }
  371. bio_put(bio);
  372. }
  373. static void md_submit_flush_data(struct work_struct *ws);
  374. static void submit_flushes(struct work_struct *ws)
  375. {
  376. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  377. struct md_rdev *rdev;
  378. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  379. atomic_set(&mddev->flush_pending, 1);
  380. rcu_read_lock();
  381. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  382. if (rdev->raid_disk >= 0 &&
  383. !test_bit(Faulty, &rdev->flags)) {
  384. /* Take two references, one is dropped
  385. * when request finishes, one after
  386. * we reclaim rcu_read_lock
  387. */
  388. struct bio *bi;
  389. atomic_inc(&rdev->nr_pending);
  390. atomic_inc(&rdev->nr_pending);
  391. rcu_read_unlock();
  392. bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
  393. bi->bi_end_io = md_end_flush;
  394. bi->bi_private = rdev;
  395. bi->bi_bdev = rdev->bdev;
  396. atomic_inc(&mddev->flush_pending);
  397. submit_bio(WRITE_FLUSH, bi);
  398. rcu_read_lock();
  399. rdev_dec_pending(rdev, mddev);
  400. }
  401. rcu_read_unlock();
  402. if (atomic_dec_and_test(&mddev->flush_pending))
  403. queue_work(md_wq, &mddev->flush_work);
  404. }
  405. static void md_submit_flush_data(struct work_struct *ws)
  406. {
  407. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  408. struct bio *bio = mddev->flush_bio;
  409. if (bio->bi_size == 0)
  410. /* an empty barrier - all done */
  411. bio_endio(bio, 0);
  412. else {
  413. bio->bi_rw &= ~REQ_FLUSH;
  414. mddev->pers->make_request(mddev, bio);
  415. }
  416. mddev->flush_bio = NULL;
  417. wake_up(&mddev->sb_wait);
  418. }
  419. void md_flush_request(struct mddev *mddev, struct bio *bio)
  420. {
  421. spin_lock_irq(&mddev->write_lock);
  422. wait_event_lock_irq(mddev->sb_wait,
  423. !mddev->flush_bio,
  424. mddev->write_lock, /*nothing*/);
  425. mddev->flush_bio = bio;
  426. spin_unlock_irq(&mddev->write_lock);
  427. INIT_WORK(&mddev->flush_work, submit_flushes);
  428. queue_work(md_wq, &mddev->flush_work);
  429. }
  430. EXPORT_SYMBOL(md_flush_request);
  431. /* Support for plugging.
  432. * This mirrors the plugging support in request_queue, but does not
  433. * require having a whole queue or request structures.
  434. * We allocate an md_plug_cb for each md device and each thread it gets
  435. * plugged on. This links tot the private plug_handle structure in the
  436. * personality data where we keep a count of the number of outstanding
  437. * plugs so other code can see if a plug is active.
  438. */
  439. struct md_plug_cb {
  440. struct blk_plug_cb cb;
  441. struct mddev *mddev;
  442. };
  443. static void plugger_unplug(struct blk_plug_cb *cb)
  444. {
  445. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  446. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  447. md_wakeup_thread(mdcb->mddev->thread);
  448. kfree(mdcb);
  449. }
  450. /* Check that an unplug wakeup will come shortly.
  451. * If not, wakeup the md thread immediately
  452. */
  453. int mddev_check_plugged(struct mddev *mddev)
  454. {
  455. struct blk_plug *plug = current->plug;
  456. struct md_plug_cb *mdcb;
  457. if (!plug)
  458. return 0;
  459. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  460. if (mdcb->cb.callback == plugger_unplug &&
  461. mdcb->mddev == mddev) {
  462. /* Already on the list, move to top */
  463. if (mdcb != list_first_entry(&plug->cb_list,
  464. struct md_plug_cb,
  465. cb.list))
  466. list_move(&mdcb->cb.list, &plug->cb_list);
  467. return 1;
  468. }
  469. }
  470. /* Not currently on the callback list */
  471. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  472. if (!mdcb)
  473. return 0;
  474. mdcb->mddev = mddev;
  475. mdcb->cb.callback = plugger_unplug;
  476. atomic_inc(&mddev->plug_cnt);
  477. list_add(&mdcb->cb.list, &plug->cb_list);
  478. return 1;
  479. }
  480. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  481. static inline struct mddev *mddev_get(struct mddev *mddev)
  482. {
  483. atomic_inc(&mddev->active);
  484. return mddev;
  485. }
  486. static void mddev_delayed_delete(struct work_struct *ws);
  487. static void mddev_put(struct mddev *mddev)
  488. {
  489. struct bio_set *bs = NULL;
  490. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  491. return;
  492. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  493. mddev->ctime == 0 && !mddev->hold_active) {
  494. /* Array is not configured at all, and not held active,
  495. * so destroy it */
  496. list_del_init(&mddev->all_mddevs);
  497. bs = mddev->bio_set;
  498. mddev->bio_set = NULL;
  499. if (mddev->gendisk) {
  500. /* We did a probe so need to clean up. Call
  501. * queue_work inside the spinlock so that
  502. * flush_workqueue() after mddev_find will
  503. * succeed in waiting for the work to be done.
  504. */
  505. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  506. queue_work(md_misc_wq, &mddev->del_work);
  507. } else
  508. kfree(mddev);
  509. }
  510. spin_unlock(&all_mddevs_lock);
  511. if (bs)
  512. bioset_free(bs);
  513. }
  514. void mddev_init(struct mddev *mddev)
  515. {
  516. mutex_init(&mddev->open_mutex);
  517. mutex_init(&mddev->reconfig_mutex);
  518. mutex_init(&mddev->bitmap_info.mutex);
  519. INIT_LIST_HEAD(&mddev->disks);
  520. INIT_LIST_HEAD(&mddev->all_mddevs);
  521. init_timer(&mddev->safemode_timer);
  522. atomic_set(&mddev->active, 1);
  523. atomic_set(&mddev->openers, 0);
  524. atomic_set(&mddev->active_io, 0);
  525. atomic_set(&mddev->plug_cnt, 0);
  526. spin_lock_init(&mddev->write_lock);
  527. atomic_set(&mddev->flush_pending, 0);
  528. init_waitqueue_head(&mddev->sb_wait);
  529. init_waitqueue_head(&mddev->recovery_wait);
  530. mddev->reshape_position = MaxSector;
  531. mddev->resync_min = 0;
  532. mddev->resync_max = MaxSector;
  533. mddev->level = LEVEL_NONE;
  534. }
  535. EXPORT_SYMBOL_GPL(mddev_init);
  536. static struct mddev * mddev_find(dev_t unit)
  537. {
  538. struct mddev *mddev, *new = NULL;
  539. if (unit && MAJOR(unit) != MD_MAJOR)
  540. unit &= ~((1<<MdpMinorShift)-1);
  541. retry:
  542. spin_lock(&all_mddevs_lock);
  543. if (unit) {
  544. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  545. if (mddev->unit == unit) {
  546. mddev_get(mddev);
  547. spin_unlock(&all_mddevs_lock);
  548. kfree(new);
  549. return mddev;
  550. }
  551. if (new) {
  552. list_add(&new->all_mddevs, &all_mddevs);
  553. spin_unlock(&all_mddevs_lock);
  554. new->hold_active = UNTIL_IOCTL;
  555. return new;
  556. }
  557. } else if (new) {
  558. /* find an unused unit number */
  559. static int next_minor = 512;
  560. int start = next_minor;
  561. int is_free = 0;
  562. int dev = 0;
  563. while (!is_free) {
  564. dev = MKDEV(MD_MAJOR, next_minor);
  565. next_minor++;
  566. if (next_minor > MINORMASK)
  567. next_minor = 0;
  568. if (next_minor == start) {
  569. /* Oh dear, all in use. */
  570. spin_unlock(&all_mddevs_lock);
  571. kfree(new);
  572. return NULL;
  573. }
  574. is_free = 1;
  575. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  576. if (mddev->unit == dev) {
  577. is_free = 0;
  578. break;
  579. }
  580. }
  581. new->unit = dev;
  582. new->md_minor = MINOR(dev);
  583. new->hold_active = UNTIL_STOP;
  584. list_add(&new->all_mddevs, &all_mddevs);
  585. spin_unlock(&all_mddevs_lock);
  586. return new;
  587. }
  588. spin_unlock(&all_mddevs_lock);
  589. new = kzalloc(sizeof(*new), GFP_KERNEL);
  590. if (!new)
  591. return NULL;
  592. new->unit = unit;
  593. if (MAJOR(unit) == MD_MAJOR)
  594. new->md_minor = MINOR(unit);
  595. else
  596. new->md_minor = MINOR(unit) >> MdpMinorShift;
  597. mddev_init(new);
  598. goto retry;
  599. }
  600. static inline int mddev_lock(struct mddev * mddev)
  601. {
  602. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  603. }
  604. static inline int mddev_is_locked(struct mddev *mddev)
  605. {
  606. return mutex_is_locked(&mddev->reconfig_mutex);
  607. }
  608. static inline int mddev_trylock(struct mddev * mddev)
  609. {
  610. return mutex_trylock(&mddev->reconfig_mutex);
  611. }
  612. static struct attribute_group md_redundancy_group;
  613. static void mddev_unlock(struct mddev * mddev)
  614. {
  615. if (mddev->to_remove) {
  616. /* These cannot be removed under reconfig_mutex as
  617. * an access to the files will try to take reconfig_mutex
  618. * while holding the file unremovable, which leads to
  619. * a deadlock.
  620. * So hold set sysfs_active while the remove in happeing,
  621. * and anything else which might set ->to_remove or my
  622. * otherwise change the sysfs namespace will fail with
  623. * -EBUSY if sysfs_active is still set.
  624. * We set sysfs_active under reconfig_mutex and elsewhere
  625. * test it under the same mutex to ensure its correct value
  626. * is seen.
  627. */
  628. struct attribute_group *to_remove = mddev->to_remove;
  629. mddev->to_remove = NULL;
  630. mddev->sysfs_active = 1;
  631. mutex_unlock(&mddev->reconfig_mutex);
  632. if (mddev->kobj.sd) {
  633. if (to_remove != &md_redundancy_group)
  634. sysfs_remove_group(&mddev->kobj, to_remove);
  635. if (mddev->pers == NULL ||
  636. mddev->pers->sync_request == NULL) {
  637. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  638. if (mddev->sysfs_action)
  639. sysfs_put(mddev->sysfs_action);
  640. mddev->sysfs_action = NULL;
  641. }
  642. }
  643. mddev->sysfs_active = 0;
  644. } else
  645. mutex_unlock(&mddev->reconfig_mutex);
  646. /* As we've dropped the mutex we need a spinlock to
  647. * make sure the thread doesn't disappear
  648. */
  649. spin_lock(&pers_lock);
  650. md_wakeup_thread(mddev->thread);
  651. spin_unlock(&pers_lock);
  652. }
  653. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  654. {
  655. struct md_rdev *rdev;
  656. list_for_each_entry(rdev, &mddev->disks, same_set)
  657. if (rdev->desc_nr == nr)
  658. return rdev;
  659. return NULL;
  660. }
  661. static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
  662. {
  663. struct md_rdev *rdev;
  664. list_for_each_entry(rdev, &mddev->disks, same_set)
  665. if (rdev->bdev->bd_dev == dev)
  666. return rdev;
  667. return NULL;
  668. }
  669. static struct md_personality *find_pers(int level, char *clevel)
  670. {
  671. struct md_personality *pers;
  672. list_for_each_entry(pers, &pers_list, list) {
  673. if (level != LEVEL_NONE && pers->level == level)
  674. return pers;
  675. if (strcmp(pers->name, clevel)==0)
  676. return pers;
  677. }
  678. return NULL;
  679. }
  680. /* return the offset of the super block in 512byte sectors */
  681. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  682. {
  683. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  684. return MD_NEW_SIZE_SECTORS(num_sectors);
  685. }
  686. static int alloc_disk_sb(struct md_rdev * rdev)
  687. {
  688. if (rdev->sb_page)
  689. MD_BUG();
  690. rdev->sb_page = alloc_page(GFP_KERNEL);
  691. if (!rdev->sb_page) {
  692. printk(KERN_ALERT "md: out of memory.\n");
  693. return -ENOMEM;
  694. }
  695. return 0;
  696. }
  697. static void free_disk_sb(struct md_rdev * rdev)
  698. {
  699. if (rdev->sb_page) {
  700. put_page(rdev->sb_page);
  701. rdev->sb_loaded = 0;
  702. rdev->sb_page = NULL;
  703. rdev->sb_start = 0;
  704. rdev->sectors = 0;
  705. }
  706. if (rdev->bb_page) {
  707. put_page(rdev->bb_page);
  708. rdev->bb_page = NULL;
  709. }
  710. }
  711. static void super_written(struct bio *bio, int error)
  712. {
  713. struct md_rdev *rdev = bio->bi_private;
  714. struct mddev *mddev = rdev->mddev;
  715. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  716. printk("md: super_written gets error=%d, uptodate=%d\n",
  717. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  718. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  719. md_error(mddev, rdev);
  720. }
  721. if (atomic_dec_and_test(&mddev->pending_writes))
  722. wake_up(&mddev->sb_wait);
  723. bio_put(bio);
  724. }
  725. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  726. sector_t sector, int size, struct page *page)
  727. {
  728. /* write first size bytes of page to sector of rdev
  729. * Increment mddev->pending_writes before returning
  730. * and decrement it on completion, waking up sb_wait
  731. * if zero is reached.
  732. * If an error occurred, call md_error
  733. */
  734. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  735. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  736. bio->bi_sector = sector;
  737. bio_add_page(bio, page, size, 0);
  738. bio->bi_private = rdev;
  739. bio->bi_end_io = super_written;
  740. atomic_inc(&mddev->pending_writes);
  741. submit_bio(WRITE_FLUSH_FUA, bio);
  742. }
  743. void md_super_wait(struct mddev *mddev)
  744. {
  745. /* wait for all superblock writes that were scheduled to complete */
  746. DEFINE_WAIT(wq);
  747. for(;;) {
  748. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  749. if (atomic_read(&mddev->pending_writes)==0)
  750. break;
  751. schedule();
  752. }
  753. finish_wait(&mddev->sb_wait, &wq);
  754. }
  755. static void bi_complete(struct bio *bio, int error)
  756. {
  757. complete((struct completion*)bio->bi_private);
  758. }
  759. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  760. struct page *page, int rw, bool metadata_op)
  761. {
  762. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  763. struct completion event;
  764. int ret;
  765. rw |= REQ_SYNC;
  766. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  767. rdev->meta_bdev : rdev->bdev;
  768. if (metadata_op)
  769. bio->bi_sector = sector + rdev->sb_start;
  770. else
  771. bio->bi_sector = sector + rdev->data_offset;
  772. bio_add_page(bio, page, size, 0);
  773. init_completion(&event);
  774. bio->bi_private = &event;
  775. bio->bi_end_io = bi_complete;
  776. submit_bio(rw, bio);
  777. wait_for_completion(&event);
  778. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  779. bio_put(bio);
  780. return ret;
  781. }
  782. EXPORT_SYMBOL_GPL(sync_page_io);
  783. static int read_disk_sb(struct md_rdev * rdev, int size)
  784. {
  785. char b[BDEVNAME_SIZE];
  786. if (!rdev->sb_page) {
  787. MD_BUG();
  788. return -EINVAL;
  789. }
  790. if (rdev->sb_loaded)
  791. return 0;
  792. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  793. goto fail;
  794. rdev->sb_loaded = 1;
  795. return 0;
  796. fail:
  797. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  798. bdevname(rdev->bdev,b));
  799. return -EINVAL;
  800. }
  801. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  802. {
  803. return sb1->set_uuid0 == sb2->set_uuid0 &&
  804. sb1->set_uuid1 == sb2->set_uuid1 &&
  805. sb1->set_uuid2 == sb2->set_uuid2 &&
  806. sb1->set_uuid3 == sb2->set_uuid3;
  807. }
  808. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  809. {
  810. int ret;
  811. mdp_super_t *tmp1, *tmp2;
  812. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  813. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  814. if (!tmp1 || !tmp2) {
  815. ret = 0;
  816. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  817. goto abort;
  818. }
  819. *tmp1 = *sb1;
  820. *tmp2 = *sb2;
  821. /*
  822. * nr_disks is not constant
  823. */
  824. tmp1->nr_disks = 0;
  825. tmp2->nr_disks = 0;
  826. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  827. abort:
  828. kfree(tmp1);
  829. kfree(tmp2);
  830. return ret;
  831. }
  832. static u32 md_csum_fold(u32 csum)
  833. {
  834. csum = (csum & 0xffff) + (csum >> 16);
  835. return (csum & 0xffff) + (csum >> 16);
  836. }
  837. static unsigned int calc_sb_csum(mdp_super_t * sb)
  838. {
  839. u64 newcsum = 0;
  840. u32 *sb32 = (u32*)sb;
  841. int i;
  842. unsigned int disk_csum, csum;
  843. disk_csum = sb->sb_csum;
  844. sb->sb_csum = 0;
  845. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  846. newcsum += sb32[i];
  847. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  848. #ifdef CONFIG_ALPHA
  849. /* This used to use csum_partial, which was wrong for several
  850. * reasons including that different results are returned on
  851. * different architectures. It isn't critical that we get exactly
  852. * the same return value as before (we always csum_fold before
  853. * testing, and that removes any differences). However as we
  854. * know that csum_partial always returned a 16bit value on
  855. * alphas, do a fold to maximise conformity to previous behaviour.
  856. */
  857. sb->sb_csum = md_csum_fold(disk_csum);
  858. #else
  859. sb->sb_csum = disk_csum;
  860. #endif
  861. return csum;
  862. }
  863. /*
  864. * Handle superblock details.
  865. * We want to be able to handle multiple superblock formats
  866. * so we have a common interface to them all, and an array of
  867. * different handlers.
  868. * We rely on user-space to write the initial superblock, and support
  869. * reading and updating of superblocks.
  870. * Interface methods are:
  871. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  872. * loads and validates a superblock on dev.
  873. * if refdev != NULL, compare superblocks on both devices
  874. * Return:
  875. * 0 - dev has a superblock that is compatible with refdev
  876. * 1 - dev has a superblock that is compatible and newer than refdev
  877. * so dev should be used as the refdev in future
  878. * -EINVAL superblock incompatible or invalid
  879. * -othererror e.g. -EIO
  880. *
  881. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  882. * Verify that dev is acceptable into mddev.
  883. * The first time, mddev->raid_disks will be 0, and data from
  884. * dev should be merged in. Subsequent calls check that dev
  885. * is new enough. Return 0 or -EINVAL
  886. *
  887. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  888. * Update the superblock for rdev with data in mddev
  889. * This does not write to disc.
  890. *
  891. */
  892. struct super_type {
  893. char *name;
  894. struct module *owner;
  895. int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
  896. int minor_version);
  897. int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
  898. void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
  899. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  900. sector_t num_sectors);
  901. };
  902. /*
  903. * Check that the given mddev has no bitmap.
  904. *
  905. * This function is called from the run method of all personalities that do not
  906. * support bitmaps. It prints an error message and returns non-zero if mddev
  907. * has a bitmap. Otherwise, it returns 0.
  908. *
  909. */
  910. int md_check_no_bitmap(struct mddev *mddev)
  911. {
  912. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  913. return 0;
  914. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  915. mdname(mddev), mddev->pers->name);
  916. return 1;
  917. }
  918. EXPORT_SYMBOL(md_check_no_bitmap);
  919. /*
  920. * load_super for 0.90.0
  921. */
  922. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  923. {
  924. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  925. mdp_super_t *sb;
  926. int ret;
  927. /*
  928. * Calculate the position of the superblock (512byte sectors),
  929. * it's at the end of the disk.
  930. *
  931. * It also happens to be a multiple of 4Kb.
  932. */
  933. rdev->sb_start = calc_dev_sboffset(rdev);
  934. ret = read_disk_sb(rdev, MD_SB_BYTES);
  935. if (ret) return ret;
  936. ret = -EINVAL;
  937. bdevname(rdev->bdev, b);
  938. sb = page_address(rdev->sb_page);
  939. if (sb->md_magic != MD_SB_MAGIC) {
  940. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  941. b);
  942. goto abort;
  943. }
  944. if (sb->major_version != 0 ||
  945. sb->minor_version < 90 ||
  946. sb->minor_version > 91) {
  947. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  948. sb->major_version, sb->minor_version,
  949. b);
  950. goto abort;
  951. }
  952. if (sb->raid_disks <= 0)
  953. goto abort;
  954. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  955. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  956. b);
  957. goto abort;
  958. }
  959. rdev->preferred_minor = sb->md_minor;
  960. rdev->data_offset = 0;
  961. rdev->sb_size = MD_SB_BYTES;
  962. rdev->badblocks.shift = -1;
  963. if (sb->level == LEVEL_MULTIPATH)
  964. rdev->desc_nr = -1;
  965. else
  966. rdev->desc_nr = sb->this_disk.number;
  967. if (!refdev) {
  968. ret = 1;
  969. } else {
  970. __u64 ev1, ev2;
  971. mdp_super_t *refsb = page_address(refdev->sb_page);
  972. if (!uuid_equal(refsb, sb)) {
  973. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  974. b, bdevname(refdev->bdev,b2));
  975. goto abort;
  976. }
  977. if (!sb_equal(refsb, sb)) {
  978. printk(KERN_WARNING "md: %s has same UUID"
  979. " but different superblock to %s\n",
  980. b, bdevname(refdev->bdev, b2));
  981. goto abort;
  982. }
  983. ev1 = md_event(sb);
  984. ev2 = md_event(refsb);
  985. if (ev1 > ev2)
  986. ret = 1;
  987. else
  988. ret = 0;
  989. }
  990. rdev->sectors = rdev->sb_start;
  991. /* Limit to 4TB as metadata cannot record more than that */
  992. if (rdev->sectors >= (2ULL << 32))
  993. rdev->sectors = (2ULL << 32) - 2;
  994. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  995. /* "this cannot possibly happen" ... */
  996. ret = -EINVAL;
  997. abort:
  998. return ret;
  999. }
  1000. /*
  1001. * validate_super for 0.90.0
  1002. */
  1003. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  1004. {
  1005. mdp_disk_t *desc;
  1006. mdp_super_t *sb = page_address(rdev->sb_page);
  1007. __u64 ev1 = md_event(sb);
  1008. rdev->raid_disk = -1;
  1009. clear_bit(Faulty, &rdev->flags);
  1010. clear_bit(In_sync, &rdev->flags);
  1011. clear_bit(WriteMostly, &rdev->flags);
  1012. if (mddev->raid_disks == 0) {
  1013. mddev->major_version = 0;
  1014. mddev->minor_version = sb->minor_version;
  1015. mddev->patch_version = sb->patch_version;
  1016. mddev->external = 0;
  1017. mddev->chunk_sectors = sb->chunk_size >> 9;
  1018. mddev->ctime = sb->ctime;
  1019. mddev->utime = sb->utime;
  1020. mddev->level = sb->level;
  1021. mddev->clevel[0] = 0;
  1022. mddev->layout = sb->layout;
  1023. mddev->raid_disks = sb->raid_disks;
  1024. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  1025. mddev->events = ev1;
  1026. mddev->bitmap_info.offset = 0;
  1027. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1028. if (mddev->minor_version >= 91) {
  1029. mddev->reshape_position = sb->reshape_position;
  1030. mddev->delta_disks = sb->delta_disks;
  1031. mddev->new_level = sb->new_level;
  1032. mddev->new_layout = sb->new_layout;
  1033. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1034. } else {
  1035. mddev->reshape_position = MaxSector;
  1036. mddev->delta_disks = 0;
  1037. mddev->new_level = mddev->level;
  1038. mddev->new_layout = mddev->layout;
  1039. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1040. }
  1041. if (sb->state & (1<<MD_SB_CLEAN))
  1042. mddev->recovery_cp = MaxSector;
  1043. else {
  1044. if (sb->events_hi == sb->cp_events_hi &&
  1045. sb->events_lo == sb->cp_events_lo) {
  1046. mddev->recovery_cp = sb->recovery_cp;
  1047. } else
  1048. mddev->recovery_cp = 0;
  1049. }
  1050. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1051. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1052. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1053. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1054. mddev->max_disks = MD_SB_DISKS;
  1055. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1056. mddev->bitmap_info.file == NULL)
  1057. mddev->bitmap_info.offset =
  1058. mddev->bitmap_info.default_offset;
  1059. } else if (mddev->pers == NULL) {
  1060. /* Insist on good event counter while assembling, except
  1061. * for spares (which don't need an event count) */
  1062. ++ev1;
  1063. if (sb->disks[rdev->desc_nr].state & (
  1064. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1065. if (ev1 < mddev->events)
  1066. return -EINVAL;
  1067. } else if (mddev->bitmap) {
  1068. /* if adding to array with a bitmap, then we can accept an
  1069. * older device ... but not too old.
  1070. */
  1071. if (ev1 < mddev->bitmap->events_cleared)
  1072. return 0;
  1073. } else {
  1074. if (ev1 < mddev->events)
  1075. /* just a hot-add of a new device, leave raid_disk at -1 */
  1076. return 0;
  1077. }
  1078. if (mddev->level != LEVEL_MULTIPATH) {
  1079. desc = sb->disks + rdev->desc_nr;
  1080. if (desc->state & (1<<MD_DISK_FAULTY))
  1081. set_bit(Faulty, &rdev->flags);
  1082. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1083. desc->raid_disk < mddev->raid_disks */) {
  1084. set_bit(In_sync, &rdev->flags);
  1085. rdev->raid_disk = desc->raid_disk;
  1086. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1087. /* active but not in sync implies recovery up to
  1088. * reshape position. We don't know exactly where
  1089. * that is, so set to zero for now */
  1090. if (mddev->minor_version >= 91) {
  1091. rdev->recovery_offset = 0;
  1092. rdev->raid_disk = desc->raid_disk;
  1093. }
  1094. }
  1095. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1096. set_bit(WriteMostly, &rdev->flags);
  1097. } else /* MULTIPATH are always insync */
  1098. set_bit(In_sync, &rdev->flags);
  1099. return 0;
  1100. }
  1101. /*
  1102. * sync_super for 0.90.0
  1103. */
  1104. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1105. {
  1106. mdp_super_t *sb;
  1107. struct md_rdev *rdev2;
  1108. int next_spare = mddev->raid_disks;
  1109. /* make rdev->sb match mddev data..
  1110. *
  1111. * 1/ zero out disks
  1112. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1113. * 3/ any empty disks < next_spare become removed
  1114. *
  1115. * disks[0] gets initialised to REMOVED because
  1116. * we cannot be sure from other fields if it has
  1117. * been initialised or not.
  1118. */
  1119. int i;
  1120. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1121. rdev->sb_size = MD_SB_BYTES;
  1122. sb = page_address(rdev->sb_page);
  1123. memset(sb, 0, sizeof(*sb));
  1124. sb->md_magic = MD_SB_MAGIC;
  1125. sb->major_version = mddev->major_version;
  1126. sb->patch_version = mddev->patch_version;
  1127. sb->gvalid_words = 0; /* ignored */
  1128. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1129. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1130. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1131. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1132. sb->ctime = mddev->ctime;
  1133. sb->level = mddev->level;
  1134. sb->size = mddev->dev_sectors / 2;
  1135. sb->raid_disks = mddev->raid_disks;
  1136. sb->md_minor = mddev->md_minor;
  1137. sb->not_persistent = 0;
  1138. sb->utime = mddev->utime;
  1139. sb->state = 0;
  1140. sb->events_hi = (mddev->events>>32);
  1141. sb->events_lo = (u32)mddev->events;
  1142. if (mddev->reshape_position == MaxSector)
  1143. sb->minor_version = 90;
  1144. else {
  1145. sb->minor_version = 91;
  1146. sb->reshape_position = mddev->reshape_position;
  1147. sb->new_level = mddev->new_level;
  1148. sb->delta_disks = mddev->delta_disks;
  1149. sb->new_layout = mddev->new_layout;
  1150. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1151. }
  1152. mddev->minor_version = sb->minor_version;
  1153. if (mddev->in_sync)
  1154. {
  1155. sb->recovery_cp = mddev->recovery_cp;
  1156. sb->cp_events_hi = (mddev->events>>32);
  1157. sb->cp_events_lo = (u32)mddev->events;
  1158. if (mddev->recovery_cp == MaxSector)
  1159. sb->state = (1<< MD_SB_CLEAN);
  1160. } else
  1161. sb->recovery_cp = 0;
  1162. sb->layout = mddev->layout;
  1163. sb->chunk_size = mddev->chunk_sectors << 9;
  1164. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1165. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1166. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1167. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1168. mdp_disk_t *d;
  1169. int desc_nr;
  1170. int is_active = test_bit(In_sync, &rdev2->flags);
  1171. if (rdev2->raid_disk >= 0 &&
  1172. sb->minor_version >= 91)
  1173. /* we have nowhere to store the recovery_offset,
  1174. * but if it is not below the reshape_position,
  1175. * we can piggy-back on that.
  1176. */
  1177. is_active = 1;
  1178. if (rdev2->raid_disk < 0 ||
  1179. test_bit(Faulty, &rdev2->flags))
  1180. is_active = 0;
  1181. if (is_active)
  1182. desc_nr = rdev2->raid_disk;
  1183. else
  1184. desc_nr = next_spare++;
  1185. rdev2->desc_nr = desc_nr;
  1186. d = &sb->disks[rdev2->desc_nr];
  1187. nr_disks++;
  1188. d->number = rdev2->desc_nr;
  1189. d->major = MAJOR(rdev2->bdev->bd_dev);
  1190. d->minor = MINOR(rdev2->bdev->bd_dev);
  1191. if (is_active)
  1192. d->raid_disk = rdev2->raid_disk;
  1193. else
  1194. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1195. if (test_bit(Faulty, &rdev2->flags))
  1196. d->state = (1<<MD_DISK_FAULTY);
  1197. else if (is_active) {
  1198. d->state = (1<<MD_DISK_ACTIVE);
  1199. if (test_bit(In_sync, &rdev2->flags))
  1200. d->state |= (1<<MD_DISK_SYNC);
  1201. active++;
  1202. working++;
  1203. } else {
  1204. d->state = 0;
  1205. spare++;
  1206. working++;
  1207. }
  1208. if (test_bit(WriteMostly, &rdev2->flags))
  1209. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1210. }
  1211. /* now set the "removed" and "faulty" bits on any missing devices */
  1212. for (i=0 ; i < mddev->raid_disks ; i++) {
  1213. mdp_disk_t *d = &sb->disks[i];
  1214. if (d->state == 0 && d->number == 0) {
  1215. d->number = i;
  1216. d->raid_disk = i;
  1217. d->state = (1<<MD_DISK_REMOVED);
  1218. d->state |= (1<<MD_DISK_FAULTY);
  1219. failed++;
  1220. }
  1221. }
  1222. sb->nr_disks = nr_disks;
  1223. sb->active_disks = active;
  1224. sb->working_disks = working;
  1225. sb->failed_disks = failed;
  1226. sb->spare_disks = spare;
  1227. sb->this_disk = sb->disks[rdev->desc_nr];
  1228. sb->sb_csum = calc_sb_csum(sb);
  1229. }
  1230. /*
  1231. * rdev_size_change for 0.90.0
  1232. */
  1233. static unsigned long long
  1234. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1235. {
  1236. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1237. return 0; /* component must fit device */
  1238. if (rdev->mddev->bitmap_info.offset)
  1239. return 0; /* can't move bitmap */
  1240. rdev->sb_start = calc_dev_sboffset(rdev);
  1241. if (!num_sectors || num_sectors > rdev->sb_start)
  1242. num_sectors = rdev->sb_start;
  1243. /* Limit to 4TB as metadata cannot record more than that.
