dispc.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547
  1. /*
  2. * OMAP2 display controller support
  3. *
  4. * Copyright (C) 2005 Nokia Corporation
  5. * Author: Imre Deak <imre.deak@nokia.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the
  9. * Free Software Foundation; either version 2 of the License, or (at your
  10. * option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/mm.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/slab.h>
  30. #include <plat/sram.h>
  31. #include <plat/board.h>
  32. #include "omapfb.h"
  33. #include "dispc.h"
  34. #define MODULE_NAME "dispc"
  35. #define DSS_BASE 0x48050000
  36. #define DSS_SYSCONFIG 0x0010
  37. #define DISPC_BASE 0x48050400
  38. /* DISPC common */
  39. #define DISPC_REVISION 0x0000
  40. #define DISPC_SYSCONFIG 0x0010
  41. #define DISPC_SYSSTATUS 0x0014
  42. #define DISPC_IRQSTATUS 0x0018
  43. #define DISPC_IRQENABLE 0x001C
  44. #define DISPC_CONTROL 0x0040
  45. #define DISPC_CONFIG 0x0044
  46. #define DISPC_CAPABLE 0x0048
  47. #define DISPC_DEFAULT_COLOR0 0x004C
  48. #define DISPC_DEFAULT_COLOR1 0x0050
  49. #define DISPC_TRANS_COLOR0 0x0054
  50. #define DISPC_TRANS_COLOR1 0x0058
  51. #define DISPC_LINE_STATUS 0x005C
  52. #define DISPC_LINE_NUMBER 0x0060
  53. #define DISPC_TIMING_H 0x0064
  54. #define DISPC_TIMING_V 0x0068
  55. #define DISPC_POL_FREQ 0x006C
  56. #define DISPC_DIVISOR 0x0070
  57. #define DISPC_SIZE_DIG 0x0078
  58. #define DISPC_SIZE_LCD 0x007C
  59. #define DISPC_DATA_CYCLE1 0x01D4
  60. #define DISPC_DATA_CYCLE2 0x01D8
  61. #define DISPC_DATA_CYCLE3 0x01DC
  62. /* DISPC GFX plane */
  63. #define DISPC_GFX_BA0 0x0080
  64. #define DISPC_GFX_BA1 0x0084
  65. #define DISPC_GFX_POSITION 0x0088
  66. #define DISPC_GFX_SIZE 0x008C
  67. #define DISPC_GFX_ATTRIBUTES 0x00A0
  68. #define DISPC_GFX_FIFO_THRESHOLD 0x00A4
  69. #define DISPC_GFX_FIFO_SIZE_STATUS 0x00A8
  70. #define DISPC_GFX_ROW_INC 0x00AC
  71. #define DISPC_GFX_PIXEL_INC 0x00B0
  72. #define DISPC_GFX_WINDOW_SKIP 0x00B4
  73. #define DISPC_GFX_TABLE_BA 0x00B8
  74. /* DISPC Video plane 1/2 */
  75. #define DISPC_VID1_BASE 0x00BC
  76. #define DISPC_VID2_BASE 0x014C
  77. /* Offsets into DISPC_VID1/2_BASE */
  78. #define DISPC_VID_BA0 0x0000
  79. #define DISPC_VID_BA1 0x0004
  80. #define DISPC_VID_POSITION 0x0008
  81. #define DISPC_VID_SIZE 0x000C
  82. #define DISPC_VID_ATTRIBUTES 0x0010
  83. #define DISPC_VID_FIFO_THRESHOLD 0x0014
  84. #define DISPC_VID_FIFO_SIZE_STATUS 0x0018
  85. #define DISPC_VID_ROW_INC 0x001C
  86. #define DISPC_VID_PIXEL_INC 0x0020
  87. #define DISPC_VID_FIR 0x0024
  88. #define DISPC_VID_PICTURE_SIZE 0x0028
  89. #define DISPC_VID_ACCU0 0x002C
  90. #define DISPC_VID_ACCU1 0x0030
  91. /* 8 elements in 8 byte increments */
  92. #define DISPC_VID_FIR_COEF_H0 0x0034
  93. /* 8 elements in 8 byte increments */
  94. #define DISPC_VID_FIR_COEF_HV0 0x0038
  95. /* 5 elements in 4 byte increments */
  96. #define DISPC_VID_CONV_COEF0 0x0074
  97. #define DISPC_IRQ_FRAMEMASK 0x0001
  98. #define DISPC_IRQ_VSYNC 0x0002
  99. #define DISPC_IRQ_EVSYNC_EVEN 0x0004
  100. #define DISPC_IRQ_EVSYNC_ODD 0x0008
  101. #define DISPC_IRQ_ACBIAS_COUNT_STAT 0x0010
  102. #define DISPC_IRQ_PROG_LINE_NUM 0x0020
  103. #define DISPC_IRQ_GFX_FIFO_UNDERFLOW 0x0040
  104. #define DISPC_IRQ_GFX_END_WIN 0x0080
  105. #define DISPC_IRQ_PAL_GAMMA_MASK 0x0100
  106. #define DISPC_IRQ_OCP_ERR 0x0200
  107. #define DISPC_IRQ_VID1_FIFO_UNDERFLOW 0x0400
  108. #define DISPC_IRQ_VID1_END_WIN 0x0800
  109. #define DISPC_IRQ_VID2_FIFO_UNDERFLOW 0x1000
  110. #define DISPC_IRQ_VID2_END_WIN 0x2000
  111. #define DISPC_IRQ_SYNC_LOST 0x4000
  112. #define DISPC_IRQ_MASK_ALL 0x7fff
  113. #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
  114. DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
  115. DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
  116. DISPC_IRQ_SYNC_LOST)
  117. #define RFBI_CONTROL 0x48050040
  118. #define MAX_PALETTE_SIZE (256 * 16)
  119. #define FLD_MASK(pos, len) (((1 << len) - 1) << pos)
  120. #define MOD_REG_FLD(reg, mask, val) \
  121. dispc_write_reg((reg), (dispc_read_reg(reg) & ~(mask)) | (val));
  122. #define OMAP2_SRAM_START 0x40200000
  123. /* Maximum size, in reality this is smaller if SRAM is partially locked. */
  124. #define OMAP2_SRAM_SIZE 0xa0000 /* 640k */
  125. /* We support the SDRAM / SRAM types. See OMAPFB_PLANE_MEMTYPE_* in omapfb.h */
  126. #define DISPC_MEMTYPE_NUM 2
  127. #define RESMAP_SIZE(_page_cnt) \
  128. ((_page_cnt + (sizeof(unsigned long) * 8) - 1) / 8)
  129. #define RESMAP_PTR(_res_map, _page_nr) \
  130. (((_res_map)->map) + (_page_nr) / (sizeof(unsigned long) * 8))
  131. #define RESMAP_MASK(_page_nr) \
  132. (1 << ((_page_nr) & (sizeof(unsigned long) * 8 - 1)))
  133. struct resmap {
  134. unsigned long start;
  135. unsigned page_cnt;
  136. unsigned long *map;
  137. };
  138. #define MAX_IRQ_HANDLERS 4
  139. static struct {
  140. void __iomem *base;
  141. struct omapfb_mem_desc mem_desc;
  142. struct resmap *res_map[DISPC_MEMTYPE_NUM];
  143. atomic_t map_count[OMAPFB_PLANE_NUM];
  144. dma_addr_t palette_paddr;
  145. void *palette_vaddr;
  146. int ext_mode;
  147. struct {
