core.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
  1. /*
  2. * The NFC Controller Interface is the communication protocol between an
  3. * NFC Controller (NFCC) and a Device Host (DH).
  4. *
  5. * Copyright (C) 2011 Texas Instruments, Inc.
  6. *
  7. * Written by Ilan Elias <ilane@ti.com>
  8. *
  9. * Acknowledgements:
  10. * This file is based on hci_core.c, which was written
  11. * by Maxim Krasnyansky.
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License version 2
  15. * as published by the Free Software Foundation
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  25. *
  26. */
  27. #define pr_fmt(fmt) KBUILD_MODNAME ": %s: " fmt, __func__
  28. #include <linux/types.h>
  29. #include <linux/workqueue.h>
  30. #include <linux/completion.h>
  31. #include <linux/export.h>
  32. #include <linux/sched.h>
  33. #include <linux/bitops.h>
  34. #include <linux/skbuff.h>
  35. #include "../nfc.h"
  36. #include <net/nfc/nci.h>
  37. #include <net/nfc/nci_core.h>
  38. #include <linux/nfc.h>
  39. static void nci_cmd_work(struct work_struct *work);
  40. static void nci_rx_work(struct work_struct *work);
  41. static void nci_tx_work(struct work_struct *work);
  42. /* ---- NCI requests ---- */
  43. void nci_req_complete(struct nci_dev *ndev, int result)
  44. {
  45. if (ndev->req_status == NCI_REQ_PEND) {
  46. ndev->req_result = result;
  47. ndev->req_status = NCI_REQ_DONE;
  48. complete(&ndev->req_completion);
  49. }
  50. }
  51. static void nci_req_cancel(struct nci_dev *ndev, int err)
  52. {
  53. if (ndev->req_status == NCI_REQ_PEND) {
  54. ndev->req_result = err;
  55. ndev->req_status = NCI_REQ_CANCELED;
  56. complete(&ndev->req_completion);
  57. }
  58. }
  59. /* Execute request and wait for completion. */
  60. static int __nci_request(struct nci_dev *ndev,
  61. void (*req)(struct nci_dev *ndev, unsigned long opt),
  62. unsigned long opt,
  63. __u32 timeout)
  64. {
  65. int rc = 0;
  66. long completion_rc;
  67. ndev->req_status = NCI_REQ_PEND;
  68. init_completion(&ndev->req_completion);
  69. req(ndev, opt);
  70. completion_rc = wait_for_completion_interruptible_timeout(
  71. &ndev->req_completion,
  72. timeout);
  73. pr_debug("wait_for_completion return %ld\n", completion_rc);
  74. if (completion_rc > 0) {
  75. switch (ndev->req_status) {
  76. case NCI_REQ_DONE:
  77. rc = nci_to_errno(ndev->req_result);
  78. break;
  79. case NCI_REQ_CANCELED:
  80. rc = -ndev->req_result;
  81. break;
  82. default:
  83. rc = -ETIMEDOUT;
  84. break;
  85. }
  86. } else {
  87. pr_err("wait_for_completion_interruptible_timeout failed %ld\n",
  88. completion_rc);
  89. rc = ((completion_rc == 0) ? (-ETIMEDOUT) : (completion_rc));
  90. }
  91. ndev->req_status = ndev->req_result = 0;
  92. return rc;
  93. }
  94. static inline int nci_request(struct nci_dev *ndev,
  95. void (*req)(struct nci_dev *ndev, unsigned long opt),
  96. unsigned long opt, __u32 timeout)
  97. {
  98. int rc;
  99. if (!test_bit(NCI_UP, &ndev->flags))