  1244. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1245. */
  1246. if (num_sectors >= (2ULL << 32))
  1247. num_sectors = (2ULL << 32) - 2;
  1248. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1249. rdev->sb_page);
  1250. md_super_wait(rdev->mddev);
  1251. return num_sectors;
  1252. }
  1253. /*
  1254. * version 1 superblock
  1255. */
  1256. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1257. {
  1258. __le32 disk_csum;
  1259. u32 csum;
  1260. unsigned long long newcsum;
  1261. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1262. __le32 *isuper = (__le32*)sb;
  1263. int i;
  1264. disk_csum = sb->sb_csum;
  1265. sb->sb_csum = 0;
  1266. newcsum = 0;
  1267. for (i=0; size>=4; size -= 4 )
  1268. newcsum += le32_to_cpu(*isuper++);
  1269. if (size == 2)
  1270. newcsum += le16_to_cpu(*(__le16*) isuper);
  1271. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1272. sb->sb_csum = disk_csum;
  1273. return cpu_to_le32(csum);
  1274. }
  1275. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1276. int acknowledged);
  1277. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1278. {
  1279. struct mdp_superblock_1 *sb;
  1280. int ret;
  1281. sector_t sb_start;
  1282. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1283. int bmask;
  1284. /*
  1285. * Calculate the position of the superblock in 512byte sectors.
  1286. * It is always aligned to a 4K boundary and
  1287. * depeding on minor_version, it can be:
  1288. * 0: At least 8K, but less than 12K, from end of device
  1289. * 1: At start of device
  1290. * 2: 4K from start of device.
  1291. */
  1292. switch(minor_version) {
  1293. case 0:
  1294. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1295. sb_start -= 8*2;
  1296. sb_start &= ~(sector_t)(4*2-1);
  1297. break;
  1298. case 1:
  1299. sb_start = 0;
  1300. break;
  1301. case 2:
  1302. sb_start = 8;
  1303. break;
  1304. default:
  1305. return -EINVAL;
  1306. }
  1307. rdev->sb_start = sb_start;
  1308. /* superblock is rarely larger than 1K, but it can be larger,
  1309. * and it is safe to read 4k, so we do that
  1310. */
  1311. ret = read_disk_sb(rdev, 4096);
  1312. if (ret) return ret;
  1313. sb = page_address(rdev->sb_page);
  1314. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1315. sb->major_version != cpu_to_le32(1) ||
  1316. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1317. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1318. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1319. return -EINVAL;
  1320. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1321. printk("md: invalid superblock checksum on %s\n",
  1322. bdevname(rdev->bdev,b));
  1323. return -EINVAL;
  1324. }
  1325. if (le64_to_cpu(sb->data_size) < 10) {
  1326. printk("md: data_size too small on %s\n",
  1327. bdevname(rdev->bdev,b));
  1328. return -EINVAL;
  1329. }
  1330. rdev->preferred_minor = 0xffff;
  1331. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1332. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1333. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1334. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1335. if (rdev->sb_size & bmask)
  1336. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1337. if (minor_version
  1338. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1339. return -EINVAL;
  1340. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1341. rdev->desc_nr = -1;
  1342. else
  1343. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1344. if (!rdev->bb_page) {
  1345. rdev->bb_page = alloc_page(GFP_KERNEL);
  1346. if (!rdev->bb_page)
  1347. return -ENOMEM;
  1348. }
  1349. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1350. rdev->badblocks.count == 0) {
  1351. /* need to load the bad block list.
  1352. * Currently we limit it to one page.
  1353. */
  1354. s32 offset;
  1355. sector_t bb_sector;
  1356. u64 *bbp;
  1357. int i;
  1358. int sectors = le16_to_cpu(sb->bblog_size);
  1359. if (sectors > (PAGE_SIZE / 512))
  1360. return -EINVAL;
  1361. offset = le32_to_cpu(sb->bblog_offset);
  1362. if (offset == 0)
  1363. return -EINVAL;
  1364. bb_sector = (long long)offset;
  1365. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1366. rdev->bb_page, READ, true))
  1367. return -EIO;
  1368. bbp = (u64 *)page_address(rdev->bb_page);
  1369. rdev->badblocks.shift = sb->bblog_shift;
  1370. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1371. u64 bb = le64_to_cpu(*bbp);
  1372. int count = bb & (0x3ff);
  1373. u64 sector = bb >> 10;
  1374. sector <<= sb->bblog_shift;
  1375. count <<= sb->bblog_shift;
  1376. if (bb + 1 == 0)
  1377. break;
  1378. if (md_set_badblocks(&rdev->badblocks,
  1379. sector, count, 1) == 0)
  1380. return -EINVAL;
  1381. }
  1382. } else if (sb->bblog_offset == 0)
  1383. rdev->badblocks.shift = -1;
  1384. if (!refdev) {
  1385. ret = 1;
  1386. } else {
  1387. __u64 ev1, ev2;
  1388. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1389. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1390. sb->level != refsb->level ||
  1391. sb->layout != refsb->layout ||
  1392. sb->chunksize != refsb->chunksize) {
  1393. printk(KERN_WARNING "md: %s has strangely different"
  1394. " superblock to %s\n",
  1395. bdevname(rdev->bdev,b),
  1396. bdevname(refdev->bdev,b2));
  1397. return -EINVAL;
  1398. }
  1399. ev1 = le64_to_cpu(sb->events);
  1400. ev2 = le64_to_cpu(refsb->events);
  1401. if (ev1 > ev2)
  1402. ret = 1;
  1403. else
  1404. ret = 0;
  1405. }
  1406. if (minor_version)
  1407. rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  1408. le64_to_cpu(sb->data_offset);
  1409. else
  1410. rdev->sectors = rdev->sb_start;
  1411. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1412. return -EINVAL;
  1413. rdev->sectors = le64_to_cpu(sb->data_size);
  1414. if (le64_to_cpu(sb->size) > rdev->sectors)
  1415. return -EINVAL;
  1416. return ret;
  1417. }
  1418. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1419. {
  1420. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1421. __u64 ev1 = le64_to_cpu(sb->events);
  1422. rdev->raid_disk = -1;
  1423. clear_bit(Faulty, &rdev->flags);
  1424. clear_bit(In_sync, &rdev->flags);
  1425. clear_bit(WriteMostly, &rdev->flags);
  1426. if (mddev->raid_disks == 0) {
  1427. mddev->major_version = 1;
  1428. mddev->patch_version = 0;
  1429. mddev->external = 0;
  1430. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1431. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1432. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1433. mddev->level = le32_to_cpu(sb->level);
  1434. mddev->clevel[0] = 0;
  1435. mddev->layout = le32_to_cpu(sb->layout);
  1436. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1437. mddev->dev_sectors = le64_to_cpu(sb->size);
  1438. mddev->events = ev1;
  1439. mddev->bitmap_info.offset = 0;
  1440. mddev->bitmap_info.default_offset = 1024 >> 9;
  1441. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1442. memcpy(mddev->uuid, sb->set_uuid, 16);
  1443. mddev->max_disks = (4096-256)/2;
  1444. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1445. mddev->bitmap_info.file == NULL )
  1446. mddev->bitmap_info.offset =
  1447. (__s32)le32_to_cpu(sb->bitmap_offset);
  1448. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1449. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1450. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1451. mddev->new_level = le32_to_cpu(sb->new_level);
  1452. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1453. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1454. } else {
  1455. mddev->reshape_position = MaxSector;
  1456. mddev->delta_disks = 0;
  1457. mddev->new_level = mddev->level;
  1458. mddev->new_layout = mddev->layout;
  1459. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1460. }
  1461. } else if (mddev->pers == NULL) {
  1462. /* Insist of good event counter while assembling, except for
  1463. * spares (which don't need an event count) */
  1464. ++ev1;
  1465. if (rdev->desc_nr >= 0 &&
  1466. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1467. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1468. if (ev1 < mddev->events)
  1469. return -EINVAL;
  1470. } else if (mddev->bitmap) {
  1471. /* If adding to array with a bitmap, then we can accept an
  1472. * older device, but not too old.
  1473. */
  1474. if (ev1 < mddev->bitmap->events_cleared)
  1475. return 0;
  1476. } else {
  1477. if (ev1 < mddev->events)
  1478. /* just a hot-add of a new device, leave raid_disk at -1 */
  1479. return 0;
  1480. }
  1481. if (mddev->level != LEVEL_MULTIPATH) {
  1482. int role;
  1483. if (rdev->desc_nr < 0 ||
  1484. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1485. role = 0xffff;
  1486. rdev->desc_nr = -1;
  1487. } else
  1488. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1489. switch(role) {
  1490. case 0xffff: /* spare */
  1491. break;
  1492. case 0xfffe: /* faulty */
  1493. set_bit(Faulty, &rdev->flags);
  1494. break;
  1495. default:
  1496. if ((le32_to_cpu(sb->feature_map) &
  1497. MD_FEATURE_RECOVERY_OFFSET))
  1498. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1499. else
  1500. set_bit(In_sync, &rdev->flags);
  1501. rdev->raid_disk = role;
  1502. break;
  1503. }
  1504. if (sb->devflags & WriteMostly1)
  1505. set_bit(WriteMostly, &rdev->flags);
  1506. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1507. set_bit(Replacement, &rdev->flags);
  1508. } else /* MULTIPATH are always insync */
  1509. set_bit(In_sync, &rdev->flags);
  1510. return 0;
  1511. }
  1512. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1513. {
  1514. struct mdp_superblock_1 *sb;
  1515. struct md_rdev *rdev2;
  1516. int max_dev, i;
  1517. /* make rdev->sb match mddev and rdev data. */
  1518. sb = page_address(rdev->sb_page);
  1519. sb->feature_map = 0;
  1520. sb->pad0 = 0;
  1521. sb->recovery_offset = cpu_to_le64(0);
  1522. memset(sb->pad1, 0, sizeof(sb->pad1));
  1523. memset(sb->pad3, 0, sizeof(sb->pad3));
  1524. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1525. sb->events = cpu_to_le64(mddev->events);
  1526. if (mddev->in_sync)
  1527. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1528. else
  1529. sb->resync_offset = cpu_to_le64(0);
  1530. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1531. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1532. sb->size = cpu_to_le64(mddev->dev_sectors);
  1533. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1534. sb->level = cpu_to_le32(mddev->level);
  1535. sb->layout = cpu_to_le32(mddev->layout);
  1536. if (test_bit(WriteMostly, &rdev->flags))
  1537. sb->devflags |= WriteMostly1;
  1538. else
  1539. sb->devflags &= ~WriteMostly1;
  1540. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1541. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1542. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1543. }
  1544. if (rdev->raid_disk >= 0 &&
  1545. !test_bit(In_sync, &rdev->flags)) {
  1546. sb->feature_map |=
  1547. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1548. sb->recovery_offset =
  1549. cpu_to_le64(rdev->recovery_offset);
  1550. }
  1551. if (test_bit(Replacement, &rdev->flags))
  1552. sb->feature_map |=
  1553. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1554. if (mddev->reshape_position != MaxSector) {
  1555. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1556. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1557. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1558. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1559. sb->new_level = cpu_to_le32(mddev->new_level);
  1560. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1561. }
  1562. if (rdev->badblocks.count == 0)
  1563. /* Nothing to do for bad blocks*/ ;
  1564. else if (sb->bblog_offset == 0)
  1565. /* Cannot record bad blocks on this device */
  1566. md_error(mddev, rdev);
  1567. else {
  1568. struct badblocks *bb = &rdev->badblocks;
  1569. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1570. u64 *p = bb->page;
  1571. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1572. if (bb->changed) {
  1573. unsigned seq;
  1574. retry:
  1575. seq = read_seqbegin(&bb->lock);
  1576. memset(bbp, 0xff, PAGE_SIZE);
  1577. for (i = 0 ; i < bb->count ; i++) {
  1578. u64 internal_bb = *p++;
  1579. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1580. | BB_LEN(internal_bb));
  1581. *bbp++ = cpu_to_le64(store_bb);
  1582. }
  1583. if (read_seqretry(&bb->lock, seq))
  1584. goto retry;
  1585. bb->sector = (rdev->sb_start +
  1586. (int)le32_to_cpu(sb->bblog_offset));
  1587. bb->size = le16_to_cpu(sb->bblog_size);
  1588. bb->changed = 0;
  1589. }
  1590. }
  1591. max_dev = 0;
  1592. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1593. if (rdev2->desc_nr+1 > max_dev)
  1594. max_dev = rdev2->desc_nr+1;
  1595. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1596. int bmask;
  1597. sb->max_dev = cpu_to_le32(max_dev);
  1598. rdev->sb_size = max_dev * 2 + 256;
  1599. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1600. if (rdev->sb_size & bmask)
  1601. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1602. } else
  1603. max_dev = le32_to_cpu(sb->max_dev);
  1604. for (i=0; i<max_dev;i++)
  1605. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1606. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1607. i = rdev2->desc_nr;
  1608. if (test_bit(Faulty, &rdev2->flags))
  1609. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1610. else if (test_bit(In_sync, &rdev2->flags))
  1611. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1612. else if (rdev2->raid_disk >= 0)
  1613. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1614. else
  1615. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1616. }
  1617. sb->sb_csum = calc_sb_1_csum(sb);
  1618. }
  1619. static unsigned long long
  1620. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1621. {
  1622. struct mdp_superblock_1 *sb;
  1623. sector_t max_sectors;
  1624. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1625. return 0; /* component must fit device */
  1626. if (rdev->sb_start < rdev->data_offset) {
  1627. /* minor versions 1 and 2; superblock before data */
  1628. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1629. max_sectors -= rdev->data_offset;
  1630. if (!num_sectors || num_sectors > max_sectors)
  1631. num_sectors = max_sectors;
  1632. } else if (rdev->mddev->bitmap_info.offset) {
  1633. /* minor version 0 with bitmap we can't move */
  1634. return 0;
  1635. } else {
  1636. /* minor version 0; superblock after data */
  1637. sector_t sb_start;
  1638. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1639. sb_start &= ~(sector_t)(4*2 - 1);
  1640. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1641. if (!num_sectors || num_sectors > max_sectors)
  1642. num_sectors = max_sectors;
  1643. rdev->sb_start = sb_start;
  1644. }
  1645. sb = page_address(rdev->sb_page);
  1646. sb->data_size = cpu_to_le64(num_sectors);
  1647. sb->super_offset = rdev->sb_start;
  1648. sb->sb_csum = calc_sb_1_csum(sb);
  1649. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1650. rdev->sb_page);
  1651. md_super_wait(rdev->mddev);
  1652. return num_sectors;
  1653. }
  1654. static struct super_type super_types[] = {
  1655. [0] = {
  1656. .name = "0.90.0",
  1657. .owner = THIS_MODULE,
  1658. .load_super = super_90_load,
  1659. .validate_super = super_90_validate,
  1660. .sync_super = super_90_sync,
  1661. .rdev_size_change = super_90_rdev_size_change,
  1662. },
  1663. [1] = {
  1664. .name = "md-1",
  1665. .owner = THIS_MODULE,
  1666. .load_super = super_1_load,
  1667. .validate_super = super_1_validate,
  1668. .sync_super = super_1_sync,
  1669. .rdev_size_change = super_1_rdev_size_change,
  1670. },
  1671. };
  1672. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1673. {
  1674. if (mddev->sync_super) {
  1675. mddev->sync_super(mddev, rdev);
  1676. return;
  1677. }
  1678. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1679. super_types[mddev->major_version].sync_super(mddev, rdev);
  1680. }
  1681. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1682. {
  1683. struct md_rdev *rdev, *rdev2;
  1684. rcu_read_lock();
  1685. rdev_for_each_rcu(rdev, mddev1)
  1686. rdev_for_each_rcu(rdev2, mddev2)
  1687. if (rdev->bdev->bd_contains ==
  1688. rdev2->bdev->bd_contains) {
  1689. rcu_read_unlock();
  1690. return 1;
  1691. }
  1692. rcu_read_unlock();
  1693. return 0;
  1694. }
  1695. static LIST_HEAD(pending_raid_disks);
  1696. /*
  1697. * Try to register data integrity profile for an mddev
  1698. *
  1699. * This is called when an array is started and after a disk has been kicked
  1700. * from the array. It only succeeds if all working and active component devices
  1701. * are integrity capable with matching profiles.
  1702. */
  1703. int md_integrity_register(struct mddev *mddev)
  1704. {
  1705. struct md_rdev *rdev, *reference = NULL;
  1706. if (list_empty(&mddev->disks))
  1707. return 0; /* nothing to do */
  1708. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1709. return 0; /* shouldn't register, or already is */
  1710. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1711. /* skip spares and non-functional disks */
  1712. if (test_bit(Faulty, &rdev->flags))
  1713. continue;
  1714. if (rdev->raid_disk < 0)
  1715. continue;
  1716. if (!reference) {
  1717. /* Use the first rdev as the reference */
  1718. reference = rdev;
  1719. continue;
  1720. }
  1721. /* does this rdev's profile match the reference profile? */
  1722. if (blk_integrity_compare(reference->bdev->bd_disk,
  1723. rdev->bdev->bd_disk) < 0)
  1724. return -EINVAL;
  1725. }
  1726. if (!reference || !bdev_get_integrity(reference->bdev))
  1727. return 0;
  1728. /*
  1729. * All component devices are integrity capable and have matching
  1730. * profiles, register the common profile for the md device.
  1731. */
  1732. if (blk_integrity_register(mddev->gendisk,
  1733. bdev_get_integrity(reference->bdev)) != 0) {
  1734. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1735. mdname(mddev));
  1736. return -EINVAL;
  1737. }
  1738. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1739. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1740. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1741. mdname(mddev));
  1742. return -EINVAL;
  1743. }
  1744. return 0;
  1745. }
  1746. EXPORT_SYMBOL(md_integrity_register);
  1747. /* Disable data integrity if non-capable/non-matching disk is being added */
  1748. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1749. {
  1750. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1751. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1752. if (!bi_mddev) /* nothing to do */
  1753. return;
  1754. if (rdev->raid_disk < 0) /* skip spares */
  1755. return;
  1756. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1757. rdev->bdev->bd_disk) >= 0)
  1758. return;
  1759. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1760. blk_integrity_unregister(mddev->gendisk);
  1761. }
  1762. EXPORT_SYMBOL(md_integrity_add_rdev);
  1763. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1764. {
  1765. char b[BDEVNAME_SIZE];
  1766. struct kobject *ko;
  1767. char *s;
  1768. int err;
  1769. if (rdev->mddev) {
  1770. MD_BUG();
  1771. return -EINVAL;
  1772. }
  1773. /* prevent duplicates */
  1774. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1775. return -EEXIST;
  1776. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1777. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1778. rdev->sectors < mddev->dev_sectors)) {
  1779. if (mddev->pers) {
  1780. /* Cannot change size, so fail
  1781. * If mddev->level <= 0, then we don't care
  1782. * about aligning sizes (e.g. linear)
  1783. */
  1784. if (mddev->level > 0)
  1785. return -ENOSPC;
  1786. } else
  1787. mddev->dev_sectors = rdev->sectors;
  1788. }
  1789. /* Verify rdev->desc_nr is unique.
  1790. * If it is -1, assign a free number, else
  1791. * check number is not in use
  1792. */
  1793. if (rdev->desc_nr < 0) {
  1794. int choice = 0;
  1795. if (mddev->pers) choice = mddev->raid_disks;
  1796. while (find_rdev_nr(mddev, choice))
  1797. choice++;
  1798. rdev->desc_nr = choice;
  1799. } else {
  1800. if (find_rdev_nr(mddev, rdev->desc_nr))
  1801. return -EBUSY;
  1802. }
  1803. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1804. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1805. mdname(mddev), mddev->max_disks);
  1806. return -EBUSY;
  1807. }
  1808. bdevname(rdev->bdev,b);
  1809. while ( (s=strchr(b, '/')) != NULL)
  1810. *s = '!';
  1811. rdev->mddev = mddev;
  1812. printk(KERN_INFO "md: bind<%s>\n", b);
  1813. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1814. goto fail;
  1815. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1816. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1817. /* failure here is OK */;
  1818. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1819. list_add_rcu(&rdev->same_set, &mddev->disks);
  1820. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1821. /* May as well allow recovery to be retried once */
  1822. mddev->recovery_disabled++;
  1823. return 0;
  1824. fail:
  1825. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1826. b, mdname(mddev));
  1827. return err;
  1828. }
  1829. static void md_delayed_delete(struct work_struct *ws)
  1830. {
  1831. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1832. kobject_del(&rdev->kobj);
  1833. kobject_put(&rdev->kobj);
  1834. }
  1835. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1836. {
  1837. char b[BDEVNAME_SIZE];
  1838. if (!rdev->mddev) {
  1839. MD_BUG();
  1840. return;
  1841. }
  1842. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1843. list_del_rcu(&rdev->same_set);
  1844. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1845. rdev->mddev = NULL;
  1846. sysfs_remove_link(&rdev->kobj, "block");
  1847. sysfs_put(rdev->sysfs_state);
  1848. rdev->sysfs_state = NULL;
  1849. kfree(rdev->badblocks.page);
  1850. rdev->badblocks.count = 0;
  1851. rdev->badblocks.page = NULL;
  1852. /* We need to delay this, otherwise we can deadlock when
  1853. * writing to 'remove' to "dev/state". We also need
  1854. * to delay it due to rcu usage.
  1855. */
  1856. synchronize_rcu();
  1857. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1858. kobject_get(&rdev->kobj);
  1859. queue_work(md_misc_wq, &rdev->del_work);
  1860. }
  1861. /*
  1862. * prevent the device from being mounted, repartitioned or
  1863. * otherwise reused by a RAID array (or any other kernel
  1864. * subsystem), by bd_claiming the device.
  1865. */
  1866. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1867. {
  1868. int err = 0;
  1869. struct block_device *bdev;
  1870. char b[BDEVNAME_SIZE];
  1871. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1872. shared ? (struct md_rdev *)lock_rdev : rdev);
  1873. if (IS_ERR(bdev)) {
  1874. printk(KERN_ERR "md: could not open %s.\n",
  1875. __bdevname(dev, b));
  1876. return PTR_ERR(bdev);
  1877. }
  1878. rdev->bdev = bdev;
  1879. return err;
  1880. }
  1881. static void unlock_rdev(struct md_rdev *rdev)
  1882. {
  1883. struct block_device *bdev = rdev->bdev;
  1884. rdev->bdev = NULL;
  1885. if (!bdev)
  1886. MD_BUG();
  1887. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1888. }
  1889. void md_autodetect_dev(dev_t dev);
  1890. static void export_rdev(struct md_rdev * rdev)
  1891. {
  1892. char b[BDEVNAME_SIZE];
  1893. printk(KERN_INFO "md: export_rdev(%s)\n",
  1894. bdevname(rdev->bdev,b));
  1895. if (rdev->mddev)
  1896. MD_BUG();
  1897. free_disk_sb(rdev);
  1898. #ifndef MODULE
  1899. if (test_bit(AutoDetected, &rdev->flags))
  1900. md_autodetect_dev(rdev->bdev->bd_dev);
  1901. #endif
  1902. unlock_rdev(rdev);
  1903. kobject_put(&rdev->kobj);
  1904. }
  1905. static void kick_rdev_from_array(struct md_rdev * rdev)
  1906. {
  1907. unbind_rdev_from_array(rdev);
  1908. export_rdev(rdev);
  1909. }
  1910. static void export_array(struct mddev *mddev)
  1911. {
  1912. struct md_rdev *rdev, *tmp;
  1913. rdev_for_each(rdev, tmp, mddev) {
  1914. if (!rdev->mddev) {
  1915. MD_BUG();
  1916. continue;
  1917. }
  1918. kick_rdev_from_array(rdev);
  1919. }
  1920. if (!list_empty(&mddev->disks))
  1921. MD_BUG();
  1922. mddev->raid_disks = 0;
  1923. mddev->major_version = 0;
  1924. }
  1925. static void print_desc(mdp_disk_t *desc)
  1926. {
  1927. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1928. desc->major,desc->minor,desc->raid_disk,desc->state);
  1929. }
  1930. static void print_sb_90(mdp_super_t *sb)
  1931. {
  1932. int i;
  1933. printk(KERN_INFO
  1934. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1935. sb->major_version, sb->minor_version, sb->patch_version,
  1936. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1937. sb->ctime);
  1938. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1939. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1940. sb->md_minor, sb->layout, sb->chunk_size);
  1941. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1942. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1943. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1944. sb->failed_disks, sb->spare_disks,
  1945. sb->sb_csum, (unsigned long)sb->events_lo);
  1946. printk(KERN_INFO);
  1947. for (i = 0; i < MD_SB_DISKS; i++) {
  1948. mdp_disk_t *desc;
  1949. desc = sb->disks + i;
  1950. if (desc->number || desc->major || desc->minor ||
  1951. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1952. printk(" D %2d: ", i);
  1953. print_desc(desc);
  1954. }
  1955. }
  1956. printk(KERN_INFO "md: THIS: ");
  1957. print_desc(&sb->this_disk);
  1958. }
  1959. static void print_sb_1(struct mdp_superblock_1 *sb)
  1960. {
  1961. __u8 *uuid;
  1962. uuid = sb->set_uuid;
  1963. printk(KERN_INFO
  1964. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  1965. "md: Name: \"%s\" CT:%llu\n",
  1966. le32_to_cpu(sb->major_version),
  1967. le32_to_cpu(sb->feature_map),
  1968. uuid,
  1969. sb->set_name,
  1970. (unsigned long long)le64_to_cpu(sb->ctime)
  1971. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1972. uuid = sb->device_uuid;
  1973. printk(KERN_INFO
  1974. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1975. " RO:%llu\n"
  1976. "md: Dev:%08x UUID: %pU\n"
  1977. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1978. "md: (MaxDev:%u) \n",
  1979. le32_to_cpu(sb->level),
  1980. (unsigned long long)le64_to_cpu(sb->size),
  1981. le32_to_cpu(sb->raid_disks),
  1982. le32_to_cpu(sb->layout),
  1983. le32_to_cpu(sb->chunksize),
  1984. (unsigned long long)le64_to_cpu(sb->data_offset),
  1985. (unsigned long long)le64_to_cpu(sb->data_size),
  1986. (unsigned long long)le64_to_cpu(sb->super_offset),
  1987. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1988. le32_to_cpu(sb->dev_number),
  1989. uuid,
  1990. sb->devflags,
  1991. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1992. (unsigned long long)le64_to_cpu(sb->events),
  1993. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1994. le32_to_cpu(sb->sb_csum),
  1995. le32_to_cpu(sb->max_dev)
  1996. );
  1997. }
  1998. static void print_rdev(struct md_rdev *rdev, int major_version)
  1999. {
  2000. char b[BDEVNAME_SIZE];
  2001. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2002. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2003. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2004. rdev->desc_nr);
  2005. if (rdev->sb_loaded) {
  2006. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2007. switch (major_version) {
  2008. case 0:
  2009. print_sb_90(page_address(rdev->sb_page));
  2010. break;
  2011. case 1:
  2012. print_sb_1(page_address(rdev->sb_page));
  2013. break;
  2014. }
  2015. } else
  2016. printk(KERN_INFO "md: no rdev superblock!\n");
  2017. }
  2018. static void md_print_devices(void)
  2019. {
  2020. struct list_head *tmp;
  2021. struct md_rdev *rdev;
  2022. struct mddev *mddev;
  2023. char b[BDEVNAME_SIZE];
  2024. printk("\n");
  2025. printk("md: **********************************\n");
  2026. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2027. printk("md: **********************************\n");
  2028. for_each_mddev(mddev, tmp) {
  2029. if (mddev->bitmap)
  2030. bitmap_print_sb(mddev->bitmap);
  2031. else
  2032. printk("%s: ", mdname(mddev));
  2033. list_for_each_entry(rdev, &mddev->disks, same_set)
  2034. printk("<%s>", bdevname(rdev->bdev,b));
  2035. printk("\n");
  2036. list_for_each_entry(rdev, &mddev->disks, same_set)
  2037. print_rdev(rdev, mddev->major_version);
  2038. }
  2039. printk("md: **********************************\n");
  2040. printk("\n");
  2041. }
  2042. static void sync_sbs(struct mddev * mddev, int nospares)
  2043. {
  2044. /* Update each superblock (in-memory image), but
  2045. * if we are allowed to, skip spares which already
  2046. * have the right event counter, or have one earlier
  2047. * (which would mean they aren't being marked as dirty
  2048. * with the rest of the array)
  2049. */
  2050. struct md_rdev *rdev;
  2051. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2052. if (rdev->sb_events == mddev->events ||
  2053. (nospares &&
  2054. rdev->raid_disk < 0 &&
  2055. rdev->sb_events+1 == mddev->events)) {
  2056. /* Don't update this superblock */
  2057. rdev->sb_loaded = 2;
  2058. } else {
  2059. sync_super(mddev, rdev);
  2060. rdev->sb_loaded = 1;
  2061. }
  2062. }
  2063. }
  2064. static void md_update_sb(struct mddev * mddev, int force_change)
  2065. {
  2066. struct md_rdev *rdev;
  2067. int sync_req;
  2068. int nospares = 0;
  2069. int any_badblocks_changed = 0;
  2070. repeat:
  2071. /* First make sure individual recovery_offsets are correct */
  2072. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2073. if (rdev->raid_disk >= 0 &&
  2074. mddev->delta_disks >= 0 &&
  2075. !test_bit(In_sync, &rdev->flags) &&
  2076. mddev->curr_resync_completed > rdev->recovery_offset)
  2077. rdev->recovery_offset = mddev->curr_resync_completed;
  2078. }
  2079. if (!mddev->persistent) {
  2080. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2081. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2082. if (!mddev->external) {
  2083. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2084. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2085. if (rdev->badblocks.changed) {
  2086. md_ack_all_badblocks(&rdev->badblocks);
  2087. md_error(mddev, rdev);
  2088. }
  2089. clear_bit(Blocked, &rdev->flags);
  2090. clear_bit(BlockedBadBlocks, &rdev->flags);
  2091. wake_up(&rdev->blocked_wait);
  2092. }
  2093. }
  2094. wake_up(&mddev->sb_wait);
  2095. return;
  2096. }
  2097. spin_lock_irq(&mddev->write_lock);
  2098. mddev->utime = get_seconds();
  2099. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2100. force_change = 1;
  2101. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2102. /* just a clean<-> dirty transition, possibly leave spares alone,
  2103. * though if events isn't the right even/odd, we will have to do
  2104. * spares after all
  2105. */
  2106. nospares = 1;
  2107. if (force_change)
  2108. nospares = 0;
  2109. if (mddev->degraded)
  2110. /* If the array is degraded, then skipping spares is both
  2111. * dangerous and fairly pointless.
  2112. * Dangerous because a device that was removed from the array
  2113. * might have a event_count that still looks up-to-date,
  2114. * so it can be re-added without a resync.
