pch_udc.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009
  1. /*
  2. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. */
  8. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/delay.h>
  13. #include <linux/errno.h>
  14. #include <linux/list.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/usb/ch9.h>
  17. #include <linux/usb/gadget.h>
  18. /* Address offset of Registers */
  19. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  20. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  21. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  22. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  23. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  24. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  25. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  26. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  27. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  28. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  29. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  30. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  31. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  32. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  33. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  34. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  35. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  36. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  37. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  38. /* Endpoint control register */
  39. /* Bit position */
  40. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  41. #define UDC_EPCTL_RRDY (1 << 9)
  42. #define UDC_EPCTL_CNAK (1 << 8)
  43. #define UDC_EPCTL_SNAK (1 << 7)
  44. #define UDC_EPCTL_NAK (1 << 6)
  45. #define UDC_EPCTL_P (1 << 3)
  46. #define UDC_EPCTL_F (1 << 1)
  47. #define UDC_EPCTL_S (1 << 0)
  48. #define UDC_EPCTL_ET_SHIFT 4
  49. /* Mask patern */
  50. #define UDC_EPCTL_ET_MASK 0x00000030
  51. /* Value for ET field */
  52. #define UDC_EPCTL_ET_CONTROL 0
  53. #define UDC_EPCTL_ET_ISO 1
  54. #define UDC_EPCTL_ET_BULK 2
  55. #define UDC_EPCTL_ET_INTERRUPT 3
  56. /* Endpoint status register */
  57. /* Bit position */
  58. #define UDC_EPSTS_XFERDONE (1 << 27)
  59. #define UDC_EPSTS_RSS (1 << 26)
  60. #define UDC_EPSTS_RCS (1 << 25)
  61. #define UDC_EPSTS_TXEMPTY (1 << 24)
  62. #define UDC_EPSTS_TDC (1 << 10)
  63. #define UDC_EPSTS_HE (1 << 9)
  64. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  65. #define UDC_EPSTS_BNA (1 << 7)
  66. #define UDC_EPSTS_IN (1 << 6)
  67. #define UDC_EPSTS_OUT_SHIFT 4
  68. /* Mask patern */
  69. #define UDC_EPSTS_OUT_MASK 0x00000030
  70. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  71. /* Value for OUT field */
  72. #define UDC_EPSTS_OUT_SETUP 2
  73. #define UDC_EPSTS_OUT_DATA 1
  74. /* Device configuration register */
  75. /* Bit position */
  76. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  77. #define UDC_DEVCFG_SP (1 << 3)
  78. /* SPD Valee */
  79. #define UDC_DEVCFG_SPD_HS 0x0
  80. #define UDC_DEVCFG_SPD_FS 0x1
  81. #define UDC_DEVCFG_SPD_LS 0x2
  82. /* Device control register */
  83. /* Bit position */
  84. #define UDC_DEVCTL_THLEN_SHIFT 24
  85. #define UDC_DEVCTL_BRLEN_SHIFT 16
  86. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  87. #define UDC_DEVCTL_SD (1 << 10)
  88. #define UDC_DEVCTL_MODE (1 << 9)
  89. #define UDC_DEVCTL_BREN (1 << 8)
  90. #define UDC_DEVCTL_THE (1 << 7)
  91. #define UDC_DEVCTL_DU (1 << 4)
  92. #define UDC_DEVCTL_TDE (1 << 3)
  93. #define UDC_DEVCTL_RDE (1 << 2)
  94. #define UDC_DEVCTL_RES (1 << 0)
  95. /* Device status register */
  96. /* Bit position */
  97. #define UDC_DEVSTS_TS_SHIFT 18
  98. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  99. #define UDC_DEVSTS_ALT_SHIFT 8
  100. #define UDC_DEVSTS_INTF_SHIFT 4
  101. #define UDC_DEVSTS_CFG_SHIFT 0
  102. /* Mask patern */
  103. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  104. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  105. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  106. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  107. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  108. /* value for maximum speed for SPEED field */
  109. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  110. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  111. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  112. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  113. /* Device irq register */
  114. /* Bit position */
  115. #define UDC_DEVINT_RWKP (1 << 7)
  116. #define UDC_DEVINT_ENUM (1 << 6)
  117. #define UDC_DEVINT_SOF (1 << 5)
  118. #define UDC_DEVINT_US (1 << 4)
  119. #define UDC_DEVINT_UR (1 << 3)
  120. #define UDC_DEVINT_ES (1 << 2)
  121. #define UDC_DEVINT_SI (1 << 1)
  122. #define UDC_DEVINT_SC (1 << 0)
  123. /* Mask patern */
  124. #define UDC_DEVINT_MSK 0x7f
  125. /* Endpoint irq register */
  126. /* Bit position */
  127. #define UDC_EPINT_IN_SHIFT 0
  128. #define UDC_EPINT_OUT_SHIFT 16
  129. #define UDC_EPINT_IN_EP0 (1 << 0)
  130. #define UDC_EPINT_OUT_EP0 (1 << 16)
  131. /* Mask patern */
  132. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  133. /* UDC_CSR_BUSY Status register */
  134. /* Bit position */
  135. #define UDC_CSR_BUSY (1 << 0)
  136. /* SOFT RESET register */
  137. /* Bit position */
  138. #define UDC_PSRST (1 << 1)
  139. #define UDC_SRST (1 << 0)
  140. /* USB_DEVICE endpoint register */
  141. /* Bit position */
  142. #define UDC_CSR_NE_NUM_SHIFT 0
  143. #define UDC_CSR_NE_DIR_SHIFT 4
  144. #define UDC_CSR_NE_TYPE_SHIFT 5
  145. #define UDC_CSR_NE_CFG_SHIFT 7
  146. #define UDC_CSR_NE_INTF_SHIFT 11
  147. #define UDC_CSR_NE_ALT_SHIFT 15
  148. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  149. /* Mask patern */
  150. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  151. #define UDC_CSR_NE_DIR_MASK 0x00000010
  152. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  153. #define UDC_CSR_NE_CFG_MASK 0x00000780
  154. #define UDC_CSR_NE_INTF_MASK 0x00007800
  155. #define UDC_CSR_NE_ALT_MASK 0x00078000
  156. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  157. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  158. #define PCH_UDC_EPINT(in, num)\
  159. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  160. /* Index of endpoint */
  161. #define UDC_EP0IN_IDX 0
  162. #define UDC_EP0OUT_IDX 1
  163. #define UDC_EPIN_IDX(ep) (ep * 2)
  164. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  165. #define PCH_UDC_EP0 0
  166. #define PCH_UDC_EP1 1
  167. #define PCH_UDC_EP2 2
  168. #define PCH_UDC_EP3 3
  169. /* Number of endpoint */
  170. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  171. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  172. /* Length Value */
  173. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  174. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  175. /* Value of EP Buffer Size */
  176. #define UDC_EP0IN_BUFF_SIZE 16
  177. #define UDC_EPIN_BUFF_SIZE 256
  178. #define UDC_EP0OUT_BUFF_SIZE 16
  179. #define UDC_EPOUT_BUFF_SIZE 256
  180. /* Value of EP maximum packet size */
  181. #define UDC_EP0IN_MAX_PKT_SIZE 64
  182. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  183. #define UDC_BULK_MAX_PKT_SIZE 512
  184. /* DMA */
  185. #define DMA_DIR_RX 1 /* DMA for data receive */
  186. #define DMA_DIR_TX 2 /* DMA for data transmit */
  187. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  188. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  189. /**
  190. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  191. * for data
  192. * @status: Status quadlet
  193. * @reserved: Reserved
  194. * @dataptr: Buffer descriptor
  195. * @next: Next descriptor
  196. */
  197. struct pch_udc_data_dma_desc {
  198. u32 status;
  199. u32 reserved;
  200. u32 dataptr;
  201. u32 next;
  202. };
  203. /**
  204. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  205. * for control data
  206. * @status: Status
  207. * @reserved: Reserved
  208. * @data12: First setup word
  209. * @data34: Second setup word
  210. */
  211. struct pch_udc_stp_dma_desc {
  212. u32 status;
  213. u32 reserved;
  214. struct usb_ctrlrequest request;
  215. } __attribute((packed));
  216. /* DMA status definitions */
  217. /* Buffer status */
  218. #define PCH_UDC_BUFF_STS 0xC0000000
  219. #define PCH_UDC_BS_HST_RDY 0x00000000
  220. #define PCH_UDC_BS_DMA_BSY 0x40000000
  221. #define PCH_UDC_BS_DMA_DONE 0x80000000
  222. #define PCH_UDC_BS_HST_BSY 0xC0000000
  223. /* Rx/Tx Status */
  224. #define PCH_UDC_RXTX_STS 0x30000000
  225. #define PCH_UDC_RTS_SUCC 0x00000000
  226. #define PCH_UDC_RTS_DESERR 0x10000000
  227. #define PCH_UDC_RTS_BUFERR 0x30000000
  228. /* Last Descriptor Indication */
  229. #define PCH_UDC_DMA_LAST 0x08000000
  230. /* Number of Rx/Tx Bytes Mask */
  231. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  232. /**
  233. * struct pch_udc_cfg_data - Structure to hold current configuration
  234. * and interface information
  235. * @cur_cfg: current configuration in use
  236. * @cur_intf: current interface in use
  237. * @cur_alt: current alt interface in use
  238. */
  239. struct pch_udc_cfg_data {
  240. u16 cur_cfg;
  241. u16 cur_intf;
  242. u16 cur_alt;
  243. };
  244. /**
  245. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  246. * @ep: embedded ep request
  247. * @td_stp_phys: for setup request
  248. * @td_data_phys: for data request
  249. * @td_stp: for setup request
  250. * @td_data: for data request
  251. * @dev: reference to device struct
  252. * @offset_addr: offset address of ep register
  253. * @desc: for this ep
  254. * @queue: queue for requests
  255. * @num: endpoint number
  256. * @in: endpoint is IN
  257. * @halted: endpoint halted?