  100. return -ENETDOWN;
  101. /* Serialize all requests */
  102. mutex_lock(&ndev->req_lock);
  103. rc = __nci_request(ndev, req, opt, timeout);
  104. mutex_unlock(&ndev->req_lock);
  105. return rc;
  106. }
  107. static void nci_reset_req(struct nci_dev *ndev, unsigned long opt)
  108. {
  109. struct nci_core_reset_cmd cmd;
  110. cmd.reset_type = NCI_RESET_TYPE_RESET_CONFIG;
  111. nci_send_cmd(ndev, NCI_OP_CORE_RESET_CMD, 1, &cmd);
  112. }
  113. static void nci_init_req(struct nci_dev *ndev, unsigned long opt)
  114. {
  115. nci_send_cmd(ndev, NCI_OP_CORE_INIT_CMD, 0, NULL);
  116. }
  117. static void nci_init_complete_req(struct nci_dev *ndev, unsigned long opt)
  118. {
  119. struct nci_rf_disc_map_cmd cmd;
  120. struct disc_map_config *cfg = cmd.mapping_configs;
  121. __u8 *num = &cmd.num_mapping_configs;
  122. int i;
  123. /* set rf mapping configurations */
  124. *num = 0;
  125. /* by default mapping is set to NCI_RF_INTERFACE_FRAME */
  126. for (i = 0; i < ndev->num_supported_rf_interfaces; i++) {
  127. if (ndev->supported_rf_interfaces[i] ==
  128. NCI_RF_INTERFACE_ISO_DEP) {
  129. cfg[*num].rf_protocol = NCI_RF_PROTOCOL_ISO_DEP;
  130. cfg[*num].mode = NCI_DISC_MAP_MODE_POLL |
  131. NCI_DISC_MAP_MODE_LISTEN;
  132. cfg[*num].rf_interface = NCI_RF_INTERFACE_ISO_DEP;
  133. (*num)++;
  134. } else if (ndev->supported_rf_interfaces[i] ==
  135. NCI_RF_INTERFACE_NFC_DEP) {
  136. cfg[*num].rf_protocol = NCI_RF_PROTOCOL_NFC_DEP;
  137. cfg[*num].mode = NCI_DISC_MAP_MODE_POLL |
  138. NCI_DISC_MAP_MODE_LISTEN;
  139. cfg[*num].rf_interface = NCI_RF_INTERFACE_NFC_DEP;
  140. (*num)++;
  141. }
  142. if (*num == NCI_MAX_NUM_MAPPING_CONFIGS)
  143. break;
  144. }
  145. nci_send_cmd(ndev, NCI_OP_RF_DISCOVER_MAP_CMD,
  146. (1 + ((*num)*sizeof(struct disc_map_config))),
  147. &cmd);
  148. }
  149. static void nci_rf_discover_req(struct nci_dev *ndev, unsigned long opt)
  150. {
  151. struct nci_rf_disc_cmd cmd;
  152. __u32 protocols = opt;
  153. cmd.num_disc_configs = 0;
  154. if ((cmd.num_disc_configs < NCI_MAX_NUM_RF_CONFIGS) &&
  155. (protocols & NFC_PROTO_JEWEL_MASK
  156. || protocols & NFC_PROTO_MIFARE_MASK
  157. || protocols & NFC_PROTO_ISO14443_MASK
  158. || protocols & NFC_PROTO_NFC_DEP_MASK)) {
  159. cmd.disc_configs[cmd.num_disc_configs].rf_tech_and_mode =
  160. NCI_NFC_A_PASSIVE_POLL_MODE;
  161. cmd.disc_configs[cmd.num_disc_configs].frequency = 1;
  162. cmd.num_disc_configs++;
  163. }
  164. if ((cmd.num_disc_configs < NCI_MAX_NUM_RF_CONFIGS) &&
  165. (protocols & NFC_PROTO_ISO14443_MASK)) {
  166. cmd.disc_configs[cmd.num_disc_configs].rf_tech_and_mode =
  167. NCI_NFC_B_PASSIVE_POLL_MODE;
  168. cmd.disc_configs[cmd.num_disc_configs].frequency = 1;
  169. cmd.num_disc_configs++;
  170. }
  171. if ((cmd.num_disc_configs < NCI_MAX_NUM_RF_CONFIGS) &&
  172. (protocols & NFC_PROTO_FELICA_MASK
  173. || protocols & NFC_PROTO_NFC_DEP_MASK)) {
  174. cmd.disc_configs[cmd.num_disc_configs].rf_tech_and_mode =
  175. NCI_NFC_F_PASSIVE_POLL_MODE;