  2115. * Pointless because if there are any spares to skip,
  2116. * then a recovery will happen and soon that array won't
  2117. * be degraded any more and the spare can go back to sleep then.
  2118. */
  2119. nospares = 0;
  2120. sync_req = mddev->in_sync;
  2121. /* If this is just a dirty<->clean transition, and the array is clean
  2122. * and 'events' is odd, we can roll back to the previous clean state */
  2123. if (nospares
  2124. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2125. && mddev->can_decrease_events
  2126. && mddev->events != 1) {
  2127. mddev->events--;
  2128. mddev->can_decrease_events = 0;
  2129. } else {
  2130. /* otherwise we have to go forward and ... */
  2131. mddev->events ++;
  2132. mddev->can_decrease_events = nospares;
  2133. }
  2134. if (!mddev->events) {
  2135. /*
  2136. * oops, this 64-bit counter should never wrap.
  2137. * Either we are in around ~1 trillion A.C., assuming
  2138. * 1 reboot per second, or we have a bug:
  2139. */
  2140. MD_BUG();
  2141. mddev->events --;
  2142. }
  2143. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2144. if (rdev->badblocks.changed)
  2145. any_badblocks_changed++;
  2146. if (test_bit(Faulty, &rdev->flags))
  2147. set_bit(FaultRecorded, &rdev->flags);
  2148. }
  2149. sync_sbs(mddev, nospares);
  2150. spin_unlock_irq(&mddev->write_lock);
  2151. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2152. mdname(mddev), mddev->in_sync);
  2153. bitmap_update_sb(mddev->bitmap);
  2154. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2155. char b[BDEVNAME_SIZE];
  2156. if (rdev->sb_loaded != 1)
  2157. continue; /* no noise on spare devices */
  2158. if (!test_bit(Faulty, &rdev->flags) &&
  2159. rdev->saved_raid_disk == -1) {
  2160. md_super_write(mddev,rdev,
  2161. rdev->sb_start, rdev->sb_size,
  2162. rdev->sb_page);
  2163. pr_debug("md: (write) %s's sb offset: %llu\n",
  2164. bdevname(rdev->bdev, b),
  2165. (unsigned long long)rdev->sb_start);
  2166. rdev->sb_events = mddev->events;
  2167. if (rdev->badblocks.size) {
  2168. md_super_write(mddev, rdev,
  2169. rdev->badblocks.sector,
  2170. rdev->badblocks.size << 9,
  2171. rdev->bb_page);
  2172. rdev->badblocks.size = 0;
  2173. }
  2174. } else if (test_bit(Faulty, &rdev->flags))
  2175. pr_debug("md: %s (skipping faulty)\n",
  2176. bdevname(rdev->bdev, b));
  2177. else
  2178. pr_debug("(skipping incremental s/r ");
  2179. if (mddev->level == LEVEL_MULTIPATH)
  2180. /* only need to write one superblock... */
  2181. break;
  2182. }
  2183. md_super_wait(mddev);
  2184. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2185. spin_lock_irq(&mddev->write_lock);
  2186. if (mddev->in_sync != sync_req ||
  2187. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2188. /* have to write it out again */
  2189. spin_unlock_irq(&mddev->write_lock);
  2190. goto repeat;
  2191. }
  2192. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2193. spin_unlock_irq(&mddev->write_lock);
  2194. wake_up(&mddev->sb_wait);
  2195. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2196. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2197. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2198. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2199. clear_bit(Blocked, &rdev->flags);
  2200. if (any_badblocks_changed)
  2201. md_ack_all_badblocks(&rdev->badblocks);
  2202. clear_bit(BlockedBadBlocks, &rdev->flags);
  2203. wake_up(&rdev->blocked_wait);
  2204. }
  2205. }
  2206. /* words written to sysfs files may, or may not, be \n terminated.
  2207. * We want to accept with case. For this we use cmd_match.
  2208. */
  2209. static int cmd_match(const char *cmd, const char *str)
  2210. {
  2211. /* See if cmd, written into a sysfs file, matches
  2212. * str. They must either be the same, or cmd can
  2213. * have a trailing newline
  2214. */
  2215. while (*cmd && *str && *cmd == *str) {
  2216. cmd++;
  2217. str++;
  2218. }
  2219. if (*cmd == '\n')
  2220. cmd++;
  2221. if (*str || *cmd)
  2222. return 0;
  2223. return 1;
  2224. }
  2225. struct rdev_sysfs_entry {
  2226. struct attribute attr;
  2227. ssize_t (*show)(struct md_rdev *, char *);
  2228. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2229. };
  2230. static ssize_t
  2231. state_show(struct md_rdev *rdev, char *page)
  2232. {
  2233. char *sep = "";
  2234. size_t len = 0;
  2235. if (test_bit(Faulty, &rdev->flags) ||
  2236. rdev->badblocks.unacked_exist) {
  2237. len+= sprintf(page+len, "%sfaulty",sep);
  2238. sep = ",";
  2239. }
  2240. if (test_bit(In_sync, &rdev->flags)) {
  2241. len += sprintf(page+len, "%sin_sync",sep);
  2242. sep = ",";
  2243. }
  2244. if (test_bit(WriteMostly, &rdev->flags)) {
  2245. len += sprintf(page+len, "%swrite_mostly",sep);
  2246. sep = ",";
  2247. }
  2248. if (test_bit(Blocked, &rdev->flags) ||
  2249. (rdev->badblocks.unacked_exist
  2250. && !test_bit(Faulty, &rdev->flags))) {
  2251. len += sprintf(page+len, "%sblocked", sep);
  2252. sep = ",";
  2253. }
  2254. if (!test_bit(Faulty, &rdev->flags) &&
  2255. !test_bit(In_sync, &rdev->flags)) {
  2256. len += sprintf(page+len, "%sspare", sep);
  2257. sep = ",";
  2258. }
  2259. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2260. len += sprintf(page+len, "%swrite_error", sep);
  2261. sep = ",";
  2262. }
  2263. if (test_bit(WantReplacement, &rdev->flags)) {
  2264. len += sprintf(page+len, "%swant_replacement", sep);
  2265. sep = ",";
  2266. }
  2267. if (test_bit(Replacement, &rdev->flags)) {
  2268. len += sprintf(page+len, "%sreplacement", sep);
  2269. sep = ",";
  2270. }
  2271. return len+sprintf(page+len, "\n");
  2272. }
  2273. static ssize_t
  2274. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2275. {
  2276. /* can write
  2277. * faulty - simulates an error
  2278. * remove - disconnects the device
  2279. * writemostly - sets write_mostly
  2280. * -writemostly - clears write_mostly
  2281. * blocked - sets the Blocked flags
  2282. * -blocked - clears the Blocked and possibly simulates an error
  2283. * insync - sets Insync providing device isn't active
  2284. * write_error - sets WriteErrorSeen
  2285. * -write_error - clears WriteErrorSeen
  2286. */
  2287. int err = -EINVAL;
  2288. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2289. md_error(rdev->mddev, rdev);
  2290. if (test_bit(Faulty, &rdev->flags))
  2291. err = 0;
  2292. else
  2293. err = -EBUSY;
  2294. } else if (cmd_match(buf, "remove")) {
  2295. if (rdev->raid_disk >= 0)
  2296. err = -EBUSY;
  2297. else {
  2298. struct mddev *mddev = rdev->mddev;
  2299. kick_rdev_from_array(rdev);
  2300. if (mddev->pers)
  2301. md_update_sb(mddev, 1);
  2302. md_new_event(mddev);
  2303. err = 0;
  2304. }
  2305. } else if (cmd_match(buf, "writemostly")) {
  2306. set_bit(WriteMostly, &rdev->flags);
  2307. err = 0;
  2308. } else if (cmd_match(buf, "-writemostly")) {
  2309. clear_bit(WriteMostly, &rdev->flags);
  2310. err = 0;
  2311. } else if (cmd_match(buf, "blocked")) {
  2312. set_bit(Blocked, &rdev->flags);
  2313. err = 0;
  2314. } else if (cmd_match(buf, "-blocked")) {
  2315. if (!test_bit(Faulty, &rdev->flags) &&
  2316. rdev->badblocks.unacked_exist) {
  2317. /* metadata handler doesn't understand badblocks,
  2318. * so we need to fail the device
  2319. */
  2320. md_error(rdev->mddev, rdev);
  2321. }
  2322. clear_bit(Blocked, &rdev->flags);
  2323. clear_bit(BlockedBadBlocks, &rdev->flags);
  2324. wake_up(&rdev->blocked_wait);
  2325. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2326. md_wakeup_thread(rdev->mddev->thread);
  2327. err = 0;
  2328. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2329. set_bit(In_sync, &rdev->flags);
  2330. err = 0;
  2331. } else if (cmd_match(buf, "write_error")) {
  2332. set_bit(WriteErrorSeen, &rdev->flags);
  2333. err = 0;
  2334. } else if (cmd_match(buf, "-write_error")) {
  2335. clear_bit(WriteErrorSeen, &rdev->flags);
  2336. err = 0;
  2337. } else if (cmd_match(buf, "want_replacement")) {
  2338. /* Any non-spare device that is not a replacement can
  2339. * become want_replacement at any time, but we then need to
  2340. * check if recovery is needed.
  2341. */
  2342. if (rdev->raid_disk >= 0 &&
  2343. !test_bit(Replacement, &rdev->flags))
  2344. set_bit(WantReplacement, &rdev->flags);
  2345. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2346. md_wakeup_thread(rdev->mddev->thread);
  2347. err = 0;
  2348. } else if (cmd_match(buf, "-want_replacement")) {
  2349. /* Clearing 'want_replacement' is always allowed.
  2350. * Once replacements starts it is too late though.
  2351. */
  2352. err = 0;
  2353. clear_bit(WantReplacement, &rdev->flags);
  2354. } else if (cmd_match(buf, "replacement")) {
  2355. /* Can only set a device as a replacement when array has not
  2356. * yet been started. Once running, replacement is automatic
  2357. * from spares, or by assigning 'slot'.
  2358. */
  2359. if (rdev->mddev->pers)
  2360. err = -EBUSY;
  2361. else {
  2362. set_bit(Replacement, &rdev->flags);
  2363. err = 0;
  2364. }
  2365. } else if (cmd_match(buf, "-replacement")) {
  2366. /* Similarly, can only clear Replacement before start */
  2367. if (rdev->mddev->pers)
  2368. err = -EBUSY;
  2369. else {
  2370. clear_bit(Replacement, &rdev->flags);
  2371. err = 0;
  2372. }
  2373. }
  2374. if (!err)
  2375. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2376. return err ? err : len;
  2377. }
  2378. static struct rdev_sysfs_entry rdev_state =
  2379. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2380. static ssize_t
  2381. errors_show(struct md_rdev *rdev, char *page)
  2382. {
  2383. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2384. }
  2385. static ssize_t
  2386. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2387. {
  2388. char *e;
  2389. unsigned long n = simple_strtoul(buf, &e, 10);
  2390. if (*buf && (*e == 0 || *e == '\n')) {
  2391. atomic_set(&rdev->corrected_errors, n);
  2392. return len;
  2393. }
  2394. return -EINVAL;
  2395. }
  2396. static struct rdev_sysfs_entry rdev_errors =
  2397. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2398. static ssize_t
  2399. slot_show(struct md_rdev *rdev, char *page)
  2400. {
  2401. if (rdev->raid_disk < 0)
  2402. return sprintf(page, "none\n");
  2403. else
  2404. return sprintf(page, "%d\n", rdev->raid_disk);
  2405. }
  2406. static ssize_t
  2407. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2408. {
  2409. char *e;
  2410. int err;
  2411. int slot = simple_strtoul(buf, &e, 10);
  2412. if (strncmp(buf, "none", 4)==0)
  2413. slot = -1;
  2414. else if (e==buf || (*e && *e!= '\n'))
  2415. return -EINVAL;
  2416. if (rdev->mddev->pers && slot == -1) {
  2417. /* Setting 'slot' on an active array requires also
  2418. * updating the 'rd%d' link, and communicating
  2419. * with the personality with ->hot_*_disk.
  2420. * For now we only support removing
  2421. * failed/spare devices. This normally happens automatically,
  2422. * but not when the metadata is externally managed.
  2423. */
  2424. if (rdev->raid_disk == -1)
  2425. return -EEXIST;
  2426. /* personality does all needed checks */
  2427. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2428. return -EINVAL;
  2429. err = rdev->mddev->pers->
  2430. hot_remove_disk(rdev->mddev, rdev);
  2431. if (err)
  2432. return err;
  2433. sysfs_unlink_rdev(rdev->mddev, rdev);
  2434. rdev->raid_disk = -1;
  2435. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2436. md_wakeup_thread(rdev->mddev->thread);
  2437. } else if (rdev->mddev->pers) {
  2438. /* Activating a spare .. or possibly reactivating
  2439. * if we ever get bitmaps working here.
  2440. */
  2441. if (rdev->raid_disk != -1)
  2442. return -EBUSY;
  2443. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2444. return -EBUSY;
  2445. if (rdev->mddev->pers->hot_add_disk == NULL)
  2446. return -EINVAL;
  2447. if (slot >= rdev->mddev->raid_disks &&
  2448. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2449. return -ENOSPC;
  2450. rdev->raid_disk = slot;
  2451. if (test_bit(In_sync, &rdev->flags))
  2452. rdev->saved_raid_disk = slot;
  2453. else
  2454. rdev->saved_raid_disk = -1;
  2455. clear_bit(In_sync, &rdev->flags);
  2456. err = rdev->mddev->pers->
  2457. hot_add_disk(rdev->mddev, rdev);
  2458. if (err) {
  2459. rdev->raid_disk = -1;
  2460. return err;
  2461. } else
  2462. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2463. if (sysfs_link_rdev(rdev->mddev, rdev))
  2464. /* failure here is OK */;
  2465. /* don't wakeup anyone, leave that to userspace. */
  2466. } else {
  2467. if (slot >= rdev->mddev->raid_disks &&
  2468. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2469. return -ENOSPC;
  2470. rdev->raid_disk = slot;
  2471. /* assume it is working */
  2472. clear_bit(Faulty, &rdev->flags);
  2473. clear_bit(WriteMostly, &rdev->flags);
  2474. set_bit(In_sync, &rdev->flags);
  2475. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2476. }
  2477. return len;
  2478. }
  2479. static struct rdev_sysfs_entry rdev_slot =
  2480. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2481. static ssize_t
  2482. offset_show(struct md_rdev *rdev, char *page)
  2483. {
  2484. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2485. }
  2486. static ssize_t
  2487. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2488. {
  2489. char *e;
  2490. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2491. if (e==buf || (*e && *e != '\n'))
  2492. return -EINVAL;
  2493. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2494. return -EBUSY;
  2495. if (rdev->sectors && rdev->mddev->external)
  2496. /* Must set offset before size, so overlap checks
  2497. * can be sane */
  2498. return -EBUSY;
  2499. rdev->data_offset = offset;
  2500. return len;
  2501. }
  2502. static struct rdev_sysfs_entry rdev_offset =
  2503. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2504. static ssize_t
  2505. rdev_size_show(struct md_rdev *rdev, char *page)
  2506. {
  2507. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2508. }
  2509. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2510. {
  2511. /* check if two start/length pairs overlap */
  2512. if (s1+l1 <= s2)
  2513. return 0;
  2514. if (s2+l2 <= s1)
  2515. return 0;
  2516. return 1;
  2517. }
  2518. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2519. {
  2520. unsigned long long blocks;
  2521. sector_t new;
  2522. if (strict_strtoull(buf, 10, &blocks) < 0)
  2523. return -EINVAL;
  2524. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2525. return -EINVAL; /* sector conversion overflow */
  2526. new = blocks * 2;
  2527. if (new != blocks * 2)
  2528. return -EINVAL; /* unsigned long long to sector_t overflow */
  2529. *sectors = new;
  2530. return 0;
  2531. }
  2532. static ssize_t
  2533. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2534. {
  2535. struct mddev *my_mddev = rdev->mddev;
  2536. sector_t oldsectors = rdev->sectors;
  2537. sector_t sectors;
  2538. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2539. return -EINVAL;
  2540. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2541. if (my_mddev->persistent) {
  2542. sectors = super_types[my_mddev->major_version].
  2543. rdev_size_change(rdev, sectors);
  2544. if (!sectors)
  2545. return -EBUSY;
  2546. } else if (!sectors)
  2547. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2548. rdev->data_offset;
  2549. }
  2550. if (sectors < my_mddev->dev_sectors)
  2551. return -EINVAL; /* component must fit device */
  2552. rdev->sectors = sectors;
  2553. if (sectors > oldsectors && my_mddev->external) {
  2554. /* need to check that all other rdevs with the same ->bdev
  2555. * do not overlap. We need to unlock the mddev to avoid
  2556. * a deadlock. We have already changed rdev->sectors, and if
  2557. * we have to change it back, we will have the lock again.
  2558. */
  2559. struct mddev *mddev;
  2560. int overlap = 0;
  2561. struct list_head *tmp;
  2562. mddev_unlock(my_mddev);
  2563. for_each_mddev(mddev, tmp) {
  2564. struct md_rdev *rdev2;
  2565. mddev_lock(mddev);
  2566. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2567. if (rdev->bdev == rdev2->bdev &&
  2568. rdev != rdev2 &&
  2569. overlaps(rdev->data_offset, rdev->sectors,
  2570. rdev2->data_offset,
  2571. rdev2->sectors)) {
  2572. overlap = 1;
  2573. break;
  2574. }
  2575. mddev_unlock(mddev);
  2576. if (overlap) {
  2577. mddev_put(mddev);
  2578. break;
  2579. }
  2580. }
  2581. mddev_lock(my_mddev);
  2582. if (overlap) {
  2583. /* Someone else could have slipped in a size
  2584. * change here, but doing so is just silly.
  2585. * We put oldsectors back because we *know* it is
  2586. * safe, and trust userspace not to race with
  2587. * itself
  2588. */
  2589. rdev->sectors = oldsectors;
  2590. return -EBUSY;
  2591. }
  2592. }
  2593. return len;
  2594. }
  2595. static struct rdev_sysfs_entry rdev_size =
  2596. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2597. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2598. {
  2599. unsigned long long recovery_start = rdev->recovery_offset;
  2600. if (test_bit(In_sync, &rdev->flags) ||
  2601. recovery_start == MaxSector)
  2602. return sprintf(page, "none\n");
  2603. return sprintf(page, "%llu\n", recovery_start);
  2604. }
  2605. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2606. {
  2607. unsigned long long recovery_start;
  2608. if (cmd_match(buf, "none"))
  2609. recovery_start = MaxSector;
  2610. else if (strict_strtoull(buf, 10, &recovery_start))
  2611. return -EINVAL;
  2612. if (rdev->mddev->pers &&
  2613. rdev->raid_disk >= 0)
  2614. return -EBUSY;
  2615. rdev->recovery_offset = recovery_start;
  2616. if (recovery_start == MaxSector)
  2617. set_bit(In_sync, &rdev->flags);
  2618. else
  2619. clear_bit(In_sync, &rdev->flags);
  2620. return len;
  2621. }
  2622. static struct rdev_sysfs_entry rdev_recovery_start =
  2623. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2624. static ssize_t
  2625. badblocks_show(struct badblocks *bb, char *page, int unack);
  2626. static ssize_t
  2627. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2628. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2629. {
  2630. return badblocks_show(&rdev->badblocks, page, 0);
  2631. }
  2632. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2633. {
  2634. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2635. /* Maybe that ack was all we needed */
  2636. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2637. wake_up(&rdev->blocked_wait);
  2638. return rv;
  2639. }
  2640. static struct rdev_sysfs_entry rdev_bad_blocks =
  2641. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2642. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2643. {
  2644. return badblocks_show(&rdev->badblocks, page, 1);
  2645. }
  2646. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2647. {
  2648. return badblocks_store(&rdev->badblocks, page, len, 1);
  2649. }
  2650. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2651. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2652. static struct attribute *rdev_default_attrs[] = {
  2653. &rdev_state.attr,
  2654. &rdev_errors.attr,
  2655. &rdev_slot.attr,
  2656. &rdev_offset.attr,
  2657. &rdev_size.attr,
  2658. &rdev_recovery_start.attr,
  2659. &rdev_bad_blocks.attr,
  2660. &rdev_unack_bad_blocks.attr,
  2661. NULL,
  2662. };
  2663. static ssize_t
  2664. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2665. {
  2666. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2667. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2668. struct mddev *mddev = rdev->mddev;
  2669. ssize_t rv;
  2670. if (!entry->show)
  2671. return -EIO;
  2672. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2673. if (!rv) {
  2674. if (rdev->mddev == NULL)
  2675. rv = -EBUSY;
  2676. else
  2677. rv = entry->show(rdev, page);
  2678. mddev_unlock(mddev);
  2679. }
  2680. return rv;
  2681. }
  2682. static ssize_t
  2683. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2684. const char *page, size_t length)
  2685. {
  2686. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2687. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2688. ssize_t rv;
  2689. struct mddev *mddev = rdev->mddev;
  2690. if (!entry->store)
  2691. return -EIO;
  2692. if (!capable(CAP_SYS_ADMIN))
  2693. return -EACCES;
  2694. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2695. if (!rv) {
  2696. if (rdev->mddev == NULL)
  2697. rv = -EBUSY;
  2698. else
  2699. rv = entry->store(rdev, page, length);
  2700. mddev_unlock(mddev);
  2701. }
  2702. return rv;
  2703. }
  2704. static void rdev_free(struct kobject *ko)
  2705. {
  2706. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2707. kfree(rdev);
  2708. }
  2709. static const struct sysfs_ops rdev_sysfs_ops = {
  2710. .show = rdev_attr_show,
  2711. .store = rdev_attr_store,
  2712. };
  2713. static struct kobj_type rdev_ktype = {
  2714. .release = rdev_free,
  2715. .sysfs_ops = &rdev_sysfs_ops,
  2716. .default_attrs = rdev_default_attrs,
  2717. };
  2718. int md_rdev_init(struct md_rdev *rdev)
  2719. {
  2720. rdev->desc_nr = -1;
  2721. rdev->saved_raid_disk = -1;
  2722. rdev->raid_disk = -1;
  2723. rdev->flags = 0;
  2724. rdev->data_offset = 0;
  2725. rdev->sb_events = 0;
  2726. rdev->last_read_error.tv_sec = 0;
  2727. rdev->last_read_error.tv_nsec = 0;
  2728. rdev->sb_loaded = 0;
  2729. rdev->bb_page = NULL;
  2730. atomic_set(&rdev->nr_pending, 0);
  2731. atomic_set(&rdev->read_errors, 0);
  2732. atomic_set(&rdev->corrected_errors, 0);
  2733. INIT_LIST_HEAD(&rdev->same_set);
  2734. init_waitqueue_head(&rdev->blocked_wait);
  2735. /* Add space to store bad block list.
  2736. * This reserves the space even on arrays where it cannot
  2737. * be used - I wonder if that matters
  2738. */
  2739. rdev->badblocks.count = 0;
  2740. rdev->badblocks.shift = 0;
  2741. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2742. seqlock_init(&rdev->badblocks.lock);
  2743. if (rdev->badblocks.page == NULL)
  2744. return -ENOMEM;
  2745. return 0;
  2746. }
  2747. EXPORT_SYMBOL_GPL(md_rdev_init);
  2748. /*
  2749. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2750. *
  2751. * mark the device faulty if:
  2752. *
  2753. * - the device is nonexistent (zero size)
  2754. * - the device has no valid superblock
  2755. *
  2756. * a faulty rdev _never_ has rdev->sb set.
  2757. */
  2758. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2759. {
  2760. char b[BDEVNAME_SIZE];
  2761. int err;
  2762. struct md_rdev *rdev;
  2763. sector_t size;
  2764. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2765. if (!rdev) {
  2766. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2767. return ERR_PTR(-ENOMEM);
  2768. }
  2769. err = md_rdev_init(rdev);
  2770. if (err)
  2771. goto abort_free;
  2772. err = alloc_disk_sb(rdev);
  2773. if (err)
  2774. goto abort_free;
  2775. err = lock_rdev(rdev, newdev, super_format == -2);
  2776. if (err)
  2777. goto abort_free;
  2778. kobject_init(&rdev->kobj, &rdev_ktype);
  2779. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2780. if (!size) {
  2781. printk(KERN_WARNING
  2782. "md: %s has zero or unknown size, marking faulty!\n",
  2783. bdevname(rdev->bdev,b));
  2784. err = -EINVAL;
  2785. goto abort_free;
  2786. }
  2787. if (super_format >= 0) {
  2788. err = super_types[super_format].
  2789. load_super(rdev, NULL, super_minor);
  2790. if (err == -EINVAL) {
  2791. printk(KERN_WARNING
  2792. "md: %s does not have a valid v%d.%d "
  2793. "superblock, not importing!\n",
  2794. bdevname(rdev->bdev,b),
  2795. super_format, super_minor);
  2796. goto abort_free;
  2797. }
  2798. if (err < 0) {
  2799. printk(KERN_WARNING
  2800. "md: could not read %s's sb, not importing!\n",
  2801. bdevname(rdev->bdev,b));
  2802. goto abort_free;
  2803. }
  2804. }
  2805. if (super_format == -1)
  2806. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2807. rdev->badblocks.shift = -1;
  2808. return rdev;
  2809. abort_free:
  2810. if (rdev->bdev)
  2811. unlock_rdev(rdev);
  2812. free_disk_sb(rdev);
  2813. kfree(rdev->badblocks.page);
  2814. kfree(rdev);
  2815. return ERR_PTR(err);
  2816. }
  2817. /*
  2818. * Check a full RAID array for plausibility
  2819. */
  2820. static void analyze_sbs(struct mddev * mddev)
  2821. {
  2822. int i;
  2823. struct md_rdev *rdev, *freshest, *tmp;
  2824. char b[BDEVNAME_SIZE];
  2825. freshest = NULL;
  2826. rdev_for_each(rdev, tmp, mddev)
  2827. switch (super_types[mddev->major_version].
  2828. load_super(rdev, freshest, mddev->minor_version)) {
  2829. case 1:
  2830. freshest = rdev;
  2831. break;
  2832. case 0:
  2833. break;
  2834. default:
  2835. printk( KERN_ERR \
  2836. "md: fatal superblock inconsistency in %s"
  2837. " -- removing from array\n",
  2838. bdevname(rdev->bdev,b));
  2839. kick_rdev_from_array(rdev);
  2840. }
  2841. super_types[mddev->major_version].
  2842. validate_super(mddev, freshest);
  2843. i = 0;
  2844. rdev_for_each(rdev, tmp, mddev) {
  2845. if (mddev->max_disks &&
  2846. (rdev->desc_nr >= mddev->max_disks ||
  2847. i > mddev->max_disks)) {
  2848. printk(KERN_WARNING
  2849. "md: %s: %s: only %d devices permitted\n",
  2850. mdname(mddev), bdevname(rdev->bdev, b),
  2851. mddev->max_disks);
  2852. kick_rdev_from_array(rdev);
  2853. continue;
  2854. }
  2855. if (rdev != freshest)
  2856. if (super_types[mddev->major_version].
  2857. validate_super(mddev, rdev)) {
  2858. printk(KERN_WARNING "md: kicking non-fresh %s"
  2859. " from array!\n",
  2860. bdevname(rdev->bdev,b));
  2861. kick_rdev_from_array(rdev);
  2862. continue;
  2863. }
  2864. if (mddev->level == LEVEL_MULTIPATH) {
  2865. rdev->desc_nr = i++;
  2866. rdev->raid_disk = rdev->desc_nr;
  2867. set_bit(In_sync, &rdev->flags);
  2868. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2869. rdev->raid_disk = -1;
  2870. clear_bit(In_sync, &rdev->flags);
  2871. }
  2872. }
  2873. }
  2874. /* Read a fixed-point number.
  2875. * Numbers in sysfs attributes should be in "standard" units where
  2876. * possible, so time should be in seconds.
  2877. * However we internally use a a much smaller unit such as
  2878. * milliseconds or jiffies.
  2879. * This function takes a decimal number with a possible fractional
  2880. * component, and produces an integer which is the result of
  2881. * multiplying that number by 10^'scale'.
  2882. * all without any floating-point arithmetic.
  2883. */
  2884. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2885. {
  2886. unsigned long result = 0;
  2887. long decimals = -1;
  2888. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2889. if (*cp == '.')
  2890. decimals = 0;
  2891. else if (decimals < scale) {
  2892. unsigned int value;
  2893. value = *cp - '0';
  2894. result = result * 10 + value;
  2895. if (decimals >= 0)
  2896. decimals++;
  2897. }
  2898. cp++;
  2899. }
  2900. if (*cp == '\n')
  2901. cp++;
  2902. if (*cp)
  2903. return -EINVAL;
  2904. if (decimals < 0)
  2905. decimals = 0;
  2906. while (decimals < scale) {
  2907. result *= 10;
  2908. decimals ++;
  2909. }
  2910. *res = result;
  2911. return 0;
  2912. }
  2913. static void md_safemode_timeout(unsigned long data);
  2914. static ssize_t
  2915. safe_delay_show(struct mddev *mddev, char *page)
  2916. {
  2917. int msec = (mddev->safemode_delay*1000)/HZ;
  2918. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2919. }
  2920. static ssize_t
  2921. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2922. {
  2923. unsigned long msec;
  2924. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2925. return -EINVAL;
  2926. if (msec == 0)
  2927. mddev->safemode_delay = 0;
  2928. else {
  2929. unsigned long old_delay = mddev->safemode_delay;
  2930. mddev->safemode_delay = (msec*HZ)/1000;
  2931. if (mddev->safemode_delay == 0)
  2932. mddev->safemode_delay = 1;
  2933. if (mddev->safemode_delay < old_delay)
  2934. md_safemode_timeout((unsigned long)mddev);
  2935. }
  2936. return len;
  2937. }
  2938. static struct md_sysfs_entry md_safe_delay =
  2939. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2940. static ssize_t
  2941. level_show(struct mddev *mddev, char *page)
  2942. {
  2943. struct md_personality *p = mddev->pers;
  2944. if (p)
  2945. return sprintf(page, "%s\n", p->name);
  2946. else if (mddev->clevel[0])
  2947. return sprintf(page, "%s\n", mddev->clevel);
  2948. else if (mddev->level != LEVEL_NONE)
  2949. return sprintf(page, "%d\n", mddev->level);
  2950. else
  2951. return 0;
  2952. }
  2953. static ssize_t
  2954. level_store(struct mddev *mddev, const char *buf, size_t len)
  2955. {
  2956. char clevel[16];
  2957. ssize_t rv = len;
  2958. struct md_personality *pers;
  2959. long level;
  2960. void *priv;
  2961. struct md_rdev *rdev;
  2962. if (mddev->pers == NULL) {
  2963. if (len == 0)
  2964. return 0;
  2965. if (len >= sizeof(mddev->clevel))
  2966. return -ENOSPC;
  2967. strncpy(mddev->clevel, buf, len);
  2968. if (mddev->clevel[len-1] == '\n')
  2969. len--;
  2970. mddev->clevel[len] = 0;
  2971. mddev->level = LEVEL_NONE;
  2972. return rv;
  2973. }
  2974. /* request to change the personality. Need to ensure:
  2975. * - array is not engaged in resync/recovery/reshape
  2976. * - old personality can be suspended
  2977. * - new personality will access other array.