  258. * @epsts: Endpoint status
  259. */
  260. struct pch_udc_ep {
  261. struct usb_ep ep;
  262. dma_addr_t td_stp_phys;
  263. dma_addr_t td_data_phys;
  264. struct pch_udc_stp_dma_desc *td_stp;
  265. struct pch_udc_data_dma_desc *td_data;
  266. struct pch_udc_dev *dev;
  267. unsigned long offset_addr;
  268. const struct usb_endpoint_descriptor *desc;
  269. struct list_head queue;
  270. unsigned num:5,
  271. in:1,
  272. halted:1;
  273. unsigned long epsts;
  274. };
  275. /**
  276. * struct pch_udc_dev - Structure holding complete information
  277. * of the PCH USB device
  278. * @gadget: gadget driver data
  279. * @driver: reference to gadget driver bound
  280. * @pdev: reference to the PCI device
  281. * @ep: array of endpoints
  282. * @lock: protects all state
  283. * @active: enabled the PCI device
  284. * @stall: stall requested
  285. * @prot_stall: protcol stall requested
  286. * @irq_registered: irq registered with system
  287. * @mem_region: device memory mapped
  288. * @registered: driver regsitered with system
  289. * @suspended: driver in suspended state
  290. * @connected: gadget driver associated
  291. * @set_cfg_not_acked: pending acknowledgement 4 setup
  292. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  293. * @data_requests: DMA pool for data requests
  294. * @stp_requests: DMA pool for setup requests
  295. * @dma_addr: DMA pool for received
  296. * @ep0out_buf: Buffer for DMA
  297. * @setup_data: Received setup data
  298. * @phys_addr: of device memory
  299. * @base_addr: for mapped device memory
  300. * @irq: IRQ line for the device
  301. * @cfg_data: current cfg, intf, and alt in use
  302. */
  303. struct pch_udc_dev {
  304. struct usb_gadget gadget;
  305. struct usb_gadget_driver *driver;
  306. struct pci_dev *pdev;
  307. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  308. spinlock_t lock; /* protects all state */
  309. unsigned active:1,
  310. stall:1,
  311. prot_stall:1,
  312. irq_registered:1,
  313. mem_region:1,
  314. registered:1,
  315. suspended:1,
  316. connected:1,
  317. set_cfg_not_acked:1,
  318. waiting_zlp_ack:1;
  319. struct pci_pool *data_requests;
  320. struct pci_pool *stp_requests;
  321. dma_addr_t dma_addr;
  322. void *ep0out_buf;
  323. struct usb_ctrlrequest setup_data;
  324. unsigned long phys_addr;
  325. void __iomem *base_addr;
  326. unsigned irq;
  327. struct pch_udc_cfg_data cfg_data;
  328. };
  329. #define PCH_UDC_PCI_BAR 1
  330. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  331. #define PCI_VENDOR_ID_ROHM 0x10DB
  332. #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
  333. #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
  334. static const char ep0_string[] = "ep0in";
  335. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  336. struct pch_udc_dev *pch_udc; /* pointer to device object */
  337. static bool speed_fs;
  338. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  339. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  340. /**
  341. * struct pch_udc_request - Structure holding a PCH USB device request packet
  342. * @req: embedded ep request
  343. * @td_data_phys: phys. address
  344. * @td_data: first dma desc. of chain
  345. * @td_data_last: last dma desc. of chain
  346. * @queue: associated queue
  347. * @dma_going: DMA in progress for request
  348. * @dma_mapped: DMA memory mapped for request
  349. * @dma_done: DMA completed for request
  350. * @chain_len: chain length
  351. * @buf: Buffer memory for align adjustment
  352. * @dma: DMA memory for align adjustment
  353. */
  354. struct pch_udc_request {
  355. struct usb_request req;
  356. dma_addr_t td_data_phys;
  357. struct pch_udc_data_dma_desc *td_data;
  358. struct pch_udc_data_dma_desc *td_data_last;
  359. struct list_head queue;
  360. unsigned dma_going:1,
  361. dma_mapped:1,
  362. dma_done:1;
  363. unsigned chain_len;
  364. void *buf;
  365. dma_addr_t dma;
  366. };
  367. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  368. {
  369. return ioread32(dev->base_addr + reg);
  370. }
  371. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  372. unsigned long val, unsigned long reg)
  373. {
  374. iowrite32(val, dev->base_addr + reg);
  375. }
  376. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  377. unsigned long reg,
  378. unsigned long bitmask)
  379. {
  380. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  381. }
  382. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  383. unsigned long reg,
  384. unsigned long bitmask)
  385. {
  386. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  387. }
  388. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  389. {
  390. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  391. }
  392. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  393. unsigned long val, unsigned long reg)
  394. {
  395. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  396. }
  397. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  398. unsigned long reg,
  399. unsigned long bitmask)
  400. {
  401. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  402. }
  403. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  404. unsigned long reg,
  405. unsigned long bitmask)
  406. {
  407. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  408. }
  409. /**
  410. * pch_udc_csr_busy() - Wait till idle.
  411. * @dev: Reference to pch_udc_dev structure
  412. */
  413. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  414. {
  415. unsigned int count = 200;
  416. /* Wait till idle */
  417. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  418. && --count)
  419. cpu_relax();
  420. if (!count)
  421. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  422. }
  423. /**
  424. * pch_udc_write_csr() - Write the command and status registers.
  425. * @dev: Reference to pch_udc_dev structure
  426. * @val: value to be written to CSR register
  427. * @addr: address of CSR register
  428. */
  429. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  430. unsigned int ep)
  431. {
  432. unsigned long reg = PCH_UDC_CSR(ep);
  433. pch_udc_csr_busy(dev); /* Wait till idle */
  434. pch_udc_writel(dev, val, reg);
  435. pch_udc_csr_busy(dev); /* Wait till idle */
  436. }
  437. /**
  438. * pch_udc_read_csr() - Read the command and status registers.
  439. * @dev: Reference to pch_udc_dev structure
  440. * @addr: address of CSR register
  441. *
  442. * Return codes: content of CSR register
  443. */
  444. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  445. {
  446. unsigned long reg = PCH_UDC_CSR(ep);
  447. pch_udc_csr_busy(dev); /* Wait till idle */
  448. pch_udc_readl(dev, reg); /* Dummy read */
  449. pch_udc_csr_busy(dev); /* Wait till idle */
  450. return pch_udc_readl(dev, reg);
  451. }
  452. /**
  453. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  454. * @dev: Reference to pch_udc_dev structure
  455. */
  456. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  457. {
  458. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  459. mdelay(1);
  460. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  461. }
  462. /**
  463. * pch_udc_get_frame() - Get the current frame from device status register
  464. * @dev: Reference to pch_udc_dev structure
  465. * Retern current frame
  466. */
  467. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  468. {
  469. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  470. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  471. }
  472. /**
  473. * pch_udc_clear_selfpowered() - Clear the self power control
  474. * @dev: Reference to pch_udc_regs structure
  475. */
  476. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  477. {
  478. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  479. }
  480. /**
  481. * pch_udc_set_selfpowered() - Set the self power control
  482. * @dev: Reference to pch_udc_regs structure
  483. */
  484. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  485. {
  486. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  487. }
  488. /**
  489. * pch_udc_set_disconnect() - Set the disconnect status.
  490. * @dev: Reference to pch_udc_regs structure
  491. */
  492. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  493. {
  494. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  495. }
  496. /**
  497. * pch_udc_clear_disconnect() - Clear the disconnect status.
  498. * @dev: Reference to pch_udc_regs structure
  499. */
  500. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  501. {
  502. /* Clear the disconnect */
  503. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  504. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  505. mdelay(1);
  506. /* Resume USB signalling */
  507. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  508. }
  509. /**
  510. * pch_udc_vbus_session() - set or clearr the disconnect status.