  148. u32 irq_mask;
  149. void (*callback)(void *);
  150. void *data;
  151. } irq_handlers[MAX_IRQ_HANDLERS];
  152. struct completion frame_done;
  153. int fir_hinc[OMAPFB_PLANE_NUM];
  154. int fir_vinc[OMAPFB_PLANE_NUM];
  155. struct clk *dss_ick, *dss1_fck;
  156. struct clk *dss_54m_fck;
  157. enum omapfb_update_mode update_mode;
  158. struct omapfb_device *fbdev;
  159. struct omapfb_color_key color_key;
  160. } dispc;
  161. static void enable_lcd_clocks(int enable);
  162. static void inline dispc_write_reg(int idx, u32 val)
  163. {
  164. __raw_writel(val, dispc.base + idx);
  165. }
  166. static u32 inline dispc_read_reg(int idx)
  167. {
  168. u32 l = __raw_readl(dispc.base + idx);
  169. return l;
  170. }
  171. /* Select RFBI or bypass mode */
  172. static void enable_rfbi_mode(int enable)
  173. {
  174. void __iomem *rfbi_control;
  175. u32 l;
  176. l = dispc_read_reg(DISPC_CONTROL);
  177. /* Enable RFBI, GPIO0/1 */
  178. l &= ~((1 << 11) | (1 << 15) | (1 << 16));
  179. l |= enable ? (1 << 11) : 0;
  180. /* RFBI En: GPIO0/1=10 RFBI Dis: GPIO0/1=11 */
  181. l |= 1 << 15;
  182. l |= enable ? 0 : (1 << 16);
  183. dispc_write_reg(DISPC_CONTROL, l);
  184. /* Set bypass mode in RFBI module */
  185. rfbi_control = ioremap(RFBI_CONTROL, SZ_1K);
  186. if (!rfbi_control) {
  187. pr_err("Unable to ioremap rfbi_control\n");
  188. return;
  189. }
  190. l = __raw_readl(rfbi_control);
  191. l |= enable ? 0 : (1 << 1);
  192. __raw_writel(l, rfbi_control);
  193. iounmap(rfbi_control);
  194. }
  195. static void set_lcd_data_lines(int data_lines)
  196. {
  197. u32 l;
  198. int code = 0;
  199. switch (data_lines) {
  200. case 12:
  201. code = 0;
  202. break;
  203. case 16:
  204. code = 1;
  205. break;
  206. case 18:
  207. code = 2;
  208. break;
  209. case 24:
  210. code = 3;
  211. break;
  212. default:
  213. BUG();
  214. }
  215. l = dispc_read_reg(DISPC_CONTROL);
  216. l &= ~(0x03 << 8);
  217. l |= code << 8;
  218. dispc_write_reg(DISPC_CONTROL, l);
  219. }
  220. static void set_load_mode(int mode)
  221. {
  222. BUG_ON(mode & ~(DISPC_LOAD_CLUT_ONLY | DISPC_LOAD_FRAME_ONLY |
  223. DISPC_LOAD_CLUT_ONCE_FRAME));
  224. MOD_REG_FLD(DISPC_CONFIG, 0x03 << 1, mode << 1);
  225. }
  226. void omap_dispc_set_lcd_size(int x, int y)
  227. {
  228. BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
  229. enable_lcd_clocks(1);
  230. MOD_REG_FLD(DISPC_SIZE_LCD, FLD_MASK(16, 11) | FLD_MASK(0, 11),
  231. ((y - 1) << 16) | (x - 1));
  232. enable_lcd_clocks(0);
  233. }
  234. EXPORT_SYMBOL(omap_dispc_set_lcd_size);
  235. void omap_dispc_set_digit_size(int x, int y)
  236. {
  237. BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
  238. enable_lcd_clocks(1);
  239. MOD_REG_FLD(DISPC_SIZE_DIG, FLD_MASK(16, 11) | FLD_MASK(0, 11),
  240. ((y - 1) << 16) | (x - 1));
  241. enable_lcd_clocks(0);
  242. }
  243. EXPORT_SYMBOL(omap_dispc_set_digit_size);
  244. static void setup_plane_fifo(int plane, int ext_mode)
  245. {
  246. const u32 ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
  247. DISPC_VID1_BASE + DISPC_VID_FIFO_THRESHOLD,
  248. DISPC_VID2_BASE + DISPC_VID_FIFO_THRESHOLD };
  249. const u32 fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
  250. DISPC_VID1_BASE + DISPC_VID_FIFO_SIZE_STATUS,
  251. DISPC_VID2_BASE + DISPC_VID_FIFO_SIZE_STATUS };
  252. int low, high;
  253. u32 l;
  254. BUG_ON(plane > 2);
  255. l = dispc_read_reg(fsz_reg[plane]);
  256. l &= FLD_MASK(0, 11);
  257. if (ext_mode) {
  258. low = l * 3 / 4;
  259. high = l;
  260. } else {
  261. low = l / 4;
  262. high = l * 3 / 4;
  263. }
  264. MOD_REG_FLD(ftrs_reg[plane], FLD_MASK(16, 12) | FLD_MASK(0, 12),
  265. (high << 16) | low);
  266. }
  267. void omap_dispc_enable_lcd_out(int enable)
  268. {
  269. enable_lcd_clocks(1);
  270. MOD_REG_FLD(DISPC_CONTROL, 1, enable ? 1 : 0);
  271. enable_lcd_clocks(0);
  272. }
  273. EXPORT_SYMBOL(omap_dispc_enable_lcd_out);
  274. void omap_dispc_enable_digit_out(int enable)
  275. {
  276. enable_lcd_clocks(1);
  277. MOD_REG_FLD(DISPC_CONTROL, 1 << 1, enable ? 1 << 1 : 0);
  278. enable_lcd_clocks(0);
  279. }
  280. EXPORT_SYMBOL(omap_dispc_enable_digit_out);
  281. static inline int _setup_plane(int plane, int channel_out,
  282. u32 paddr, int screen_width,
  283. int pos_x, int pos_y, int width, int height,
  284. int color_mode)
  285. {
  286. const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
  287. DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
  288. DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
  289. const u32 ba_reg[] = { DISPC_GFX_BA0, DISPC_VID1_BASE + DISPC_VID_BA0,
  290. DISPC_VID2_BASE + DISPC_VID_BA0 };
  291. const u32 ps_reg[] = { DISPC_GFX_POSITION,
  292. DISPC_VID1_BASE + DISPC_VID_POSITION,
  293. DISPC_VID2_BASE + DISPC_VID_POSITION };
  294. const u32 sz_reg[] = { DISPC_GFX_SIZE,
  295. DISPC_VID1_BASE + DISPC_VID_PICTURE_SIZE,
  296. DISPC_VID2_BASE + DISPC_VID_PICTURE_SIZE };
  297. const u32 ri_reg[] = { DISPC_GFX_ROW_INC,
  298. DISPC_VID1_BASE + DISPC_VID_ROW_INC,
  299. DISPC_VID2_BASE + DISPC_VID_ROW_INC };
  300. const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
  301. DISPC_VID2_BASE + DISPC_VID_SIZE };