  2978. */
  2979. if (mddev->sync_thread ||
  2980. mddev->reshape_position != MaxSector ||
  2981. mddev->sysfs_active)
  2982. return -EBUSY;
  2983. if (!mddev->pers->quiesce) {
  2984. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2985. mdname(mddev), mddev->pers->name);
  2986. return -EINVAL;
  2987. }
  2988. /* Now find the new personality */
  2989. if (len == 0 || len >= sizeof(clevel))
  2990. return -EINVAL;
  2991. strncpy(clevel, buf, len);
  2992. if (clevel[len-1] == '\n')
  2993. len--;
  2994. clevel[len] = 0;
  2995. if (strict_strtol(clevel, 10, &level))
  2996. level = LEVEL_NONE;
  2997. if (request_module("md-%s", clevel) != 0)
  2998. request_module("md-level-%s", clevel);
  2999. spin_lock(&pers_lock);
  3000. pers = find_pers(level, clevel);
  3001. if (!pers || !try_module_get(pers->owner)) {
  3002. spin_unlock(&pers_lock);
  3003. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3004. return -EINVAL;
  3005. }
  3006. spin_unlock(&pers_lock);
  3007. if (pers == mddev->pers) {
  3008. /* Nothing to do! */
  3009. module_put(pers->owner);
  3010. return rv;
  3011. }
  3012. if (!pers->takeover) {
  3013. module_put(pers->owner);
  3014. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3015. mdname(mddev), clevel);
  3016. return -EINVAL;
  3017. }
  3018. list_for_each_entry(rdev, &mddev->disks, same_set)
  3019. rdev->new_raid_disk = rdev->raid_disk;
  3020. /* ->takeover must set new_* and/or delta_disks
  3021. * if it succeeds, and may set them when it fails.
  3022. */
  3023. priv = pers->takeover(mddev);
  3024. if (IS_ERR(priv)) {
  3025. mddev->new_level = mddev->level;
  3026. mddev->new_layout = mddev->layout;
  3027. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3028. mddev->raid_disks -= mddev->delta_disks;
  3029. mddev->delta_disks = 0;
  3030. module_put(pers->owner);
  3031. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3032. mdname(mddev), clevel);
  3033. return PTR_ERR(priv);
  3034. }
  3035. /* Looks like we have a winner */
  3036. mddev_suspend(mddev);
  3037. mddev->pers->stop(mddev);
  3038. if (mddev->pers->sync_request == NULL &&
  3039. pers->sync_request != NULL) {
  3040. /* need to add the md_redundancy_group */
  3041. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3042. printk(KERN_WARNING
  3043. "md: cannot register extra attributes for %s\n",
  3044. mdname(mddev));
  3045. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3046. }
  3047. if (mddev->pers->sync_request != NULL &&
  3048. pers->sync_request == NULL) {
  3049. /* need to remove the md_redundancy_group */
  3050. if (mddev->to_remove == NULL)
  3051. mddev->to_remove = &md_redundancy_group;
  3052. }
  3053. if (mddev->pers->sync_request == NULL &&
  3054. mddev->external) {
  3055. /* We are converting from a no-redundancy array
  3056. * to a redundancy array and metadata is managed
  3057. * externally so we need to be sure that writes
  3058. * won't block due to a need to transition
  3059. * clean->dirty
  3060. * until external management is started.
  3061. */
  3062. mddev->in_sync = 0;
  3063. mddev->safemode_delay = 0;
  3064. mddev->safemode = 0;
  3065. }
  3066. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3067. if (rdev->raid_disk < 0)
  3068. continue;
  3069. if (rdev->new_raid_disk >= mddev->raid_disks)
  3070. rdev->new_raid_disk = -1;
  3071. if (rdev->new_raid_disk == rdev->raid_disk)
  3072. continue;
  3073. sysfs_unlink_rdev(mddev, rdev);
  3074. }
  3075. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3076. if (rdev->raid_disk < 0)
  3077. continue;
  3078. if (rdev->new_raid_disk == rdev->raid_disk)
  3079. continue;
  3080. rdev->raid_disk = rdev->new_raid_disk;
  3081. if (rdev->raid_disk < 0)
  3082. clear_bit(In_sync, &rdev->flags);
  3083. else {
  3084. if (sysfs_link_rdev(mddev, rdev))
  3085. printk(KERN_WARNING "md: cannot register rd%d"
  3086. " for %s after level change\n",
  3087. rdev->raid_disk, mdname(mddev));
  3088. }
  3089. }
  3090. module_put(mddev->pers->owner);
  3091. mddev->pers = pers;
  3092. mddev->private = priv;
  3093. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3094. mddev->level = mddev->new_level;
  3095. mddev->layout = mddev->new_layout;
  3096. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3097. mddev->delta_disks = 0;
  3098. mddev->degraded = 0;
  3099. if (mddev->pers->sync_request == NULL) {
  3100. /* this is now an array without redundancy, so
  3101. * it must always be in_sync
  3102. */
  3103. mddev->in_sync = 1;
  3104. del_timer_sync(&mddev->safemode_timer);
  3105. }
  3106. pers->run(mddev);
  3107. mddev_resume(mddev);
  3108. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3109. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3110. md_wakeup_thread(mddev->thread);
  3111. sysfs_notify(&mddev->kobj, NULL, "level");
  3112. md_new_event(mddev);
  3113. return rv;
  3114. }
  3115. static struct md_sysfs_entry md_level =
  3116. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3117. static ssize_t
  3118. layout_show(struct mddev *mddev, char *page)
  3119. {
  3120. /* just a number, not meaningful for all levels */
  3121. if (mddev->reshape_position != MaxSector &&
  3122. mddev->layout != mddev->new_layout)
  3123. return sprintf(page, "%d (%d)\n",
  3124. mddev->new_layout, mddev->layout);
  3125. return sprintf(page, "%d\n", mddev->layout);
  3126. }
  3127. static ssize_t
  3128. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3129. {
  3130. char *e;
  3131. unsigned long n = simple_strtoul(buf, &e, 10);
  3132. if (!*buf || (*e && *e != '\n'))
  3133. return -EINVAL;
  3134. if (mddev->pers) {
  3135. int err;
  3136. if (mddev->pers->check_reshape == NULL)
  3137. return -EBUSY;
  3138. mddev->new_layout = n;
  3139. err = mddev->pers->check_reshape(mddev);
  3140. if (err) {
  3141. mddev->new_layout = mddev->layout;
  3142. return err;
  3143. }
  3144. } else {
  3145. mddev->new_layout = n;
  3146. if (mddev->reshape_position == MaxSector)
  3147. mddev->layout = n;
  3148. }
  3149. return len;
  3150. }
  3151. static struct md_sysfs_entry md_layout =
  3152. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3153. static ssize_t
  3154. raid_disks_show(struct mddev *mddev, char *page)
  3155. {
  3156. if (mddev->raid_disks == 0)
  3157. return 0;
  3158. if (mddev->reshape_position != MaxSector &&
  3159. mddev->delta_disks != 0)
  3160. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3161. mddev->raid_disks - mddev->delta_disks);
  3162. return sprintf(page, "%d\n", mddev->raid_disks);
  3163. }
  3164. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3165. static ssize_t
  3166. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3167. {
  3168. char *e;
  3169. int rv = 0;
  3170. unsigned long n = simple_strtoul(buf, &e, 10);
  3171. if (!*buf || (*e && *e != '\n'))
  3172. return -EINVAL;
  3173. if (mddev->pers)
  3174. rv = update_raid_disks(mddev, n);
  3175. else if (mddev->reshape_position != MaxSector) {
  3176. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3177. mddev->delta_disks = n - olddisks;
  3178. mddev->raid_disks = n;
  3179. } else
  3180. mddev->raid_disks = n;
  3181. return rv ? rv : len;
  3182. }
  3183. static struct md_sysfs_entry md_raid_disks =
  3184. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3185. static ssize_t
  3186. chunk_size_show(struct mddev *mddev, char *page)
  3187. {
  3188. if (mddev->reshape_position != MaxSector &&
  3189. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3190. return sprintf(page, "%d (%d)\n",
  3191. mddev->new_chunk_sectors << 9,
  3192. mddev->chunk_sectors << 9);
  3193. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3194. }
  3195. static ssize_t
  3196. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3197. {
  3198. char *e;
  3199. unsigned long n = simple_strtoul(buf, &e, 10);
  3200. if (!*buf || (*e && *e != '\n'))
  3201. return -EINVAL;
  3202. if (mddev->pers) {
  3203. int err;
  3204. if (mddev->pers->check_reshape == NULL)
  3205. return -EBUSY;
  3206. mddev->new_chunk_sectors = n >> 9;
  3207. err = mddev->pers->check_reshape(mddev);
  3208. if (err) {
  3209. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3210. return err;
  3211. }
  3212. } else {
  3213. mddev->new_chunk_sectors = n >> 9;
  3214. if (mddev->reshape_position == MaxSector)
  3215. mddev->chunk_sectors = n >> 9;
  3216. }
  3217. return len;
  3218. }
  3219. static struct md_sysfs_entry md_chunk_size =
  3220. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3221. static ssize_t
  3222. resync_start_show(struct mddev *mddev, char *page)
  3223. {
  3224. if (mddev->recovery_cp == MaxSector)
  3225. return sprintf(page, "none\n");
  3226. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3227. }
  3228. static ssize_t
  3229. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3230. {
  3231. char *e;
  3232. unsigned long long n = simple_strtoull(buf, &e, 10);
  3233. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3234. return -EBUSY;
  3235. if (cmd_match(buf, "none"))
  3236. n = MaxSector;
  3237. else if (!*buf || (*e && *e != '\n'))
  3238. return -EINVAL;
  3239. mddev->recovery_cp = n;
  3240. return len;
  3241. }
  3242. static struct md_sysfs_entry md_resync_start =
  3243. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3244. /*
  3245. * The array state can be:
  3246. *
  3247. * clear
  3248. * No devices, no size, no level
  3249. * Equivalent to STOP_ARRAY ioctl
  3250. * inactive
  3251. * May have some settings, but array is not active
  3252. * all IO results in error
  3253. * When written, doesn't tear down array, but just stops it
  3254. * suspended (not supported yet)
  3255. * All IO requests will block. The array can be reconfigured.
  3256. * Writing this, if accepted, will block until array is quiescent
  3257. * readonly
  3258. * no resync can happen. no superblocks get written.
  3259. * write requests fail
  3260. * read-auto
  3261. * like readonly, but behaves like 'clean' on a write request.
  3262. *
  3263. * clean - no pending writes, but otherwise active.
  3264. * When written to inactive array, starts without resync
  3265. * If a write request arrives then
  3266. * if metadata is known, mark 'dirty' and switch to 'active'.
  3267. * if not known, block and switch to write-pending
  3268. * If written to an active array that has pending writes, then fails.
  3269. * active
  3270. * fully active: IO and resync can be happening.
  3271. * When written to inactive array, starts with resync
  3272. *
  3273. * write-pending
  3274. * clean, but writes are blocked waiting for 'active' to be written.
  3275. *
  3276. * active-idle
  3277. * like active, but no writes have been seen for a while (100msec).
  3278. *
  3279. */
  3280. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3281. write_pending, active_idle, bad_word};
  3282. static char *array_states[] = {
  3283. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3284. "write-pending", "active-idle", NULL };
  3285. static int match_word(const char *word, char **list)
  3286. {
  3287. int n;
  3288. for (n=0; list[n]; n++)
  3289. if (cmd_match(word, list[n]))
  3290. break;
  3291. return n;
  3292. }
  3293. static ssize_t
  3294. array_state_show(struct mddev *mddev, char *page)
  3295. {
  3296. enum array_state st = inactive;
  3297. if (mddev->pers)
  3298. switch(mddev->ro) {
  3299. case 1:
  3300. st = readonly;
  3301. break;
  3302. case 2:
  3303. st = read_auto;
  3304. break;
  3305. case 0:
  3306. if (mddev->in_sync)
  3307. st = clean;
  3308. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3309. st = write_pending;
  3310. else if (mddev->safemode)
  3311. st = active_idle;
  3312. else
  3313. st = active;
  3314. }
  3315. else {
  3316. if (list_empty(&mddev->disks) &&
  3317. mddev->raid_disks == 0 &&
  3318. mddev->dev_sectors == 0)
  3319. st = clear;
  3320. else
  3321. st = inactive;
  3322. }
  3323. return sprintf(page, "%s\n", array_states[st]);
  3324. }
  3325. static int do_md_stop(struct mddev * mddev, int ro, int is_open);
  3326. static int md_set_readonly(struct mddev * mddev, int is_open);
  3327. static int do_md_run(struct mddev * mddev);
  3328. static int restart_array(struct mddev *mddev);
  3329. static ssize_t
  3330. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3331. {
  3332. int err = -EINVAL;
  3333. enum array_state st = match_word(buf, array_states);
  3334. switch(st) {
  3335. case bad_word:
  3336. break;
  3337. case clear:
  3338. /* stopping an active array */
  3339. if (atomic_read(&mddev->openers) > 0)
  3340. return -EBUSY;
  3341. err = do_md_stop(mddev, 0, 0);
  3342. break;
  3343. case inactive:
  3344. /* stopping an active array */
  3345. if (mddev->pers) {
  3346. if (atomic_read(&mddev->openers) > 0)
  3347. return -EBUSY;
  3348. err = do_md_stop(mddev, 2, 0);
  3349. } else
  3350. err = 0; /* already inactive */
  3351. break;
  3352. case suspended:
  3353. break; /* not supported yet */
  3354. case readonly:
  3355. if (mddev->pers)
  3356. err = md_set_readonly(mddev, 0);
  3357. else {
  3358. mddev->ro = 1;
  3359. set_disk_ro(mddev->gendisk, 1);
  3360. err = do_md_run(mddev);
  3361. }
  3362. break;
  3363. case read_auto:
  3364. if (mddev->pers) {
  3365. if (mddev->ro == 0)
  3366. err = md_set_readonly(mddev, 0);
  3367. else if (mddev->ro == 1)
  3368. err = restart_array(mddev);
  3369. if (err == 0) {
  3370. mddev->ro = 2;
  3371. set_disk_ro(mddev->gendisk, 0);
  3372. }
  3373. } else {
  3374. mddev->ro = 2;
  3375. err = do_md_run(mddev);
  3376. }
  3377. break;
  3378. case clean:
  3379. if (mddev->pers) {
  3380. restart_array(mddev);
  3381. spin_lock_irq(&mddev->write_lock);
  3382. if (atomic_read(&mddev->writes_pending) == 0) {
  3383. if (mddev->in_sync == 0) {
  3384. mddev->in_sync = 1;
  3385. if (mddev->safemode == 1)
  3386. mddev->safemode = 0;
  3387. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3388. }
  3389. err = 0;
  3390. } else
  3391. err = -EBUSY;
  3392. spin_unlock_irq(&mddev->write_lock);
  3393. } else
  3394. err = -EINVAL;
  3395. break;
  3396. case active:
  3397. if (mddev->pers) {
  3398. restart_array(mddev);
  3399. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3400. wake_up(&mddev->sb_wait);
  3401. err = 0;
  3402. } else {
  3403. mddev->ro = 0;
  3404. set_disk_ro(mddev->gendisk, 0);
  3405. err = do_md_run(mddev);
  3406. }
  3407. break;
  3408. case write_pending:
  3409. case active_idle:
  3410. /* these cannot be set */
  3411. break;
  3412. }
  3413. if (err)
  3414. return err;
  3415. else {
  3416. if (mddev->hold_active == UNTIL_IOCTL)
  3417. mddev->hold_active = 0;
  3418. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3419. return len;
  3420. }
  3421. }
  3422. static struct md_sysfs_entry md_array_state =
  3423. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3424. static ssize_t
  3425. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3426. return sprintf(page, "%d\n",
  3427. atomic_read(&mddev->max_corr_read_errors));
  3428. }
  3429. static ssize_t
  3430. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3431. {
  3432. char *e;
  3433. unsigned long n = simple_strtoul(buf, &e, 10);
  3434. if (*buf && (*e == 0 || *e == '\n')) {
  3435. atomic_set(&mddev->max_corr_read_errors, n);
  3436. return len;
  3437. }
  3438. return -EINVAL;
  3439. }
  3440. static struct md_sysfs_entry max_corr_read_errors =
  3441. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3442. max_corrected_read_errors_store);
  3443. static ssize_t
  3444. null_show(struct mddev *mddev, char *page)
  3445. {
  3446. return -EINVAL;
  3447. }
  3448. static ssize_t
  3449. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3450. {
  3451. /* buf must be %d:%d\n? giving major and minor numbers */
  3452. /* The new device is added to the array.
  3453. * If the array has a persistent superblock, we read the
  3454. * superblock to initialise info and check validity.
  3455. * Otherwise, only checking done is that in bind_rdev_to_array,
  3456. * which mainly checks size.
  3457. */
  3458. char *e;
  3459. int major = simple_strtoul(buf, &e, 10);
  3460. int minor;
  3461. dev_t dev;
  3462. struct md_rdev *rdev;
  3463. int err;
  3464. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3465. return -EINVAL;
  3466. minor = simple_strtoul(e+1, &e, 10);
  3467. if (*e && *e != '\n')
  3468. return -EINVAL;
  3469. dev = MKDEV(major, minor);
  3470. if (major != MAJOR(dev) ||
  3471. minor != MINOR(dev))
  3472. return -EOVERFLOW;
  3473. if (mddev->persistent) {
  3474. rdev = md_import_device(dev, mddev->major_version,
  3475. mddev->minor_version);
  3476. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3477. struct md_rdev *rdev0
  3478. = list_entry(mddev->disks.next,
  3479. struct md_rdev, same_set);
  3480. err = super_types[mddev->major_version]
  3481. .load_super(rdev, rdev0, mddev->minor_version);
  3482. if (err < 0)
  3483. goto out;
  3484. }
  3485. } else if (mddev->external)
  3486. rdev = md_import_device(dev, -2, -1);
  3487. else
  3488. rdev = md_import_device(dev, -1, -1);
  3489. if (IS_ERR(rdev))
  3490. return PTR_ERR(rdev);
  3491. err = bind_rdev_to_array(rdev, mddev);
  3492. out:
  3493. if (err)
  3494. export_rdev(rdev);
  3495. return err ? err : len;
  3496. }
  3497. static struct md_sysfs_entry md_new_device =
  3498. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3499. static ssize_t
  3500. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3501. {
  3502. char *end;
  3503. unsigned long chunk, end_chunk;
  3504. if (!mddev->bitmap)
  3505. goto out;
  3506. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3507. while (*buf) {
  3508. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3509. if (buf == end) break;
  3510. if (*end == '-') { /* range */
  3511. buf = end + 1;
  3512. end_chunk = simple_strtoul(buf, &end, 0);
  3513. if (buf == end) break;
  3514. }
  3515. if (*end && !isspace(*end)) break;
  3516. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3517. buf = skip_spaces(end);
  3518. }
  3519. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3520. out:
  3521. return len;
  3522. }
  3523. static struct md_sysfs_entry md_bitmap =
  3524. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3525. static ssize_t
  3526. size_show(struct mddev *mddev, char *page)
  3527. {
  3528. return sprintf(page, "%llu\n",
  3529. (unsigned long long)mddev->dev_sectors / 2);
  3530. }
  3531. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3532. static ssize_t
  3533. size_store(struct mddev *mddev, const char *buf, size_t len)
  3534. {
  3535. /* If array is inactive, we can reduce the component size, but
  3536. * not increase it (except from 0).
  3537. * If array is active, we can try an on-line resize
  3538. */
  3539. sector_t sectors;
  3540. int err = strict_blocks_to_sectors(buf, &sectors);
  3541. if (err < 0)
  3542. return err;
  3543. if (mddev->pers) {
  3544. err = update_size(mddev, sectors);
  3545. md_update_sb(mddev, 1);
  3546. } else {
  3547. if (mddev->dev_sectors == 0 ||
  3548. mddev->dev_sectors > sectors)
  3549. mddev->dev_sectors = sectors;
  3550. else
  3551. err = -ENOSPC;
  3552. }
  3553. return err ? err : len;
  3554. }
  3555. static struct md_sysfs_entry md_size =
  3556. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3557. /* Metdata version.
  3558. * This is one of
  3559. * 'none' for arrays with no metadata (good luck...)
  3560. * 'external' for arrays with externally managed metadata,
  3561. * or N.M for internally known formats
  3562. */
  3563. static ssize_t
  3564. metadata_show(struct mddev *mddev, char *page)
  3565. {
  3566. if (mddev->persistent)
  3567. return sprintf(page, "%d.%d\n",
  3568. mddev->major_version, mddev->minor_version);
  3569. else if (mddev->external)
  3570. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3571. else
  3572. return sprintf(page, "none\n");
  3573. }
  3574. static ssize_t
  3575. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3576. {
  3577. int major, minor;
  3578. char *e;
  3579. /* Changing the details of 'external' metadata is
  3580. * always permitted. Otherwise there must be
  3581. * no devices attached to the array.
  3582. */
  3583. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3584. ;
  3585. else if (!list_empty(&mddev->disks))
  3586. return -EBUSY;
  3587. if (cmd_match(buf, "none")) {
  3588. mddev->persistent = 0;
  3589. mddev->external = 0;
  3590. mddev->major_version = 0;
  3591. mddev->minor_version = 90;
  3592. return len;
  3593. }
  3594. if (strncmp(buf, "external:", 9) == 0) {
  3595. size_t namelen = len-9;
  3596. if (namelen >= sizeof(mddev->metadata_type))
  3597. namelen = sizeof(mddev->metadata_type)-1;
  3598. strncpy(mddev->metadata_type, buf+9, namelen);
  3599. mddev->metadata_type[namelen] = 0;
  3600. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3601. mddev->metadata_type[--namelen] = 0;
  3602. mddev->persistent = 0;
  3603. mddev->external = 1;
  3604. mddev->major_version = 0;
  3605. mddev->minor_version = 90;
  3606. return len;
  3607. }
  3608. major = simple_strtoul(buf, &e, 10);
  3609. if (e==buf || *e != '.')
  3610. return -EINVAL;
  3611. buf = e+1;
  3612. minor = simple_strtoul(buf, &e, 10);
  3613. if (e==buf || (*e && *e != '\n') )
  3614. return -EINVAL;
  3615. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3616. return -ENOENT;
  3617. mddev->major_version = major;
  3618. mddev->minor_version = minor;
  3619. mddev->persistent = 1;
  3620. mddev->external = 0;
  3621. return len;
  3622. }
  3623. static struct md_sysfs_entry md_metadata =
  3624. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3625. static ssize_t
  3626. action_show(struct mddev *mddev, char *page)
  3627. {
  3628. char *type = "idle";
  3629. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3630. type = "frozen";
  3631. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3632. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3633. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3634. type = "reshape";
  3635. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3636. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3637. type = "resync";
  3638. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3639. type = "check";
  3640. else
  3641. type = "repair";
  3642. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3643. type = "recover";
  3644. }
  3645. return sprintf(page, "%s\n", type);
  3646. }
  3647. static void reap_sync_thread(struct mddev *mddev);
  3648. static ssize_t
  3649. action_store(struct mddev *mddev, const char *page, size_t len)
  3650. {
  3651. if (!mddev->pers || !mddev->pers->sync_request)
  3652. return -EINVAL;
  3653. if (cmd_match(page, "frozen"))
  3654. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3655. else
  3656. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3657. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3658. if (mddev->sync_thread) {
  3659. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3660. reap_sync_thread(mddev);
  3661. }
  3662. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3663. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3664. return -EBUSY;
  3665. else if (cmd_match(page, "resync"))
  3666. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3667. else if (cmd_match(page, "recover")) {
  3668. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3669. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3670. } else if (cmd_match(page, "reshape")) {
  3671. int err;
  3672. if (mddev->pers->start_reshape == NULL)
  3673. return -EINVAL;
  3674. err = mddev->pers->start_reshape(mddev);
  3675. if (err)
  3676. return err;
  3677. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3678. } else {
  3679. if (cmd_match(page, "check"))
  3680. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3681. else if (!cmd_match(page, "repair"))
  3682. return -EINVAL;
  3683. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3684. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3685. }
  3686. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3687. md_wakeup_thread(mddev->thread);
  3688. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3689. return len;
  3690. }
  3691. static ssize_t
  3692. mismatch_cnt_show(struct mddev *mddev, char *page)
  3693. {
  3694. return sprintf(page, "%llu\n",
  3695. (unsigned long long) mddev->resync_mismatches);
  3696. }
  3697. static struct md_sysfs_entry md_scan_mode =
  3698. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3699. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3700. static ssize_t
  3701. sync_min_show(struct mddev *mddev, char *page)
  3702. {
  3703. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3704. mddev->sync_speed_min ? "local": "system");
  3705. }
  3706. static ssize_t
  3707. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3708. {
  3709. int min;
  3710. char *e;
  3711. if (strncmp(buf, "system", 6)==0) {
  3712. mddev->sync_speed_min = 0;
  3713. return len;
  3714. }
  3715. min = simple_strtoul(buf, &e, 10);
  3716. if (buf == e || (*e && *e != '\n') || min <= 0)
  3717. return -EINVAL;
  3718. mddev->sync_speed_min = min;
  3719. return len;
  3720. }
  3721. static struct md_sysfs_entry md_sync_min =
  3722. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3723. static ssize_t
  3724. sync_max_show(struct mddev *mddev, char *page)
  3725. {
  3726. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3727. mddev->sync_speed_max ? "local": "system");
  3728. }
  3729. static ssize_t
  3730. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3731. {
  3732. int max;
  3733. char *e;
  3734. if (strncmp(buf, "system", 6)==0) {
  3735. mddev->sync_speed_max = 0;
  3736. return len;
  3737. }
  3738. max = simple_strtoul(buf, &e, 10);
  3739. if (buf == e || (*e && *e != '\n') || max <= 0)
  3740. return -EINVAL;
  3741. mddev->sync_speed_max = max;
  3742. return len;
  3743. }
  3744. static struct md_sysfs_entry md_sync_max =
  3745. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3746. static ssize_t
  3747. degraded_show(struct mddev *mddev, char *page)
  3748. {
  3749. return sprintf(page, "%d\n", mddev->degraded);
  3750. }
  3751. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3752. static ssize_t
  3753. sync_force_parallel_show(struct mddev *mddev, char *page)
  3754. {
  3755. return sprintf(page, "%d\n", mddev->parallel_resync);
  3756. }
  3757. static ssize_t
  3758. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3759. {
  3760. long n;
  3761. if (strict_strtol(buf, 10, &n))
  3762. return -EINVAL;
  3763. if (n != 0 && n != 1)
  3764. return -EINVAL;
  3765. mddev->parallel_resync = n;
  3766. if (mddev->sync_thread)
  3767. wake_up(&resync_wait);
  3768. return len;
  3769. }
  3770. /* force parallel resync, even with shared block devices */
  3771. static struct md_sysfs_entry md_sync_force_parallel =
  3772. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3773. sync_force_parallel_show, sync_force_parallel_store);
  3774. static ssize_t
  3775. sync_speed_show(struct mddev *mddev, char *page)
  3776. {
  3777. unsigned long resync, dt, db;
  3778. if (mddev->curr_resync == 0)
  3779. return sprintf(page, "none\n");
  3780. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3781. dt = (jiffies - mddev->resync_mark) / HZ;
  3782. if (!dt) dt++;
  3783. db = resync - mddev->resync_mark_cnt;
  3784. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3785. }
  3786. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3787. static ssize_t
  3788. sync_completed_show(struct mddev *mddev, char *page)
  3789. {
  3790. unsigned long long max_sectors, resync;
  3791. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3792. return sprintf(page, "none\n");
  3793. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3794. max_sectors = mddev->resync_max_sectors;
  3795. else
  3796. max_sectors = mddev->dev_sectors;
  3797. resync = mddev->curr_resync_completed;
  3798. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3799. }
  3800. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3801. static ssize_t
  3802. min_sync_show(struct mddev *mddev, char *page)
  3803. {
  3804. return sprintf(page, "%llu\n",
  3805. (unsigned long long)mddev->resync_min);
  3806. }
  3807. static ssize_t
  3808. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3809. {
  3810. unsigned long long min;
  3811. if (strict_strtoull(buf, 10, &min))
  3812. return -EINVAL;
  3813. if (min > mddev->resync_max)
  3814. return -EINVAL;
  3815. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3816. return -EBUSY;
  3817. /* Must be a multiple of chunk_size */
  3818. if (mddev->chunk_sectors) {
  3819. sector_t temp = min;
  3820. if (sector_div(temp, mddev->chunk_sectors))
  3821. return -EINVAL;
  3822. }
  3823. mddev->resync_min = min;
  3824. return len;
  3825. }
  3826. static struct md_sysfs_entry md_min_sync =
  3827. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3828. static ssize_t
  3829. max_sync_show(struct mddev *mddev, char *page)
  3830. {
  3831. if (mddev->resync_max == MaxSector)
  3832. return sprintf(page, "max\n");
  3833. else
  3834. return sprintf(page, "%llu\n",
  3835. (unsigned long long)mddev->resync_max);
  3836. }
  3837. static ssize_t
  3838. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3839. {
  3840. if (strncmp(buf, "max", 3) == 0)
  3841. mddev->resync_max = MaxSector;
  3842. else {
  3843. unsigned long long max;
  3844. if (strict_strtoull(buf, 10, &max))
  3845. return -EINVAL;
  3846. if (max < mddev->resync_min)
  3847. return -EINVAL;
  3848. if (max < mddev->resync_max &&
  3849. mddev->ro == 0 &&
  3850. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3851. return -EBUSY;
  3852. /* Must be a multiple of chunk_size */
  3853. if (mddev->chunk_sectors) {
  3854. sector_t temp = max;
  3855. if (sector_div(temp, mddev->chunk_sectors))
  3856. return -EINVAL;
  3857. }
  3858. mddev->resync_max = max;
  3859. }
  3860. wake_up(&mddev->recovery_wait);
  3861. return len;
  3862. }
  3863. static struct md_sysfs_entry md_max_sync =
  3864. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3865. static ssize_t
  3866. suspend_lo_show(struct mddev *mddev, char *page)
  3867. {
  3868. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3869. }
  3870. static ssize_t
  3871. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  3872. {
  3873. char *e;
  3874. unsigned long long new = simple_strtoull(buf, &e, 10);
  3875. unsigned long long old = mddev->suspend_lo;
  3876. if (mddev->pers == NULL ||
  3877. mddev->pers->quiesce == NULL)
  3878. return -EINVAL;
  3879. if (buf == e || (*e && *e != '\n'))
  3880. return -EINVAL;
  3881. mddev->suspend_lo = new;
  3882. if (new >= old)
  3883. /* Shrinking suspended region */
  3884. mddev->pers->quiesce(mddev, 2);
  3885. else {
  3886. /* Expanding suspended region - need to wait */
  3887. mddev->pers->quiesce(mddev, 1);
  3888. mddev->pers->quiesce(mddev, 0);
  3889. }
  3890. return len;
  3891. }
  3892. static struct md_sysfs_entry md_suspend_lo =
  3893. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3894. static ssize_t
  3895. suspend_hi_show(struct mddev *mddev, char *page)
  3896. {
  3897. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3898. }
  3899. static ssize_t
  3900. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  3901. {
  3902. char *e;
  3903. unsigned long long new = simple_strtoull(buf, &e, 10);
  3904. unsigned long long old = mddev->suspend_hi;
  3905. if (mddev->pers == NULL ||
  3906. mddev->pers->quiesce == NULL)
  3907. return -EINVAL;
  3908. if (buf == e || (*e && *e != '\n'))
  3909. return -EINVAL;
  3910. mddev->suspend_hi = new;
  3911. if (new <= old)
  3912. /* Shrinking suspended region */
  3913. mddev->pers->quiesce(mddev, 2);
  3914. else {
  3915. /* Expanding suspended region - need to wait */
  3916. mddev->pers->quiesce(mddev, 1);
  3917. mddev->pers->quiesce(mddev, 0);
  3918. }
  3919. return len;
  3920. }
  3921. static struct md_sysfs_entry md_suspend_hi =
  3922. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3923. static ssize_t
  3924. reshape_position_show(struct mddev *mddev, char *page)
  3925. {
  3926. if (mddev->reshape_position != MaxSector)
  3927. return sprintf(page, "%llu\n",
  3928. (unsigned long long)mddev->reshape_position);
  3929. strcpy(page, "none\n");
  3930. return 5;
  3931. }
  3932. static ssize_t
  3933. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  3934. {
  3935. char *e;
  3936. unsigned long long new = simple_strtoull(buf, &e, 10);
  3937. if (mddev->pers)
  3938. return -EBUSY;
  3939. if (buf == e || (*e && *e != '\n'))
  3940. return -EINVAL;
  3941. mddev->reshape_position = new;
  3942. mddev->delta_disks = 0;
  3943. mddev->new_level = mddev->level;
  3944. mddev->new_layout = mddev->layout;
  3945. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3946. return len;
  3947. }
  3948. static struct md_sysfs_entry md_reshape_position =
  3949. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3950. reshape_position_store);
  3951. static ssize_t
  3952. array_size_show(struct mddev *mddev, char *page)
  3953. {
  3954. if (mddev->external_size)
  3955. return sprintf(page, "%llu\n",
  3956. (unsigned long long)mddev->array_sectors/2);
  3957. else
  3958. return sprintf(page, "default\n");
  3959. }
  3960. static ssize_t
  3961. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  3962. {
  3963. sector_t sectors;
  3964. if (strncmp(buf, "default", 7) == 0) {
  3965. if (mddev->pers)
  3966. sectors = mddev->pers->size(mddev, 0, 0);
  3967. else
  3968. sectors = mddev->array_sectors;
  3969. mddev->external_size = 0;
  3970. } else {
  3971. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3972. return -EINVAL;
  3973. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3974. return -E2BIG;
  3975. mddev->external_size = 1;
  3976. }
  3977. mddev->array_sectors = sectors;
  3978. if (mddev->pers) {
  3979. set_capacity(mddev->gendisk, mddev->array_sectors);
  3980. revalidate_disk(mddev->gendisk);
  3981. }
  3982. return len;
  3983. }
  3984. static struct md_sysfs_entry md_array_size =
  3985. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3986. array_size_store);
  3987. static struct attribute *md_default_attrs[] = {
  3988. &md_level.attr,
  3989. &md_layout.attr,
  3990. &md_raid_disks.attr,
  3991. &md_chunk_size.attr,
  3992. &md_size.attr,
  3993. &md_resync_start.attr,
  3994. &md_metadata.attr,
  3995. &md_new_device.attr,
  3996. &md_safe_delay.attr,
  3997. &md_array_state.attr,
  3998. &md_reshape_position.attr,
  3999. &md_array_size.attr,
  4000. &max_corr_read_errors.attr,
  4001. NULL,
  4002. };
  4003. static struct attribute *md_redundancy_attrs[] = {
  4004. &md_scan_mode.attr,
  4005. &md_mismatches.attr,
  4006. &md_sync_min.attr,
  4007. &md_sync_max.attr,
  4008. &md_sync_speed.attr,
  4009. &md_sync_force_parallel.attr,
  4010. &md_sync_completed.attr,
  4011. &md_min_sync.attr,
  4012. &md_max_sync.attr,
  4013. &md_suspend_lo.attr,
  4014. &md_suspend_hi.attr,
  4015. &md_bitmap.attr,
  4016. &md_degraded.attr,
  4017. NULL,
  4018. };
  4019. static struct attribute_group md_redundancy_group = {
  4020. .name = NULL,
  4021. .attrs = md_redundancy_attrs,
  4022. };
  4023. static ssize_t
  4024. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4025. {
  4026. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4027. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4028. ssize_t rv;
  4029. if (!entry->show)
  4030. return -EIO;
  4031. spin_lock(&all_mddevs_lock);
  4032. if (list_empty(&mddev->all_mddevs)) {
  4033. spin_unlock(&all_mddevs_lock);
  4034. return -EBUSY;
  4035. }
  4036. mddev_get(mddev);
  4037. spin_unlock(&all_mddevs_lock);
  4038. rv = mddev_lock(mddev);
  4039. if (!rv) {
  4040. rv = entry->show(mddev, page);
  4041. mddev_unlock(mddev);
  4042. }
  4043. mddev_put(mddev);
  4044. return rv;
  4045. }
  4046. static ssize_t
  4047. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4048. const char *page, size_t length)
  4049. {
  4050. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4051. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4052. ssize_t rv;
  4053. if (!entry->store)
  4054. return -EIO;
  4055. if (!capable(CAP_SYS_ADMIN))
  4056. return -EACCES;
  4057. spin_lock(&all_mddevs_lock);
  4058. if (list_empty(&mddev->all_mddevs)) {
  4059. spin_unlock(&all_mddevs_lock);
  4060. return -EBUSY;
  4061. }
  4062. mddev_get(mddev);
  4063. spin_unlock(&all_mddevs_lock);
  4064. rv = mddev_lock(mddev);
  4065. if (!rv) {
  4066. rv = entry->store(mddev, page, length);
  4067. mddev_unlock(mddev);
  4068. }
  4069. mddev_put(mddev);
  4070. return rv;
  4071. }
  4072. static void md_free(struct kobject *ko)
  4073. {
  4074. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4075. if (mddev->sysfs_state)
  4076. sysfs_put(mddev->sysfs_state);
  4077. if (mddev->gendisk) {
  4078. del_gendisk(mddev->gendisk);
  4079. put_disk(mddev->gendisk);
  4080. }
  4081. if (mddev->queue)
  4082. blk_cleanup_queue(mddev->queue);
  4083. kfree(mddev);
  4084. }
  4085. static const struct sysfs_ops md_sysfs_ops = {
  4086. .show = md_attr_show,
  4087. .store = md_attr_store,
  4088. };
  4089. static struct kobj_type md_ktype = {
  4090. .release = md_free,
  4091. .sysfs_ops = &md_sysfs_ops,
  4092. .default_attrs = md_default_attrs,
  4093. };
  4094. int mdp_major = 0;
  4095. static void mddev_delayed_delete(struct work_struct *ws)
  4096. {
  4097. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4098. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4099. kobject_del(&mddev->kobj);
  4100. kobject_put(&mddev->kobj);
  4101. }
  4102. static int md_alloc(dev_t dev, char *name)
  4103. {
  4104. static DEFINE_MUTEX(disks_mutex);
  4105. struct mddev *mddev = mddev_find(dev);
  4106. struct gendisk *disk;
  4107. int partitioned;
  4108. int shift;
  4109. int unit;
  4110. int error;
  4111. if (!mddev)
  4112. return -ENODEV;
  4113. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4114. shift = partitioned ? MdpMinorShift : 0;
  4115. unit = MINOR(mddev->unit) >> shift;
  4116. /* wait for any previous instance of this device to be
  4117. * completely removed (mddev_delayed_delete).