  176. cmd.disc_configs[cmd.num_disc_configs].frequency = 1;
  177. cmd.num_disc_configs++;
  178. }
  179. nci_send_cmd(ndev, NCI_OP_RF_DISCOVER_CMD,
  180. (1 + (cmd.num_disc_configs*sizeof(struct disc_config))),
  181. &cmd);
  182. }
  183. struct nci_rf_discover_select_param {
  184. __u8 rf_discovery_id;
  185. __u8 rf_protocol;
  186. };
  187. static void nci_rf_discover_select_req(struct nci_dev *ndev, unsigned long opt)
  188. {
  189. struct nci_rf_discover_select_param *param =
  190. (struct nci_rf_discover_select_param *)opt;
  191. struct nci_rf_discover_select_cmd cmd;
  192. cmd.rf_discovery_id = param->rf_discovery_id;
  193. cmd.rf_protocol = param->rf_protocol;
  194. switch (cmd.rf_protocol) {
  195. case NCI_RF_PROTOCOL_ISO_DEP:
  196. cmd.rf_interface = NCI_RF_INTERFACE_ISO_DEP;
  197. break;
  198. case NCI_RF_PROTOCOL_NFC_DEP:
  199. cmd.rf_interface = NCI_RF_INTERFACE_NFC_DEP;
  200. break;
  201. default:
  202. cmd.rf_interface = NCI_RF_INTERFACE_FRAME;
  203. break;
  204. }
  205. nci_send_cmd(ndev, NCI_OP_RF_DISCOVER_SELECT_CMD,
  206. sizeof(struct nci_rf_discover_select_cmd),
  207. &cmd);
  208. }
  209. static void nci_rf_deactivate_req(struct nci_dev *ndev, unsigned long opt)
  210. {
  211. struct nci_rf_deactivate_cmd cmd;
  212. cmd.type = NCI_DEACTIVATE_TYPE_IDLE_MODE;
  213. nci_send_cmd(ndev, NCI_OP_RF_DEACTIVATE_CMD,
  214. sizeof(struct nci_rf_deactivate_cmd),
  215. &cmd);
  216. }
  217. static int nci_open_device(struct nci_dev *ndev)
  218. {
  219. int rc = 0;
  220. mutex_lock(&ndev->req_lock);
  221. if (test_bit(NCI_UP, &ndev->flags)) {
  222. rc = -EALREADY;
  223. goto done;
  224. }
  225. if (ndev->ops->open(ndev)) {
  226. rc = -EIO;
  227. goto done;
  228. }
  229. atomic_set(&ndev->cmd_cnt, 1);
  230. set_bit(NCI_INIT, &ndev->flags);
  231. rc = __nci_request(ndev, nci_reset_req, 0,
  232. msecs_to_jiffies(NCI_RESET_TIMEOUT));
  233. if (!rc) {
  234. rc = __nci_request(ndev, nci_init_req, 0,
  235. msecs_to_jiffies(NCI_INIT_TIMEOUT));
  236. }
  237. if (!rc) {
  238. rc = __nci_request(ndev, nci_init_complete_req, 0,
  239. msecs_to_jiffies(NCI_INIT_TIMEOUT));
  240. }
  241. clear_bit(NCI_INIT, &ndev->flags);
  242. if (!rc) {
  243. set_bit(NCI_UP, &ndev->flags);
  244. nci_clear_target_list(ndev);
  245. atomic_set(&ndev->state, NCI_IDLE);
  246. } else {
  247. /* Init failed, cleanup */
  248. skb_queue_purge(&ndev->cmd_q);
  249. skb_queue_purge(&ndev->rx_q);
  250. skb_queue_purge(&ndev->tx_q);
  251. ndev->ops->close(ndev);
  252. ndev->flags = 0;
  253. }
  254. done:
  255. mutex_unlock(&ndev->req_lock);
  256. return rc;
  257. }
  258. static int nci_close_device(struct nci_dev *ndev)
  259. {
  260. nci_req_cancel(ndev, ENODEV);
  261. mutex_lock(&ndev->req_lock);
  262. if (!test_and_clear_bit(NCI_UP, &ndev->flags)) {
  263. del_timer_sync(&ndev->cmd_timer);
  264. del_timer_sync(&ndev->data_timer);
  265. mutex_unlock(&ndev->req_lock);
  266. return 0;
  267. }
  268. /* Drop RX and TX queues */