  302. int chout_shift, burst_shift;
  303. int chout_val;
  304. int color_code;
  305. int bpp;
  306. int cconv_en;
  307. int set_vsize;
  308. u32 l;
  309. #ifdef VERBOSE
  310. dev_dbg(dispc.fbdev->dev, "plane %d channel %d paddr %#08x scr_width %d"
  311. " pos_x %d pos_y %d width %d height %d color_mode %d\n",
  312. plane, channel_out, paddr, screen_width, pos_x, pos_y,
  313. width, height, color_mode);
  314. #endif
  315. set_vsize = 0;
  316. switch (plane) {
  317. case OMAPFB_PLANE_GFX:
  318. burst_shift = 6;
  319. chout_shift = 8;
  320. break;
  321. case OMAPFB_PLANE_VID1:
  322. case OMAPFB_PLANE_VID2:
  323. burst_shift = 14;
  324. chout_shift = 16;
  325. set_vsize = 1;
  326. break;
  327. default:
  328. return -EINVAL;
  329. }
  330. switch (channel_out) {
  331. case OMAPFB_CHANNEL_OUT_LCD:
  332. chout_val = 0;
  333. break;
  334. case OMAPFB_CHANNEL_OUT_DIGIT:
  335. chout_val = 1;
  336. break;
  337. default:
  338. return -EINVAL;
  339. }
  340. cconv_en = 0;
  341. switch (color_mode) {
  342. case OMAPFB_COLOR_RGB565:
  343. color_code = DISPC_RGB_16_BPP;
  344. bpp = 16;
  345. break;
  346. case OMAPFB_COLOR_YUV422:
  347. if (plane == 0)
  348. return -EINVAL;
  349. color_code = DISPC_UYVY_422;
  350. cconv_en = 1;
  351. bpp = 16;
  352. break;
  353. case OMAPFB_COLOR_YUY422:
  354. if (plane == 0)
  355. return -EINVAL;
  356. color_code = DISPC_YUV2_422;
  357. cconv_en = 1;
  358. bpp = 16;
  359. break;
  360. default:
  361. return -EINVAL;
  362. }
  363. l = dispc_read_reg(at_reg[plane]);
  364. l &= ~(0x0f << 1);
  365. l |= color_code << 1;
  366. l &= ~(1 << 9);
  367. l |= cconv_en << 9;
  368. l &= ~(0x03 << burst_shift);
  369. l |= DISPC_BURST_8x32 << burst_shift;
  370. l &= ~(1 << chout_shift);
  371. l |= chout_val << chout_shift;
  372. dispc_write_reg(at_reg[plane], l);
  373. dispc_write_reg(ba_reg[plane], paddr);
  374. MOD_REG_FLD(ps_reg[plane],
  375. FLD_MASK(16, 11) | FLD_MASK(0, 11), (pos_y << 16) | pos_x);
  376. MOD_REG_FLD(sz_reg[plane], FLD_MASK(16, 11) | FLD_MASK(0, 11),
  377. ((height - 1) << 16) | (width - 1));
  378. if (set_vsize) {
  379. /* Set video size if set_scale hasn't set it */
  380. if (!dispc.fir_vinc[plane])
  381. MOD_REG_FLD(vs_reg[plane],
  382. FLD_MASK(16, 11), (height - 1) << 16);
  383. if (!dispc.fir_hinc[plane])
  384. MOD_REG_FLD(vs_reg[plane],
  385. FLD_MASK(0, 11), width - 1);
  386. }
  387. dispc_write_reg(ri_reg[plane], (screen_width - width) * bpp / 8 + 1);
  388. return height * screen_width * bpp / 8;
  389. }
  390. static int omap_dispc_setup_plane(int plane, int channel_out,
  391. unsigned long offset,
  392. int screen_width,
  393. int pos_x, int pos_y, int width, int height,
  394. int color_mode)
  395. {
  396. u32 paddr;
  397. int r;
  398. if ((unsigned)plane > dispc.mem_desc.region_cnt)
  399. return -EINVAL;
  400. paddr = dispc.mem_desc.region[plane].paddr + offset;
  401. enable_lcd_clocks(1);
  402. r = _setup_plane(plane, channel_out, paddr,
  403. screen_width,
  404. pos_x, pos_y, width, height, color_mode);
  405. enable_lcd_clocks(0);
  406. return r;
  407. }
  408. static void write_firh_reg(int plane, int reg, u32 value)
  409. {
  410. u32 base;
  411. if (plane == 1)
  412. base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_H0;
  413. else
  414. base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_H0;
  415. dispc_write_reg(base + reg * 8, value);
  416. }
  417. static void write_firhv_reg(int plane, int reg, u32 value)
  418. {
  419. u32 base;
  420. if (plane == 1)
  421. base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_HV0;
  422. else
  423. base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_HV0;
  424. dispc_write_reg(base + reg * 8, value);
  425. }
  426. static void set_upsampling_coef_table(int plane)
  427. {
  428. const u32 coef[][2] = {
  429. { 0x00800000, 0x00800000 },
  430. { 0x0D7CF800, 0x037B02FF },
  431. { 0x1E70F5FF, 0x0C6F05FE },
  432. { 0x335FF5FE, 0x205907FB },
  433. { 0xF74949F7, 0x00404000 },
  434. { 0xF55F33FB, 0x075920FE },
  435. { 0xF5701EFE, 0x056F0CFF },
  436. { 0xF87C0DFF, 0x027B0300 },
  437. };
  438. int i;
  439. for (i = 0; i < 8; i++) {
  440. write_firh_reg(plane, i, coef[i][0]);
  441. write_firhv_reg(plane, i, coef[i][1]);
  442. }
  443. }
  444. static int omap_dispc_set_scale(int plane,
  445. int orig_width, int orig_height,
  446. int out_width, int out_height)
  447. {
  448. const u32 at_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
  449. DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
  450. const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
  451. DISPC_VID2_BASE + DISPC_VID_SIZE };
  452. const u32 fir_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_FIR,
  453. DISPC_VID2_BASE + DISPC_VID_FIR };
  454. u32 l;
  455. int fir_hinc;
  456. int fir_vinc;
  457. if ((unsigned)plane > OMAPFB_PLANE_NUM)
  458. return -ENODEV;
  459. if (plane == OMAPFB_PLANE_GFX &&
  460. (out_width != orig_width || out_height != orig_height))
  461. return -EINVAL;
  462. enable_lcd_clocks(1);
  463. if (orig_width < out_width) {
  464. /*
  465. * Upsampling.
  466. * Currently you can only scale both dimensions in one way.