  4118. */
  4119. flush_workqueue(md_misc_wq);
  4120. mutex_lock(&disks_mutex);
  4121. error = -EEXIST;
  4122. if (mddev->gendisk)
  4123. goto abort;
  4124. if (name) {
  4125. /* Need to ensure that 'name' is not a duplicate.
  4126. */
  4127. struct mddev *mddev2;
  4128. spin_lock(&all_mddevs_lock);
  4129. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4130. if (mddev2->gendisk &&
  4131. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4132. spin_unlock(&all_mddevs_lock);
  4133. goto abort;
  4134. }
  4135. spin_unlock(&all_mddevs_lock);
  4136. }
  4137. error = -ENOMEM;
  4138. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4139. if (!mddev->queue)
  4140. goto abort;
  4141. mddev->queue->queuedata = mddev;
  4142. blk_queue_make_request(mddev->queue, md_make_request);
  4143. disk = alloc_disk(1 << shift);
  4144. if (!disk) {
  4145. blk_cleanup_queue(mddev->queue);
  4146. mddev->queue = NULL;
  4147. goto abort;
  4148. }
  4149. disk->major = MAJOR(mddev->unit);
  4150. disk->first_minor = unit << shift;
  4151. if (name)
  4152. strcpy(disk->disk_name, name);
  4153. else if (partitioned)
  4154. sprintf(disk->disk_name, "md_d%d", unit);
  4155. else
  4156. sprintf(disk->disk_name, "md%d", unit);
  4157. disk->fops = &md_fops;
  4158. disk->private_data = mddev;
  4159. disk->queue = mddev->queue;
  4160. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4161. /* Allow extended partitions. This makes the
  4162. * 'mdp' device redundant, but we can't really
  4163. * remove it now.
  4164. */
  4165. disk->flags |= GENHD_FL_EXT_DEVT;
  4166. mddev->gendisk = disk;
  4167. /* As soon as we call add_disk(), another thread could get
  4168. * through to md_open, so make sure it doesn't get too far
  4169. */
  4170. mutex_lock(&mddev->open_mutex);
  4171. add_disk(disk);
  4172. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4173. &disk_to_dev(disk)->kobj, "%s", "md");
  4174. if (error) {
  4175. /* This isn't possible, but as kobject_init_and_add is marked
  4176. * __must_check, we must do something with the result
  4177. */
  4178. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4179. disk->disk_name);
  4180. error = 0;
  4181. }
  4182. if (mddev->kobj.sd &&
  4183. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4184. printk(KERN_DEBUG "pointless warning\n");
  4185. mutex_unlock(&mddev->open_mutex);
  4186. abort:
  4187. mutex_unlock(&disks_mutex);
  4188. if (!error && mddev->kobj.sd) {
  4189. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4190. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4191. }
  4192. mddev_put(mddev);
  4193. return error;
  4194. }
  4195. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4196. {
  4197. md_alloc(dev, NULL);
  4198. return NULL;
  4199. }
  4200. static int add_named_array(const char *val, struct kernel_param *kp)
  4201. {
  4202. /* val must be "md_*" where * is not all digits.
  4203. * We allocate an array with a large free minor number, and
  4204. * set the name to val. val must not already be an active name.
  4205. */
  4206. int len = strlen(val);
  4207. char buf[DISK_NAME_LEN];
  4208. while (len && val[len-1] == '\n')
  4209. len--;
  4210. if (len >= DISK_NAME_LEN)
  4211. return -E2BIG;
  4212. strlcpy(buf, val, len+1);
  4213. if (strncmp(buf, "md_", 3) != 0)
  4214. return -EINVAL;
  4215. return md_alloc(0, buf);
  4216. }
  4217. static void md_safemode_timeout(unsigned long data)
  4218. {
  4219. struct mddev *mddev = (struct mddev *) data;
  4220. if (!atomic_read(&mddev->writes_pending)) {
  4221. mddev->safemode = 1;
  4222. if (mddev->external)
  4223. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4224. }
  4225. md_wakeup_thread(mddev->thread);
  4226. }
  4227. static int start_dirty_degraded;
  4228. int md_run(struct mddev *mddev)
  4229. {
  4230. int err;
  4231. struct md_rdev *rdev;
  4232. struct md_personality *pers;
  4233. if (list_empty(&mddev->disks))
  4234. /* cannot run an array with no devices.. */
  4235. return -EINVAL;
  4236. if (mddev->pers)
  4237. return -EBUSY;
  4238. /* Cannot run until previous stop completes properly */
  4239. if (mddev->sysfs_active)
  4240. return -EBUSY;
  4241. /*
  4242. * Analyze all RAID superblock(s)
  4243. */
  4244. if (!mddev->raid_disks) {
  4245. if (!mddev->persistent)
  4246. return -EINVAL;
  4247. analyze_sbs(mddev);
  4248. }
  4249. if (mddev->level != LEVEL_NONE)
  4250. request_module("md-level-%d", mddev->level);
  4251. else if (mddev->clevel[0])
  4252. request_module("md-%s", mddev->clevel);
  4253. /*
  4254. * Drop all container device buffers, from now on
  4255. * the only valid external interface is through the md
  4256. * device.
  4257. */
  4258. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4259. if (test_bit(Faulty, &rdev->flags))
  4260. continue;
  4261. sync_blockdev(rdev->bdev);
  4262. invalidate_bdev(rdev->bdev);
  4263. /* perform some consistency tests on the device.
  4264. * We don't want the data to overlap the metadata,
  4265. * Internal Bitmap issues have been handled elsewhere.
  4266. */
  4267. if (rdev->meta_bdev) {
  4268. /* Nothing to check */;
  4269. } else if (rdev->data_offset < rdev->sb_start) {
  4270. if (mddev->dev_sectors &&
  4271. rdev->data_offset + mddev->dev_sectors
  4272. > rdev->sb_start) {
  4273. printk("md: %s: data overlaps metadata\n",
  4274. mdname(mddev));
  4275. return -EINVAL;
  4276. }
  4277. } else {
  4278. if (rdev->sb_start + rdev->sb_size/512
  4279. > rdev->data_offset) {
  4280. printk("md: %s: metadata overlaps data\n",
  4281. mdname(mddev));
  4282. return -EINVAL;
  4283. }
  4284. }
  4285. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4286. }
  4287. if (mddev->bio_set == NULL)
  4288. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4289. sizeof(struct mddev *));
  4290. spin_lock(&pers_lock);
  4291. pers = find_pers(mddev->level, mddev->clevel);
  4292. if (!pers || !try_module_get(pers->owner)) {
  4293. spin_unlock(&pers_lock);
  4294. if (mddev->level != LEVEL_NONE)
  4295. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4296. mddev->level);
  4297. else
  4298. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4299. mddev->clevel);
  4300. return -EINVAL;
  4301. }
  4302. mddev->pers = pers;
  4303. spin_unlock(&pers_lock);
  4304. if (mddev->level != pers->level) {
  4305. mddev->level = pers->level;
  4306. mddev->new_level = pers->level;
  4307. }
  4308. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4309. if (mddev->reshape_position != MaxSector &&
  4310. pers->start_reshape == NULL) {
  4311. /* This personality cannot handle reshaping... */
  4312. mddev->pers = NULL;
  4313. module_put(pers->owner);
  4314. return -EINVAL;
  4315. }
  4316. if (pers->sync_request) {
  4317. /* Warn if this is a potentially silly
  4318. * configuration.
  4319. */
  4320. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4321. struct md_rdev *rdev2;
  4322. int warned = 0;
  4323. list_for_each_entry(rdev, &mddev->disks, same_set)
  4324. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  4325. if (rdev < rdev2 &&
  4326. rdev->bdev->bd_contains ==
  4327. rdev2->bdev->bd_contains) {
  4328. printk(KERN_WARNING
  4329. "%s: WARNING: %s appears to be"
  4330. " on the same physical disk as"
  4331. " %s.\n",
  4332. mdname(mddev),
  4333. bdevname(rdev->bdev,b),
  4334. bdevname(rdev2->bdev,b2));
  4335. warned = 1;
  4336. }
  4337. }
  4338. if (warned)
  4339. printk(KERN_WARNING
  4340. "True protection against single-disk"
  4341. " failure might be compromised.\n");
  4342. }
  4343. mddev->recovery = 0;
  4344. /* may be over-ridden by personality */
  4345. mddev->resync_max_sectors = mddev->dev_sectors;
  4346. mddev->ok_start_degraded = start_dirty_degraded;
  4347. if (start_readonly && mddev->ro == 0)
  4348. mddev->ro = 2; /* read-only, but switch on first write */
  4349. err = mddev->pers->run(mddev);
  4350. if (err)
  4351. printk(KERN_ERR "md: pers->run() failed ...\n");
  4352. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4353. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4354. " but 'external_size' not in effect?\n", __func__);
  4355. printk(KERN_ERR
  4356. "md: invalid array_size %llu > default size %llu\n",
  4357. (unsigned long long)mddev->array_sectors / 2,
  4358. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4359. err = -EINVAL;
  4360. mddev->pers->stop(mddev);
  4361. }
  4362. if (err == 0 && mddev->pers->sync_request) {
  4363. err = bitmap_create(mddev);
  4364. if (err) {
  4365. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4366. mdname(mddev), err);
  4367. mddev->pers->stop(mddev);
  4368. }
  4369. }
  4370. if (err) {
  4371. module_put(mddev->pers->owner);
  4372. mddev->pers = NULL;
  4373. bitmap_destroy(mddev);
  4374. return err;
  4375. }
  4376. if (mddev->pers->sync_request) {
  4377. if (mddev->kobj.sd &&
  4378. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4379. printk(KERN_WARNING
  4380. "md: cannot register extra attributes for %s\n",
  4381. mdname(mddev));
  4382. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4383. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4384. mddev->ro = 0;
  4385. atomic_set(&mddev->writes_pending,0);
  4386. atomic_set(&mddev->max_corr_read_errors,
  4387. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4388. mddev->safemode = 0;
  4389. mddev->safemode_timer.function = md_safemode_timeout;
  4390. mddev->safemode_timer.data = (unsigned long) mddev;
  4391. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4392. mddev->in_sync = 1;
  4393. smp_wmb();
  4394. mddev->ready = 1;
  4395. list_for_each_entry(rdev, &mddev->disks, same_set)
  4396. if (rdev->raid_disk >= 0)
  4397. if (sysfs_link_rdev(mddev, rdev))
  4398. /* failure here is OK */;
  4399. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4400. if (mddev->flags)
  4401. md_update_sb(mddev, 0);
  4402. md_new_event(mddev);
  4403. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4404. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4405. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4406. return 0;
  4407. }
  4408. EXPORT_SYMBOL_GPL(md_run);
  4409. static int do_md_run(struct mddev *mddev)
  4410. {
  4411. int err;
  4412. err = md_run(mddev);
  4413. if (err)
  4414. goto out;
  4415. err = bitmap_load(mddev);
  4416. if (err) {
  4417. bitmap_destroy(mddev);
  4418. goto out;
  4419. }
  4420. md_wakeup_thread(mddev->thread);
  4421. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4422. set_capacity(mddev->gendisk, mddev->array_sectors);
  4423. revalidate_disk(mddev->gendisk);
  4424. mddev->changed = 1;
  4425. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4426. out:
  4427. return err;
  4428. }
  4429. static int restart_array(struct mddev *mddev)
  4430. {
  4431. struct gendisk *disk = mddev->gendisk;
  4432. /* Complain if it has no devices */
  4433. if (list_empty(&mddev->disks))
  4434. return -ENXIO;
  4435. if (!mddev->pers)
  4436. return -EINVAL;
  4437. if (!mddev->ro)
  4438. return -EBUSY;
  4439. mddev->safemode = 0;
  4440. mddev->ro = 0;
  4441. set_disk_ro(disk, 0);
  4442. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4443. mdname(mddev));
  4444. /* Kick recovery or resync if necessary */
  4445. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4446. md_wakeup_thread(mddev->thread);
  4447. md_wakeup_thread(mddev->sync_thread);
  4448. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4449. return 0;
  4450. }
  4451. /* similar to deny_write_access, but accounts for our holding a reference
  4452. * to the file ourselves */
  4453. static int deny_bitmap_write_access(struct file * file)
  4454. {
  4455. struct inode *inode = file->f_mapping->host;
  4456. spin_lock(&inode->i_lock);
  4457. if (atomic_read(&inode->i_writecount) > 1) {
  4458. spin_unlock(&inode->i_lock);
  4459. return -ETXTBSY;
  4460. }
  4461. atomic_set(&inode->i_writecount, -1);
  4462. spin_unlock(&inode->i_lock);
  4463. return 0;
  4464. }
  4465. void restore_bitmap_write_access(struct file *file)
  4466. {
  4467. struct inode *inode = file->f_mapping->host;
  4468. spin_lock(&inode->i_lock);
  4469. atomic_set(&inode->i_writecount, 1);
  4470. spin_unlock(&inode->i_lock);
  4471. }
  4472. static void md_clean(struct mddev *mddev)
  4473. {
  4474. mddev->array_sectors = 0;
  4475. mddev->external_size = 0;
  4476. mddev->dev_sectors = 0;
  4477. mddev->raid_disks = 0;
  4478. mddev->recovery_cp = 0;
  4479. mddev->resync_min = 0;
  4480. mddev->resync_max = MaxSector;
  4481. mddev->reshape_position = MaxSector;
  4482. mddev->external = 0;
  4483. mddev->persistent = 0;
  4484. mddev->level = LEVEL_NONE;
  4485. mddev->clevel[0] = 0;
  4486. mddev->flags = 0;
  4487. mddev->ro = 0;
  4488. mddev->metadata_type[0] = 0;
  4489. mddev->chunk_sectors = 0;
  4490. mddev->ctime = mddev->utime = 0;
  4491. mddev->layout = 0;
  4492. mddev->max_disks = 0;
  4493. mddev->events = 0;
  4494. mddev->can_decrease_events = 0;
  4495. mddev->delta_disks = 0;
  4496. mddev->new_level = LEVEL_NONE;
  4497. mddev->new_layout = 0;
  4498. mddev->new_chunk_sectors = 0;
  4499. mddev->curr_resync = 0;
  4500. mddev->resync_mismatches = 0;
  4501. mddev->suspend_lo = mddev->suspend_hi = 0;
  4502. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4503. mddev->recovery = 0;
  4504. mddev->in_sync = 0;
  4505. mddev->changed = 0;
  4506. mddev->degraded = 0;
  4507. mddev->safemode = 0;
  4508. mddev->bitmap_info.offset = 0;
  4509. mddev->bitmap_info.default_offset = 0;
  4510. mddev->bitmap_info.chunksize = 0;
  4511. mddev->bitmap_info.daemon_sleep = 0;
  4512. mddev->bitmap_info.max_write_behind = 0;
  4513. }
  4514. static void __md_stop_writes(struct mddev *mddev)
  4515. {
  4516. if (mddev->sync_thread) {
  4517. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4518. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4519. reap_sync_thread(mddev);
  4520. }
  4521. del_timer_sync(&mddev->safemode_timer);
  4522. bitmap_flush(mddev);
  4523. md_super_wait(mddev);
  4524. if (!mddev->in_sync || mddev->flags) {
  4525. /* mark array as shutdown cleanly */
  4526. mddev->in_sync = 1;
  4527. md_update_sb(mddev, 1);
  4528. }
  4529. }
  4530. void md_stop_writes(struct mddev *mddev)
  4531. {
  4532. mddev_lock(mddev);
  4533. __md_stop_writes(mddev);
  4534. mddev_unlock(mddev);
  4535. }
  4536. EXPORT_SYMBOL_GPL(md_stop_writes);
  4537. void md_stop(struct mddev *mddev)
  4538. {
  4539. mddev->ready = 0;
  4540. mddev->pers->stop(mddev);
  4541. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4542. mddev->to_remove = &md_redundancy_group;
  4543. module_put(mddev->pers->owner);
  4544. mddev->pers = NULL;
  4545. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4546. }
  4547. EXPORT_SYMBOL_GPL(md_stop);
  4548. static int md_set_readonly(struct mddev *mddev, int is_open)
  4549. {
  4550. int err = 0;
  4551. mutex_lock(&mddev->open_mutex);
  4552. if (atomic_read(&mddev->openers) > is_open) {
  4553. printk("md: %s still in use.\n",mdname(mddev));
  4554. err = -EBUSY;
  4555. goto out;
  4556. }
  4557. if (mddev->pers) {
  4558. __md_stop_writes(mddev);
  4559. err = -ENXIO;
  4560. if (mddev->ro==1)
  4561. goto out;
  4562. mddev->ro = 1;
  4563. set_disk_ro(mddev->gendisk, 1);
  4564. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4565. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4566. err = 0;
  4567. }
  4568. out:
  4569. mutex_unlock(&mddev->open_mutex);
  4570. return err;
  4571. }
  4572. /* mode:
  4573. * 0 - completely stop and dis-assemble array
  4574. * 2 - stop but do not disassemble array
  4575. */
  4576. static int do_md_stop(struct mddev * mddev, int mode, int is_open)
  4577. {
  4578. struct gendisk *disk = mddev->gendisk;
  4579. struct md_rdev *rdev;
  4580. mutex_lock(&mddev->open_mutex);
  4581. if (atomic_read(&mddev->openers) > is_open ||
  4582. mddev->sysfs_active) {
  4583. printk("md: %s still in use.\n",mdname(mddev));
  4584. mutex_unlock(&mddev->open_mutex);
  4585. return -EBUSY;
  4586. }
  4587. if (mddev->pers) {
  4588. if (mddev->ro)
  4589. set_disk_ro(disk, 0);
  4590. __md_stop_writes(mddev);
  4591. md_stop(mddev);
  4592. mddev->queue->merge_bvec_fn = NULL;
  4593. mddev->queue->backing_dev_info.congested_fn = NULL;
  4594. /* tell userspace to handle 'inactive' */
  4595. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4596. list_for_each_entry(rdev, &mddev->disks, same_set)
  4597. if (rdev->raid_disk >= 0)
  4598. sysfs_unlink_rdev(mddev, rdev);
  4599. set_capacity(disk, 0);
  4600. mutex_unlock(&mddev->open_mutex);
  4601. mddev->changed = 1;
  4602. revalidate_disk(disk);
  4603. if (mddev->ro)
  4604. mddev->ro = 0;
  4605. } else
  4606. mutex_unlock(&mddev->open_mutex);
  4607. /*
  4608. * Free resources if final stop
  4609. */
  4610. if (mode == 0) {
  4611. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4612. bitmap_destroy(mddev);
  4613. if (mddev->bitmap_info.file) {
  4614. restore_bitmap_write_access(mddev->bitmap_info.file);
  4615. fput(mddev->bitmap_info.file);
  4616. mddev->bitmap_info.file = NULL;
  4617. }
  4618. mddev->bitmap_info.offset = 0;
  4619. export_array(mddev);
  4620. md_clean(mddev);
  4621. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4622. if (mddev->hold_active == UNTIL_STOP)
  4623. mddev->hold_active = 0;
  4624. }
  4625. blk_integrity_unregister(disk);
  4626. md_new_event(mddev);
  4627. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4628. return 0;
  4629. }
  4630. #ifndef MODULE
  4631. static void autorun_array(struct mddev *mddev)
  4632. {
  4633. struct md_rdev *rdev;
  4634. int err;
  4635. if (list_empty(&mddev->disks))
  4636. return;
  4637. printk(KERN_INFO "md: running: ");
  4638. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4639. char b[BDEVNAME_SIZE];
  4640. printk("<%s>", bdevname(rdev->bdev,b));
  4641. }
  4642. printk("\n");
  4643. err = do_md_run(mddev);
  4644. if (err) {
  4645. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4646. do_md_stop(mddev, 0, 0);
  4647. }
  4648. }
  4649. /*
  4650. * lets try to run arrays based on all disks that have arrived
  4651. * until now. (those are in pending_raid_disks)
  4652. *
  4653. * the method: pick the first pending disk, collect all disks with
  4654. * the same UUID, remove all from the pending list and put them into
  4655. * the 'same_array' list. Then order this list based on superblock
  4656. * update time (freshest comes first), kick out 'old' disks and
  4657. * compare superblocks. If everything's fine then run it.
  4658. *
  4659. * If "unit" is allocated, then bump its reference count
  4660. */
  4661. static void autorun_devices(int part)
  4662. {
  4663. struct md_rdev *rdev0, *rdev, *tmp;
  4664. struct mddev *mddev;
  4665. char b[BDEVNAME_SIZE];
  4666. printk(KERN_INFO "md: autorun ...\n");
  4667. while (!list_empty(&pending_raid_disks)) {
  4668. int unit;
  4669. dev_t dev;
  4670. LIST_HEAD(candidates);
  4671. rdev0 = list_entry(pending_raid_disks.next,
  4672. struct md_rdev, same_set);
  4673. printk(KERN_INFO "md: considering %s ...\n",
  4674. bdevname(rdev0->bdev,b));
  4675. INIT_LIST_HEAD(&candidates);
  4676. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4677. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4678. printk(KERN_INFO "md: adding %s ...\n",
  4679. bdevname(rdev->bdev,b));
  4680. list_move(&rdev->same_set, &candidates);
  4681. }
  4682. /*
  4683. * now we have a set of devices, with all of them having
  4684. * mostly sane superblocks. It's time to allocate the
  4685. * mddev.
  4686. */
  4687. if (part) {
  4688. dev = MKDEV(mdp_major,
  4689. rdev0->preferred_minor << MdpMinorShift);
  4690. unit = MINOR(dev) >> MdpMinorShift;
  4691. } else {
  4692. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4693. unit = MINOR(dev);
  4694. }
  4695. if (rdev0->preferred_minor != unit) {
  4696. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4697. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4698. break;
  4699. }
  4700. md_probe(dev, NULL, NULL);
  4701. mddev = mddev_find(dev);
  4702. if (!mddev || !mddev->gendisk) {
  4703. if (mddev)
  4704. mddev_put(mddev);
  4705. printk(KERN_ERR
  4706. "md: cannot allocate memory for md drive.\n");
  4707. break;
  4708. }
  4709. if (mddev_lock(mddev))
  4710. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4711. mdname(mddev));
  4712. else if (mddev->raid_disks || mddev->major_version
  4713. || !list_empty(&mddev->disks)) {
  4714. printk(KERN_WARNING
  4715. "md: %s already running, cannot run %s\n",
  4716. mdname(mddev), bdevname(rdev0->bdev,b));
  4717. mddev_unlock(mddev);
  4718. } else {
  4719. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4720. mddev->persistent = 1;
  4721. rdev_for_each_list(rdev, tmp, &candidates) {
  4722. list_del_init(&rdev->same_set);
  4723. if (bind_rdev_to_array(rdev, mddev))
  4724. export_rdev(rdev);
  4725. }
  4726. autorun_array(mddev);
  4727. mddev_unlock(mddev);
  4728. }
  4729. /* on success, candidates will be empty, on error
  4730. * it won't...