  269. skb_queue_purge(&ndev->rx_q);
  270. skb_queue_purge(&ndev->tx_q);
  271. /* Flush RX and TX wq */
  272. flush_workqueue(ndev->rx_wq);
  273. flush_workqueue(ndev->tx_wq);
  274. /* Reset device */
  275. skb_queue_purge(&ndev->cmd_q);
  276. atomic_set(&ndev->cmd_cnt, 1);
  277. set_bit(NCI_INIT, &ndev->flags);
  278. __nci_request(ndev, nci_reset_req, 0,
  279. msecs_to_jiffies(NCI_RESET_TIMEOUT));
  280. clear_bit(NCI_INIT, &ndev->flags);
  281. /* Flush cmd wq */
  282. flush_workqueue(ndev->cmd_wq);
  283. /* After this point our queues are empty
  284. * and no works are scheduled. */
  285. ndev->ops->close(ndev);
  286. /* Clear flags */
  287. ndev->flags = 0;
  288. mutex_unlock(&ndev->req_lock);
  289. return 0;
  290. }
  291. /* NCI command timer function */
  292. static void nci_cmd_timer(unsigned long arg)
  293. {
  294. struct nci_dev *ndev = (void *) arg;
  295. atomic_set(&ndev->cmd_cnt, 1);
  296. queue_work(ndev->cmd_wq, &ndev->cmd_work);
  297. }
  298. /* NCI data exchange timer function */
  299. static void nci_data_timer(unsigned long arg)
  300. {
  301. struct nci_dev *ndev = (void *) arg;
  302. set_bit(NCI_DATA_EXCHANGE_TO, &ndev->flags);
  303. queue_work(ndev->rx_wq, &ndev->rx_work);
  304. }
  305. static int nci_dev_up(struct nfc_dev *nfc_dev)
  306. {
  307. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  308. return nci_open_device(ndev);
  309. }
  310. static int nci_dev_down(struct nfc_dev *nfc_dev)
  311. {
  312. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  313. return nci_close_device(ndev);
  314. }
  315. static int nci_start_poll(struct nfc_dev *nfc_dev, __u32 protocols)
  316. {
  317. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  318. int rc;
  319. if ((atomic_read(&ndev->state) == NCI_DISCOVERY) ||
  320. (atomic_read(&ndev->state) == NCI_W4_ALL_DISCOVERIES)) {
  321. pr_err("unable to start poll, since poll is already active\n");
  322. return -EBUSY;
  323. }
  324. if (ndev->target_active_prot) {
  325. pr_err("there is an active target\n");
  326. return -EBUSY;
  327. }
  328. if ((atomic_read(&ndev->state) == NCI_W4_HOST_SELECT) ||
  329. (atomic_read(&ndev->state) == NCI_POLL_ACTIVE)) {
  330. pr_debug("target active or w4 select, implicitly deactivate\n");
  331. rc = nci_request(ndev, nci_rf_deactivate_req, 0,
  332. msecs_to_jiffies(NCI_RF_DEACTIVATE_TIMEOUT));
  333. if (rc)
  334. return -EBUSY;
  335. }
  336. rc = nci_request(ndev, nci_rf_discover_req, protocols,
  337. msecs_to_jiffies(NCI_RF_DISC_TIMEOUT));
  338. if (!rc)
  339. ndev->poll_prots = protocols;
  340. return rc;
  341. }
  342. static void nci_stop_poll(struct nfc_dev *nfc_dev)
  343. {
  344. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  345. if ((atomic_read(&ndev->state) != NCI_DISCOVERY) &&
  346. (atomic_read(&ndev->state) != NCI_W4_ALL_DISCOVERIES)) {
  347. pr_err("unable to stop poll, since poll is not active\n");
  348. return;
  349. }
  350. nci_request(ndev, nci_rf_deactivate_req, 0,