  467. */
  468. if (orig_height > out_height ||
  469. orig_width * 8 < out_width ||
  470. orig_height * 8 < out_height) {
  471. enable_lcd_clocks(0);
  472. return -EINVAL;
  473. }
  474. set_upsampling_coef_table(plane);
  475. } else if (orig_width > out_width) {
  476. /* Downsampling not yet supported
  477. */
  478. enable_lcd_clocks(0);
  479. return -EINVAL;
  480. }
  481. if (!orig_width || orig_width == out_width)
  482. fir_hinc = 0;
  483. else
  484. fir_hinc = 1024 * orig_width / out_width;
  485. if (!orig_height || orig_height == out_height)
  486. fir_vinc = 0;
  487. else
  488. fir_vinc = 1024 * orig_height / out_height;
  489. dispc.fir_hinc[plane] = fir_hinc;
  490. dispc.fir_vinc[plane] = fir_vinc;
  491. MOD_REG_FLD(fir_reg[plane],
  492. FLD_MASK(16, 12) | FLD_MASK(0, 12),
  493. ((fir_vinc & 4095) << 16) |
  494. (fir_hinc & 4095));
  495. dev_dbg(dispc.fbdev->dev, "out_width %d out_height %d orig_width %d "
  496. "orig_height %d fir_hinc %d fir_vinc %d\n",
  497. out_width, out_height, orig_width, orig_height,
  498. fir_hinc, fir_vinc);
  499. MOD_REG_FLD(vs_reg[plane],
  500. FLD_MASK(16, 11) | FLD_MASK(0, 11),
  501. ((out_height - 1) << 16) | (out_width - 1));
  502. l = dispc_read_reg(at_reg[plane]);
  503. l &= ~(0x03 << 5);
  504. l |= fir_hinc ? (1 << 5) : 0;
  505. l |= fir_vinc ? (1 << 6) : 0;
  506. dispc_write_reg(at_reg[plane], l);
  507. enable_lcd_clocks(0);
  508. return 0;
  509. }
  510. static int omap_dispc_enable_plane(int plane, int enable)
  511. {
  512. const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
  513. DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
  514. DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
  515. if ((unsigned int)plane > dispc.mem_desc.region_cnt)
  516. return -EINVAL;
  517. enable_lcd_clocks(1);
  518. MOD_REG_FLD(at_reg[plane], 1, enable ? 1 : 0);
  519. enable_lcd_clocks(0);
  520. return 0;
  521. }
  522. static int omap_dispc_set_color_key(struct omapfb_color_key *ck)
  523. {
  524. u32 df_reg, tr_reg;
  525. int shift, val;
  526. switch (ck->channel_out) {
  527. case OMAPFB_CHANNEL_OUT_LCD:
  528. df_reg = DISPC_DEFAULT_COLOR0;
  529. tr_reg = DISPC_TRANS_COLOR0;
  530. shift = 10;
  531. break;
  532. case OMAPFB_CHANNEL_OUT_DIGIT:
  533. df_reg = DISPC_DEFAULT_COLOR1;
  534. tr_reg = DISPC_TRANS_COLOR1;
  535. shift = 12;
  536. break;
  537. default:
  538. return -EINVAL;
  539. }
  540. switch (ck->key_type) {
  541. case OMAPFB_COLOR_KEY_DISABLED:
  542. val = 0;
  543. break;
  544. case OMAPFB_COLOR_KEY_GFX_DST:
  545. val = 1;
  546. break;
  547. case OMAPFB_COLOR_KEY_VID_SRC:
  548. val = 3;
  549. break;
  550. default:
  551. return -EINVAL;
  552. }
  553. enable_lcd_clocks(1);
  554. MOD_REG_FLD(DISPC_CONFIG, FLD_MASK(shift, 2), val << shift);
  555. if (val != 0)
  556. dispc_write_reg(tr_reg, ck->trans_key);
  557. dispc_write_reg(df_reg, ck->background);
  558. enable_lcd_clocks(0);
  559. dispc.color_key = *ck;
  560. return 0;
  561. }
  562. static int omap_dispc_get_color_key(struct omapfb_color_key *ck)
  563. {
  564. *ck = dispc.color_key;
  565. return 0;
  566. }
  567. static void load_palette(void)
  568. {
  569. }
  570. static int omap_dispc_set_update_mode(enum omapfb_update_mode mode)
  571. {
  572. int r = 0;
  573. if (mode != dispc.update_mode) {
  574. switch (mode) {
  575. case OMAPFB_AUTO_UPDATE:
  576. case OMAPFB_MANUAL_UPDATE:
  577. enable_lcd_clocks(1);
  578. omap_dispc_enable_lcd_out(1);
  579. dispc.update_mode = mode;
  580. break;
  581. case OMAPFB_UPDATE_DISABLED:
  582. init_completion(&dispc.frame_done);
  583. omap_dispc_enable_lcd_out(0);
  584. if (!wait_for_completion_timeout(&dispc.frame_done,
  585. msecs_to_jiffies(500))) {
  586. dev_err(dispc.fbdev->dev,
  587. "timeout waiting for FRAME DONE\n");
  588. }
  589. dispc.update_mode = mode;
  590. enable_lcd_clocks(0);
  591. break;
  592. default:
  593. r = -EINVAL;
  594. }
  595. }
  596. return r;
  597. }
  598. static void omap_dispc_get_caps(int plane, struct omapfb_caps *caps)
  599. {
  600. caps->ctrl |= OMAPFB_CAPS_PLANE_RELOCATE_MEM;
  601. if (plane > 0)
  602. caps->ctrl |= OMAPFB_CAPS_PLANE_SCALE;
  603. caps->plane_color |= (1 << OMAPFB_COLOR_RGB565) |
  604. (1 << OMAPFB_COLOR_YUV422) |
  605. (1 << OMAPFB_COLOR_YUY422);
  606. if (plane == 0)
  607. caps->plane_color |= (1 << OMAPFB_COLOR_CLUT_8BPP) |
  608. (1 << OMAPFB_COLOR_CLUT_4BPP) |
  609. (1 << OMAPFB_COLOR_CLUT_2BPP) |
  610. (1 << OMAPFB_COLOR_CLUT_1BPP) |
  611. (1 << OMAPFB_COLOR_RGB444);
  612. }
  613. static enum omapfb_update_mode omap_dispc_get_update_mode(void)
  614. {
  615. return dispc.update_mode;
  616. }
  617. static void setup_color_conv_coef(void)
  618. {
  619. u32 mask = FLD_MASK(16, 11) | FLD_MASK(0, 11);
  620. int cf1_reg = DISPC_VID1_BASE + DISPC_VID_CONV_COEF0;
  621. int cf2_reg = DISPC_VID2_BASE + DISPC_VID_CONV_COEF0;
  622. int at1_reg = DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES;
  623. int at2_reg = DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES;
  624. const struct color_conv_coef {
  625. int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
  626. int full_range;
  627. } ctbl_bt601_5 = {
  628. 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
  629. };
  630. const struct color_conv_coef *ct;
  631. #define CVAL(x, y) (((x & 2047) << 16) | (y & 2047))
  632. ct = &ctbl_bt601_5;
  633. MOD_REG_FLD(cf1_reg, mask, CVAL(ct->rcr, ct->ry));
  634. MOD_REG_FLD(cf1_reg + 4, mask, CVAL(ct->gy, ct->rcb));
  635. MOD_REG_FLD(cf1_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
  636. MOD_REG_FLD(cf1_reg + 12, mask, CVAL(ct->bcr, ct->by));
  637. MOD_REG_FLD(cf1_reg + 16, mask, CVAL(0, ct->bcb));
  638. MOD_REG_FLD(cf2_reg, mask, CVAL(ct->rcr, ct->ry));