  4731. */
  4732. rdev_for_each_list(rdev, tmp, &candidates) {
  4733. list_del_init(&rdev->same_set);
  4734. export_rdev(rdev);
  4735. }
  4736. mddev_put(mddev);
  4737. }
  4738. printk(KERN_INFO "md: ... autorun DONE.\n");
  4739. }
  4740. #endif /* !MODULE */
  4741. static int get_version(void __user * arg)
  4742. {
  4743. mdu_version_t ver;
  4744. ver.major = MD_MAJOR_VERSION;
  4745. ver.minor = MD_MINOR_VERSION;
  4746. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4747. if (copy_to_user(arg, &ver, sizeof(ver)))
  4748. return -EFAULT;
  4749. return 0;
  4750. }
  4751. static int get_array_info(struct mddev * mddev, void __user * arg)
  4752. {
  4753. mdu_array_info_t info;
  4754. int nr,working,insync,failed,spare;
  4755. struct md_rdev *rdev;
  4756. nr=working=insync=failed=spare=0;
  4757. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4758. nr++;
  4759. if (test_bit(Faulty, &rdev->flags))
  4760. failed++;
  4761. else {
  4762. working++;
  4763. if (test_bit(In_sync, &rdev->flags))
  4764. insync++;
  4765. else
  4766. spare++;
  4767. }
  4768. }
  4769. info.major_version = mddev->major_version;
  4770. info.minor_version = mddev->minor_version;
  4771. info.patch_version = MD_PATCHLEVEL_VERSION;
  4772. info.ctime = mddev->ctime;
  4773. info.level = mddev->level;
  4774. info.size = mddev->dev_sectors / 2;
  4775. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4776. info.size = -1;
  4777. info.nr_disks = nr;
  4778. info.raid_disks = mddev->raid_disks;
  4779. info.md_minor = mddev->md_minor;
  4780. info.not_persistent= !mddev->persistent;
  4781. info.utime = mddev->utime;
  4782. info.state = 0;
  4783. if (mddev->in_sync)
  4784. info.state = (1<<MD_SB_CLEAN);
  4785. if (mddev->bitmap && mddev->bitmap_info.offset)
  4786. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4787. info.active_disks = insync;
  4788. info.working_disks = working;
  4789. info.failed_disks = failed;
  4790. info.spare_disks = spare;
  4791. info.layout = mddev->layout;
  4792. info.chunk_size = mddev->chunk_sectors << 9;
  4793. if (copy_to_user(arg, &info, sizeof(info)))
  4794. return -EFAULT;
  4795. return 0;
  4796. }
  4797. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4798. {
  4799. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4800. char *ptr, *buf = NULL;
  4801. int err = -ENOMEM;
  4802. if (md_allow_write(mddev))
  4803. file = kmalloc(sizeof(*file), GFP_NOIO);
  4804. else
  4805. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4806. if (!file)
  4807. goto out;
  4808. /* bitmap disabled, zero the first byte and copy out */
  4809. if (!mddev->bitmap || !mddev->bitmap->file) {
  4810. file->pathname[0] = '\0';
  4811. goto copy_out;
  4812. }
  4813. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4814. if (!buf)
  4815. goto out;
  4816. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4817. if (IS_ERR(ptr))
  4818. goto out;
  4819. strcpy(file->pathname, ptr);
  4820. copy_out:
  4821. err = 0;
  4822. if (copy_to_user(arg, file, sizeof(*file)))
  4823. err = -EFAULT;
  4824. out:
  4825. kfree(buf);
  4826. kfree(file);
  4827. return err;
  4828. }
  4829. static int get_disk_info(struct mddev * mddev, void __user * arg)
  4830. {
  4831. mdu_disk_info_t info;
  4832. struct md_rdev *rdev;
  4833. if (copy_from_user(&info, arg, sizeof(info)))
  4834. return -EFAULT;
  4835. rdev = find_rdev_nr(mddev, info.number);
  4836. if (rdev) {
  4837. info.major = MAJOR(rdev->bdev->bd_dev);
  4838. info.minor = MINOR(rdev->bdev->bd_dev);
  4839. info.raid_disk = rdev->raid_disk;
  4840. info.state = 0;
  4841. if (test_bit(Faulty, &rdev->flags))
  4842. info.state |= (1<<MD_DISK_FAULTY);
  4843. else if (test_bit(In_sync, &rdev->flags)) {
  4844. info.state |= (1<<MD_DISK_ACTIVE);
  4845. info.state |= (1<<MD_DISK_SYNC);
  4846. }
  4847. if (test_bit(WriteMostly, &rdev->flags))
  4848. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4849. } else {
  4850. info.major = info.minor = 0;
  4851. info.raid_disk = -1;
  4852. info.state = (1<<MD_DISK_REMOVED);
  4853. }
  4854. if (copy_to_user(arg, &info, sizeof(info)))
  4855. return -EFAULT;
  4856. return 0;
  4857. }
  4858. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  4859. {
  4860. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4861. struct md_rdev *rdev;
  4862. dev_t dev = MKDEV(info->major,info->minor);
  4863. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4864. return -EOVERFLOW;
  4865. if (!mddev->raid_disks) {
  4866. int err;
  4867. /* expecting a device which has a superblock */
  4868. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4869. if (IS_ERR(rdev)) {
  4870. printk(KERN_WARNING
  4871. "md: md_import_device returned %ld\n",
  4872. PTR_ERR(rdev));
  4873. return PTR_ERR(rdev);
  4874. }
  4875. if (!list_empty(&mddev->disks)) {
  4876. struct md_rdev *rdev0
  4877. = list_entry(mddev->disks.next,
  4878. struct md_rdev, same_set);
  4879. err = super_types[mddev->major_version]
  4880. .load_super(rdev, rdev0, mddev->minor_version);
  4881. if (err < 0) {
  4882. printk(KERN_WARNING
  4883. "md: %s has different UUID to %s\n",
  4884. bdevname(rdev->bdev,b),
  4885. bdevname(rdev0->bdev,b2));
  4886. export_rdev(rdev);
  4887. return -EINVAL;
  4888. }
  4889. }
  4890. err = bind_rdev_to_array(rdev, mddev);
  4891. if (err)
  4892. export_rdev(rdev);
  4893. return err;
  4894. }
  4895. /*
  4896. * add_new_disk can be used once the array is assembled
  4897. * to add "hot spares". They must already have a superblock
  4898. * written
  4899. */
  4900. if (mddev->pers) {
  4901. int err;
  4902. if (!mddev->pers->hot_add_disk) {
  4903. printk(KERN_WARNING
  4904. "%s: personality does not support diskops!\n",
  4905. mdname(mddev));
  4906. return -EINVAL;
  4907. }
  4908. if (mddev->persistent)
  4909. rdev = md_import_device(dev, mddev->major_version,
  4910. mddev->minor_version);
  4911. else
  4912. rdev = md_import_device(dev, -1, -1);
  4913. if (IS_ERR(rdev)) {
  4914. printk(KERN_WARNING
  4915. "md: md_import_device returned %ld\n",
  4916. PTR_ERR(rdev));
  4917. return PTR_ERR(rdev);
  4918. }
  4919. /* set saved_raid_disk if appropriate */
  4920. if (!mddev->persistent) {
  4921. if (info->state & (1<<MD_DISK_SYNC) &&
  4922. info->raid_disk < mddev->raid_disks) {
  4923. rdev->raid_disk = info->raid_disk;
  4924. set_bit(In_sync, &rdev->flags);
  4925. } else
  4926. rdev->raid_disk = -1;
  4927. } else
  4928. super_types[mddev->major_version].
  4929. validate_super(mddev, rdev);
  4930. if ((info->state & (1<<MD_DISK_SYNC)) &&
  4931. (!test_bit(In_sync, &rdev->flags) ||
  4932. rdev->raid_disk != info->raid_disk)) {
  4933. /* This was a hot-add request, but events doesn't
  4934. * match, so reject it.
  4935. */
  4936. export_rdev(rdev);
  4937. return -EINVAL;
  4938. }
  4939. if (test_bit(In_sync, &rdev->flags))
  4940. rdev->saved_raid_disk = rdev->raid_disk;
  4941. else
  4942. rdev->saved_raid_disk = -1;
  4943. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4944. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4945. set_bit(WriteMostly, &rdev->flags);
  4946. else
  4947. clear_bit(WriteMostly, &rdev->flags);
  4948. rdev->raid_disk = -1;
  4949. err = bind_rdev_to_array(rdev, mddev);
  4950. if (!err && !mddev->pers->hot_remove_disk) {
  4951. /* If there is hot_add_disk but no hot_remove_disk
  4952. * then added disks for geometry changes,
  4953. * and should be added immediately.
  4954. */
  4955. super_types[mddev->major_version].
  4956. validate_super(mddev, rdev);
  4957. err = mddev->pers->hot_add_disk(mddev, rdev);
  4958. if (err)
  4959. unbind_rdev_from_array(rdev);
  4960. }
  4961. if (err)
  4962. export_rdev(rdev);
  4963. else
  4964. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4965. md_update_sb(mddev, 1);
  4966. if (mddev->degraded)
  4967. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4968. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4969. if (!err)
  4970. md_new_event(mddev);
  4971. md_wakeup_thread(mddev->thread);
  4972. return err;
  4973. }
  4974. /* otherwise, add_new_disk is only allowed
  4975. * for major_version==0 superblocks
  4976. */
  4977. if (mddev->major_version != 0) {
  4978. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4979. mdname(mddev));
  4980. return -EINVAL;
  4981. }
  4982. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4983. int err;
  4984. rdev = md_import_device(dev, -1, 0);
  4985. if (IS_ERR(rdev)) {
  4986. printk(KERN_WARNING
  4987. "md: error, md_import_device() returned %ld\n",
  4988. PTR_ERR(rdev));
  4989. return PTR_ERR(rdev);
  4990. }
  4991. rdev->desc_nr = info->number;
  4992. if (info->raid_disk < mddev->raid_disks)
  4993. rdev->raid_disk = info->raid_disk;
  4994. else
  4995. rdev->raid_disk = -1;
  4996. if (rdev->raid_disk < mddev->raid_disks)
  4997. if (info->state & (1<<MD_DISK_SYNC))
  4998. set_bit(In_sync, &rdev->flags);
  4999. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5000. set_bit(WriteMostly, &rdev->flags);
  5001. if (!mddev->persistent) {
  5002. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5003. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5004. } else
  5005. rdev->sb_start = calc_dev_sboffset(rdev);
  5006. rdev->sectors = rdev->sb_start;
  5007. err = bind_rdev_to_array(rdev, mddev);
  5008. if (err) {
  5009. export_rdev(rdev);
  5010. return err;
  5011. }
  5012. }
  5013. return 0;
  5014. }
  5015. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5016. {
  5017. char b[BDEVNAME_SIZE];
  5018. struct md_rdev *rdev;
  5019. rdev = find_rdev(mddev, dev);
  5020. if (!rdev)
  5021. return -ENXIO;
  5022. if (rdev->raid_disk >= 0)
  5023. goto busy;
  5024. kick_rdev_from_array(rdev);
  5025. md_update_sb(mddev, 1);
  5026. md_new_event(mddev);
  5027. return 0;
  5028. busy:
  5029. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5030. bdevname(rdev->bdev,b), mdname(mddev));
  5031. return -EBUSY;
  5032. }
  5033. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5034. {
  5035. char b[BDEVNAME_SIZE];
  5036. int err;
  5037. struct md_rdev *rdev;
  5038. if (!mddev->pers)
  5039. return -ENODEV;
  5040. if (mddev->major_version != 0) {
  5041. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5042. " version-0 superblocks.\n",
  5043. mdname(mddev));
  5044. return -EINVAL;
  5045. }
  5046. if (!mddev->pers->hot_add_disk) {
  5047. printk(KERN_WARNING
  5048. "%s: personality does not support diskops!\n",
  5049. mdname(mddev));
  5050. return -EINVAL;
  5051. }
  5052. rdev = md_import_device(dev, -1, 0);
  5053. if (IS_ERR(rdev)) {
  5054. printk(KERN_WARNING
  5055. "md: error, md_import_device() returned %ld\n",
  5056. PTR_ERR(rdev));
  5057. return -EINVAL;
  5058. }
  5059. if (mddev->persistent)
  5060. rdev->sb_start = calc_dev_sboffset(rdev);
  5061. else
  5062. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5063. rdev->sectors = rdev->sb_start;
  5064. if (test_bit(Faulty, &rdev->flags)) {
  5065. printk(KERN_WARNING
  5066. "md: can not hot-add faulty %s disk to %s!\n",
  5067. bdevname(rdev->bdev,b), mdname(mddev));
  5068. err = -EINVAL;
  5069. goto abort_export;
  5070. }
  5071. clear_bit(In_sync, &rdev->flags);
  5072. rdev->desc_nr = -1;
  5073. rdev->saved_raid_disk = -1;
  5074. err = bind_rdev_to_array(rdev, mddev);
  5075. if (err)
  5076. goto abort_export;
  5077. /*
  5078. * The rest should better be atomic, we can have disk failures
  5079. * noticed in interrupt contexts ...
  5080. */
  5081. rdev->raid_disk = -1;
  5082. md_update_sb(mddev, 1);
  5083. /*
  5084. * Kick recovery, maybe this spare has to be added to the
  5085. * array immediately.
  5086. */
  5087. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5088. md_wakeup_thread(mddev->thread);
  5089. md_new_event(mddev);
  5090. return 0;
  5091. abort_export:
  5092. export_rdev(rdev);
  5093. return err;
  5094. }
  5095. static int set_bitmap_file(struct mddev *mddev, int fd)
  5096. {
  5097. int err;
  5098. if (mddev->pers) {
  5099. if (!mddev->pers->quiesce)
  5100. return -EBUSY;
  5101. if (mddev->recovery || mddev->sync_thread)
  5102. return -EBUSY;
  5103. /* we should be able to change the bitmap.. */
  5104. }
  5105. if (fd >= 0) {
  5106. if (mddev->bitmap)
  5107. return -EEXIST; /* cannot add when bitmap is present */
  5108. mddev->bitmap_info.file = fget(fd);
  5109. if (mddev->bitmap_info.file == NULL) {
  5110. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5111. mdname(mddev));
  5112. return -EBADF;
  5113. }
  5114. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5115. if (err) {
  5116. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5117. mdname(mddev));
  5118. fput(mddev->bitmap_info.file);
  5119. mddev->bitmap_info.file = NULL;
  5120. return err;
  5121. }
  5122. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5123. } else if (mddev->bitmap == NULL)
  5124. return -ENOENT; /* cannot remove what isn't there */
  5125. err = 0;
  5126. if (mddev->pers) {
  5127. mddev->pers->quiesce(mddev, 1);
  5128. if (fd >= 0) {
  5129. err = bitmap_create(mddev);
  5130. if (!err)
  5131. err = bitmap_load(mddev);
  5132. }
  5133. if (fd < 0 || err) {
  5134. bitmap_destroy(mddev);
  5135. fd = -1; /* make sure to put the file */
  5136. }
  5137. mddev->pers->quiesce(mddev, 0);
  5138. }
  5139. if (fd < 0) {
  5140. if (mddev->bitmap_info.file) {
  5141. restore_bitmap_write_access(mddev->bitmap_info.file);
  5142. fput(mddev->bitmap_info.file);
  5143. }
  5144. mddev->bitmap_info.file = NULL;
  5145. }
  5146. return err;
  5147. }
  5148. /*
  5149. * set_array_info is used two different ways
  5150. * The original usage is when creating a new array.
  5151. * In this usage, raid_disks is > 0 and it together with
  5152. * level, size, not_persistent,layout,chunksize determine the
  5153. * shape of the array.
  5154. * This will always create an array with a type-0.90.0 superblock.
  5155. * The newer usage is when assembling an array.
  5156. * In this case raid_disks will be 0, and the major_version field is
  5157. * use to determine which style super-blocks are to be found on the devices.
  5158. * The minor and patch _version numbers are also kept incase the
  5159. * super_block handler wishes to interpret them.
  5160. */
  5161. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5162. {
  5163. if (info->raid_disks == 0) {
  5164. /* just setting version number for superblock loading */
  5165. if (info->major_version < 0 ||
  5166. info->major_version >= ARRAY_SIZE(super_types) ||
  5167. super_types[info->major_version].name == NULL) {
  5168. /* maybe try to auto-load a module? */
  5169. printk(KERN_INFO
  5170. "md: superblock version %d not known\n",
  5171. info->major_version);
  5172. return -EINVAL;
  5173. }
  5174. mddev->major_version = info->major_version;
  5175. mddev->minor_version = info->minor_version;
  5176. mddev->patch_version = info->patch_version;
  5177. mddev->persistent = !info->not_persistent;
  5178. /* ensure mddev_put doesn't delete this now that there
  5179. * is some minimal configuration.
  5180. */
  5181. mddev->ctime = get_seconds();
  5182. return 0;
  5183. }
  5184. mddev->major_version = MD_MAJOR_VERSION;
  5185. mddev->minor_version = MD_MINOR_VERSION;
  5186. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5187. mddev->ctime = get_seconds();
  5188. mddev->level = info->level;
  5189. mddev->clevel[0] = 0;
  5190. mddev->dev_sectors = 2 * (sector_t)info->size;
  5191. mddev->raid_disks = info->raid_disks;
  5192. /* don't set md_minor, it is determined by which /dev/md* was
  5193. * openned
  5194. */
  5195. if (info->state & (1<<MD_SB_CLEAN))
  5196. mddev->recovery_cp = MaxSector;
  5197. else
  5198. mddev->recovery_cp = 0;
  5199. mddev->persistent = ! info->not_persistent;
  5200. mddev->external = 0;
  5201. mddev->layout = info->layout;
  5202. mddev->chunk_sectors = info->chunk_size >> 9;
  5203. mddev->max_disks = MD_SB_DISKS;
  5204. if (mddev->persistent)
  5205. mddev->flags = 0;
  5206. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5207. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5208. mddev->bitmap_info.offset = 0;
  5209. mddev->reshape_position = MaxSector;
  5210. /*
  5211. * Generate a 128 bit UUID
  5212. */
  5213. get_random_bytes(mddev->uuid, 16);
  5214. mddev->new_level = mddev->level;
  5215. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5216. mddev->new_layout = mddev->layout;
  5217. mddev->delta_disks = 0;
  5218. return 0;
  5219. }
  5220. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5221. {
  5222. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5223. if (mddev->external_size)
  5224. return;
  5225. mddev->array_sectors = array_sectors;
  5226. }
  5227. EXPORT_SYMBOL(md_set_array_sectors);
  5228. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5229. {
  5230. struct md_rdev *rdev;
  5231. int rv;
  5232. int fit = (num_sectors == 0);
  5233. if (mddev->pers->resize == NULL)
  5234. return -EINVAL;
  5235. /* The "num_sectors" is the number of sectors of each device that
  5236. * is used. This can only make sense for arrays with redundancy.
  5237. * linear and raid0 always use whatever space is available. We can only
  5238. * consider changing this number if no resync or reconstruction is
  5239. * happening, and if the new size is acceptable. It must fit before the
  5240. * sb_start or, if that is <data_offset, it must fit before the size
  5241. * of each device. If num_sectors is zero, we find the largest size
  5242. * that fits.
  5243. */
  5244. if (mddev->sync_thread)
  5245. return -EBUSY;
  5246. if (mddev->bitmap)
  5247. /* Sorry, cannot grow a bitmap yet, just remove it,
  5248. * grow, and re-add.
  5249. */
  5250. return -EBUSY;
  5251. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5252. sector_t avail = rdev->sectors;
  5253. if (fit && (num_sectors == 0 || num_sectors > avail))
  5254. num_sectors = avail;
  5255. if (avail < num_sectors)
  5256. return -ENOSPC;
  5257. }
  5258. rv = mddev->pers->resize(mddev, num_sectors);
  5259. if (!rv)
  5260. revalidate_disk(mddev->gendisk);
  5261. return rv;
  5262. }
  5263. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5264. {
  5265. int rv;
  5266. /* change the number of raid disks */
  5267. if (mddev->pers->check_reshape == NULL)
  5268. return -EINVAL;
  5269. if (raid_disks <= 0 ||
  5270. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5271. return -EINVAL;
  5272. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5273. return -EBUSY;
  5274. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5275. rv = mddev->pers->check_reshape(mddev);
  5276. if (rv < 0)
  5277. mddev->delta_disks = 0;
  5278. return rv;
  5279. }
  5280. /*
  5281. * update_array_info is used to change the configuration of an
  5282. * on-line array.
  5283. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5284. * fields in the info are checked against the array.
  5285. * Any differences that cannot be handled will cause an error.
  5286. * Normally, only one change can be managed at a time.
  5287. */
  5288. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5289. {
  5290. int rv = 0;
  5291. int cnt = 0;
  5292. int state = 0;
  5293. /* calculate expected state,ignoring low bits */
  5294. if (mddev->bitmap && mddev->bitmap_info.offset)
  5295. state |= (1 << MD_SB_BITMAP_PRESENT);
  5296. if (mddev->major_version != info->major_version ||
  5297. mddev->minor_version != info->minor_version ||
  5298. /* mddev->patch_version != info->patch_version || */
  5299. mddev->ctime != info->ctime ||
  5300. mddev->level != info->level ||
  5301. /* mddev->layout != info->layout || */
  5302. !mddev->persistent != info->not_persistent||
  5303. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5304. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5305. ((state^info->state) & 0xfffffe00)
  5306. )
  5307. return -EINVAL;
  5308. /* Check there is only one change */
  5309. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5310. cnt++;
  5311. if (mddev->raid_disks != info->raid_disks)
  5312. cnt++;
  5313. if (mddev->layout != info->layout)
  5314. cnt++;
  5315. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5316. cnt++;
  5317. if (cnt == 0)
  5318. return 0;
  5319. if (cnt > 1)
  5320. return -EINVAL;
  5321. if (mddev->layout != info->layout) {
  5322. /* Change layout
  5323. * we don't need to do anything at the md level, the
  5324. * personality will take care of it all.
  5325. */
  5326. if (mddev->pers->check_reshape == NULL)
  5327. return -EINVAL;
  5328. else {
  5329. mddev->new_layout = info->layout;
  5330. rv = mddev->pers->check_reshape(mddev);
  5331. if (rv)
  5332. mddev->new_layout = mddev->layout;
  5333. return rv;
  5334. }
  5335. }
  5336. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5337. rv = update_size(mddev, (sector_t)info->size * 2);
  5338. if (mddev->raid_disks != info->raid_disks)
  5339. rv = update_raid_disks(mddev, info->raid_disks);
  5340. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5341. if (mddev->pers->quiesce == NULL)
  5342. return -EINVAL;
  5343. if (mddev->recovery || mddev->sync_thread)
  5344. return -EBUSY;
  5345. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5346. /* add the bitmap */
  5347. if (mddev->bitmap)
  5348. return -EEXIST;
  5349. if (mddev->bitmap_info.default_offset == 0)
  5350. return -EINVAL;
  5351. mddev->bitmap_info.offset =
  5352. mddev->bitmap_info.default_offset;
  5353. mddev->pers->quiesce(mddev, 1);
  5354. rv = bitmap_create(mddev);
  5355. if (!rv)
  5356. rv = bitmap_load(mddev);
  5357. if (rv)
  5358. bitmap_destroy(mddev);
  5359. mddev->pers->quiesce(mddev, 0);
  5360. } else {
  5361. /* remove the bitmap */
  5362. if (!mddev->bitmap)
  5363. return -ENOENT;
  5364. if (mddev->bitmap->file)
  5365. return -EINVAL;
  5366. mddev->pers->quiesce(mddev, 1);
  5367. bitmap_destroy(mddev);
  5368. mddev->pers->quiesce(mddev, 0);
  5369. mddev->bitmap_info.offset = 0;
  5370. }
  5371. }
  5372. md_update_sb(mddev, 1);
  5373. return rv;
  5374. }
  5375. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5376. {
  5377. struct md_rdev *rdev;
  5378. if (mddev->pers == NULL)
  5379. return -ENODEV;
  5380. rdev = find_rdev(mddev, dev);
  5381. if (!rdev)
  5382. return -ENODEV;
  5383. md_error(mddev, rdev);
  5384. if (!test_bit(Faulty, &rdev->flags))
  5385. return -EBUSY;
  5386. return 0;
  5387. }
  5388. /*
  5389. * We have a problem here : there is no easy way to give a CHS
  5390. * virtual geometry. We currently pretend that we have a 2 heads
  5391. * 4 sectors (with a BIG number of cylinders...). This drives
  5392. * dosfs just mad... ;-)
  5393. */
  5394. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5395. {
  5396. struct mddev *mddev = bdev->bd_disk->private_data;
  5397. geo->heads = 2;
  5398. geo->sectors = 4;
  5399. geo->cylinders = mddev->array_sectors / 8;
  5400. return 0;
  5401. }
  5402. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5403. unsigned int cmd, unsigned long arg)
  5404. {
  5405. int err = 0;
  5406. void __user *argp = (void __user *)arg;
  5407. struct mddev *mddev = NULL;
  5408. int ro;
  5409. switch (cmd) {
  5410. case RAID_VERSION:
  5411. case GET_ARRAY_INFO:
  5412. case GET_DISK_INFO:
  5413. break;
  5414. default:
  5415. if (!capable(CAP_SYS_ADMIN))
  5416. return -EACCES;
  5417. }
  5418. /*
  5419. * Commands dealing with the RAID driver but not any
  5420. * particular array:
  5421. */
  5422. switch (cmd)
  5423. {
  5424. case RAID_VERSION:
  5425. err = get_version(argp);
  5426. goto done;
  5427. case PRINT_RAID_DEBUG:
  5428. err = 0;
  5429. md_print_devices();
  5430. goto done;
  5431. #ifndef MODULE
  5432. case RAID_AUTORUN:
  5433. err = 0;
  5434. autostart_arrays(arg);
  5435. goto done;
  5436. #endif
  5437. default:;
  5438. }
  5439. /*
  5440. * Commands creating/starting a new array:
  5441. */
  5442. mddev = bdev->bd_disk->private_data;
  5443. if (!mddev) {
  5444. BUG();
  5445. goto abort;
  5446. }
  5447. err = mddev_lock(mddev);
  5448. if (err) {
  5449. printk(KERN_INFO
  5450. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5451. err, cmd);
  5452. goto abort;
  5453. }
  5454. switch (cmd)
  5455. {
  5456. case SET_ARRAY_INFO:
  5457. {
  5458. mdu_array_info_t info;
  5459. if (!arg)
  5460. memset(&info, 0, sizeof(info));
  5461. else if (copy_from_user(&info, argp, sizeof(info))) {
  5462. err = -EFAULT;
  5463. goto abort_unlock;
  5464. }
  5465. if (mddev->pers) {
  5466. err = update_array_info(mddev, &info);
  5467. if (err) {
  5468. printk(KERN_WARNING "md: couldn't update"
  5469. " array info. %d\n", err);
  5470. goto abort_unlock;
  5471. }
  5472. goto done_unlock;
  5473. }
  5474. if (!list_empty(&mddev->disks)) {
  5475. printk(KERN_WARNING
  5476. "md: array %s already has disks!\n",
  5477. mdname(mddev));
  5478. err = -EBUSY;
  5479. goto abort_unlock;
  5480. }
  5481. if (mddev->raid_disks) {
  5482. printk(KERN_WARNING
  5483. "md: array %s already initialised!\n",
  5484. mdname(mddev));
  5485. err = -EBUSY;
  5486. goto abort_unlock;
  5487. }
  5488. err = set_array_info(mddev, &info);
  5489. if (err) {
  5490. printk(KERN_WARNING "md: couldn't set"
  5491. " array info. %d\n", err);
  5492. goto abort_unlock;
  5493. }
  5494. }
  5495. goto done_unlock;
  5496. default:;
  5497. }
  5498. /*
  5499. * Commands querying/configuring an existing array:
  5500. */
  5501. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5502. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5503. if ((!mddev->raid_disks && !mddev->external)
  5504. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5505. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5506. && cmd != GET_BITMAP_FILE) {
  5507. err = -ENODEV;
  5508. goto abort_unlock;
  5509. }
  5510. /*
  5511. * Commands even a read-only array can execute:
  5512. */
  5513. switch (cmd)
  5514. {
  5515. case GET_ARRAY_INFO:
  5516. err = get_array_info(mddev, argp);
  5517. goto done_unlock;
  5518. case GET_BITMAP_FILE:
  5519. err = get_bitmap_file(mddev, argp);
  5520. goto done_unlock;
  5521. case GET_DISK_INFO:
  5522. err = get_disk_info(mddev, argp);
  5523. goto done_unlock;
  5524. case RESTART_ARRAY_RW:
  5525. err = restart_array(mddev);
  5526. goto done_unlock;
  5527. case STOP_ARRAY:
  5528. err = do_md_stop(mddev, 0, 1);
  5529. goto done_unlock;
  5530. case STOP_ARRAY_RO:
  5531. err = md_set_readonly(mddev, 1);
  5532. goto done_unlock;
  5533. case BLKROSET:
  5534. if (get_user(ro, (int __user *)(arg))) {
  5535. err = -EFAULT;
  5536. goto done_unlock;
  5537. }
  5538. err = -EINVAL;
  5539. /* if the bdev is going readonly the value of mddev->ro
  5540. * does not matter, no writes are coming
  5541. */
  5542. if (ro)
  5543. goto done_unlock;
  5544. /* are we are already prepared for writes? */
  5545. if (mddev->ro != 1)
  5546. goto done_unlock;
  5547. /* transitioning to readauto need only happen for
  5548. * arrays that call md_write_start
  5549. */
  5550. if (mddev->pers) {
  5551. err = restart_array(mddev);
  5552. if (err == 0) {
  5553. mddev->ro = 2;
  5554. set_disk_ro(mddev->gendisk, 0);
  5555. }
  5556. }
  5557. goto done_unlock;
  5558. }
  5559. /*
  5560. * The remaining ioctls are changing the state of the
  5561. * superblock, so we do not allow them on read-only arrays.
  5562. * However non-MD ioctls (e.g. get-size) will still come through
  5563. * here and hit the 'default' below, so only disallow
  5564. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5565. */
  5566. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5567. if (mddev->ro == 2) {
  5568. mddev->ro = 0;
  5569. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5570. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5571. md_wakeup_thread(mddev->thread);
  5572. } else {
  5573. err = -EROFS;
  5574. goto abort_unlock;
  5575. }
  5576. }
  5577. switch (cmd)
  5578. {
  5579. case ADD_NEW_DISK:
  5580. {
  5581. mdu_disk_info_t info;
  5582. if (copy_from_user(&info, argp, sizeof(info)))
  5583. err = -EFAULT;
  5584. else
  5585. err = add_new_disk(mddev, &info);
  5586. goto done_unlock;
  5587. }
  5588. case HOT_REMOVE_DISK:
  5589. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5590. goto done_unlock;
  5591. case HOT_ADD_DISK:
  5592. err = hot_add_disk(mddev, new_decode_dev(arg));
  5593. goto done_unlock;
  5594. case SET_DISK_FAULTY:
  5595. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5596. goto done_unlock;
  5597. case RUN_ARRAY:
  5598. err = do_md_run(mddev);
  5599. goto done_unlock;
  5600. case SET_BITMAP_FILE:
  5601. err = set_bitmap_file(mddev, (int)arg);
  5602. goto done_unlock;
  5603. default:
  5604. err = -EINVAL;
  5605. goto abort_unlock;
  5606. }
  5607. done_unlock:
  5608. abort_unlock:
  5609. if (mddev->hold_active == UNTIL_IOCTL &&
  5610. err != -EINVAL)
  5611. mddev->hold_active = 0;
  5612. mddev_unlock(mddev);
  5613. return err;
  5614. done:
  5615. if (err)
  5616. MD_BUG();
  5617. abort:
  5618. return err;
  5619. }
  5620. #ifdef CONFIG_COMPAT
  5621. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5622. unsigned int cmd, unsigned long arg)
  5623. {
  5624. switch (cmd) {
  5625. case HOT_REMOVE_DISK:
  5626. case HOT_ADD_DISK:
  5627. case SET_DISK_FAULTY:
  5628. case SET_BITMAP_FILE:
  5629. /* These take in integer arg, do not convert */
  5630. break;
  5631. default:
  5632. arg = (unsigned long)compat_ptr(arg);
  5633. break;
  5634. }
  5635. return md_ioctl(bdev, mode, cmd, arg);
  5636. }
  5637. #endif /* CONFIG_COMPAT */
  5638. static int md_open(struct block_device *bdev, fmode_t mode)
  5639. {
  5640. /*
  5641. * Succeed if we can lock the mddev, which confirms that
  5642. * it isn't being stopped right now.