  351. msecs_to_jiffies(NCI_RF_DEACTIVATE_TIMEOUT));
  352. }
  353. static int nci_activate_target(struct nfc_dev *nfc_dev, __u32 target_idx,
  354. __u32 protocol)
  355. {
  356. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  357. struct nci_rf_discover_select_param param;
  358. struct nfc_target *target = NULL;
  359. int i;
  360. int rc = 0;
  361. pr_debug("target_idx %d, protocol 0x%x\n", target_idx, protocol);
  362. if ((atomic_read(&ndev->state) != NCI_W4_HOST_SELECT) &&
  363. (atomic_read(&ndev->state) != NCI_POLL_ACTIVE)) {
  364. pr_err("there is no available target to activate\n");
  365. return -EINVAL;
  366. }
  367. if (ndev->target_active_prot) {
  368. pr_err("there is already an active target\n");
  369. return -EBUSY;
  370. }
  371. for (i = 0; i < ndev->n_targets; i++) {
  372. if (ndev->targets[i].idx == target_idx) {
  373. target = &ndev->targets[i];
  374. break;
  375. }
  376. }
  377. if (!target) {
  378. pr_err("unable to find the selected target\n");
  379. return -EINVAL;
  380. }
  381. if (!(target->supported_protocols & (1 << protocol))) {
  382. pr_err("target does not support the requested protocol 0x%x\n",
  383. protocol);
  384. return -EINVAL;
  385. }
  386. if (atomic_read(&ndev->state) == NCI_W4_HOST_SELECT) {
  387. param.rf_discovery_id = target->idx;
  388. if (protocol == NFC_PROTO_JEWEL)
  389. param.rf_protocol = NCI_RF_PROTOCOL_T1T;
  390. else if (protocol == NFC_PROTO_MIFARE)
  391. param.rf_protocol = NCI_RF_PROTOCOL_T2T;
  392. else if (protocol == NFC_PROTO_FELICA)
  393. param.rf_protocol = NCI_RF_PROTOCOL_T3T;
  394. else if (protocol == NFC_PROTO_ISO14443)
  395. param.rf_protocol = NCI_RF_PROTOCOL_ISO_DEP;
  396. else
  397. param.rf_protocol = NCI_RF_PROTOCOL_NFC_DEP;
  398. rc = nci_request(ndev, nci_rf_discover_select_req,
  399. (unsigned long)&param,
  400. msecs_to_jiffies(NCI_RF_DISC_SELECT_TIMEOUT));
  401. }
  402. if (!rc)
  403. ndev->target_active_prot = protocol;
  404. return rc;
  405. }
  406. static void nci_deactivate_target(struct nfc_dev *nfc_dev, __u32 target_idx)
  407. {
  408. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  409. pr_debug("target_idx %d\n", target_idx);
  410. if (!ndev->target_active_prot) {
  411. pr_err("unable to deactivate target, no active target\n");
  412. return;
  413. }
  414. ndev->target_active_prot = 0;
  415. if (atomic_read(&ndev->state) == NCI_POLL_ACTIVE) {
  416. nci_request(ndev, nci_rf_deactivate_req, 0,
  417. msecs_to_jiffies(NCI_RF_DEACTIVATE_TIMEOUT));
  418. }
  419. }
  420. static int nci_data_exchange(struct nfc_dev *nfc_dev, __u32 target_idx,
  421. struct sk_buff *skb,
  422. data_exchange_cb_t cb,
  423. void *cb_context)
  424. {
  425. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  426. int rc;
  427. pr_debug("target_idx %d, len %d\n", target_idx, skb->len);
  428. if (!ndev->target_active_prot) {
  429. pr_err("unable to exchange data, no active target\n");
  430. return -EINVAL;
  431. }
  432. if (test_and_set_bit(NCI_DATA_EXCHANGE, &ndev->flags))