  511. * @dev: Reference to pch_udc_regs structure
  512. * @is_active: Parameter specifying the action
  513. * 0: indicating VBUS power is ending
  514. * !0: indicating VBUS power is starting
  515. */
  516. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  517. int is_active)
  518. {
  519. if (is_active)
  520. pch_udc_clear_disconnect(dev);
  521. else
  522. pch_udc_set_disconnect(dev);
  523. }
  524. /**
  525. * pch_udc_ep_set_stall() - Set the stall of endpoint
  526. * @ep: Reference to structure of type pch_udc_ep_regs
  527. */
  528. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  529. {
  530. if (ep->in) {
  531. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  532. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  533. } else {
  534. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  535. }
  536. }
  537. /**
  538. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  539. * @ep: Reference to structure of type pch_udc_ep_regs
  540. */
  541. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  542. {
  543. /* Clear the stall */
  544. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  545. /* Clear NAK by writing CNAK */
  546. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  547. }
  548. /**
  549. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  550. * @ep: Reference to structure of type pch_udc_ep_regs
  551. * @type: Type of endpoint
  552. */
  553. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  554. u8 type)
  555. {
  556. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  557. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  558. }
  559. /**
  560. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  561. * @ep: Reference to structure of type pch_udc_ep_regs
  562. * @buf_size: The buffer word size
  563. */
  564. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  565. u32 buf_size, u32 ep_in)
  566. {
  567. u32 data;
  568. if (ep_in) {
  569. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  570. data = (data & 0xffff0000) | (buf_size & 0xffff);
  571. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  572. } else {
  573. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  574. data = (buf_size << 16) | (data & 0xffff);
  575. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  576. }
  577. }
  578. /**
  579. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  580. * @ep: Reference to structure of type pch_udc_ep_regs
  581. * @pkt_size: The packet byte size
  582. */
  583. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  584. {
  585. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  586. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  587. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  588. }
  589. /**
  590. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  591. * @ep: Reference to structure of type pch_udc_ep_regs
  592. * @addr: Address of the register
  593. */
  594. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  595. {
  596. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  597. }
  598. /**
  599. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  600. * @ep: Reference to structure of type pch_udc_ep_regs
  601. * @addr: Address of the register
  602. */
  603. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  604. {
  605. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  606. }
  607. /**
  608. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  609. * @ep: Reference to structure of type pch_udc_ep_regs
  610. */
  611. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  612. {
  613. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  614. }
  615. /**
  616. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  617. * @ep: Reference to structure of type pch_udc_ep_regs
  618. */
  619. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  620. {
  621. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  622. }
  623. /**
  624. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  625. * @ep: Reference to structure of type pch_udc_ep_regs
  626. */
  627. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  628. {
  629. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  630. }
  631. /**
  632. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  633. * register depending on the direction specified
  634. * @dev: Reference to structure of type pch_udc_regs
  635. * @dir: whether Tx or Rx
  636. * DMA_DIR_RX: Receive
  637. * DMA_DIR_TX: Transmit
  638. */
  639. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  640. {
  641. if (dir == DMA_DIR_RX)
  642. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  643. else if (dir == DMA_DIR_TX)
  644. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  645. }
  646. /**
  647. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  648. * register depending on the direction specified
  649. * @dev: Reference to structure of type pch_udc_regs
  650. * @dir: Whether Tx or Rx
  651. * DMA_DIR_RX: Receive
  652. * DMA_DIR_TX: Transmit
  653. */
  654. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  655. {
  656. if (dir == DMA_DIR_RX)
  657. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  658. else if (dir == DMA_DIR_TX)
  659. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  660. }
  661. /**
  662. * pch_udc_set_csr_done() - Set the device control register
  663. * CSR done field (bit 13)
  664. * @dev: reference to structure of type pch_udc_regs
  665. */
  666. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  667. {
  668. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  669. }
  670. /**
  671. * pch_udc_disable_interrupts() - Disables the specified interrupts
  672. * @dev: Reference to structure of type pch_udc_regs
  673. * @mask: Mask to disable interrupts
  674. */
  675. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  676. u32 mask)
  677. {
  678. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  679. }
  680. /**
  681. * pch_udc_enable_interrupts() - Enable the specified interrupts
  682. * @dev: Reference to structure of type pch_udc_regs
  683. * @mask: Mask to enable interrupts
  684. */
  685. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  686. u32 mask)
  687. {
  688. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  689. }
  690. /**
  691. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  692. * @dev: Reference to structure of type pch_udc_regs
  693. * @mask: Mask to disable interrupts
  694. */
  695. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  696. u32 mask)
  697. {
  698. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  699. }
  700. /**
  701. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  702. * @dev: Reference to structure of type pch_udc_regs
  703. * @mask: Mask to enable interrupts
  704. */
  705. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  706. u32 mask)
  707. {
  708. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  709. }
  710. /**
  711. * pch_udc_read_device_interrupts() - Read the device interrupts
  712. * @dev: Reference to structure of type pch_udc_regs
  713. * Retern The device interrupts
  714. */
  715. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  716. {
  717. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  718. }
  719. /**
  720. * pch_udc_write_device_interrupts() - Write device interrupts
  721. * @dev: Reference to structure of type pch_udc_regs
  722. * @val: The value to be written to interrupt register
  723. */
  724. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  725. u32 val)
  726. {
  727. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  728. }
  729. /**
  730. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  731. * @dev: Reference to structure of type pch_udc_regs
  732. * Retern The endpoint interrupt
  733. */
  734. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  735. {
  736. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  737. }
  738. /**
  739. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  740. * @dev: Reference to structure of type pch_udc_regs
  741. * @val: The value to be written to interrupt register
  742. */
  743. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  744. u32 val)
  745. {
  746. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  747. }
  748. /**
  749. * pch_udc_read_device_status() - Read the device status
  750. * @dev: Reference to structure of type pch_udc_regs
  751. * Retern The device status
  752. */
  753. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  754. {
  755. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  756. }
  757. /**
  758. * pch_udc_read_ep_control() - Read the endpoint control
  759. * @ep: Reference to structure of type pch_udc_ep_regs
  760. * Retern The endpoint control register value
  761. */
  762. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  763. {
  764. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  765. }
  766. /**
  767. * pch_udc_clear_ep_control() - Clear the endpoint control register
  768. * @ep: Reference to structure of type pch_udc_ep_regs
  769. * Retern The endpoint control register value
  770. */
  771. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  772. {
  773. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  774. }
  775. /**
  776. * pch_udc_read_ep_status() - Read the endpoint status
  777. * @ep: Reference to structure of type pch_udc_ep_regs
  778. * Retern The endpoint status
  779. */
  780. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  781. {
  782. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  783. }
  784. /**
  785. * pch_udc_clear_ep_status() - Clear the endpoint status
  786. * @ep: Reference to structure of type pch_udc_ep_regs
  787. * @stat: Endpoint status
  788. */
  789. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  790. u32 stat)
  791. {
  792. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  793. }
  794. /**
  795. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  796. * of the endpoint control register
  797. * @ep: Reference to structure of type pch_udc_ep_regs
  798. */
  799. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  800. {
  801. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  802. }
  803. /**
  804. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  805. * of the endpoint control register
  806. * @ep: reference to structure of type pch_udc_ep_regs
  807. */
  808. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  809. {
  810. unsigned int loopcnt = 0;
  811. struct pch_udc_dev *dev = ep->dev;
  812. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  813. return;
  814. if (!ep->in) {
  815. loopcnt = 10000;
  816. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  817. --loopcnt)
  818. udelay(5);
  819. if (!loopcnt)
  820. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  821. __func__);
  822. }
  823. loopcnt = 10000;
  824. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  825. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  826. udelay(5);
  827. }
  828. if (!loopcnt)
  829. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  830. __func__, ep->num, (ep->in ? "in" : "out"));
  831. }
  832. /**
  833. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  834. * @ep: reference to structure of type pch_udc_ep_regs
  835. * @dir: direction of endpoint
  836. * 0: endpoint is OUT
  837. * !0: endpoint is IN
  838. */
  839. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  840. {
  841. if (dir) { /* IN ep */
  842. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  843. return;
  844. }
  845. }
  846. /**
  847. * pch_udc_ep_enable() - This api enables endpoint
  848. * @regs: Reference to structure pch_udc_ep_regs
  849. * @desc: endpoint descriptor
  850. */
  851. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  852. struct pch_udc_cfg_data *cfg,
  853. const struct usb_endpoint_descriptor *desc)
  854. {
  855. u32 val = 0;
  856. u32 buff_size = 0;
  857. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  858. if (ep->in)
  859. buff_size = UDC_EPIN_BUFF_SIZE;
  860. else
  861. buff_size = UDC_EPOUT_BUFF_SIZE;
  862. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  863. pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
  864. pch_udc_ep_set_nak(ep);
  865. pch_udc_ep_fifo_flush(ep, ep->in);
  866. /* Configure the endpoint */
  867. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  868. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  869. UDC_CSR_NE_TYPE_SHIFT) |
  870. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  871. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  872. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  873. usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
  874. if (ep->in)
  875. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  876. else
  877. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  878. }
  879. /**
  880. * pch_udc_ep_disable() - This api disables endpoint
  881. * @regs: Reference to structure pch_udc_ep_regs
  882. */
  883. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  884. {
  885. if (ep->in) {
  886. /* flush the fifo */
  887. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  888. /* set NAK */
  889. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  890. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  891. } else {
  892. /* set NAK */
  893. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  894. }
  895. /* reset desc pointer */
  896. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  897. }
  898. /**
  899. * pch_udc_wait_ep_stall() - Wait EP stall.