  639. MOD_REG_FLD(cf2_reg + 4, mask, CVAL(ct->gy, ct->rcb));
  640. MOD_REG_FLD(cf2_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
  641. MOD_REG_FLD(cf2_reg + 12, mask, CVAL(ct->bcr, ct->by));
  642. MOD_REG_FLD(cf2_reg + 16, mask, CVAL(0, ct->bcb));
  643. #undef CVAL
  644. MOD_REG_FLD(at1_reg, (1 << 11), ct->full_range);
  645. MOD_REG_FLD(at2_reg, (1 << 11), ct->full_range);
  646. }
  647. static void calc_ck_div(int is_tft, int pck, int *lck_div, int *pck_div)
  648. {
  649. unsigned long fck, lck;
  650. *lck_div = 1;
  651. pck = max(1, pck);
  652. fck = clk_get_rate(dispc.dss1_fck);
  653. lck = fck;
  654. *pck_div = (lck + pck - 1) / pck;
  655. if (is_tft)
  656. *pck_div = max(2, *pck_div);
  657. else
  658. *pck_div = max(3, *pck_div);
  659. if (*pck_div > 255) {
  660. *pck_div = 255;
  661. lck = pck * *pck_div;
  662. *lck_div = fck / lck;
  663. BUG_ON(*lck_div < 1);
  664. if (*lck_div > 255) {
  665. *lck_div = 255;
  666. dev_warn(dispc.fbdev->dev, "pixclock %d kHz too low.\n",
  667. pck / 1000);
  668. }
  669. }
  670. }
  671. static void set_lcd_tft_mode(int enable)
  672. {
  673. u32 mask;
  674. mask = 1 << 3;
  675. MOD_REG_FLD(DISPC_CONTROL, mask, enable ? mask : 0);
  676. }
  677. static void set_lcd_timings(void)
  678. {
  679. u32 l;
  680. int lck_div, pck_div;
  681. struct lcd_panel *panel = dispc.fbdev->panel;
  682. int is_tft = panel->config & OMAP_LCDC_PANEL_TFT;
  683. unsigned long fck;
  684. l = dispc_read_reg(DISPC_TIMING_H);
  685. l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
  686. l |= ( max(1, (min(64, panel->hsw))) - 1 ) << 0;
  687. l |= ( max(1, (min(256, panel->hfp))) - 1 ) << 8;
  688. l |= ( max(1, (min(256, panel->hbp))) - 1 ) << 20;
  689. dispc_write_reg(DISPC_TIMING_H, l);
  690. l = dispc_read_reg(DISPC_TIMING_V);
  691. l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
  692. l |= ( max(1, (min(64, panel->vsw))) - 1 ) << 0;
  693. l |= ( max(0, (min(255, panel->vfp))) - 0 ) << 8;
  694. l |= ( max(0, (min(255, panel->vbp))) - 0 ) << 20;
  695. dispc_write_reg(DISPC_TIMING_V, l);
  696. l = dispc_read_reg(DISPC_POL_FREQ);
  697. l &= ~FLD_MASK(12, 6);
  698. l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 12;
  699. l |= panel->acb & 0xff;
  700. dispc_write_reg(DISPC_POL_FREQ, l);
  701. calc_ck_div(is_tft, panel->pixel_clock * 1000, &lck_div, &pck_div);
  702. l = dispc_read_reg(DISPC_DIVISOR);
  703. l &= ~(FLD_MASK(16, 8) | FLD_MASK(0, 8));
  704. l |= (lck_div << 16) | (pck_div << 0);
  705. dispc_write_reg(DISPC_DIVISOR, l);
  706. /* update panel info with the exact clock */
  707. fck = clk_get_rate(dispc.dss1_fck);
  708. panel->pixel_clock = fck / lck_div / pck_div / 1000;
  709. }
  710. static void recalc_irq_mask(void)
  711. {
  712. int i;
  713. unsigned long irq_mask = DISPC_IRQ_MASK_ERROR;
  714. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  715. if (!dispc.irq_handlers[i].callback)
  716. continue;
  717. irq_mask |= dispc.irq_handlers[i].irq_mask;
  718. }
  719. enable_lcd_clocks(1);
  720. MOD_REG_FLD(DISPC_IRQENABLE, 0x7fff, irq_mask);
  721. enable_lcd_clocks(0);
  722. }
  723. int omap_dispc_request_irq(unsigned long irq_mask, void (*callback)(void *data),
  724. void *data)
  725. {
  726. int i;
  727. BUG_ON(callback == NULL);
  728. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  729. if (dispc.irq_handlers[i].callback)
  730. continue;
  731. dispc.irq_handlers[i].irq_mask = irq_mask;
  732. dispc.irq_handlers[i].callback = callback;
  733. dispc.irq_handlers[i].data = data;
  734. recalc_irq_mask();
  735. return 0;
  736. }
  737. return -EBUSY;
  738. }
  739. EXPORT_SYMBOL(omap_dispc_request_irq);
  740. void omap_dispc_free_irq(unsigned long irq_mask, void (*callback)(void *data),
  741. void *data)
  742. {
  743. int i;
  744. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  745. if (dispc.irq_handlers[i].callback == callback &&
  746. dispc.irq_handlers[i].data == data) {
  747. dispc.irq_handlers[i].irq_mask = 0;
  748. dispc.irq_handlers[i].callback = NULL;
  749. dispc.irq_handlers[i].data = NULL;
  750. recalc_irq_mask();
  751. return;
  752. }
  753. }
  754. BUG();
  755. }
  756. EXPORT_SYMBOL(omap_dispc_free_irq);
  757. static irqreturn_t omap_dispc_irq_handler(int irq, void *dev)
  758. {
  759. u32 stat;
  760. int i = 0;
  761. enable_lcd_clocks(1);
  762. stat = dispc_read_reg(DISPC_IRQSTATUS);
  763. if (stat & DISPC_IRQ_FRAMEMASK)
  764. complete(&dispc.frame_done);
  765. if (stat & DISPC_IRQ_MASK_ERROR) {
  766. if (printk_ratelimit()) {
  767. dev_err(dispc.fbdev->dev, "irq error status %04x\n",
  768. stat & 0x7fff);
  769. }
  770. }
  771. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  772. if (unlikely(dispc.irq_handlers[i].callback &&
  773. (stat & dispc.irq_handlers[i].irq_mask)))
  774. dispc.irq_handlers[i].callback(
  775. dispc.irq_handlers[i].data);
  776. }
  777. dispc_write_reg(DISPC_IRQSTATUS, stat);
  778. enable_lcd_clocks(0);
  779. return IRQ_HANDLED;
  780. }
  781. static int get_dss_clocks(void)
  782. {
  783. dispc.dss_ick = clk_get(&dispc.fbdev->dssdev->dev, "ick");
  784. if (IS_ERR(dispc.dss_ick)) {
  785. dev_err(dispc.fbdev->dev, "can't get ick\n");
  786. return PTR_ERR(dispc.dss_ick);
  787. }
  788. dispc.dss1_fck = clk_get(&dispc.fbdev->dssdev->dev, "fck");
  789. if (IS_ERR(dispc.dss1_fck)) {
  790. dev_err(dispc.fbdev->dev, "can't get dss1_fck\n");
  791. clk_put(dispc.dss_ick);
  792. return PTR_ERR(dispc.dss1_fck);
  793. }
  794. dispc.dss_54m_fck = clk_get(&dispc.fbdev->dssdev->dev, "tv_clk");
  795. if (IS_ERR(dispc.dss_54m_fck)) {
  796. dev_err(dispc.fbdev->dev, "can't get tv_fck\n");
  797. clk_put(dispc.dss_ick);
  798. clk_put(dispc.dss1_fck);
  799. return PTR_ERR(dispc.dss_54m_fck);
  800. }
  801. return 0;