  5643. */
  5644. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5645. int err;
  5646. if (mddev->gendisk != bdev->bd_disk) {
  5647. /* we are racing with mddev_put which is discarding this
  5648. * bd_disk.
  5649. */
  5650. mddev_put(mddev);
  5651. /* Wait until bdev->bd_disk is definitely gone */
  5652. flush_workqueue(md_misc_wq);
  5653. /* Then retry the open from the top */
  5654. return -ERESTARTSYS;
  5655. }
  5656. BUG_ON(mddev != bdev->bd_disk->private_data);
  5657. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5658. goto out;
  5659. err = 0;
  5660. atomic_inc(&mddev->openers);
  5661. mutex_unlock(&mddev->open_mutex);
  5662. check_disk_change(bdev);
  5663. out:
  5664. return err;
  5665. }
  5666. static int md_release(struct gendisk *disk, fmode_t mode)
  5667. {
  5668. struct mddev *mddev = disk->private_data;
  5669. BUG_ON(!mddev);
  5670. atomic_dec(&mddev->openers);
  5671. mddev_put(mddev);
  5672. return 0;
  5673. }
  5674. static int md_media_changed(struct gendisk *disk)
  5675. {
  5676. struct mddev *mddev = disk->private_data;
  5677. return mddev->changed;
  5678. }
  5679. static int md_revalidate(struct gendisk *disk)
  5680. {
  5681. struct mddev *mddev = disk->private_data;
  5682. mddev->changed = 0;
  5683. return 0;
  5684. }
  5685. static const struct block_device_operations md_fops =
  5686. {
  5687. .owner = THIS_MODULE,
  5688. .open = md_open,
  5689. .release = md_release,
  5690. .ioctl = md_ioctl,
  5691. #ifdef CONFIG_COMPAT
  5692. .compat_ioctl = md_compat_ioctl,
  5693. #endif
  5694. .getgeo = md_getgeo,
  5695. .media_changed = md_media_changed,
  5696. .revalidate_disk= md_revalidate,
  5697. };
  5698. static int md_thread(void * arg)
  5699. {
  5700. struct md_thread *thread = arg;
  5701. /*
  5702. * md_thread is a 'system-thread', it's priority should be very
  5703. * high. We avoid resource deadlocks individually in each
  5704. * raid personality. (RAID5 does preallocation) We also use RR and
  5705. * the very same RT priority as kswapd, thus we will never get
  5706. * into a priority inversion deadlock.
  5707. *
  5708. * we definitely have to have equal or higher priority than
  5709. * bdflush, otherwise bdflush will deadlock if there are too
  5710. * many dirty RAID5 blocks.
  5711. */
  5712. allow_signal(SIGKILL);
  5713. while (!kthread_should_stop()) {
  5714. /* We need to wait INTERRUPTIBLE so that
  5715. * we don't add to the load-average.
  5716. * That means we need to be sure no signals are
  5717. * pending
  5718. */
  5719. if (signal_pending(current))
  5720. flush_signals(current);
  5721. wait_event_interruptible_timeout
  5722. (thread->wqueue,
  5723. test_bit(THREAD_WAKEUP, &thread->flags)
  5724. || kthread_should_stop(),
  5725. thread->timeout);
  5726. clear_bit(THREAD_WAKEUP, &thread->flags);
  5727. if (!kthread_should_stop())
  5728. thread->run(thread->mddev);
  5729. }
  5730. return 0;
  5731. }
  5732. void md_wakeup_thread(struct md_thread *thread)
  5733. {
  5734. if (thread) {
  5735. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5736. set_bit(THREAD_WAKEUP, &thread->flags);
  5737. wake_up(&thread->wqueue);
  5738. }
  5739. }
  5740. struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
  5741. const char *name)
  5742. {
  5743. struct md_thread *thread;
  5744. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5745. if (!thread)
  5746. return NULL;
  5747. init_waitqueue_head(&thread->wqueue);
  5748. thread->run = run;
  5749. thread->mddev = mddev;
  5750. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5751. thread->tsk = kthread_run(md_thread, thread,
  5752. "%s_%s",
  5753. mdname(thread->mddev),
  5754. name ?: mddev->pers->name);
  5755. if (IS_ERR(thread->tsk)) {
  5756. kfree(thread);
  5757. return NULL;
  5758. }
  5759. return thread;
  5760. }
  5761. void md_unregister_thread(struct md_thread **threadp)
  5762. {
  5763. struct md_thread *thread = *threadp;
  5764. if (!thread)
  5765. return;
  5766. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5767. /* Locking ensures that mddev_unlock does not wake_up a
  5768. * non-existent thread
  5769. */
  5770. spin_lock(&pers_lock);
  5771. *threadp = NULL;
  5772. spin_unlock(&pers_lock);
  5773. kthread_stop(thread->tsk);
  5774. kfree(thread);
  5775. }
  5776. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  5777. {
  5778. if (!mddev) {
  5779. MD_BUG();
  5780. return;
  5781. }
  5782. if (!rdev || test_bit(Faulty, &rdev->flags))
  5783. return;
  5784. if (!mddev->pers || !mddev->pers->error_handler)
  5785. return;
  5786. mddev->pers->error_handler(mddev,rdev);
  5787. if (mddev->degraded)
  5788. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5789. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5790. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5791. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5792. md_wakeup_thread(mddev->thread);
  5793. if (mddev->event_work.func)
  5794. queue_work(md_misc_wq, &mddev->event_work);
  5795. md_new_event_inintr(mddev);
  5796. }
  5797. /* seq_file implementation /proc/mdstat */
  5798. static void status_unused(struct seq_file *seq)
  5799. {
  5800. int i = 0;
  5801. struct md_rdev *rdev;
  5802. seq_printf(seq, "unused devices: ");
  5803. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5804. char b[BDEVNAME_SIZE];
  5805. i++;
  5806. seq_printf(seq, "%s ",
  5807. bdevname(rdev->bdev,b));
  5808. }
  5809. if (!i)
  5810. seq_printf(seq, "<none>");
  5811. seq_printf(seq, "\n");
  5812. }
  5813. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  5814. {
  5815. sector_t max_sectors, resync, res;
  5816. unsigned long dt, db;
  5817. sector_t rt;
  5818. int scale;
  5819. unsigned int per_milli;
  5820. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5821. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5822. max_sectors = mddev->resync_max_sectors;
  5823. else
  5824. max_sectors = mddev->dev_sectors;
  5825. /*
  5826. * Should not happen.
  5827. */
  5828. if (!max_sectors) {
  5829. MD_BUG();
  5830. return;
  5831. }
  5832. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5833. * in a sector_t, and (max_sectors>>scale) will fit in a
  5834. * u32, as those are the requirements for sector_div.
  5835. * Thus 'scale' must be at least 10
  5836. */
  5837. scale = 10;
  5838. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5839. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5840. scale++;
  5841. }
  5842. res = (resync>>scale)*1000;
  5843. sector_div(res, (u32)((max_sectors>>scale)+1));
  5844. per_milli = res;
  5845. {
  5846. int i, x = per_milli/50, y = 20-x;
  5847. seq_printf(seq, "[");
  5848. for (i = 0; i < x; i++)
  5849. seq_printf(seq, "=");
  5850. seq_printf(seq, ">");
  5851. for (i = 0; i < y; i++)
  5852. seq_printf(seq, ".");
  5853. seq_printf(seq, "] ");
  5854. }
  5855. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5856. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5857. "reshape" :
  5858. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5859. "check" :
  5860. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5861. "resync" : "recovery"))),
  5862. per_milli/10, per_milli % 10,
  5863. (unsigned long long) resync/2,
  5864. (unsigned long long) max_sectors/2);
  5865. /*
  5866. * dt: time from mark until now
  5867. * db: blocks written from mark until now
  5868. * rt: remaining time
  5869. *
  5870. * rt is a sector_t, so could be 32bit or 64bit.
  5871. * So we divide before multiply in case it is 32bit and close
  5872. * to the limit.
  5873. * We scale the divisor (db) by 32 to avoid losing precision
  5874. * near the end of resync when the number of remaining sectors
  5875. * is close to 'db'.
  5876. * We then divide rt by 32 after multiplying by db to compensate.
  5877. * The '+1' avoids division by zero if db is very small.
  5878. */
  5879. dt = ((jiffies - mddev->resync_mark) / HZ);
  5880. if (!dt) dt++;
  5881. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5882. - mddev->resync_mark_cnt;
  5883. rt = max_sectors - resync; /* number of remaining sectors */
  5884. sector_div(rt, db/32+1);
  5885. rt *= dt;
  5886. rt >>= 5;
  5887. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5888. ((unsigned long)rt % 60)/6);
  5889. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5890. }
  5891. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5892. {
  5893. struct list_head *tmp;
  5894. loff_t l = *pos;
  5895. struct mddev *mddev;
  5896. if (l >= 0x10000)
  5897. return NULL;
  5898. if (!l--)
  5899. /* header */
  5900. return (void*)1;
  5901. spin_lock(&all_mddevs_lock);
  5902. list_for_each(tmp,&all_mddevs)
  5903. if (!l--) {
  5904. mddev = list_entry(tmp, struct mddev, all_mddevs);
  5905. mddev_get(mddev);
  5906. spin_unlock(&all_mddevs_lock);
  5907. return mddev;
  5908. }
  5909. spin_unlock(&all_mddevs_lock);
  5910. if (!l--)
  5911. return (void*)2;/* tail */
  5912. return NULL;
  5913. }
  5914. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5915. {
  5916. struct list_head *tmp;
  5917. struct mddev *next_mddev, *mddev = v;
  5918. ++*pos;
  5919. if (v == (void*)2)
  5920. return NULL;
  5921. spin_lock(&all_mddevs_lock);
  5922. if (v == (void*)1)
  5923. tmp = all_mddevs.next;
  5924. else
  5925. tmp = mddev->all_mddevs.next;
  5926. if (tmp != &all_mddevs)
  5927. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  5928. else {
  5929. next_mddev = (void*)2;
  5930. *pos = 0x10000;
  5931. }
  5932. spin_unlock(&all_mddevs_lock);
  5933. if (v != (void*)1)
  5934. mddev_put(mddev);
  5935. return next_mddev;
  5936. }
  5937. static void md_seq_stop(struct seq_file *seq, void *v)
  5938. {
  5939. struct mddev *mddev = v;
  5940. if (mddev && v != (void*)1 && v != (void*)2)
  5941. mddev_put(mddev);
  5942. }
  5943. static int md_seq_show(struct seq_file *seq, void *v)
  5944. {
  5945. struct mddev *mddev = v;
  5946. sector_t sectors;
  5947. struct md_rdev *rdev;
  5948. struct bitmap *bitmap;
  5949. if (v == (void*)1) {
  5950. struct md_personality *pers;
  5951. seq_printf(seq, "Personalities : ");
  5952. spin_lock(&pers_lock);
  5953. list_for_each_entry(pers, &pers_list, list)
  5954. seq_printf(seq, "[%s] ", pers->name);
  5955. spin_unlock(&pers_lock);
  5956. seq_printf(seq, "\n");
  5957. seq->poll_event = atomic_read(&md_event_count);
  5958. return 0;
  5959. }
  5960. if (v == (void*)2) {
  5961. status_unused(seq);
  5962. return 0;
  5963. }
  5964. if (mddev_lock(mddev) < 0)
  5965. return -EINTR;
  5966. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5967. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5968. mddev->pers ? "" : "in");
  5969. if (mddev->pers) {
  5970. if (mddev->ro==1)
  5971. seq_printf(seq, " (read-only)");
  5972. if (mddev->ro==2)
  5973. seq_printf(seq, " (auto-read-only)");
  5974. seq_printf(seq, " %s", mddev->pers->name);
  5975. }
  5976. sectors = 0;
  5977. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5978. char b[BDEVNAME_SIZE];
  5979. seq_printf(seq, " %s[%d]",
  5980. bdevname(rdev->bdev,b), rdev->desc_nr);
  5981. if (test_bit(WriteMostly, &rdev->flags))
  5982. seq_printf(seq, "(W)");
  5983. if (test_bit(Faulty, &rdev->flags)) {
  5984. seq_printf(seq, "(F)");
  5985. continue;
  5986. }
  5987. if (rdev->raid_disk < 0)
  5988. seq_printf(seq, "(S)"); /* spare */
  5989. if (test_bit(Replacement, &rdev->flags))
  5990. seq_printf(seq, "(R)");
  5991. sectors += rdev->sectors;
  5992. }
  5993. if (!list_empty(&mddev->disks)) {
  5994. if (mddev->pers)
  5995. seq_printf(seq, "\n %llu blocks",
  5996. (unsigned long long)
  5997. mddev->array_sectors / 2);
  5998. else
  5999. seq_printf(seq, "\n %llu blocks",
  6000. (unsigned long long)sectors / 2);
  6001. }
  6002. if (mddev->persistent) {
  6003. if (mddev->major_version != 0 ||
  6004. mddev->minor_version != 90) {
  6005. seq_printf(seq," super %d.%d",
  6006. mddev->major_version,
  6007. mddev->minor_version);
  6008. }
  6009. } else if (mddev->external)
  6010. seq_printf(seq, " super external:%s",
  6011. mddev->metadata_type);
  6012. else
  6013. seq_printf(seq, " super non-persistent");
  6014. if (mddev->pers) {
  6015. mddev->pers->status(seq, mddev);
  6016. seq_printf(seq, "\n ");
  6017. if (mddev->pers->sync_request) {
  6018. if (mddev->curr_resync > 2) {
  6019. status_resync(seq, mddev);
  6020. seq_printf(seq, "\n ");
  6021. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  6022. seq_printf(seq, "\tresync=DELAYED\n ");
  6023. else if (mddev->recovery_cp < MaxSector)
  6024. seq_printf(seq, "\tresync=PENDING\n ");
  6025. }
  6026. } else
  6027. seq_printf(seq, "\n ");
  6028. if ((bitmap = mddev->bitmap)) {
  6029. unsigned long chunk_kb;
  6030. unsigned long flags;
  6031. spin_lock_irqsave(&bitmap->lock, flags);
  6032. chunk_kb = mddev->bitmap_info.chunksize >> 10;
  6033. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  6034. "%lu%s chunk",
  6035. bitmap->pages - bitmap->missing_pages,
  6036. bitmap->pages,
  6037. (bitmap->pages - bitmap->missing_pages)
  6038. << (PAGE_SHIFT - 10),
  6039. chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
  6040. chunk_kb ? "KB" : "B");
  6041. if (bitmap->file) {
  6042. seq_printf(seq, ", file: ");
  6043. seq_path(seq, &bitmap->file->f_path, " \t\n");
  6044. }
  6045. seq_printf(seq, "\n");
  6046. spin_unlock_irqrestore(&bitmap->lock, flags);
  6047. }
  6048. seq_printf(seq, "\n");
  6049. }
  6050. mddev_unlock(mddev);
  6051. return 0;
  6052. }
  6053. static const struct seq_operations md_seq_ops = {
  6054. .start = md_seq_start,
  6055. .next = md_seq_next,
  6056. .stop = md_seq_stop,
  6057. .show = md_seq_show,
  6058. };
  6059. static int md_seq_open(struct inode *inode, struct file *file)
  6060. {
  6061. struct seq_file *seq;
  6062. int error;
  6063. error = seq_open(file, &md_seq_ops);
  6064. if (error)
  6065. return error;
  6066. seq = file->private_data;
  6067. seq->poll_event = atomic_read(&md_event_count);
  6068. return error;
  6069. }
  6070. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6071. {
  6072. struct seq_file *seq = filp->private_data;
  6073. int mask;
  6074. poll_wait(filp, &md_event_waiters, wait);
  6075. /* always allow read */
  6076. mask = POLLIN | POLLRDNORM;
  6077. if (seq->poll_event != atomic_read(&md_event_count))
  6078. mask |= POLLERR | POLLPRI;
  6079. return mask;
  6080. }
  6081. static const struct file_operations md_seq_fops = {
  6082. .owner = THIS_MODULE,
  6083. .open = md_seq_open,
  6084. .read = seq_read,
  6085. .llseek = seq_lseek,
  6086. .release = seq_release_private,
  6087. .poll = mdstat_poll,
  6088. };
  6089. int register_md_personality(struct md_personality *p)
  6090. {
  6091. spin_lock(&pers_lock);
  6092. list_add_tail(&p->list, &pers_list);
  6093. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6094. spin_unlock(&pers_lock);
  6095. return 0;
  6096. }
  6097. int unregister_md_personality(struct md_personality *p)
  6098. {
  6099. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6100. spin_lock(&pers_lock);
  6101. list_del_init(&p->list);
  6102. spin_unlock(&pers_lock);
  6103. return 0;
  6104. }
  6105. static int is_mddev_idle(struct mddev *mddev, int init)
  6106. {
  6107. struct md_rdev * rdev;
  6108. int idle;
  6109. int curr_events;
  6110. idle = 1;
  6111. rcu_read_lock();
  6112. rdev_for_each_rcu(rdev, mddev) {
  6113. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6114. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6115. (int)part_stat_read(&disk->part0, sectors[1]) -
  6116. atomic_read(&disk->sync_io);
  6117. /* sync IO will cause sync_io to increase before the disk_stats
  6118. * as sync_io is counted when a request starts, and
  6119. * disk_stats is counted when it completes.
  6120. * So resync activity will cause curr_events to be smaller than
  6121. * when there was no such activity.
  6122. * non-sync IO will cause disk_stat to increase without
  6123. * increasing sync_io so curr_events will (eventually)
  6124. * be larger than it was before. Once it becomes
  6125. * substantially larger, the test below will cause
  6126. * the array to appear non-idle, and resync will slow
  6127. * down.
  6128. * If there is a lot of outstanding resync activity when
  6129. * we set last_event to curr_events, then all that activity
  6130. * completing might cause the array to appear non-idle
  6131. * and resync will be slowed down even though there might
  6132. * not have been non-resync activity. This will only
  6133. * happen once though. 'last_events' will soon reflect
  6134. * the state where there is little or no outstanding
  6135. * resync requests, and further resync activity will
  6136. * always make curr_events less than last_events.
  6137. *
  6138. */
  6139. if (init || curr_events - rdev->last_events > 64) {
  6140. rdev->last_events = curr_events;
  6141. idle = 0;
  6142. }
  6143. }
  6144. rcu_read_unlock();
  6145. return idle;
  6146. }
  6147. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6148. {
  6149. /* another "blocks" (512byte) blocks have been synced */
  6150. atomic_sub(blocks, &mddev->recovery_active);
  6151. wake_up(&mddev->recovery_wait);
  6152. if (!ok) {
  6153. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6154. md_wakeup_thread(mddev->thread);
  6155. // stop recovery, signal do_sync ....
  6156. }
  6157. }
  6158. /* md_write_start(mddev, bi)
  6159. * If we need to update some array metadata (e.g. 'active' flag
  6160. * in superblock) before writing, schedule a superblock update
  6161. * and wait for it to complete.
  6162. */
  6163. void md_write_start(struct mddev *mddev, struct bio *bi)
  6164. {
  6165. int did_change = 0;
  6166. if (bio_data_dir(bi) != WRITE)
  6167. return;
  6168. BUG_ON(mddev->ro == 1);
  6169. if (mddev->ro == 2) {
  6170. /* need to switch to read/write */
  6171. mddev->ro = 0;
  6172. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6173. md_wakeup_thread(mddev->thread);
  6174. md_wakeup_thread(mddev->sync_thread);
  6175. did_change = 1;
  6176. }
  6177. atomic_inc(&mddev->writes_pending);
  6178. if (mddev->safemode == 1)
  6179. mddev->safemode = 0;
  6180. if (mddev->in_sync) {
  6181. spin_lock_irq(&mddev->write_lock);
  6182. if (mddev->in_sync) {
  6183. mddev->in_sync = 0;
  6184. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6185. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6186. md_wakeup_thread(mddev->thread);
  6187. did_change = 1;
  6188. }
  6189. spin_unlock_irq(&mddev->write_lock);
  6190. }
  6191. if (did_change)
  6192. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6193. wait_event(mddev->sb_wait,
  6194. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6195. }
  6196. void md_write_end(struct mddev *mddev)
  6197. {
  6198. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6199. if (mddev->safemode == 2)
  6200. md_wakeup_thread(mddev->thread);
  6201. else if (mddev->safemode_delay)
  6202. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6203. }
  6204. }
  6205. /* md_allow_write(mddev)
  6206. * Calling this ensures that the array is marked 'active' so that writes
  6207. * may proceed without blocking. It is important to call this before
  6208. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6209. * Must be called with mddev_lock held.
  6210. *
  6211. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6212. * is dropped, so return -EAGAIN after notifying userspace.
  6213. */
  6214. int md_allow_write(struct mddev *mddev)
  6215. {
  6216. if (!mddev->pers)
  6217. return 0;
  6218. if (mddev->ro)
  6219. return 0;
  6220. if (!mddev->pers->sync_request)
  6221. return 0;
  6222. spin_lock_irq(&mddev->write_lock);
  6223. if (mddev->in_sync) {
  6224. mddev->in_sync = 0;
  6225. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6226. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6227. if (mddev->safemode_delay &&
  6228. mddev->safemode == 0)
  6229. mddev->safemode = 1;
  6230. spin_unlock_irq(&mddev->write_lock);
  6231. md_update_sb(mddev, 0);
  6232. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6233. } else
  6234. spin_unlock_irq(&mddev->write_lock);
  6235. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6236. return -EAGAIN;
  6237. else
  6238. return 0;
  6239. }
  6240. EXPORT_SYMBOL_GPL(md_allow_write);
  6241. #define SYNC_MARKS 10
  6242. #define SYNC_MARK_STEP (3*HZ)
  6243. void md_do_sync(struct mddev *mddev)
  6244. {
  6245. struct mddev *mddev2;
  6246. unsigned int currspeed = 0,
  6247. window;
  6248. sector_t max_sectors,j, io_sectors;
  6249. unsigned long mark[SYNC_MARKS];
  6250. sector_t mark_cnt[SYNC_MARKS];
  6251. int last_mark,m;
  6252. struct list_head *tmp;
  6253. sector_t last_check;
  6254. int skipped = 0;
  6255. struct md_rdev *rdev;
  6256. char *desc;
  6257. /* just incase thread restarts... */
  6258. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6259. return;
  6260. if (mddev->ro) /* never try to sync a read-only array */
  6261. return;
  6262. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6263. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6264. desc = "data-check";
  6265. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6266. desc = "requested-resync";
  6267. else
  6268. desc = "resync";
  6269. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6270. desc = "reshape";
  6271. else
  6272. desc = "recovery";
  6273. /* we overload curr_resync somewhat here.
  6274. * 0 == not engaged in resync at all
  6275. * 2 == checking that there is no conflict with another sync
  6276. * 1 == like 2, but have yielded to allow conflicting resync to
  6277. * commense
  6278. * other == active in resync - this many blocks
  6279. *
  6280. * Before starting a resync we must have set curr_resync to
  6281. * 2, and then checked that every "conflicting" array has curr_resync
  6282. * less than ours. When we find one that is the same or higher
  6283. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6284. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6285. * This will mean we have to start checking from the beginning again.
  6286. *
  6287. */
  6288. do {
  6289. mddev->curr_resync = 2;
  6290. try_again:
  6291. if (kthread_should_stop())
  6292. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6293. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6294. goto skip;
  6295. for_each_mddev(mddev2, tmp) {
  6296. if (mddev2 == mddev)
  6297. continue;
  6298. if (!mddev->parallel_resync
  6299. && mddev2->curr_resync
  6300. && match_mddev_units(mddev, mddev2)) {
  6301. DEFINE_WAIT(wq);
  6302. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6303. /* arbitrarily yield */
  6304. mddev->curr_resync = 1;
  6305. wake_up(&resync_wait);
  6306. }
  6307. if (mddev > mddev2 && mddev->curr_resync == 1)
  6308. /* no need to wait here, we can wait the next
  6309. * time 'round when curr_resync == 2
  6310. */
  6311. continue;
  6312. /* We need to wait 'interruptible' so as not to
  6313. * contribute to the load average, and not to
  6314. * be caught by 'softlockup'
  6315. */
  6316. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6317. if (!kthread_should_stop() &&
  6318. mddev2->curr_resync >= mddev->curr_resync) {
  6319. printk(KERN_INFO "md: delaying %s of %s"
  6320. " until %s has finished (they"
  6321. " share one or more physical units)\n",
  6322. desc, mdname(mddev), mdname(mddev2));
  6323. mddev_put(mddev2);
  6324. if (signal_pending(current))
  6325. flush_signals(current);
  6326. schedule();
  6327. finish_wait(&resync_wait, &wq);
  6328. goto try_again;
  6329. }
  6330. finish_wait(&resync_wait, &wq);
  6331. }
  6332. }
  6333. } while (mddev->curr_resync < 2);
  6334. j = 0;
  6335. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6336. /* resync follows the size requested by the personality,
  6337. * which defaults to physical size, but can be virtual size
  6338. */
  6339. max_sectors = mddev->resync_max_sectors;
  6340. mddev->resync_mismatches = 0;
  6341. /* we don't use the checkpoint if there's a bitmap */
  6342. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6343. j = mddev->resync_min;
  6344. else if (!mddev->bitmap)
  6345. j = mddev->recovery_cp;
  6346. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6347. max_sectors = mddev->dev_sectors;
  6348. else {
  6349. /* recovery follows the physical size of devices */
  6350. max_sectors = mddev->dev_sectors;
  6351. j = MaxSector;
  6352. rcu_read_lock();
  6353. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6354. if (rdev->raid_disk >= 0 &&
  6355. !test_bit(Faulty, &rdev->flags) &&
  6356. !test_bit(In_sync, &rdev->flags) &&
  6357. rdev->recovery_offset < j)
  6358. j = rdev->recovery_offset;
  6359. rcu_read_unlock();
  6360. }
  6361. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6362. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6363. " %d KB/sec/disk.\n", speed_min(mddev));
  6364. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6365. "(but not more than %d KB/sec) for %s.\n",
  6366. speed_max(mddev), desc);
  6367. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6368. io_sectors = 0;
  6369. for (m = 0; m < SYNC_MARKS; m++) {
  6370. mark[m] = jiffies;
  6371. mark_cnt[m] = io_sectors;
  6372. }
  6373. last_mark = 0;
  6374. mddev->resync_mark = mark[last_mark];
  6375. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6376. /*
  6377. * Tune reconstruction:
  6378. */
  6379. window = 32*(PAGE_SIZE/512);
  6380. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6381. window/2, (unsigned long long)max_sectors/2);
  6382. atomic_set(&mddev->recovery_active, 0);
  6383. last_check = 0;
  6384. if (j>2) {
  6385. printk(KERN_INFO
  6386. "md: resuming %s of %s from checkpoint.\n",
  6387. desc, mdname(mddev));
  6388. mddev->curr_resync = j;
  6389. }
  6390. mddev->curr_resync_completed = j;
  6391. while (j < max_sectors) {
  6392. sector_t sectors;
  6393. skipped = 0;
  6394. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6395. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6396. (mddev->curr_resync - mddev->curr_resync_completed)
  6397. > (max_sectors >> 4)) ||
  6398. (j - mddev->curr_resync_completed)*2
  6399. >= mddev->resync_max - mddev->curr_resync_completed
  6400. )) {
  6401. /* time to update curr_resync_completed */
  6402. wait_event(mddev->recovery_wait,
  6403. atomic_read(&mddev->recovery_active) == 0);
  6404. mddev->curr_resync_completed = j;
  6405. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6406. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6407. }
  6408. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6409. /* As this condition is controlled by user-space,
  6410. * we can block indefinitely, so use '_interruptible'
  6411. * to avoid triggering warnings.
  6412. */
  6413. flush_signals(current); /* just in case */
  6414. wait_event_interruptible(mddev->recovery_wait,
  6415. mddev->resync_max > j
  6416. || kthread_should_stop());
  6417. }
  6418. if (kthread_should_stop())
  6419. goto interrupted;
  6420. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6421. currspeed < speed_min(mddev));
  6422. if (sectors == 0) {
  6423. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6424. goto out;
  6425. }
  6426. if (!skipped) { /* actual IO requested */
  6427. io_sectors += sectors;
  6428. atomic_add(sectors, &mddev->recovery_active);
  6429. }
  6430. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6431. break;
  6432. j += sectors;
  6433. if (j>1) mddev->curr_resync = j;
  6434. mddev->curr_mark_cnt = io_sectors;
  6435. if (last_check == 0)
  6436. /* this is the earliest that rebuild will be
  6437. * visible in /proc/mdstat
  6438. */
  6439. md_new_event(mddev);
  6440. if (last_check + window > io_sectors || j == max_sectors)
  6441. continue;
  6442. last_check = io_sectors;
  6443. repeat:
  6444. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6445. /* step marks */
  6446. int next = (last_mark+1) % SYNC_MARKS;
  6447. mddev->resync_mark = mark[next];
  6448. mddev->resync_mark_cnt = mark_cnt[next];
  6449. mark[next] = jiffies;
  6450. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6451. last_mark = next;
  6452. }
  6453. if (kthread_should_stop())
  6454. goto interrupted;
  6455. /*
  6456. * this loop exits only if either when we are slower than
  6457. * the 'hard' speed limit, or the system was IO-idle for
  6458. * a jiffy.
  6459. * the system might be non-idle CPU-wise, but we only care
  6460. * about not overloading the IO subsystem. (things like an
  6461. * e2fsck being done on the RAID array should execute fast)
  6462. */
  6463. cond_resched();
  6464. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6465. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6466. if (currspeed > speed_min(mddev)) {
  6467. if ((currspeed > speed_max(mddev)) ||
  6468. !is_mddev_idle(mddev, 0)) {
  6469. msleep(500);
  6470. goto repeat;
  6471. }
  6472. }
  6473. }
  6474. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6475. /*
  6476. * this also signals 'finished resyncing' to md_stop
  6477. */
  6478. out:
  6479. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6480. /* tell personality that we are finished */
  6481. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6482. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6483. mddev->curr_resync > 2) {
  6484. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6485. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6486. if (mddev->curr_resync >= mddev->recovery_cp) {
  6487. printk(KERN_INFO
  6488. "md: checkpointing %s of %s.\n",
  6489. desc, mdname(mddev));
  6490. mddev->recovery_cp = mddev->curr_resync;
  6491. }
  6492. } else
  6493. mddev->recovery_cp = MaxSector;
  6494. } else {
  6495. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6496. mddev->curr_resync = MaxSector;
  6497. rcu_read_lock();
  6498. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6499. if (rdev->raid_disk >= 0 &&
  6500. mddev->delta_disks >= 0 &&
  6501. !test_bit(Faulty, &rdev->flags) &&
  6502. !test_bit(In_sync, &rdev->flags) &&
  6503. rdev->recovery_offset < mddev->curr_resync)
  6504. rdev->recovery_offset = mddev->curr_resync;
  6505. rcu_read_unlock();
  6506. }
  6507. }
  6508. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6509. skip:
  6510. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6511. /* We completed so min/max setting can be forgotten if used. */
  6512. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6513. mddev->resync_min = 0;
  6514. mddev->resync_max = MaxSector;
  6515. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6516. mddev->resync_min = mddev->curr_resync_completed;
  6517. mddev->curr_resync = 0;
  6518. wake_up(&resync_wait);
  6519. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6520. md_wakeup_thread(mddev->thread);
  6521. return;
  6522. interrupted:
  6523. /*
  6524. * got a signal, exit.