  900. * @dev: Reference to pch_udc_dev structure
  901. */
  902. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  903. {
  904. unsigned int count = 10000;
  905. /* Wait till idle */
  906. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  907. udelay(5);
  908. if (!count)
  909. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  910. }
  911. /**
  912. * pch_udc_init() - This API initializes usb device controller
  913. * @dev: Rreference to pch_udc_regs structure
  914. */
  915. static void pch_udc_init(struct pch_udc_dev *dev)
  916. {
  917. if (NULL == dev) {
  918. pr_err("%s: Invalid address\n", __func__);
  919. return;
  920. }
  921. /* Soft Reset and Reset PHY */
  922. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  923. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  924. mdelay(1);
  925. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  926. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  927. mdelay(1);
  928. /* mask and clear all device interrupts */
  929. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  930. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  931. /* mask and clear all ep interrupts */
  932. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  933. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  934. /* enable dynamic CSR programmingi, self powered and device speed */
  935. if (speed_fs)
  936. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  937. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  938. else /* defaul high speed */
  939. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  940. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  941. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  942. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  943. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  944. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  945. UDC_DEVCTL_THE);
  946. }
  947. /**
  948. * pch_udc_exit() - This API exit usb device controller
  949. * @dev: Reference to pch_udc_regs structure
  950. */
  951. static void pch_udc_exit(struct pch_udc_dev *dev)
  952. {
  953. /* mask all device interrupts */
  954. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  955. /* mask all ep interrupts */
  956. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  957. /* put device in disconnected state */
  958. pch_udc_set_disconnect(dev);
  959. }
  960. /**
  961. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  962. * @gadget: Reference to the gadget driver
  963. *
  964. * Return codes:
  965. * 0: Success
  966. * -EINVAL: If the gadget passed is NULL
  967. */
  968. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  969. {
  970. struct pch_udc_dev *dev;
  971. if (!gadget)
  972. return -EINVAL;
  973. dev = container_of(gadget, struct pch_udc_dev, gadget);
  974. return pch_udc_get_frame(dev);
  975. }
  976. /**
  977. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  978. * @gadget: Reference to the gadget driver
  979. *
  980. * Return codes:
  981. * 0: Success
  982. * -EINVAL: If the gadget passed is NULL
  983. */
  984. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  985. {
  986. struct pch_udc_dev *dev;
  987. unsigned long flags;
  988. if (!gadget)
  989. return -EINVAL;
  990. dev = container_of(gadget, struct pch_udc_dev, gadget);
  991. spin_lock_irqsave(&dev->lock, flags);
  992. pch_udc_rmt_wakeup(dev);
  993. spin_unlock_irqrestore(&dev->lock, flags);
  994. return 0;
  995. }
  996. /**
  997. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  998. * is self powered or not
  999. * @gadget: Reference to the gadget driver
  1000. * @value: Specifies self powered or not
  1001. *
  1002. * Return codes:
  1003. * 0: Success
  1004. * -EINVAL: If the gadget passed is NULL
  1005. */
  1006. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1007. {
  1008. struct pch_udc_dev *dev;
  1009. if (!gadget)
  1010. return -EINVAL;
  1011. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1012. if (value)
  1013. pch_udc_set_selfpowered(dev);
  1014. else
  1015. pch_udc_clear_selfpowered(dev);
  1016. return 0;
  1017. }
  1018. /**
  1019. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1020. * visible/invisible to the host
  1021. * @gadget: Reference to the gadget driver
  1022. * @is_on: Specifies whether the pull up is made active or inactive
  1023. *
  1024. * Return codes:
  1025. * 0: Success
  1026. * -EINVAL: If the gadget passed is NULL
  1027. */
  1028. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1029. {
  1030. struct pch_udc_dev *dev;
  1031. if (!gadget)
  1032. return -EINVAL;
  1033. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1034. pch_udc_vbus_session(dev, is_on);
  1035. return 0;
  1036. }
  1037. /**
  1038. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1039. * transceiver (or GPIO) that
  1040. * detects a VBUS power session starting/ending
  1041. * @gadget: Reference to the gadget driver
  1042. * @is_active: specifies whether the session is starting or ending
  1043. *
  1044. * Return codes:
  1045. * 0: Success
  1046. * -EINVAL: If the gadget passed is NULL
  1047. */
  1048. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1049. {
  1050. struct pch_udc_dev *dev;
  1051. if (!gadget)
  1052. return -EINVAL;
  1053. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1054. pch_udc_vbus_session(dev, is_active);
  1055. return 0;
  1056. }
  1057. /**
  1058. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1059. * SET_CONFIGURATION calls to
  1060. * specify how much power the device can consume
  1061. * @gadget: Reference to the gadget driver
  1062. * @mA: specifies the current limit in 2mA unit
  1063. *
  1064. * Return codes:
  1065. * -EINVAL: If the gadget passed is NULL
  1066. * -EOPNOTSUPP:
  1067. */
  1068. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1069. {
  1070. return -EOPNOTSUPP;
  1071. }
  1072. static int pch_udc_start(struct usb_gadget_driver *driver,
  1073. int (*bind)(struct usb_gadget *));
  1074. static int pch_udc_stop(struct usb_gadget_driver *driver);
  1075. static const struct usb_gadget_ops pch_udc_ops = {
  1076. .get_frame = pch_udc_pcd_get_frame,
  1077. .wakeup = pch_udc_pcd_wakeup,
  1078. .set_selfpowered = pch_udc_pcd_selfpowered,
  1079. .pullup = pch_udc_pcd_pullup,
  1080. .vbus_session = pch_udc_pcd_vbus_session,
  1081. .vbus_draw = pch_udc_pcd_vbus_draw,
  1082. .start = pch_udc_start,
  1083. .stop = pch_udc_stop,
  1084. };
  1085. /**
  1086. * complete_req() - This API is invoked from the driver when processing
  1087. * of a request is complete
  1088. * @ep: Reference to the endpoint structure
  1089. * @req: Reference to the request structure
  1090. * @status: Indicates the success/failure of completion
  1091. */
  1092. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1093. int status)
  1094. {
  1095. struct pch_udc_dev *dev;
  1096. unsigned halted = ep->halted;
  1097. list_del_init(&req->queue);
  1098. /* set new status if pending */
  1099. if (req->req.status == -EINPROGRESS)
  1100. req->req.status = status;
  1101. else
  1102. status = req->req.status;
  1103. dev = ep->dev;
  1104. if (req->dma_mapped) {
  1105. if (req->dma == DMA_ADDR_INVALID) {
  1106. if (ep->in)
  1107. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1108. req->req.length,
  1109. DMA_TO_DEVICE);
  1110. else
  1111. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1112. req->req.length,
  1113. DMA_FROM_DEVICE);
  1114. req->req.dma = DMA_ADDR_INVALID;
  1115. } else {
  1116. if (ep->in)
  1117. dma_unmap_single(&dev->pdev->dev, req->dma,
  1118. req->req.length,
  1119. DMA_TO_DEVICE);
  1120. else {
  1121. dma_unmap_single(&dev->pdev->dev, req->dma,
  1122. req->req.length,
  1123. DMA_FROM_DEVICE);
  1124. memcpy(req->req.buf, req->buf, req->req.length);
  1125. }
  1126. kfree(req->buf);
  1127. req->dma = DMA_ADDR_INVALID;
  1128. }
  1129. req->dma_mapped = 0;
  1130. }
  1131. ep->halted = 1;
  1132. spin_unlock(&dev->lock);
  1133. if (!ep->in)
  1134. pch_udc_ep_clear_rrdy(ep);
  1135. req->req.complete(&ep->ep, &req->req);
  1136. spin_lock(&dev->lock);
  1137. ep->halted = halted;
  1138. }
  1139. /**
  1140. * empty_req_queue() - This API empties the request queue of an endpoint
  1141. * @ep: Reference to the endpoint structure
  1142. */
  1143. static void empty_req_queue(struct pch_udc_ep *ep)
  1144. {
  1145. struct pch_udc_request *req;
  1146. ep->halted = 1;
  1147. while (!list_empty(&ep->queue)) {
  1148. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1149. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1150. }
  1151. }
  1152. /**
  1153. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1154. * for the request
  1155. * @dev Reference to the driver structure
  1156. * @req Reference to the request to be freed
  1157. *
  1158. * Return codes:
  1159. * 0: Success
  1160. */
  1161. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1162. struct pch_udc_request *req)
  1163. {
  1164. struct pch_udc_data_dma_desc *td = req->td_data;
  1165. unsigned i = req->chain_len;
  1166. dma_addr_t addr2;
  1167. dma_addr_t addr = (dma_addr_t)td->next;
  1168. td->next = 0x00;
  1169. for (; i > 1; --i) {
  1170. /* do not free first desc., will be done by free for request */
  1171. td = phys_to_virt(addr);
  1172. addr2 = (dma_addr_t)td->next;
  1173. pci_pool_free(dev->data_requests, td, addr);
  1174. td->next = 0x00;
  1175. addr = addr2;
  1176. }
  1177. req->chain_len = 1;
  1178. }
  1179. /**
  1180. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1181. * a DMA chain
  1182. * @ep: Reference to the endpoint structure
  1183. * @req: Reference to the request
  1184. * @buf_len: The buffer length
  1185. * @gfp_flags: Flags to be used while mapping the data buffer
  1186. *
  1187. * Return codes:
  1188. * 0: success,
  1189. * -ENOMEM: pci_pool_alloc invocation fails
  1190. */
  1191. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1192. struct pch_udc_request *req,
  1193. unsigned long buf_len,
  1194. gfp_t gfp_flags)
  1195. {
  1196. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1197. unsigned long bytes = req->req.length, i = 0;
  1198. dma_addr_t dma_addr;
  1199. unsigned len = 1;
  1200. if (req->chain_len > 1)
  1201. pch_udc_free_dma_chain(ep->dev, req);
  1202. if (req->dma == DMA_ADDR_INVALID)