  433. return -EBUSY;
  434. /* store cb and context to be used on receiving data */
  435. ndev->data_exchange_cb = cb;
  436. ndev->data_exchange_cb_context = cb_context;
  437. rc = nci_send_data(ndev, NCI_STATIC_RF_CONN_ID, skb);
  438. if (rc)
  439. clear_bit(NCI_DATA_EXCHANGE, &ndev->flags);
  440. return rc;
  441. }
  442. static struct nfc_ops nci_nfc_ops = {
  443. .dev_up = nci_dev_up,
  444. .dev_down = nci_dev_down,
  445. .start_poll = nci_start_poll,
  446. .stop_poll = nci_stop_poll,
  447. .activate_target = nci_activate_target,
  448. .deactivate_target = nci_deactivate_target,
  449. .data_exchange = nci_data_exchange,
  450. };
  451. /* ---- Interface to NCI drivers ---- */
  452. /**
  453. * nci_allocate_device - allocate a new nci device
  454. *
  455. * @ops: device operations
  456. * @supported_protocols: NFC protocols supported by the device
  457. */
  458. struct nci_dev *nci_allocate_device(struct nci_ops *ops,
  459. __u32 supported_protocols,
  460. int tx_headroom,
  461. int tx_tailroom)
  462. {
  463. struct nci_dev *ndev;
  464. pr_debug("supported_protocols 0x%x\n", supported_protocols);
  465. if (!ops->open || !ops->close || !ops->send)
  466. return NULL;
  467. if (!supported_protocols)
  468. return NULL;
  469. ndev = kzalloc(sizeof(struct nci_dev), GFP_KERNEL);
  470. if (!ndev)
  471. return NULL;
  472. ndev->ops = ops;
  473. ndev->tx_headroom = tx_headroom;
  474. ndev->tx_tailroom = tx_tailroom;
  475. ndev->nfc_dev = nfc_allocate_device(&nci_nfc_ops,
  476. supported_protocols,
  477. tx_headroom + NCI_DATA_HDR_SIZE,
  478. tx_tailroom);
  479. if (!ndev->nfc_dev)
  480. goto free_exit;
  481. nfc_set_drvdata(ndev->nfc_dev, ndev);
  482. return ndev;
  483. free_exit:
  484. kfree(ndev);
  485. return NULL;
  486. }
  487. EXPORT_SYMBOL(nci_allocate_device);
  488. /**
  489. * nci_free_device - deallocate nci device
  490. *
  491. * @ndev: The nci device to deallocate
  492. */
  493. void nci_free_device(struct nci_dev *ndev)
  494. {
  495. nfc_free_device(ndev->nfc_dev);
  496. kfree(ndev);
  497. }
  498. EXPORT_SYMBOL(nci_free_device);
  499. /**
  500. * nci_register_device - register a nci device in the nfc subsystem
  501. *
  502. * @dev: The nci device to register
  503. */
  504. int nci_register_device(struct nci_dev *ndev)
  505. {
  506. int rc;
  507. struct device *dev = &ndev->nfc_dev->dev;
  508. char name[32];
  509. rc = nfc_register_device(ndev->nfc_dev);
  510. if (rc)
  511. goto exit;
  512. ndev->flags = 0;
  513. INIT_WORK(&ndev->cmd_work, nci_cmd_work);
  514. snprintf(name, sizeof(name), "%s_nci_cmd_wq", dev_name(dev));
  515. ndev->cmd_wq = create_singlethread_workqueue(name);
  516. if (!ndev->cmd_wq) {
  517. rc = -ENOMEM;
  518. goto unreg_exit;
  519. }
  520. INIT_WORK(&ndev->rx_work, nci_rx_work);
  521. snprintf(name, sizeof(name), "%s_nci_rx_wq", dev_name(dev));
  522. ndev->rx_wq = create_singlethread_workqueue(name);
  523. if (!ndev->rx_wq) {
  524. rc = -ENOMEM;
  525. goto destroy_cmd_wq_exit;