  6525. */
  6526. printk(KERN_INFO
  6527. "md: md_do_sync() got signal ... exiting\n");
  6528. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6529. goto out;
  6530. }
  6531. EXPORT_SYMBOL_GPL(md_do_sync);
  6532. static int remove_and_add_spares(struct mddev *mddev)
  6533. {
  6534. struct md_rdev *rdev;
  6535. int spares = 0;
  6536. mddev->curr_resync_completed = 0;
  6537. list_for_each_entry(rdev, &mddev->disks, same_set)
  6538. if (rdev->raid_disk >= 0 &&
  6539. !test_bit(Blocked, &rdev->flags) &&
  6540. (test_bit(Faulty, &rdev->flags) ||
  6541. ! test_bit(In_sync, &rdev->flags)) &&
  6542. atomic_read(&rdev->nr_pending)==0) {
  6543. if (mddev->pers->hot_remove_disk(
  6544. mddev, rdev) == 0) {
  6545. sysfs_unlink_rdev(mddev, rdev);
  6546. rdev->raid_disk = -1;
  6547. }
  6548. }
  6549. if (mddev->degraded) {
  6550. list_for_each_entry(rdev, &mddev->disks, same_set) {
  6551. if (rdev->raid_disk >= 0 &&
  6552. !test_bit(In_sync, &rdev->flags) &&
  6553. !test_bit(Faulty, &rdev->flags))
  6554. spares++;
  6555. if (rdev->raid_disk < 0
  6556. && !test_bit(Faulty, &rdev->flags)) {
  6557. rdev->recovery_offset = 0;
  6558. if (mddev->pers->
  6559. hot_add_disk(mddev, rdev) == 0) {
  6560. if (sysfs_link_rdev(mddev, rdev))
  6561. /* failure here is OK */;
  6562. spares++;
  6563. md_new_event(mddev);
  6564. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6565. }
  6566. }
  6567. }
  6568. }
  6569. return spares;
  6570. }
  6571. static void reap_sync_thread(struct mddev *mddev)
  6572. {
  6573. struct md_rdev *rdev;
  6574. /* resync has finished, collect result */
  6575. md_unregister_thread(&mddev->sync_thread);
  6576. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6577. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6578. /* success...*/
  6579. /* activate any spares */
  6580. if (mddev->pers->spare_active(mddev))
  6581. sysfs_notify(&mddev->kobj, NULL,
  6582. "degraded");
  6583. }
  6584. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6585. mddev->pers->finish_reshape)
  6586. mddev->pers->finish_reshape(mddev);
  6587. /* If array is no-longer degraded, then any saved_raid_disk
  6588. * information must be scrapped. Also if any device is now
  6589. * In_sync we must scrape the saved_raid_disk for that device
  6590. * do the superblock for an incrementally recovered device
  6591. * written out.
  6592. */
  6593. list_for_each_entry(rdev, &mddev->disks, same_set)
  6594. if (!mddev->degraded ||
  6595. test_bit(In_sync, &rdev->flags))
  6596. rdev->saved_raid_disk = -1;
  6597. md_update_sb(mddev, 1);
  6598. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6599. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6600. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6601. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6602. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6603. /* flag recovery needed just to double check */
  6604. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6605. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6606. md_new_event(mddev);
  6607. if (mddev->event_work.func)
  6608. queue_work(md_misc_wq, &mddev->event_work);
  6609. }
  6610. /*
  6611. * This routine is regularly called by all per-raid-array threads to
  6612. * deal with generic issues like resync and super-block update.
  6613. * Raid personalities that don't have a thread (linear/raid0) do not
  6614. * need this as they never do any recovery or update the superblock.
  6615. *
  6616. * It does not do any resync itself, but rather "forks" off other threads
  6617. * to do that as needed.
  6618. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6619. * "->recovery" and create a thread at ->sync_thread.
  6620. * When the thread finishes it sets MD_RECOVERY_DONE
  6621. * and wakeups up this thread which will reap the thread and finish up.
  6622. * This thread also removes any faulty devices (with nr_pending == 0).
  6623. *
  6624. * The overall approach is:
  6625. * 1/ if the superblock needs updating, update it.
  6626. * 2/ If a recovery thread is running, don't do anything else.
  6627. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6628. * 4/ If there are any faulty devices, remove them.
  6629. * 5/ If array is degraded, try to add spares devices
  6630. * 6/ If array has spares or is not in-sync, start a resync thread.
  6631. */
  6632. void md_check_recovery(struct mddev *mddev)
  6633. {
  6634. if (mddev->suspended)
  6635. return;
  6636. if (mddev->bitmap)
  6637. bitmap_daemon_work(mddev);
  6638. if (signal_pending(current)) {
  6639. if (mddev->pers->sync_request && !mddev->external) {
  6640. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6641. mdname(mddev));
  6642. mddev->safemode = 2;
  6643. }
  6644. flush_signals(current);
  6645. }
  6646. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6647. return;
  6648. if ( ! (
  6649. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6650. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6651. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6652. (mddev->external == 0 && mddev->safemode == 1) ||
  6653. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6654. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6655. ))
  6656. return;
  6657. if (mddev_trylock(mddev)) {
  6658. int spares = 0;
  6659. if (mddev->ro) {
  6660. /* Only thing we do on a ro array is remove
  6661. * failed devices.
  6662. */
  6663. struct md_rdev *rdev;
  6664. list_for_each_entry(rdev, &mddev->disks, same_set)
  6665. if (rdev->raid_disk >= 0 &&
  6666. !test_bit(Blocked, &rdev->flags) &&
  6667. test_bit(Faulty, &rdev->flags) &&
  6668. atomic_read(&rdev->nr_pending)==0) {
  6669. if (mddev->pers->hot_remove_disk(
  6670. mddev, rdev) == 0) {
  6671. sysfs_unlink_rdev(mddev, rdev);
  6672. rdev->raid_disk = -1;
  6673. }
  6674. }
  6675. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6676. goto unlock;
  6677. }
  6678. if (!mddev->external) {
  6679. int did_change = 0;
  6680. spin_lock_irq(&mddev->write_lock);
  6681. if (mddev->safemode &&
  6682. !atomic_read(&mddev->writes_pending) &&
  6683. !mddev->in_sync &&
  6684. mddev->recovery_cp == MaxSector) {
  6685. mddev->in_sync = 1;
  6686. did_change = 1;
  6687. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6688. }
  6689. if (mddev->safemode == 1)
  6690. mddev->safemode = 0;
  6691. spin_unlock_irq(&mddev->write_lock);
  6692. if (did_change)
  6693. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6694. }
  6695. if (mddev->flags)
  6696. md_update_sb(mddev, 0);
  6697. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6698. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6699. /* resync/recovery still happening */
  6700. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6701. goto unlock;
  6702. }
  6703. if (mddev->sync_thread) {
  6704. reap_sync_thread(mddev);
  6705. goto unlock;
  6706. }
  6707. /* Set RUNNING before clearing NEEDED to avoid
  6708. * any transients in the value of "sync_action".
  6709. */
  6710. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6711. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6712. /* Clear some bits that don't mean anything, but
  6713. * might be left set
  6714. */
  6715. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6716. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6717. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6718. goto unlock;
  6719. /* no recovery is running.
  6720. * remove any failed drives, then
  6721. * add spares if possible.
  6722. * Spare are also removed and re-added, to allow
  6723. * the personality to fail the re-add.
  6724. */
  6725. if (mddev->reshape_position != MaxSector) {
  6726. if (mddev->pers->check_reshape == NULL ||
  6727. mddev->pers->check_reshape(mddev) != 0)
  6728. /* Cannot proceed */
  6729. goto unlock;
  6730. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6731. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6732. } else if ((spares = remove_and_add_spares(mddev))) {
  6733. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6734. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6735. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6736. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6737. } else if (mddev->recovery_cp < MaxSector) {
  6738. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6739. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6740. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6741. /* nothing to be done ... */
  6742. goto unlock;
  6743. if (mddev->pers->sync_request) {
  6744. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6745. /* We are adding a device or devices to an array
  6746. * which has the bitmap stored on all devices.
  6747. * So make sure all bitmap pages get written
  6748. */
  6749. bitmap_write_all(mddev->bitmap);
  6750. }
  6751. mddev->sync_thread = md_register_thread(md_do_sync,
  6752. mddev,
  6753. "resync");
  6754. if (!mddev->sync_thread) {
  6755. printk(KERN_ERR "%s: could not start resync"
  6756. " thread...\n",
  6757. mdname(mddev));
  6758. /* leave the spares where they are, it shouldn't hurt */
  6759. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6760. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6761. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6762. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6763. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6764. } else
  6765. md_wakeup_thread(mddev->sync_thread);
  6766. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6767. md_new_event(mddev);
  6768. }
  6769. unlock:
  6770. if (!mddev->sync_thread) {
  6771. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6772. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6773. &mddev->recovery))
  6774. if (mddev->sysfs_action)
  6775. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6776. }
  6777. mddev_unlock(mddev);
  6778. }
  6779. }
  6780. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6781. {
  6782. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6783. wait_event_timeout(rdev->blocked_wait,
  6784. !test_bit(Blocked, &rdev->flags) &&
  6785. !test_bit(BlockedBadBlocks, &rdev->flags),
  6786. msecs_to_jiffies(5000));
  6787. rdev_dec_pending(rdev, mddev);
  6788. }
  6789. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6790. /* Bad block management.
  6791. * We can record which blocks on each device are 'bad' and so just
  6792. * fail those blocks, or that stripe, rather than the whole device.
  6793. * Entries in the bad-block table are 64bits wide. This comprises:
  6794. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6795. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6796. * A 'shift' can be set so that larger blocks are tracked and
  6797. * consequently larger devices can be covered.
  6798. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6799. *
  6800. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6801. * might need to retry if it is very unlucky.
  6802. * We will sometimes want to check for bad blocks in a bi_end_io function,
  6803. * so we use the write_seqlock_irq variant.
  6804. *
  6805. * When looking for a bad block we specify a range and want to
  6806. * know if any block in the range is bad. So we binary-search
  6807. * to the last range that starts at-or-before the given endpoint,
  6808. * (or "before the sector after the target range")
  6809. * then see if it ends after the given start.
  6810. * We return
  6811. * 0 if there are no known bad blocks in the range
  6812. * 1 if there are known bad block which are all acknowledged
  6813. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  6814. * plus the start/length of the first bad section we overlap.
  6815. */
  6816. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  6817. sector_t *first_bad, int *bad_sectors)
  6818. {
  6819. int hi;
  6820. int lo = 0;
  6821. u64 *p = bb->page;
  6822. int rv = 0;
  6823. sector_t target = s + sectors;
  6824. unsigned seq;
  6825. if (bb->shift > 0) {
  6826. /* round the start down, and the end up */
  6827. s >>= bb->shift;
  6828. target += (1<<bb->shift) - 1;
  6829. target >>= bb->shift;
  6830. sectors = target - s;
  6831. }
  6832. /* 'target' is now the first block after the bad range */
  6833. retry:
  6834. seq = read_seqbegin(&bb->lock);
  6835. hi = bb->count;
  6836. /* Binary search between lo and hi for 'target'
  6837. * i.e. for the last range that starts before 'target'
  6838. */
  6839. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  6840. * are known not to be the last range before target.
  6841. * VARIANT: hi-lo is the number of possible
  6842. * ranges, and decreases until it reaches 1
  6843. */
  6844. while (hi - lo > 1) {
  6845. int mid = (lo + hi) / 2;
  6846. sector_t a = BB_OFFSET(p[mid]);
  6847. if (a < target)
  6848. /* This could still be the one, earlier ranges
  6849. * could not. */
  6850. lo = mid;
  6851. else
  6852. /* This and later ranges are definitely out. */
  6853. hi = mid;
  6854. }
  6855. /* 'lo' might be the last that started before target, but 'hi' isn't */
  6856. if (hi > lo) {
  6857. /* need to check all range that end after 's' to see if
  6858. * any are unacknowledged.
  6859. */
  6860. while (lo >= 0 &&
  6861. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6862. if (BB_OFFSET(p[lo]) < target) {
  6863. /* starts before the end, and finishes after
  6864. * the start, so they must overlap
  6865. */
  6866. if (rv != -1 && BB_ACK(p[lo]))
  6867. rv = 1;
  6868. else
  6869. rv = -1;
  6870. *first_bad = BB_OFFSET(p[lo]);
  6871. *bad_sectors = BB_LEN(p[lo]);
  6872. }
  6873. lo--;
  6874. }
  6875. }
  6876. if (read_seqretry(&bb->lock, seq))
  6877. goto retry;
  6878. return rv;
  6879. }
  6880. EXPORT_SYMBOL_GPL(md_is_badblock);
  6881. /*
  6882. * Add a range of bad blocks to the table.
  6883. * This might extend the table, or might contract it
  6884. * if two adjacent ranges can be merged.
  6885. * We binary-search to find the 'insertion' point, then
  6886. * decide how best to handle it.
  6887. */
  6888. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  6889. int acknowledged)
  6890. {
  6891. u64 *p;
  6892. int lo, hi;
  6893. int rv = 1;
  6894. if (bb->shift < 0)
  6895. /* badblocks are disabled */
  6896. return 0;
  6897. if (bb->shift) {
  6898. /* round the start down, and the end up */
  6899. sector_t next = s + sectors;
  6900. s >>= bb->shift;
  6901. next += (1<<bb->shift) - 1;
  6902. next >>= bb->shift;
  6903. sectors = next - s;
  6904. }
  6905. write_seqlock_irq(&bb->lock);
  6906. p = bb->page;
  6907. lo = 0;
  6908. hi = bb->count;
  6909. /* Find the last range that starts at-or-before 's' */
  6910. while (hi - lo > 1) {
  6911. int mid = (lo + hi) / 2;
  6912. sector_t a = BB_OFFSET(p[mid]);
  6913. if (a <= s)
  6914. lo = mid;
  6915. else
  6916. hi = mid;
  6917. }
  6918. if (hi > lo && BB_OFFSET(p[lo]) > s)
  6919. hi = lo;
  6920. if (hi > lo) {
  6921. /* we found a range that might merge with the start
  6922. * of our new range
  6923. */
  6924. sector_t a = BB_OFFSET(p[lo]);
  6925. sector_t e = a + BB_LEN(p[lo]);
  6926. int ack = BB_ACK(p[lo]);
  6927. if (e >= s) {
  6928. /* Yes, we can merge with a previous range */
  6929. if (s == a && s + sectors >= e)
  6930. /* new range covers old */
  6931. ack = acknowledged;
  6932. else
  6933. ack = ack && acknowledged;
  6934. if (e < s + sectors)
  6935. e = s + sectors;
  6936. if (e - a <= BB_MAX_LEN) {
  6937. p[lo] = BB_MAKE(a, e-a, ack);
  6938. s = e;
  6939. } else {
  6940. /* does not all fit in one range,
  6941. * make p[lo] maximal
  6942. */
  6943. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  6944. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  6945. s = a + BB_MAX_LEN;
  6946. }
  6947. sectors = e - s;
  6948. }
  6949. }
  6950. if (sectors && hi < bb->count) {
  6951. /* 'hi' points to the first range that starts after 's'.
  6952. * Maybe we can merge with the start of that range */
  6953. sector_t a = BB_OFFSET(p[hi]);
  6954. sector_t e = a + BB_LEN(p[hi]);
  6955. int ack = BB_ACK(p[hi]);
  6956. if (a <= s + sectors) {
  6957. /* merging is possible */
  6958. if (e <= s + sectors) {
  6959. /* full overlap */
  6960. e = s + sectors;
  6961. ack = acknowledged;
  6962. } else
  6963. ack = ack && acknowledged;
  6964. a = s;
  6965. if (e - a <= BB_MAX_LEN) {
  6966. p[hi] = BB_MAKE(a, e-a, ack);
  6967. s = e;
  6968. } else {
  6969. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  6970. s = a + BB_MAX_LEN;
  6971. }
  6972. sectors = e - s;
  6973. lo = hi;
  6974. hi++;
  6975. }
  6976. }
  6977. if (sectors == 0 && hi < bb->count) {
  6978. /* we might be able to combine lo and hi */
  6979. /* Note: 's' is at the end of 'lo' */
  6980. sector_t a = BB_OFFSET(p[hi]);
  6981. int lolen = BB_LEN(p[lo]);
  6982. int hilen = BB_LEN(p[hi]);
  6983. int newlen = lolen + hilen - (s - a);
  6984. if (s >= a && newlen < BB_MAX_LEN) {
  6985. /* yes, we can combine them */
  6986. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  6987. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  6988. memmove(p + hi, p + hi + 1,
  6989. (bb->count - hi - 1) * 8);
  6990. bb->count--;
  6991. }
  6992. }
  6993. while (sectors) {
  6994. /* didn't merge (it all).
  6995. * Need to add a range just before 'hi' */
  6996. if (bb->count >= MD_MAX_BADBLOCKS) {
  6997. /* No room for more */
  6998. rv = 0;
  6999. break;
  7000. } else {
  7001. int this_sectors = sectors;
  7002. memmove(p + hi + 1, p + hi,
  7003. (bb->count - hi) * 8);
  7004. bb->count++;
  7005. if (this_sectors > BB_MAX_LEN)
  7006. this_sectors = BB_MAX_LEN;
  7007. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7008. sectors -= this_sectors;
  7009. s += this_sectors;
  7010. }
  7011. }
  7012. bb->changed = 1;
  7013. if (!acknowledged)
  7014. bb->unacked_exist = 1;
  7015. write_sequnlock_irq(&bb->lock);
  7016. return rv;
  7017. }
  7018. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7019. int acknowledged)
  7020. {
  7021. int rv = md_set_badblocks(&rdev->badblocks,
  7022. s + rdev->data_offset, sectors, acknowledged);
  7023. if (rv) {
  7024. /* Make sure they get written out promptly */
  7025. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7026. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7027. md_wakeup_thread(rdev->mddev->thread);
  7028. }
  7029. return rv;
  7030. }
  7031. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7032. /*
  7033. * Remove a range of bad blocks from the table.
  7034. * This may involve extending the table if we spilt a region,
  7035. * but it must not fail. So if the table becomes full, we just
  7036. * drop the remove request.
  7037. */
  7038. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7039. {
  7040. u64 *p;
  7041. int lo, hi;
  7042. sector_t target = s + sectors;
  7043. int rv = 0;
  7044. if (bb->shift > 0) {
  7045. /* When clearing we round the start up and the end down.
  7046. * This should not matter as the shift should align with
  7047. * the block size and no rounding should ever be needed.
  7048. * However it is better the think a block is bad when it
  7049. * isn't than to think a block is not bad when it is.
  7050. */
  7051. s += (1<<bb->shift) - 1;
  7052. s >>= bb->shift;
  7053. target >>= bb->shift;
  7054. sectors = target - s;
  7055. }
  7056. write_seqlock_irq(&bb->lock);
  7057. p = bb->page;
  7058. lo = 0;
  7059. hi = bb->count;
  7060. /* Find the last range that starts before 'target' */
  7061. while (hi - lo > 1) {
  7062. int mid = (lo + hi) / 2;
  7063. sector_t a = BB_OFFSET(p[mid]);
  7064. if (a < target)
  7065. lo = mid;
  7066. else
  7067. hi = mid;
  7068. }
  7069. if (hi > lo) {
  7070. /* p[lo] is the last range that could overlap the
  7071. * current range. Earlier ranges could also overlap,
  7072. * but only this one can overlap the end of the range.
  7073. */
  7074. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7075. /* Partial overlap, leave the tail of this range */
  7076. int ack = BB_ACK(p[lo]);
  7077. sector_t a = BB_OFFSET(p[lo]);
  7078. sector_t end = a + BB_LEN(p[lo]);
  7079. if (a < s) {
  7080. /* we need to split this range */
  7081. if (bb->count >= MD_MAX_BADBLOCKS) {
  7082. rv = 0;
  7083. goto out;
  7084. }
  7085. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7086. bb->count++;
  7087. p[lo] = BB_MAKE(a, s-a, ack);
  7088. lo++;
  7089. }
  7090. p[lo] = BB_MAKE(target, end - target, ack);
  7091. /* there is no longer an overlap */
  7092. hi = lo;
  7093. lo--;
  7094. }
  7095. while (lo >= 0 &&
  7096. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7097. /* This range does overlap */
  7098. if (BB_OFFSET(p[lo]) < s) {
  7099. /* Keep the early parts of this range. */
  7100. int ack = BB_ACK(p[lo]);
  7101. sector_t start = BB_OFFSET(p[lo]);
  7102. p[lo] = BB_MAKE(start, s - start, ack);
  7103. /* now low doesn't overlap, so.. */
  7104. break;
  7105. }
  7106. lo--;
  7107. }
  7108. /* 'lo' is strictly before, 'hi' is strictly after,
  7109. * anything between needs to be discarded
  7110. */
  7111. if (hi - lo > 1) {
  7112. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7113. bb->count -= (hi - lo - 1);
  7114. }
  7115. }
  7116. bb->changed = 1;
  7117. out:
  7118. write_sequnlock_irq(&bb->lock);
  7119. return rv;
  7120. }
  7121. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
  7122. {
  7123. return md_clear_badblocks(&rdev->badblocks,
  7124. s + rdev->data_offset,
  7125. sectors);
  7126. }
  7127. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7128. /*
  7129. * Acknowledge all bad blocks in a list.
  7130. * This only succeeds if ->changed is clear. It is used by
  7131. * in-kernel metadata updates
  7132. */
  7133. void md_ack_all_badblocks(struct badblocks *bb)
  7134. {
  7135. if (bb->page == NULL || bb->changed)
  7136. /* no point even trying */
  7137. return;
  7138. write_seqlock_irq(&bb->lock);
  7139. if (bb->changed == 0) {
  7140. u64 *p = bb->page;
  7141. int i;
  7142. for (i = 0; i < bb->count ; i++) {
  7143. if (!BB_ACK(p[i])) {
  7144. sector_t start = BB_OFFSET(p[i]);
  7145. int len = BB_LEN(p[i]);
  7146. p[i] = BB_MAKE(start, len, 1);
  7147. }
  7148. }
  7149. bb->unacked_exist = 0;
  7150. }
  7151. write_sequnlock_irq(&bb->lock);
  7152. }
  7153. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7154. /* sysfs access to bad-blocks list.
  7155. * We present two files.
  7156. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7157. * are recorded as bad. The list is truncated to fit within
  7158. * the one-page limit of sysfs.
  7159. * Writing "sector length" to this file adds an acknowledged
  7160. * bad block list.
  7161. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7162. * been acknowledged. Writing to this file adds bad blocks
  7163. * without acknowledging them. This is largely for testing.
  7164. */
  7165. static ssize_t
  7166. badblocks_show(struct badblocks *bb, char *page, int unack)
  7167. {
  7168. size_t len;
  7169. int i;
  7170. u64 *p = bb->page;
  7171. unsigned seq;
  7172. if (bb->shift < 0)
  7173. return 0;
  7174. retry:
  7175. seq = read_seqbegin(&bb->lock);
  7176. len = 0;
  7177. i = 0;
  7178. while (len < PAGE_SIZE && i < bb->count) {
  7179. sector_t s = BB_OFFSET(p[i]);
  7180. unsigned int length = BB_LEN(p[i]);
  7181. int ack = BB_ACK(p[i]);
  7182. i++;
  7183. if (unack && ack)
  7184. continue;
  7185. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7186. (unsigned long long)s << bb->shift,
  7187. length << bb->shift);
  7188. }
  7189. if (unack && len == 0)
  7190. bb->unacked_exist = 0;
  7191. if (read_seqretry(&bb->lock, seq))
  7192. goto retry;
  7193. return len;
  7194. }
  7195. #define DO_DEBUG 1
  7196. static ssize_t
  7197. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7198. {
  7199. unsigned long long sector;
  7200. int length;
  7201. char newline;
  7202. #ifdef DO_DEBUG
  7203. /* Allow clearing via sysfs *only* for testing/debugging.
  7204. * Normally only a successful write may clear a badblock
  7205. */
  7206. int clear = 0;
  7207. if (page[0] == '-') {
  7208. clear = 1;
  7209. page++;
  7210. }
  7211. #endif /* DO_DEBUG */
  7212. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7213. case 3:
  7214. if (newline != '\n')
  7215. return -EINVAL;
  7216. case 2:
  7217. if (length <= 0)
  7218. return -EINVAL;
  7219. break;
  7220. default:
  7221. return -EINVAL;
  7222. }
  7223. #ifdef DO_DEBUG
  7224. if (clear) {
  7225. md_clear_badblocks(bb, sector, length);
  7226. return len;
  7227. }
  7228. #endif /* DO_DEBUG */
  7229. if (md_set_badblocks(bb, sector, length, !unack))
  7230. return len;
  7231. else
  7232. return -ENOSPC;
  7233. }
  7234. static int md_notify_reboot(struct notifier_block *this,
  7235. unsigned long code, void *x)
  7236. {
  7237. struct list_head *tmp;
  7238. struct mddev *mddev;
  7239. int need_delay = 0;
  7240. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  7241. printk(KERN_INFO "md: stopping all md devices.\n");
  7242. for_each_mddev(mddev, tmp) {
  7243. if (mddev_trylock(mddev)) {
  7244. /* Force a switch to readonly even array
  7245. * appears to still be in use. Hence
  7246. * the '100'.
  7247. */
  7248. md_set_readonly(mddev, 100);
  7249. mddev_unlock(mddev);
  7250. }
  7251. need_delay = 1;
  7252. }
  7253. /*
  7254. * certain more exotic SCSI devices are known to be
  7255. * volatile wrt too early system reboots. While the
  7256. * right place to handle this issue is the given
  7257. * driver, we do want to have a safe RAID driver ...
  7258. */
  7259. if (need_delay)
  7260. mdelay(1000*1);
  7261. }
  7262. return NOTIFY_DONE;
  7263. }
  7264. static struct notifier_block md_notifier = {
  7265. .notifier_call = md_notify_reboot,
  7266. .next = NULL,
  7267. .priority = INT_MAX, /* before any real devices */
  7268. };
  7269. static void md_geninit(void)
  7270. {
  7271. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7272. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7273. }
  7274. static int __init md_init(void)
  7275. {
  7276. int ret = -ENOMEM;
  7277. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7278. if (!md_wq)
  7279. goto err_wq;
  7280. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7281. if (!md_misc_wq)
  7282. goto err_misc_wq;
  7283. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7284. goto err_md;
  7285. if ((ret = register_blkdev(0, "mdp")) < 0)
  7286. goto err_mdp;
  7287. mdp_major = ret;
  7288. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7289. md_probe, NULL, NULL);
  7290. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7291. md_probe, NULL, NULL);
  7292. register_reboot_notifier(&md_notifier);
  7293. raid_table_header = register_sysctl_table(raid_root_table);
  7294. md_geninit();
  7295. return 0;
  7296. err_mdp:
  7297. unregister_blkdev(MD_MAJOR, "md");
  7298. err_md:
  7299. destroy_workqueue(md_misc_wq);
  7300. err_misc_wq:
  7301. destroy_workqueue(md_wq);
  7302. err_wq:
  7303. return ret;
  7304. }
  7305. #ifndef MODULE
  7306. /*
  7307. * Searches all registered partitions for autorun RAID arrays
  7308. * at boot time.
  7309. */
  7310. static LIST_HEAD(all_detected_devices);
  7311. struct detected_devices_node {
  7312. struct list_head list;
  7313. dev_t dev;
  7314. };
  7315. void md_autodetect_dev(dev_t dev)
  7316. {
  7317. struct detected_devices_node *node_detected_dev;
  7318. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7319. if (node_detected_dev) {
  7320. node_detected_dev->dev = dev;
  7321. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7322. } else {
  7323. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7324. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7325. }
  7326. }
  7327. static void autostart_arrays(int part)
  7328. {
  7329. struct md_rdev *rdev;
  7330. struct detected_devices_node *node_detected_dev;
  7331. dev_t dev;
  7332. int i_scanned, i_passed;
  7333. i_scanned = 0;
  7334. i_passed = 0;
  7335. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7336. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7337. i_scanned++;
  7338. node_detected_dev = list_entry(all_detected_devices.next,
  7339. struct detected_devices_node, list);
  7340. list_del(&node_detected_dev->list);
  7341. dev = node_detected_dev->dev;
  7342. kfree(node_detected_dev);
  7343. rdev = md_import_device(dev,0, 90);
  7344. if (IS_ERR(rdev))
  7345. continue;
  7346. if (test_bit(Faulty, &rdev->flags)) {
  7347. MD_BUG();
  7348. continue;
  7349. }
  7350. set_bit(AutoDetected, &rdev->flags);
  7351. list_add(&rdev->same_set, &pending_raid_disks);
  7352. i_passed++;
  7353. }
  7354. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7355. i_scanned, i_passed);
  7356. autorun_devices(part);
  7357. }
  7358. #endif /* !MODULE */
  7359. static __exit void md_exit(void)
  7360. {
  7361. struct mddev *mddev;
  7362. struct list_head *tmp;
  7363. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7364. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7365. unregister_blkdev(MD_MAJOR,"md");
  7366. unregister_blkdev(mdp_major, "mdp");
  7367. unregister_reboot_notifier(&md_notifier);
  7368. unregister_sysctl_table(raid_table_header);
  7369. remove_proc_entry("mdstat", NULL);
  7370. for_each_mddev(mddev, tmp) {
  7371. export_array(mddev);
  7372. mddev->hold_active = 0;
  7373. }
  7374. destroy_workqueue(md_misc_wq);
  7375. destroy_workqueue(md_wq);
  7376. }
  7377. subsys_initcall(md_init);
  7378. module_exit(md_exit)
  7379. static int get_ro(char *buffer, struct kernel_param *kp)
  7380. {
  7381. return sprintf(buffer, "%d", start_readonly);
  7382. }
  7383. static int set_ro(const char *val, struct kernel_param *kp)
  7384. {
  7385. char *e;
  7386. int num = simple_strtoul(val, &e, 10);
  7387. if (*val && (*e == '\0' || *e == '\n')) {
  7388. start_readonly = num;
  7389. return 0;
  7390. }
  7391. return -EINVAL;
  7392. }
  7393. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7394. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7395. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7396. EXPORT_SYMBOL(register_md_personality);
  7397. EXPORT_SYMBOL(unregister_md_personality);
  7398. EXPORT_SYMBOL(md_error);
  7399. EXPORT_SYMBOL(md_done_sync);
  7400. EXPORT_SYMBOL(md_write_start);
  7401. EXPORT_SYMBOL(md_write_end);
  7402. EXPORT_SYMBOL(md_register_thread);
  7403. EXPORT_SYMBOL(md_unregister_thread);
  7404. EXPORT_SYMBOL(md_wakeup_thread);
  7405. EXPORT_SYMBOL(md_check_recovery);
  7406. MODULE_LICENSE("GPL");
  7407. MODULE_DESCRIPTION("MD RAID framework");
  7408. MODULE_ALIAS("md");
  7409. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);