  1203. td->dataptr = req->req.dma;
  1204. else
  1205. td->dataptr = req->dma;
  1206. td->status = PCH_UDC_BS_HST_BSY;
  1207. for (; ; bytes -= buf_len, ++len) {
  1208. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1209. if (bytes <= buf_len)
  1210. break;
  1211. last = td;
  1212. td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
  1213. &dma_addr);
  1214. if (!td)
  1215. goto nomem;
  1216. i += buf_len;
  1217. td->dataptr = req->td_data->dataptr + i;
  1218. last->next = dma_addr;
  1219. }
  1220. req->td_data_last = td;
  1221. td->status |= PCH_UDC_DMA_LAST;
  1222. td->next = req->td_data_phys;
  1223. req->chain_len = len;
  1224. return 0;
  1225. nomem:
  1226. if (len > 1) {
  1227. req->chain_len = len;
  1228. pch_udc_free_dma_chain(ep->dev, req);
  1229. }
  1230. req->chain_len = 1;
  1231. return -ENOMEM;
  1232. }
  1233. /**
  1234. * prepare_dma() - This function creates and initializes the DMA chain
  1235. * for the request
  1236. * @ep: Reference to the endpoint structure
  1237. * @req: Reference to the request
  1238. * @gfp: Flag to be used while mapping the data buffer
  1239. *
  1240. * Return codes:
  1241. * 0: Success
  1242. * Other 0: linux error number on failure
  1243. */
  1244. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1245. gfp_t gfp)
  1246. {
  1247. int retval;
  1248. /* Allocate and create a DMA chain */
  1249. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1250. if (retval) {
  1251. pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
  1252. return retval;
  1253. }
  1254. if (ep->in)
  1255. req->td_data->status = (req->td_data->status &
  1256. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
  1257. return 0;
  1258. }
  1259. /**
  1260. * process_zlp() - This function process zero length packets
  1261. * from the gadget driver
  1262. * @ep: Reference to the endpoint structure
  1263. * @req: Reference to the request
  1264. */
  1265. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1266. {
  1267. struct pch_udc_dev *dev = ep->dev;
  1268. /* IN zlp's are handled by hardware */
  1269. complete_req(ep, req, 0);
  1270. /* if set_config or set_intf is waiting for ack by zlp
  1271. * then set CSR_DONE
  1272. */
  1273. if (dev->set_cfg_not_acked) {
  1274. pch_udc_set_csr_done(dev);
  1275. dev->set_cfg_not_acked = 0;
  1276. }
  1277. /* setup command is ACK'ed now by zlp */
  1278. if (!dev->stall && dev->waiting_zlp_ack) {
  1279. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1280. dev->waiting_zlp_ack = 0;
  1281. }
  1282. }
  1283. /**
  1284. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1285. * @ep: Reference to the endpoint structure
  1286. * @req: Reference to the request structure
  1287. */
  1288. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1289. struct pch_udc_request *req)
  1290. {
  1291. struct pch_udc_data_dma_desc *td_data;
  1292. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1293. td_data = req->td_data;
  1294. /* Set the status bits for all descriptors */
  1295. while (1) {
  1296. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1297. PCH_UDC_BS_HST_RDY;
  1298. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1299. break;
  1300. td_data = phys_to_virt(td_data->next);
  1301. }
  1302. /* Write the descriptor pointer */
  1303. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1304. req->dma_going = 1;
  1305. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1306. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1307. pch_udc_ep_clear_nak(ep);
  1308. pch_udc_ep_set_rrdy(ep);
  1309. }
  1310. /**
  1311. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1312. * from gadget driver
  1313. * @usbep: Reference to the USB endpoint structure
  1314. * @desc: Reference to the USB endpoint descriptor structure
  1315. *
  1316. * Return codes:
  1317. * 0: Success
  1318. * -EINVAL:
  1319. * -ESHUTDOWN:
  1320. */
  1321. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1322. const struct usb_endpoint_descriptor *desc)
  1323. {
  1324. struct pch_udc_ep *ep;
  1325. struct pch_udc_dev *dev;
  1326. unsigned long iflags;
  1327. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1328. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1329. return -EINVAL;
  1330. ep = container_of(usbep, struct pch_udc_ep, ep);
  1331. dev = ep->dev;
  1332. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1333. return -ESHUTDOWN;
  1334. spin_lock_irqsave(&dev->lock, iflags);
  1335. ep->desc = desc;
  1336. ep->halted = 0;
  1337. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1338. ep->ep.maxpacket = usb_endpoint_maxp(desc);
  1339. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1340. spin_unlock_irqrestore(&dev->lock, iflags);
  1341. return 0;
  1342. }
  1343. /**
  1344. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1345. * from gadget driver
  1346. * @usbep Reference to the USB endpoint structure
  1347. *
  1348. * Return codes:
  1349. * 0: Success
  1350. * -EINVAL:
  1351. */
  1352. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1353. {
  1354. struct pch_udc_ep *ep;
  1355. struct pch_udc_dev *dev;
  1356. unsigned long iflags;
  1357. if (!usbep)
  1358. return -EINVAL;
  1359. ep = container_of(usbep, struct pch_udc_ep, ep);
  1360. dev = ep->dev;
  1361. if ((usbep->name == ep0_string) || !ep->desc)
  1362. return -EINVAL;
  1363. spin_lock_irqsave(&ep->dev->lock, iflags);
  1364. empty_req_queue(ep);
  1365. ep->halted = 1;
  1366. pch_udc_ep_disable(ep);
  1367. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1368. ep->desc = NULL;
  1369. INIT_LIST_HEAD(&ep->queue);
  1370. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1371. return 0;
  1372. }
  1373. /**
  1374. * pch_udc_alloc_request() - This function allocates request structure.
  1375. * It is called by gadget driver
  1376. * @usbep: Reference to the USB endpoint structure
  1377. * @gfp: Flag to be used while allocating memory
  1378. *
  1379. * Return codes:
  1380. * NULL: Failure
  1381. * Allocated address: Success
  1382. */
  1383. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1384. gfp_t gfp)
  1385. {
  1386. struct pch_udc_request *req;
  1387. struct pch_udc_ep *ep;
  1388. struct pch_udc_data_dma_desc *dma_desc;
  1389. struct pch_udc_dev *dev;
  1390. if (!usbep)
  1391. return NULL;
  1392. ep = container_of(usbep, struct pch_udc_ep, ep);
  1393. dev = ep->dev;
  1394. req = kzalloc(sizeof *req, gfp);
  1395. if (!req)
  1396. return NULL;
  1397. req->req.dma = DMA_ADDR_INVALID;
  1398. req->dma = DMA_ADDR_INVALID;
  1399. INIT_LIST_HEAD(&req->queue);
  1400. if (!ep->dev->dma_addr)
  1401. return &req->req;
  1402. /* ep0 in requests are allocated from data pool here */
  1403. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  1404. &req->td_data_phys);
  1405. if (NULL == dma_desc) {
  1406. kfree(req);
  1407. return NULL;
  1408. }
  1409. /* prevent from using desc. - set HOST BUSY */
  1410. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1411. dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
  1412. req->td_data = dma_desc;
  1413. req->td_data_last = dma_desc;
  1414. req->chain_len = 1;
  1415. return &req->req;
  1416. }
  1417. /**
  1418. * pch_udc_free_request() - This function frees request structure.
  1419. * It is called by gadget driver
  1420. * @usbep: Reference to the USB endpoint structure
  1421. * @usbreq: Reference to the USB request
  1422. */
  1423. static void pch_udc_free_request(struct usb_ep *usbep,
  1424. struct usb_request *usbreq)
  1425. {
  1426. struct pch_udc_ep *ep;
  1427. struct pch_udc_request *req;
  1428. struct pch_udc_dev *dev;
  1429. if (!usbep || !usbreq)
  1430. return;
  1431. ep = container_of(usbep, struct pch_udc_ep, ep);
  1432. req = container_of(usbreq, struct pch_udc_request, req);
  1433. dev = ep->dev;
  1434. if (!list_empty(&req->queue))
  1435. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1436. __func__, usbep->name, req);
  1437. if (req->td_data != NULL) {
  1438. if (req->chain_len > 1)
  1439. pch_udc_free_dma_chain(ep->dev, req);
  1440. pci_pool_free(ep->dev->data_requests, req->td_data,
  1441. req->td_data_phys);
  1442. }
  1443. kfree(req);
  1444. }
  1445. /**
  1446. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1447. * by gadget driver
  1448. * @usbep: Reference to the USB endpoint structure
  1449. * @usbreq: Reference to the USB request
  1450. * @gfp: Flag to be used while mapping the data buffer
  1451. *
  1452. * Return codes:
  1453. * 0: Success
  1454. * linux error number: Failure
  1455. */
  1456. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1457. gfp_t gfp)
  1458. {
  1459. int retval = 0;
  1460. struct pch_udc_ep *ep;
  1461. struct pch_udc_dev *dev;
  1462. struct pch_udc_request *req;
  1463. unsigned long iflags;
  1464. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1465. return -EINVAL;
  1466. ep = container_of(usbep, struct pch_udc_ep, ep);
  1467. dev = ep->dev;
  1468. if (!ep->desc && ep->num)
  1469. return -EINVAL;
  1470. req = container_of(usbreq, struct pch_udc_request, req);
  1471. if (!list_empty(&req->queue))
  1472. return -EINVAL;
  1473. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1474. return -ESHUTDOWN;
  1475. spin_lock_irqsave(&dev->lock, iflags);
  1476. /* map the buffer for dma */
  1477. if (usbreq->length &&
  1478. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1479. if (!((unsigned long)(usbreq->buf) & 0x03)) {
  1480. if (ep->in)
  1481. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1482. usbreq->buf,
  1483. usbreq->length,
  1484. DMA_TO_DEVICE);
  1485. else
  1486. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1487. usbreq->buf,
  1488. usbreq->length,
  1489. DMA_FROM_DEVICE);
  1490. } else {
  1491. req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
  1492. if (!req->buf) {
  1493. retval = -ENOMEM;
  1494. goto probe_end;
  1495. }
  1496. if (ep->in) {
  1497. memcpy(req->buf, usbreq->buf, usbreq->length);
  1498. req->dma = dma_map_single(&dev->pdev->dev,
  1499. req->buf,
  1500. usbreq->length,
  1501. DMA_TO_DEVICE);
  1502. } else
  1503. req->dma = dma_map_single(&dev->pdev->dev,
  1504. req->buf,
  1505. usbreq->length,
  1506. DMA_FROM_DEVICE);
  1507. }
  1508. req->dma_mapped = 1;
  1509. }
  1510. if (usbreq->length > 0) {