  526. }
  527. INIT_WORK(&ndev->tx_work, nci_tx_work);
  528. snprintf(name, sizeof(name), "%s_nci_tx_wq", dev_name(dev));
  529. ndev->tx_wq = create_singlethread_workqueue(name);
  530. if (!ndev->tx_wq) {
  531. rc = -ENOMEM;
  532. goto destroy_rx_wq_exit;
  533. }
  534. skb_queue_head_init(&ndev->cmd_q);
  535. skb_queue_head_init(&ndev->rx_q);
  536. skb_queue_head_init(&ndev->tx_q);
  537. setup_timer(&ndev->cmd_timer, nci_cmd_timer,
  538. (unsigned long) ndev);
  539. setup_timer(&ndev->data_timer, nci_data_timer,
  540. (unsigned long) ndev);
  541. mutex_init(&ndev->req_lock);
  542. goto exit;
  543. destroy_rx_wq_exit:
  544. destroy_workqueue(ndev->rx_wq);
  545. destroy_cmd_wq_exit:
  546. destroy_workqueue(ndev->cmd_wq);
  547. unreg_exit:
  548. nfc_unregister_device(ndev->nfc_dev);
  549. exit:
  550. return rc;
  551. }
  552. EXPORT_SYMBOL(nci_register_device);
  553. /**
  554. * nci_unregister_device - unregister a nci device in the nfc subsystem
  555. *
  556. * @dev: The nci device to unregister
  557. */
  558. void nci_unregister_device(struct nci_dev *ndev)
  559. {
  560. nci_close_device(ndev);
  561. destroy_workqueue(ndev->cmd_wq);
  562. destroy_workqueue(ndev->rx_wq);
  563. destroy_workqueue(ndev->tx_wq);
  564. nfc_unregister_device(ndev->nfc_dev);
  565. }
  566. EXPORT_SYMBOL(nci_unregister_device);
  567. /**
  568. * nci_recv_frame - receive frame from NCI drivers
  569. *
  570. * @skb: The sk_buff to receive
  571. */
  572. int nci_recv_frame(struct sk_buff *skb)
  573. {
  574. struct nci_dev *ndev = (struct nci_dev *) skb->dev;
  575. pr_debug("len %d\n", skb->len);
  576. if (!ndev || (!test_bit(NCI_UP, &ndev->flags)
  577. && !test_bit(NCI_INIT, &ndev->flags))) {
  578. kfree_skb(skb);
  579. return -ENXIO;
  580. }
  581. /* Queue frame for rx worker thread */
  582. skb_queue_tail(&ndev->rx_q, skb);
  583. queue_work(ndev->rx_wq, &ndev->rx_work);
  584. return 0;
  585. }
  586. EXPORT_SYMBOL(nci_recv_frame);
  587. static int nci_send_frame(struct sk_buff *skb)
  588. {
  589. struct nci_dev *ndev = (struct nci_dev *) skb->dev;
  590. pr_debug("len %d\n", skb->len);
  591. if (!ndev) {
  592. kfree_skb(skb);
  593. return -ENODEV;
  594. }
  595. /* Get rid of skb owner, prior to sending to the driver. */
  596. skb_orphan(skb);
  597. return ndev->ops->send(skb);
  598. }
  599. /* Send NCI command */
  600. int nci_send_cmd(struct nci_dev *ndev, __u16 opcode, __u8 plen, void *payload)
  601. {
  602. struct nci_ctrl_hdr *hdr;
  603. struct sk_buff *skb;
  604. pr_debug("opcode 0x%x, plen %d\n", opcode, plen);
  605. skb = nci_skb_alloc(ndev, (NCI_CTRL_HDR_SIZE + plen), GFP_KERNEL);
  606. if (!skb) {
  607. pr_err("no memory for command\n");
  608. return -ENOMEM;
  609. }
  610. hdr = (struct nci_ctrl_hdr *) skb_put(skb, NCI_CTRL_HDR_SIZE);
  611. hdr->gid = nci_opcode_gid(opcode);
  612. hdr->oid = nci_opcode_oid(opcode);
  613. hdr->plen = plen;
  614. nci_mt_set((__u8 *)hdr, NCI_MT_CMD_PKT);