  802. }
  803. static void put_dss_clocks(void)
  804. {
  805. clk_put(dispc.dss_54m_fck);
  806. clk_put(dispc.dss1_fck);
  807. clk_put(dispc.dss_ick);
  808. }
  809. static void enable_lcd_clocks(int enable)
  810. {
  811. if (enable) {
  812. clk_enable(dispc.dss_ick);
  813. clk_enable(dispc.dss1_fck);
  814. } else {
  815. clk_disable(dispc.dss1_fck);
  816. clk_disable(dispc.dss_ick);
  817. }
  818. }
  819. static void enable_digit_clocks(int enable)
  820. {
  821. if (enable)
  822. clk_enable(dispc.dss_54m_fck);
  823. else
  824. clk_disable(dispc.dss_54m_fck);
  825. }
  826. static void omap_dispc_suspend(void)
  827. {
  828. if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
  829. init_completion(&dispc.frame_done);
  830. omap_dispc_enable_lcd_out(0);
  831. if (!wait_for_completion_timeout(&dispc.frame_done,
  832. msecs_to_jiffies(500))) {
  833. dev_err(dispc.fbdev->dev,
  834. "timeout waiting for FRAME DONE\n");
  835. }
  836. enable_lcd_clocks(0);
  837. }
  838. }
  839. static void omap_dispc_resume(void)
  840. {
  841. if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
  842. enable_lcd_clocks(1);
  843. if (!dispc.ext_mode) {
  844. set_lcd_timings();
  845. load_palette();
  846. }
  847. omap_dispc_enable_lcd_out(1);
  848. }
  849. }
  850. static int omap_dispc_update_window(struct fb_info *fbi,
  851. struct omapfb_update_window *win,
  852. void (*complete_callback)(void *arg),
  853. void *complete_callback_data)
  854. {
  855. return dispc.update_mode == OMAPFB_UPDATE_DISABLED ? -ENODEV : 0;
  856. }
  857. static int mmap_kern(struct omapfb_mem_region *region)
  858. {
  859. struct vm_struct *kvma;
  860. struct vm_area_struct vma;
  861. pgprot_t pgprot;
  862. unsigned long vaddr;
  863. kvma = get_vm_area(region->size, VM_IOREMAP);
  864. if (kvma == NULL) {
  865. dev_err(dispc.fbdev->dev, "can't get kernel vm area\n");
  866. return -ENOMEM;
  867. }
  868. vma.vm_mm = &init_mm;
  869. vaddr = (unsigned long)kvma->addr;
  870. pgprot = pgprot_writecombine(pgprot_kernel);
  871. vma.vm_start = vaddr;
  872. vma.vm_end = vaddr + region->size;
  873. if (io_remap_pfn_range(&vma, vaddr, region->paddr >> PAGE_SHIFT,
  874. region->size, pgprot) < 0) {
  875. dev_err(dispc.fbdev->dev, "kernel mmap for FBMEM failed\n");
  876. return -EAGAIN;
  877. }
  878. region->vaddr = (void *)vaddr;
  879. return 0;
  880. }
  881. static void mmap_user_open(struct vm_area_struct *vma)
  882. {
  883. int plane = (int)vma->vm_private_data;
  884. atomic_inc(&dispc.map_count[plane]);
  885. }
  886. static void mmap_user_close(struct vm_area_struct *vma)
  887. {
  888. int plane = (int)vma->vm_private_data;
  889. atomic_dec(&dispc.map_count[plane]);
  890. }
  891. static const struct vm_operations_struct mmap_user_ops = {
  892. .open = mmap_user_open,
  893. .close = mmap_user_close,
  894. };
  895. static int omap_dispc_mmap_user(struct fb_info *info,
  896. struct vm_area_struct *vma)
  897. {
  898. struct omapfb_plane_struct *plane = info->par;
  899. unsigned long off;
  900. unsigned long start;
  901. u32 len;
  902. if (vma->vm_end - vma->vm_start == 0)
  903. return 0;
  904. if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
  905. return -EINVAL;
  906. off = vma->vm_pgoff << PAGE_SHIFT;
  907. start = info->fix.smem_start;
  908. len = info->fix.smem_len;
  909. if (off >= len)
  910. return -EINVAL;
  911. if ((vma->vm_end - vma->vm_start + off) > len)
  912. return -EINVAL;
  913. off += start;
  914. vma->vm_pgoff = off >> PAGE_SHIFT;
  915. vma->vm_flags |= VM_IO | VM_RESERVED;
  916. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  917. vma->vm_ops = &mmap_user_ops;
  918. vma->vm_private_data = (void *)plane->idx;
  919. if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
  920. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  921. return -EAGAIN;
  922. /* vm_ops.open won't be called for mmap itself. */
  923. atomic_inc(&dispc.map_count[plane->idx]);
  924. return 0;
  925. }
  926. static void unmap_kern(struct omapfb_mem_region *region)
  927. {
  928. vunmap(region->vaddr);
  929. }
  930. static int alloc_palette_ram(void)
  931. {
  932. dispc.palette_vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
  933. MAX_PALETTE_SIZE, &dispc.palette_paddr, GFP_KERNEL);
  934. if (dispc.palette_vaddr == NULL) {
  935. dev_err(dispc.fbdev->dev, "failed to alloc palette memory\n");
  936. return -ENOMEM;
  937. }
  938. return 0;
  939. }
  940. static void free_palette_ram(void)
  941. {
  942. dma_free_writecombine(dispc.fbdev->dev, MAX_PALETTE_SIZE,
  943. dispc.palette_vaddr, dispc.palette_paddr);
  944. }
  945. static int alloc_fbmem(struct omapfb_mem_region *region)
  946. {
  947. region->vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
  948. region->size, &region->paddr, GFP_KERNEL);
  949. if (region->vaddr == NULL) {
  950. dev_err(dispc.fbdev->dev, "unable to allocate FB DMA memory\n");
  951. return -ENOMEM;
  952. }
  953. return 0;
  954. }
  955. static void free_fbmem(struct omapfb_mem_region *region)
  956. {
  957. dma_free_writecombine(dispc.fbdev->dev, region->size,
  958. region->vaddr, region->paddr);
  959. }
  960. static struct resmap *init_resmap(unsigned long start, size_t size)
  961. {
  962. unsigned page_cnt;
  963. struct resmap *res_map;
  964. page_cnt = PAGE_ALIGN(size) / PAGE_SIZE;
  965. res_map =
  966. kzalloc(sizeof(struct resmap) + RESMAP_SIZE(page_cnt), GFP_KERNEL);
  967. if (res_map == NULL)
  968. return NULL;
  969. res_map->start = start;
  970. res_map->page_cnt = page_cnt;
  971. res_map->map = (unsigned long *)(res_map + 1);
  972. return res_map;
  973. }
  974. static void cleanup_resmap(struct resmap *res_map)
  975. {
  976. kfree(res_map);
  977. }
  978. static inline int resmap_mem_type(unsigned long start)