  1511. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1512. if (retval)
  1513. goto probe_end;
  1514. }
  1515. usbreq->actual = 0;
  1516. usbreq->status = -EINPROGRESS;
  1517. req->dma_done = 0;
  1518. if (list_empty(&ep->queue) && !ep->halted) {
  1519. /* no pending transfer, so start this req */
  1520. if (!usbreq->length) {
  1521. process_zlp(ep, req);
  1522. retval = 0;
  1523. goto probe_end;
  1524. }
  1525. if (!ep->in) {
  1526. pch_udc_start_rxrequest(ep, req);
  1527. } else {
  1528. /*
  1529. * For IN trfr the descriptors will be programmed and
  1530. * P bit will be set when
  1531. * we get an IN token
  1532. */
  1533. pch_udc_wait_ep_stall(ep);
  1534. pch_udc_ep_clear_nak(ep);
  1535. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1536. }
  1537. }
  1538. /* Now add this request to the ep's pending requests */
  1539. if (req != NULL)
  1540. list_add_tail(&req->queue, &ep->queue);
  1541. probe_end:
  1542. spin_unlock_irqrestore(&dev->lock, iflags);
  1543. return retval;
  1544. }
  1545. /**
  1546. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1547. * It is called by gadget driver
  1548. * @usbep: Reference to the USB endpoint structure
  1549. * @usbreq: Reference to the USB request
  1550. *
  1551. * Return codes:
  1552. * 0: Success
  1553. * linux error number: Failure
  1554. */
  1555. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1556. struct usb_request *usbreq)
  1557. {
  1558. struct pch_udc_ep *ep;
  1559. struct pch_udc_request *req;
  1560. struct pch_udc_dev *dev;
  1561. unsigned long flags;
  1562. int ret = -EINVAL;
  1563. ep = container_of(usbep, struct pch_udc_ep, ep);
  1564. dev = ep->dev;
  1565. if (!usbep || !usbreq || (!ep->desc && ep->num))
  1566. return ret;
  1567. req = container_of(usbreq, struct pch_udc_request, req);
  1568. spin_lock_irqsave(&ep->dev->lock, flags);
  1569. /* make sure it's still queued on this endpoint */
  1570. list_for_each_entry(req, &ep->queue, queue) {
  1571. if (&req->req == usbreq) {
  1572. pch_udc_ep_set_nak(ep);
  1573. if (!list_empty(&req->queue))
  1574. complete_req(ep, req, -ECONNRESET);
  1575. ret = 0;
  1576. break;
  1577. }
  1578. }
  1579. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1580. return ret;
  1581. }
  1582. /**
  1583. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1584. * feature
  1585. * @usbep: Reference to the USB endpoint structure
  1586. * @halt: Specifies whether to set or clear the feature
  1587. *
  1588. * Return codes:
  1589. * 0: Success
  1590. * linux error number: Failure
  1591. */
  1592. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1593. {
  1594. struct pch_udc_ep *ep;
  1595. struct pch_udc_dev *dev;
  1596. unsigned long iflags;
  1597. int ret;
  1598. if (!usbep)
  1599. return -EINVAL;
  1600. ep = container_of(usbep, struct pch_udc_ep, ep);
  1601. dev = ep->dev;
  1602. if (!ep->desc && !ep->num)
  1603. return -EINVAL;
  1604. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1605. return -ESHUTDOWN;
  1606. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1607. if (list_empty(&ep->queue)) {
  1608. if (halt) {
  1609. if (ep->num == PCH_UDC_EP0)
  1610. ep->dev->stall = 1;
  1611. pch_udc_ep_set_stall(ep);
  1612. pch_udc_enable_ep_interrupts(ep->dev,
  1613. PCH_UDC_EPINT(ep->in,
  1614. ep->num));
  1615. } else {
  1616. pch_udc_ep_clear_stall(ep);
  1617. }
  1618. ret = 0;
  1619. } else {
  1620. ret = -EAGAIN;
  1621. }
  1622. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1623. return ret;
  1624. }
  1625. /**
  1626. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1627. * halt feature
  1628. * @usbep: Reference to the USB endpoint structure
  1629. * @halt: Specifies whether to set or clear the feature
  1630. *
  1631. * Return codes:
  1632. * 0: Success
  1633. * linux error number: Failure
  1634. */
  1635. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1636. {
  1637. struct pch_udc_ep *ep;
  1638. struct pch_udc_dev *dev;
  1639. unsigned long iflags;
  1640. int ret;
  1641. if (!usbep)
  1642. return -EINVAL;
  1643. ep = container_of(usbep, struct pch_udc_ep, ep);
  1644. dev = ep->dev;
  1645. if (!ep->desc && !ep->num)
  1646. return -EINVAL;
  1647. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1648. return -ESHUTDOWN;
  1649. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1650. if (!list_empty(&ep->queue)) {
  1651. ret = -EAGAIN;
  1652. } else {
  1653. if (ep->num == PCH_UDC_EP0)
  1654. ep->dev->stall = 1;
  1655. pch_udc_ep_set_stall(ep);
  1656. pch_udc_enable_ep_interrupts(ep->dev,
  1657. PCH_UDC_EPINT(ep->in, ep->num));
  1658. ep->dev->prot_stall = 1;
  1659. ret = 0;
  1660. }
  1661. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1662. return ret;
  1663. }
  1664. /**
  1665. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1666. * @usbep: Reference to the USB endpoint structure
  1667. */
  1668. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1669. {
  1670. struct pch_udc_ep *ep;
  1671. if (!usbep)
  1672. return;
  1673. ep = container_of(usbep, struct pch_udc_ep, ep);
  1674. if (ep->desc || !ep->num)
  1675. pch_udc_ep_fifo_flush(ep, ep->in);
  1676. }
  1677. static const struct usb_ep_ops pch_udc_ep_ops = {
  1678. .enable = pch_udc_pcd_ep_enable,
  1679. .disable = pch_udc_pcd_ep_disable,
  1680. .alloc_request = pch_udc_alloc_request,
  1681. .free_request = pch_udc_free_request,
  1682. .queue = pch_udc_pcd_queue,
  1683. .dequeue = pch_udc_pcd_dequeue,
  1684. .set_halt = pch_udc_pcd_set_halt,
  1685. .set_wedge = pch_udc_pcd_set_wedge,
  1686. .fifo_status = NULL,
  1687. .fifo_flush = pch_udc_pcd_fifo_flush,
  1688. };
  1689. /**
  1690. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1691. * @td_stp: Reference to the SETP buffer structure
  1692. */
  1693. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1694. {
  1695. static u32 pky_marker;
  1696. if (!td_stp)
  1697. return;
  1698. td_stp->reserved = ++pky_marker;
  1699. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1700. td_stp->status = PCH_UDC_BS_HST_RDY;
  1701. }
  1702. /**
  1703. * pch_udc_start_next_txrequest() - This function starts
  1704. * the next transmission requirement
  1705. * @ep: Reference to the endpoint structure
  1706. */
  1707. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1708. {
  1709. struct pch_udc_request *req;
  1710. struct pch_udc_data_dma_desc *td_data;
  1711. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1712. return;
  1713. if (list_empty(&ep->queue))
  1714. return;
  1715. /* next request */
  1716. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1717. if (req->dma_going)
  1718. return;
  1719. if (!req->td_data)
  1720. return;
  1721. pch_udc_wait_ep_stall(ep);
  1722. req->dma_going = 1;
  1723. pch_udc_ep_set_ddptr(ep, 0);
  1724. td_data = req->td_data;
  1725. while (1) {
  1726. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1727. PCH_UDC_BS_HST_RDY;
  1728. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1729. break;
  1730. td_data = phys_to_virt(td_data->next);
  1731. }
  1732. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1733. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1734. pch_udc_ep_set_pd(ep);
  1735. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1736. pch_udc_ep_clear_nak(ep);
  1737. }
  1738. /**
  1739. * pch_udc_complete_transfer() - This function completes a transfer
  1740. * @ep: Reference to the endpoint structure
  1741. */
  1742. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1743. {
  1744. struct pch_udc_request *req;
  1745. struct pch_udc_dev *dev = ep->dev;
  1746. if (list_empty(&ep->queue))
  1747. return;
  1748. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1749. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1750. PCH_UDC_BS_DMA_DONE)
  1751. return;
  1752. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1753. PCH_UDC_RTS_SUCC) {
  1754. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1755. "epstatus=0x%08x\n",
  1756. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1757. (int)(ep->epsts));
  1758. return;
  1759. }
  1760. req->req.actual = req->req.length;
  1761. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1762. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1763. complete_req(ep, req, 0);
  1764. req->dma_going = 0;
  1765. if (!list_empty(&ep->queue)) {
  1766. pch_udc_wait_ep_stall(ep);
  1767. pch_udc_ep_clear_nak(ep);
  1768. pch_udc_enable_ep_interrupts(ep->dev,
  1769. PCH_UDC_EPINT(ep->in, ep->num));
  1770. } else {
  1771. pch_udc_disable_ep_interrupts(ep->dev,
  1772. PCH_UDC_EPINT(ep->in, ep->num));
  1773. }
  1774. }
  1775. /**
  1776. * pch_udc_complete_receiver() - This function completes a receiver
  1777. * @ep: Reference to the endpoint structure
  1778. */
  1779. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1780. {
  1781. struct pch_udc_request *req;
  1782. struct pch_udc_dev *dev = ep->dev;
  1783. unsigned int count;
  1784. struct pch_udc_data_dma_desc *td;
  1785. dma_addr_t addr;
  1786. if (list_empty(&ep->queue))
  1787. return;
  1788. /* next request */
  1789. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1790. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1791. pch_udc_ep_set_ddptr(ep, 0);
  1792. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
  1793. PCH_UDC_BS_DMA_DONE)
  1794. td = req->td_data_last;
  1795. else
  1796. td = req->td_data;
  1797. while (1) {
  1798. if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
  1799. dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
  1800. "epstatus=0x%08x\n",
  1801. (req->td_data->status & PCH_UDC_RXTX_STS),
  1802. (int)(ep->epsts));
  1803. return;
  1804. }
  1805. if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
  1806. if (td->status | PCH_UDC_DMA_LAST) {
  1807. count = td->status & PCH_UDC_RXTX_BYTES;
  1808. break;
  1809. }
  1810. if (td == req->td_data_last) {
  1811. dev_err(&dev->pdev->dev, "Not complete RX descriptor");
  1812. return;
  1813. }
  1814. addr = (dma_addr_t)td->next;
  1815. td = phys_to_virt(addr);
  1816. }
  1817. /* on 64k packets the RXBYTES field is zero */
  1818. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  1819. count = UDC_DMA_MAXPACKET;
  1820. req->td_data->status |= PCH_UDC_DMA_LAST;
  1821. td->status |= PCH_UDC_BS_HST_BSY;