  615. nci_pbf_set((__u8 *)hdr, NCI_PBF_LAST);
  616. if (plen)
  617. memcpy(skb_put(skb, plen), payload, plen);
  618. skb->dev = (void *) ndev;
  619. skb_queue_tail(&ndev->cmd_q, skb);
  620. queue_work(ndev->cmd_wq, &ndev->cmd_work);
  621. return 0;
  622. }
  623. /* ---- NCI TX Data worker thread ---- */
  624. static void nci_tx_work(struct work_struct *work)
  625. {
  626. struct nci_dev *ndev = container_of(work, struct nci_dev, tx_work);
  627. struct sk_buff *skb;
  628. pr_debug("credits_cnt %d\n", atomic_read(&ndev->credits_cnt));
  629. /* Send queued tx data */
  630. while (atomic_read(&ndev->credits_cnt)) {
  631. skb = skb_dequeue(&ndev->tx_q);
  632. if (!skb)
  633. return;
  634. /* Check if data flow control is used */
  635. if (atomic_read(&ndev->credits_cnt) !=
  636. NCI_DATA_FLOW_CONTROL_NOT_USED)
  637. atomic_dec(&ndev->credits_cnt);
  638. pr_debug("NCI TX: MT=data, PBF=%d, conn_id=%d, plen=%d\n",
  639. nci_pbf(skb->data),
  640. nci_conn_id(skb->data),
  641. nci_plen(skb->data));
  642. nci_send_frame(skb);
  643. mod_timer(&ndev->data_timer,
  644. jiffies + msecs_to_jiffies(NCI_DATA_TIMEOUT));
  645. }
  646. }
  647. /* ----- NCI RX worker thread (data & control) ----- */
  648. static void nci_rx_work(struct work_struct *work)
  649. {
  650. struct nci_dev *ndev = container_of(work, struct nci_dev, rx_work);
  651. struct sk_buff *skb;
  652. while ((skb = skb_dequeue(&ndev->rx_q))) {
  653. /* Process frame */
  654. switch (nci_mt(skb->data)) {
  655. case NCI_MT_RSP_PKT:
  656. nci_rsp_packet(ndev, skb);
  657. break;
  658. case NCI_MT_NTF_PKT:
  659. nci_ntf_packet(ndev, skb);
  660. break;
  661. case NCI_MT_DATA_PKT:
  662. nci_rx_data_packet(ndev, skb);
  663. break;
  664. default:
  665. pr_err("unknown MT 0x%x\n", nci_mt(skb->data));
  666. kfree_skb(skb);
  667. break;
  668. }
  669. }
  670. /* check if a data exchange timout has occurred */
  671. if (test_bit(NCI_DATA_EXCHANGE_TO, &ndev->flags)) {
  672. /* complete the data exchange transaction, if exists */
  673. if (test_bit(NCI_DATA_EXCHANGE, &ndev->flags))
  674. nci_data_exchange_complete(ndev, NULL, -ETIMEDOUT);
  675. clear_bit(NCI_DATA_EXCHANGE_TO, &ndev->flags);
  676. }
  677. }
  678. /* ----- NCI TX CMD worker thread ----- */
  679. static void nci_cmd_work(struct work_struct *work)
  680. {
  681. struct nci_dev *ndev = container_of(work, struct nci_dev, cmd_work);
  682. struct sk_buff *skb;
  683. pr_debug("cmd_cnt %d\n", atomic_read(&ndev->cmd_cnt));
  684. /* Send queued command */
  685. if (atomic_read(&ndev->cmd_cnt)) {
  686. skb = skb_dequeue(&ndev->cmd_q);
  687. if (!skb)
  688. return;
  689. atomic_dec(&ndev->cmd_cnt);
  690. pr_debug("NCI TX: MT=cmd, PBF=%d, GID=0x%x, OID=0x%x, plen=%d\n",
  691. nci_pbf(skb->data),
  692. nci_opcode_gid(nci_opcode(skb->data)),
  693. nci_opcode_oid(nci_opcode(skb->data)),
  694. nci_plen(skb->data));
  695. nci_send_frame(skb);
  696. mod_timer(&ndev->cmd_timer,
  697. jiffies + msecs_to_jiffies(NCI_CMD_TIMEOUT));
  698. }
  699. }