  979. {
  980. if (start >= OMAP2_SRAM_START &&
  981. start < OMAP2_SRAM_START + OMAP2_SRAM_SIZE)
  982. return OMAPFB_MEMTYPE_SRAM;
  983. else
  984. return OMAPFB_MEMTYPE_SDRAM;
  985. }
  986. static inline int resmap_page_reserved(struct resmap *res_map, unsigned page_nr)
  987. {
  988. return *RESMAP_PTR(res_map, page_nr) & RESMAP_MASK(page_nr) ? 1 : 0;
  989. }
  990. static inline void resmap_reserve_page(struct resmap *res_map, unsigned page_nr)
  991. {
  992. BUG_ON(resmap_page_reserved(res_map, page_nr));
  993. *RESMAP_PTR(res_map, page_nr) |= RESMAP_MASK(page_nr);
  994. }
  995. static inline void resmap_free_page(struct resmap *res_map, unsigned page_nr)
  996. {
  997. BUG_ON(!resmap_page_reserved(res_map, page_nr));
  998. *RESMAP_PTR(res_map, page_nr) &= ~RESMAP_MASK(page_nr);
  999. }
  1000. static void resmap_reserve_region(unsigned long start, size_t size)
  1001. {
  1002. struct resmap *res_map;
  1003. unsigned start_page;
  1004. unsigned end_page;
  1005. int mtype;
  1006. unsigned i;
  1007. mtype = resmap_mem_type(start);
  1008. res_map = dispc.res_map[mtype];
  1009. dev_dbg(dispc.fbdev->dev, "reserve mem type %d start %08lx size %d\n",
  1010. mtype, start, size);
  1011. start_page = (start - res_map->start) / PAGE_SIZE;
  1012. end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
  1013. for (i = start_page; i < end_page; i++)
  1014. resmap_reserve_page(res_map, i);
  1015. }
  1016. static void resmap_free_region(unsigned long start, size_t size)
  1017. {
  1018. struct resmap *res_map;
  1019. unsigned start_page;
  1020. unsigned end_page;
  1021. unsigned i;
  1022. int mtype;
  1023. mtype = resmap_mem_type(start);
  1024. res_map = dispc.res_map[mtype];
  1025. dev_dbg(dispc.fbdev->dev, "free mem type %d start %08lx size %d\n",
  1026. mtype, start, size);
  1027. start_page = (start - res_map->start) / PAGE_SIZE;
  1028. end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
  1029. for (i = start_page; i < end_page; i++)
  1030. resmap_free_page(res_map, i);
  1031. }
  1032. static unsigned long resmap_alloc_region(int mtype, size_t size)
  1033. {
  1034. unsigned i;
  1035. unsigned total;
  1036. unsigned start_page;
  1037. unsigned long start;
  1038. struct resmap *res_map = dispc.res_map[mtype];
  1039. BUG_ON(mtype >= DISPC_MEMTYPE_NUM || res_map == NULL || !size);
  1040. size = PAGE_ALIGN(size) / PAGE_SIZE;
  1041. start_page = 0;
  1042. total = 0;
  1043. for (i = 0; i < res_map->page_cnt; i++) {
  1044. if (resmap_page_reserved(res_map, i)) {
  1045. start_page = i + 1;
  1046. total = 0;
  1047. } else if (++total == size)
  1048. break;
  1049. }
  1050. if (total < size)
  1051. return 0;
  1052. start = res_map->start + start_page * PAGE_SIZE;
  1053. resmap_reserve_region(start, size * PAGE_SIZE);
  1054. return start;
  1055. }
  1056. /* Note that this will only work for user mappings, we don't deal with
  1057. * kernel mappings here, so fbcon will keep using the old region.
  1058. */
  1059. static int omap_dispc_setup_mem(int plane, size_t size, int mem_type,
  1060. unsigned long *paddr)
  1061. {
  1062. struct omapfb_mem_region *rg;
  1063. unsigned long new_addr = 0;
  1064. if ((unsigned)plane > dispc.mem_desc.region_cnt)
  1065. return -EINVAL;
  1066. if (mem_type >= DISPC_MEMTYPE_NUM)
  1067. return -EINVAL;
  1068. if (dispc.res_map[mem_type] == NULL)
  1069. return -ENOMEM;
  1070. rg = &dispc.mem_desc.region[plane];
  1071. if (size == rg->size && mem_type == rg->type)
  1072. return 0;
  1073. if (atomic_read(&dispc.map_count[plane]))
  1074. return -EBUSY;
  1075. if (rg->size != 0)
  1076. resmap_free_region(rg->paddr, rg->size);
  1077. if (size != 0) {
  1078. new_addr = resmap_alloc_region(mem_type, size);
  1079. if (!new_addr) {
  1080. /* Reallocate old region. */
  1081. resmap_reserve_region(rg->paddr, rg->size);
  1082. return -ENOMEM;
  1083. }
  1084. }
  1085. rg->paddr = new_addr;
  1086. rg->size = size;
  1087. rg->type = mem_type;
  1088. *paddr = new_addr;
  1089. return 0;
  1090. }
  1091. static int setup_fbmem(struct omapfb_mem_desc *req_md)
  1092. {
  1093. struct omapfb_mem_region *rg;
  1094. int i;
  1095. int r;
  1096. unsigned long mem_start[DISPC_MEMTYPE_NUM];
  1097. unsigned long mem_end[DISPC_MEMTYPE_NUM];
  1098. if (!req_md->region_cnt) {
  1099. dev_err(dispc.fbdev->dev, "no memory regions defined\n");
  1100. return -ENOENT;
  1101. }
  1102. rg = &req_md->region[0];
  1103. memset(mem_start, 0xff, sizeof(mem_start));
  1104. memset(mem_end, 0, sizeof(mem_end));
  1105. for (i = 0; i < req_md->region_cnt; i++, rg++) {
  1106. int mtype;
  1107. if (rg->paddr) {
  1108. rg->alloc = 0;
  1109. if (rg->vaddr == NULL) {
  1110. rg->map = 1;
  1111. if ((r = mmap_kern(rg)) < 0)
  1112. return r;
  1113. }
  1114. } else {
  1115. if (rg->type != OMAPFB_MEMTYPE_SDRAM) {
  1116. dev_err(dispc.fbdev->dev,
  1117. "unsupported memory type\n");
  1118. return -EINVAL;
  1119. }
  1120. rg->alloc = rg->map = 1;
  1121. if ((r = alloc_fbmem(rg)) < 0)
  1122. return r;
  1123. }
  1124. mtype = rg->type;
  1125. if (rg->paddr < mem_start[mtype])
  1126. mem_start[mtype] = rg->paddr;
  1127. if (rg->paddr + rg->size > mem_end[mtype])
  1128. mem_end[mtype] = rg->paddr + rg->size;
  1129. }
  1130. for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
  1131. unsigned long start;
  1132. size_t size;
  1133. if (mem_end[i] == 0)
  1134. continue;
  1135. start = mem_start[i];
  1136. size = mem_end[i] - start;
  1137. dispc.res_map[i] = init_resmap(start, size);
  1138. r = -ENOMEM;
  1139. if (dispc.res_map[i] == NULL)
  1140. goto fail;
  1141. /* Initial state is that everything is reserved. This
  1142. * includes possible holes as well, which will never be
  1143. * freed.