  1822. req->dma_going = 0;
  1823. req->req.actual = count;
  1824. complete_req(ep, req, 0);
  1825. /* If there is a new/failed requests try that now */
  1826. if (!list_empty(&ep->queue)) {
  1827. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1828. pch_udc_start_rxrequest(ep, req);
  1829. }
  1830. }
  1831. /**
  1832. * pch_udc_svc_data_in() - This function process endpoint interrupts
  1833. * for IN endpoints
  1834. * @dev: Reference to the device structure
  1835. * @ep_num: Endpoint that generated the interrupt
  1836. */
  1837. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  1838. {
  1839. u32 epsts;
  1840. struct pch_udc_ep *ep;
  1841. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  1842. epsts = ep->epsts;
  1843. ep->epsts = 0;
  1844. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1845. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1846. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  1847. return;
  1848. if ((epsts & UDC_EPSTS_BNA))
  1849. return;
  1850. if (epsts & UDC_EPSTS_HE)
  1851. return;
  1852. if (epsts & UDC_EPSTS_RSS) {
  1853. pch_udc_ep_set_stall(ep);
  1854. pch_udc_enable_ep_interrupts(ep->dev,
  1855. PCH_UDC_EPINT(ep->in, ep->num));
  1856. }
  1857. if (epsts & UDC_EPSTS_RCS) {
  1858. if (!dev->prot_stall) {
  1859. pch_udc_ep_clear_stall(ep);
  1860. } else {
  1861. pch_udc_ep_set_stall(ep);
  1862. pch_udc_enable_ep_interrupts(ep->dev,
  1863. PCH_UDC_EPINT(ep->in, ep->num));
  1864. }
  1865. }
  1866. if (epsts & UDC_EPSTS_TDC)
  1867. pch_udc_complete_transfer(ep);
  1868. /* On IN interrupt, provide data if we have any */
  1869. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  1870. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  1871. pch_udc_start_next_txrequest(ep);
  1872. }
  1873. /**
  1874. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  1875. * @dev: Reference to the device structure
  1876. * @ep_num: Endpoint that generated the interrupt
  1877. */
  1878. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  1879. {
  1880. u32 epsts;
  1881. struct pch_udc_ep *ep;
  1882. struct pch_udc_request *req = NULL;
  1883. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  1884. epsts = ep->epsts;
  1885. ep->epsts = 0;
  1886. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  1887. /* next request */
  1888. req = list_entry(ep->queue.next, struct pch_udc_request,
  1889. queue);
  1890. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1891. PCH_UDC_BS_DMA_DONE) {
  1892. if (!req->dma_going)
  1893. pch_udc_start_rxrequest(ep, req);
  1894. return;
  1895. }
  1896. }
  1897. if (epsts & UDC_EPSTS_HE)
  1898. return;
  1899. if (epsts & UDC_EPSTS_RSS) {
  1900. pch_udc_ep_set_stall(ep);
  1901. pch_udc_enable_ep_interrupts(ep->dev,
  1902. PCH_UDC_EPINT(ep->in, ep->num));
  1903. }
  1904. if (epsts & UDC_EPSTS_RCS) {
  1905. if (!dev->prot_stall) {
  1906. pch_udc_ep_clear_stall(ep);
  1907. } else {
  1908. pch_udc_ep_set_stall(ep);
  1909. pch_udc_enable_ep_interrupts(ep->dev,
  1910. PCH_UDC_EPINT(ep->in, ep->num));
  1911. }
  1912. }
  1913. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1914. UDC_EPSTS_OUT_DATA) {
  1915. if (ep->dev->prot_stall == 1) {
  1916. pch_udc_ep_set_stall(ep);
  1917. pch_udc_enable_ep_interrupts(ep->dev,
  1918. PCH_UDC_EPINT(ep->in, ep->num));
  1919. } else {
  1920. pch_udc_complete_receiver(ep);
  1921. }
  1922. }
  1923. if (list_empty(&ep->queue))
  1924. pch_udc_set_dma(dev, DMA_DIR_RX);
  1925. }
  1926. /**
  1927. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  1928. * @dev: Reference to the device structure
  1929. */
  1930. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  1931. {
  1932. u32 epsts;
  1933. struct pch_udc_ep *ep;
  1934. struct pch_udc_ep *ep_out;
  1935. ep = &dev->ep[UDC_EP0IN_IDX];
  1936. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  1937. epsts = ep->epsts;
  1938. ep->epsts = 0;
  1939. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1940. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1941. UDC_EPSTS_XFERDONE)))
  1942. return;
  1943. if ((epsts & UDC_EPSTS_BNA))
  1944. return;
  1945. if (epsts & UDC_EPSTS_HE)
  1946. return;
  1947. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  1948. pch_udc_complete_transfer(ep);
  1949. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1950. ep_out->td_data->status = (ep_out->td_data->status &
  1951. ~PCH_UDC_BUFF_STS) |
  1952. PCH_UDC_BS_HST_RDY;
  1953. pch_udc_ep_clear_nak(ep_out);
  1954. pch_udc_set_dma(dev, DMA_DIR_RX);
  1955. pch_udc_ep_set_rrdy(ep_out);
  1956. }
  1957. /* On IN interrupt, provide data if we have any */
  1958. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  1959. !(epsts & UDC_EPSTS_TXEMPTY))
  1960. pch_udc_start_next_txrequest(ep);
  1961. }
  1962. /**
  1963. * pch_udc_svc_control_out() - Routine that handle Control
  1964. * OUT endpoint interrupts
  1965. * @dev: Reference to the device structure
  1966. */
  1967. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  1968. {
  1969. u32 stat;
  1970. int setup_supported;
  1971. struct pch_udc_ep *ep;
  1972. ep = &dev->ep[UDC_EP0OUT_IDX];
  1973. stat = ep->epsts;
  1974. ep->epsts = 0;
  1975. /* If setup data */
  1976. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1977. UDC_EPSTS_OUT_SETUP) {
  1978. dev->stall = 0;
  1979. dev->ep[UDC_EP0IN_IDX].halted = 0;
  1980. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  1981. dev->setup_data = ep->td_stp->request;
  1982. pch_udc_init_setup_buff(ep->td_stp);
  1983. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1984. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  1985. dev->ep[UDC_EP0IN_IDX].in);
  1986. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  1987. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  1988. else /* OUT */
  1989. dev->gadget.ep0 = &ep->ep;
  1990. spin_unlock(&dev->lock);
  1991. /* If Mass storage Reset */
  1992. if ((dev->setup_data.bRequestType == 0x21) &&
  1993. (dev->setup_data.bRequest == 0xFF))
  1994. dev->prot_stall = 0;
  1995. /* call gadget with setup data received */
  1996. setup_supported = dev->driver->setup(&dev->gadget,
  1997. &dev->setup_data);
  1998. spin_lock(&dev->lock);
  1999. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  2000. ep->td_data->status = (ep->td_data->status &
  2001. ~PCH_UDC_BUFF_STS) |
  2002. PCH_UDC_BS_HST_RDY;
  2003. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2004. }
  2005. /* ep0 in returns data on IN phase */
  2006. if (setup_supported >= 0 && setup_supported <
  2007. UDC_EP0IN_MAX_PKT_SIZE) {
  2008. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  2009. /* Gadget would have queued a request when
  2010. * we called the setup */
  2011. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  2012. pch_udc_set_dma(dev, DMA_DIR_RX);
  2013. pch_udc_ep_clear_nak(ep);
  2014. }
  2015. } else if (setup_supported < 0) {
  2016. /* if unsupported request, then stall */
  2017. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  2018. pch_udc_enable_ep_interrupts(ep->dev,
  2019. PCH_UDC_EPINT(ep->in, ep->num));
  2020. dev->stall = 0;
  2021. pch_udc_set_dma(dev, DMA_DIR_RX);
  2022. } else {
  2023. dev->waiting_zlp_ack = 1;
  2024. }
  2025. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2026. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  2027. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2028. pch_udc_ep_set_ddptr(ep, 0);
  2029. if (!list_empty(&ep->queue)) {
  2030. ep->epsts = stat;
  2031. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  2032. }
  2033. pch_udc_set_dma(dev, DMA_DIR_RX);
  2034. }
  2035. pch_udc_ep_set_rrdy(ep);
  2036. }
  2037. /**
  2038. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2039. * and clears NAK status
  2040. * @dev: Reference to the device structure
  2041. * @ep_num: End point number
  2042. */
  2043. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2044. {
  2045. struct pch_udc_ep *ep;
  2046. struct pch_udc_request *req;
  2047. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2048. if (!list_empty(&ep->queue)) {
  2049. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2050. pch_udc_enable_ep_interrupts(ep->dev,
  2051. PCH_UDC_EPINT(ep->in, ep->num));
  2052. pch_udc_ep_clear_nak(ep);
  2053. }
  2054. }
  2055. /**
  2056. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2057. * @dev: Reference to the device structure
  2058. * @ep_intr: Status of endpoint interrupt
  2059. */
  2060. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2061. {
  2062. int i;
  2063. struct pch_udc_ep *ep;
  2064. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2065. /* IN */
  2066. if (ep_intr & (0x1 << i)) {
  2067. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2068. ep->epsts = pch_udc_read_ep_status(ep);
  2069. pch_udc_clear_ep_status(ep, ep->epsts);
  2070. }
  2071. /* OUT */
  2072. if (ep_intr & (0x10000 << i)) {
  2073. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2074. ep->epsts = pch_udc_read_ep_status(ep);
  2075. pch_udc_clear_ep_status(ep, ep->epsts);
  2076. }
  2077. }
  2078. }
  2079. /**
  2080. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2081. * for traffic after a reset
  2082. * @dev: Reference to the device structure
  2083. */
  2084. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2085. {
  2086. struct pch_udc_ep *ep;
  2087. u32 val;
  2088. /* Setup the IN endpoint */
  2089. ep = &dev->ep[UDC_EP0IN_IDX];
  2090. pch_udc_clear_ep_control(ep);
  2091. pch_udc_ep_fifo_flush(ep, ep->in);
  2092. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2093. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2094. /* Initialize the IN EP Descriptor */
  2095. ep->td_data = NULL;
  2096. ep->td_stp = NULL;
  2097. ep->td_data_phys = 0;
  2098. ep->td_stp_phys = 0;
  2099. /* Setup the OUT endpoint */
  2100. ep = &dev->ep[UDC_EP0OUT_IDX];
  2101. pch_udc_clear_ep_control(ep);
  2102. pch_udc_ep_fifo_flush(ep, ep->in);
  2103. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2104. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2105. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2106. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2107. /* Initialize the SETUP buffer */
  2108. pch_udc_init_setup_buff(ep->td_stp);
  2109. /* Write the pointer address of dma descriptor */