  1144. */
  1145. resmap_reserve_region(start, size);
  1146. }
  1147. dispc.mem_desc = *req_md;
  1148. return 0;
  1149. fail:
  1150. for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
  1151. if (dispc.res_map[i] != NULL)
  1152. cleanup_resmap(dispc.res_map[i]);
  1153. }
  1154. return r;
  1155. }
  1156. static void cleanup_fbmem(void)
  1157. {
  1158. struct omapfb_mem_region *rg;
  1159. int i;
  1160. for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
  1161. if (dispc.res_map[i] != NULL)
  1162. cleanup_resmap(dispc.res_map[i]);
  1163. }
  1164. rg = &dispc.mem_desc.region[0];
  1165. for (i = 0; i < dispc.mem_desc.region_cnt; i++, rg++) {
  1166. if (rg->alloc)
  1167. free_fbmem(rg);
  1168. else {
  1169. if (rg->map)
  1170. unmap_kern(rg);
  1171. }
  1172. }
  1173. }
  1174. static int omap_dispc_init(struct omapfb_device *fbdev, int ext_mode,
  1175. struct omapfb_mem_desc *req_vram)
  1176. {
  1177. int r;
  1178. u32 l;
  1179. struct lcd_panel *panel = fbdev->panel;
  1180. void __iomem *ram_fw_base;
  1181. int tmo = 10000;
  1182. int skip_init = 0;
  1183. int i;
  1184. memset(&dispc, 0, sizeof(dispc));
  1185. dispc.base = ioremap(DISPC_BASE, SZ_1K);
  1186. if (!dispc.base) {
  1187. dev_err(fbdev->dev, "can't ioremap DISPC\n");
  1188. return -ENOMEM;
  1189. }
  1190. dispc.fbdev = fbdev;
  1191. dispc.ext_mode = ext_mode;
  1192. init_completion(&dispc.frame_done);
  1193. if ((r = get_dss_clocks()) < 0)
  1194. goto fail0;
  1195. enable_lcd_clocks(1);
  1196. #ifdef CONFIG_FB_OMAP_BOOTLOADER_INIT
  1197. l = dispc_read_reg(DISPC_CONTROL);
  1198. /* LCD enabled ? */
  1199. if (l & 1) {
  1200. pr_info("omapfb: skipping hardware initialization\n");
  1201. skip_init = 1;
  1202. }
  1203. #endif
  1204. if (!skip_init) {
  1205. /* Reset monitoring works only w/ the 54M clk */
  1206. enable_digit_clocks(1);
  1207. /* Soft reset */
  1208. MOD_REG_FLD(DISPC_SYSCONFIG, 1 << 1, 1 << 1);
  1209. while (!(dispc_read_reg(DISPC_SYSSTATUS) & 1)) {
  1210. if (!--tmo) {
  1211. dev_err(dispc.fbdev->dev, "soft reset failed\n");
  1212. r = -ENODEV;
  1213. enable_digit_clocks(0);
  1214. goto fail1;
  1215. }
  1216. }
  1217. enable_digit_clocks(0);
  1218. }
  1219. /* Enable smart standby/idle, autoidle and wakeup */
  1220. l = dispc_read_reg(DISPC_SYSCONFIG);
  1221. l &= ~((3 << 12) | (3 << 3));
  1222. l |= (2 << 12) | (2 << 3) | (1 << 2) | (1 << 0);
  1223. dispc_write_reg(DISPC_SYSCONFIG, l);
  1224. omap_writel(1 << 0, DSS_BASE + DSS_SYSCONFIG);
  1225. /* Set functional clock autogating */
  1226. l = dispc_read_reg(DISPC_CONFIG);
  1227. l |= 1 << 9;
  1228. dispc_write_reg(DISPC_CONFIG, l);
  1229. l = dispc_read_reg(DISPC_IRQSTATUS);
  1230. dispc_write_reg(DISPC_IRQSTATUS, l);
  1231. recalc_irq_mask();
  1232. if ((r = request_irq(INT_24XX_DSS_IRQ, omap_dispc_irq_handler,
  1233. 0, MODULE_NAME, fbdev)) < 0) {
  1234. dev_err(dispc.fbdev->dev, "can't get DSS IRQ\n");
  1235. goto fail1;
  1236. }
  1237. /* L3 firewall setting: enable access to OCM RAM */
  1238. ram_fw_base = ioremap(0x68005000, SZ_1K);
  1239. if (!ram_fw_base) {
  1240. dev_err(dispc.fbdev->dev, "Cannot ioremap to enable OCM RAM\n");
  1241. goto fail1;
  1242. }
  1243. __raw_writel(0x402000b0, ram_fw_base + 0xa0);
  1244. iounmap(ram_fw_base);
  1245. if ((r = alloc_palette_ram()) < 0)
  1246. goto fail2;
  1247. if ((r = setup_fbmem(req_vram)) < 0)
  1248. goto fail3;
  1249. if (!skip_init) {
  1250. for (i = 0; i < dispc.mem_desc.region_cnt; i++) {
  1251. memset(dispc.mem_desc.region[i].vaddr, 0,
  1252. dispc.mem_desc.region[i].size);
  1253. }
  1254. /* Set logic clock to fck, pixel clock to fck/2 for now */
  1255. MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(16, 8), 1 << 16);
  1256. MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(0, 8), 2 << 0);
  1257. setup_plane_fifo(0, ext_mode);
  1258. setup_plane_fifo(1, ext_mode);
  1259. setup_plane_fifo(2, ext_mode);
  1260. setup_color_conv_coef();
  1261. set_lcd_tft_mode(panel->config & OMAP_LCDC_PANEL_TFT);
  1262. set_load_mode(DISPC_LOAD_FRAME_ONLY);
  1263. if (!ext_mode) {
  1264. set_lcd_data_lines(panel->data_lines);
  1265. omap_dispc_set_lcd_size(panel->x_res, panel->y_res);
  1266. set_lcd_timings();
  1267. } else
  1268. set_lcd_data_lines(panel->bpp);
  1269. enable_rfbi_mode(ext_mode);
  1270. }
  1271. l = dispc_read_reg(DISPC_REVISION);
  1272. pr_info("omapfb: DISPC version %d.%d initialized\n",
  1273. l >> 4 & 0x0f, l & 0x0f);
  1274. enable_lcd_clocks(0);
  1275. return 0;
  1276. fail3:
  1277. free_palette_ram();
  1278. fail2:
  1279. free_irq(INT_24XX_DSS_IRQ, fbdev);
  1280. fail1:
  1281. enable_lcd_clocks(0);
  1282. put_dss_clocks();
  1283. fail0:
  1284. iounmap(dispc.base);
  1285. return r;
  1286. }
  1287. static void omap_dispc_cleanup(void)
  1288. {
  1289. int i;
  1290. omap_dispc_set_update_mode(OMAPFB_UPDATE_DISABLED);
  1291. /* This will also disable clocks that are on */
  1292. for (i = 0; i < dispc.mem_desc.region_cnt; i++)
  1293. omap_dispc_enable_plane(i, 0);
  1294. cleanup_fbmem();
  1295. free_palette_ram();
  1296. free_irq(INT_24XX_DSS_IRQ, dispc.fbdev);
  1297. put_dss_clocks();
  1298. iounmap(dispc.base);
  1299. }
  1300. const struct lcd_ctrl omap2_int_ctrl = {
  1301. .name = "internal",
  1302. .init = omap_dispc_init,
  1303. .cleanup = omap_dispc_cleanup,
  1304. .get_caps = omap_dispc_get_caps,
  1305. .set_update_mode = omap_dispc_set_update_mode,
  1306. .get_update_mode = omap_dispc_get_update_mode,
  1307. .update_window = omap_dispc_update_window,
  1308. .suspend = omap_dispc_suspend,
  1309. .resume = omap_dispc_resume,
  1310. .setup_plane = omap_dispc_setup_plane,
  1311. .setup_mem = omap_dispc_setup_mem,
  1312. .set_scale = omap_dispc_set_scale,
  1313. .enable_plane = omap_dispc_enable_plane,
  1314. .set_color_key = omap_dispc_set_color_key,
  1315. .get_color_key = omap_dispc_get_color_key,
  1316. .mmap = omap_dispc_mmap_user,
  1317. };