  2110. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2111. /* Write the pointer address of Setup descriptor */
  2112. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2113. /* Initialize the dma descriptor */
  2114. ep->td_data->status = PCH_UDC_DMA_LAST;
  2115. ep->td_data->dataptr = dev->dma_addr;
  2116. ep->td_data->next = ep->td_data_phys;
  2117. pch_udc_ep_clear_nak(ep);
  2118. }
  2119. /**
  2120. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2121. * @dev: Reference to driver structure
  2122. */
  2123. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2124. {
  2125. struct pch_udc_ep *ep;
  2126. int i;
  2127. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2128. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2129. /* Mask all endpoint interrupts */
  2130. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2131. /* clear all endpoint interrupts */
  2132. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2133. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2134. ep = &dev->ep[i];
  2135. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2136. pch_udc_clear_ep_control(ep);
  2137. pch_udc_ep_set_ddptr(ep, 0);
  2138. pch_udc_write_csr(ep->dev, 0x00, i);
  2139. }
  2140. dev->stall = 0;
  2141. dev->prot_stall = 0;
  2142. dev->waiting_zlp_ack = 0;
  2143. dev->set_cfg_not_acked = 0;
  2144. /* disable ep to empty req queue. Skip the control EP's */
  2145. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2146. ep = &dev->ep[i];
  2147. pch_udc_ep_set_nak(ep);
  2148. pch_udc_ep_fifo_flush(ep, ep->in);
  2149. /* Complete request queue */
  2150. empty_req_queue(ep);
  2151. }
  2152. if (dev->driver && dev->driver->disconnect)
  2153. dev->driver->disconnect(&dev->gadget);
  2154. }
  2155. /**
  2156. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2157. * done interrupt
  2158. * @dev: Reference to driver structure
  2159. */
  2160. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2161. {
  2162. u32 dev_stat, dev_speed;
  2163. u32 speed = USB_SPEED_FULL;
  2164. dev_stat = pch_udc_read_device_status(dev);
  2165. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2166. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2167. switch (dev_speed) {
  2168. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2169. speed = USB_SPEED_HIGH;
  2170. break;
  2171. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2172. speed = USB_SPEED_FULL;
  2173. break;
  2174. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2175. speed = USB_SPEED_LOW;
  2176. break;
  2177. default:
  2178. BUG();
  2179. }
  2180. dev->gadget.speed = speed;
  2181. pch_udc_activate_control_ep(dev);
  2182. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2183. pch_udc_set_dma(dev, DMA_DIR_TX);
  2184. pch_udc_set_dma(dev, DMA_DIR_RX);
  2185. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2186. }
  2187. /**
  2188. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2189. * interrupt
  2190. * @dev: Reference to driver structure
  2191. */
  2192. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2193. {
  2194. u32 reg, dev_stat = 0;
  2195. int i, ret;
  2196. dev_stat = pch_udc_read_device_status(dev);
  2197. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2198. UDC_DEVSTS_INTF_SHIFT;
  2199. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2200. UDC_DEVSTS_ALT_SHIFT;
  2201. dev->set_cfg_not_acked = 1;
  2202. /* Construct the usb request for gadget driver and inform it */
  2203. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2204. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2205. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2206. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2207. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2208. /* programm the Endpoint Cfg registers */
  2209. /* Only one end point cfg register */
  2210. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2211. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2212. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2213. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2214. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2215. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2216. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2217. /* clear stall bits */
  2218. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2219. dev->ep[i].halted = 0;
  2220. }
  2221. dev->stall = 0;
  2222. spin_unlock(&dev->lock);
  2223. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2224. spin_lock(&dev->lock);
  2225. }
  2226. /**
  2227. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2228. * interrupt
  2229. * @dev: Reference to driver structure
  2230. */
  2231. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2232. {
  2233. int i, ret;
  2234. u32 reg, dev_stat = 0;
  2235. dev_stat = pch_udc_read_device_status(dev);
  2236. dev->set_cfg_not_acked = 1;
  2237. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2238. UDC_DEVSTS_CFG_SHIFT;
  2239. /* make usb request for gadget driver */
  2240. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2241. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2242. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2243. /* program the NE registers */
  2244. /* Only one end point cfg register */
  2245. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2246. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2247. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2248. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2249. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2250. /* clear stall bits */
  2251. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2252. dev->ep[i].halted = 0;
  2253. }
  2254. dev->stall = 0;
  2255. /* call gadget zero with setup data received */
  2256. spin_unlock(&dev->lock);
  2257. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2258. spin_lock(&dev->lock);
  2259. }
  2260. /**
  2261. * pch_udc_dev_isr() - This function services device interrupts
  2262. * by invoking appropriate routines.
  2263. * @dev: Reference to the device structure
  2264. * @dev_intr: The Device interrupt status.
  2265. */
  2266. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2267. {
  2268. /* USB Reset Interrupt */
  2269. if (dev_intr & UDC_DEVINT_UR)
  2270. pch_udc_svc_ur_interrupt(dev);
  2271. /* Enumeration Done Interrupt */
  2272. if (dev_intr & UDC_DEVINT_ENUM)
  2273. pch_udc_svc_enum_interrupt(dev);
  2274. /* Set Interface Interrupt */
  2275. if (dev_intr & UDC_DEVINT_SI)
  2276. pch_udc_svc_intf_interrupt(dev);
  2277. /* Set Config Interrupt */
  2278. if (dev_intr & UDC_DEVINT_SC)
  2279. pch_udc_svc_cfg_interrupt(dev);
  2280. /* USB Suspend interrupt */
  2281. if (dev_intr & UDC_DEVINT_US)
  2282. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2283. /* Clear the SOF interrupt, if enabled */
  2284. if (dev_intr & UDC_DEVINT_SOF)
  2285. dev_dbg(&dev->pdev->dev, "SOF\n");
  2286. /* ES interrupt, IDLE > 3ms on the USB */
  2287. if (dev_intr & UDC_DEVINT_ES)
  2288. dev_dbg(&dev->pdev->dev, "ES\n");
  2289. /* RWKP interrupt */
  2290. if (dev_intr & UDC_DEVINT_RWKP)
  2291. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2292. }
  2293. /**
  2294. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2295. * @irq: Interrupt request number
  2296. * @dev: Reference to the device structure
  2297. */
  2298. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2299. {
  2300. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2301. u32 dev_intr, ep_intr;
  2302. int i;
  2303. dev_intr = pch_udc_read_device_interrupts(dev);
  2304. ep_intr = pch_udc_read_ep_interrupts(dev);
  2305. if (dev_intr)
  2306. /* Clear device interrupts */
  2307. pch_udc_write_device_interrupts(dev, dev_intr);
  2308. if (ep_intr)
  2309. /* Clear ep interrupts */
  2310. pch_udc_write_ep_interrupts(dev, ep_intr);
  2311. if (!dev_intr && !ep_intr)
  2312. return IRQ_NONE;
  2313. spin_lock(&dev->lock);
  2314. if (dev_intr)
  2315. pch_udc_dev_isr(dev, dev_intr);
  2316. if (ep_intr) {
  2317. pch_udc_read_all_epstatus(dev, ep_intr);
  2318. /* Process Control In interrupts, if present */
  2319. if (ep_intr & UDC_EPINT_IN_EP0) {
  2320. pch_udc_svc_control_in(dev);
  2321. pch_udc_postsvc_epinters(dev, 0);
  2322. }
  2323. /* Process Control Out interrupts, if present */
  2324. if (ep_intr & UDC_EPINT_OUT_EP0)
  2325. pch_udc_svc_control_out(dev);
  2326. /* Process data in end point interrupts */
  2327. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2328. if (ep_intr & (1 << i)) {
  2329. pch_udc_svc_data_in(dev, i);
  2330. pch_udc_postsvc_epinters(dev, i);
  2331. }
  2332. }
  2333. /* Process data out end point interrupts */
  2334. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2335. PCH_UDC_USED_EP_NUM); i++)
  2336. if (ep_intr & (1 << i))
  2337. pch_udc_svc_data_out(dev, i -
  2338. UDC_EPINT_OUT_SHIFT);
  2339. }
  2340. spin_unlock(&dev->lock);
  2341. return IRQ_HANDLED;
  2342. }
  2343. /**
  2344. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2345. * @dev: Reference to the device structure
  2346. */
  2347. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2348. {
  2349. /* enable ep0 interrupts */
  2350. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2351. UDC_EPINT_OUT_EP0);
  2352. /* enable device interrupts */
  2353. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2354. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2355. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2356. }
  2357. /**
  2358. * gadget_release() - Free the gadget driver private data
  2359. * @pdev reference to struct pci_dev
  2360. */
  2361. static void gadget_release(struct device *pdev)
  2362. {
  2363. struct pch_udc_dev *dev = dev_get_drvdata(pdev);
  2364. kfree(dev);
  2365. }
  2366. /**
  2367. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2368. * @dev: Reference to the driver structure
  2369. */
  2370. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2371. {
  2372. const char *const ep_string[] = {
  2373. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2374. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2375. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2376. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2377. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2378. "ep15in", "ep15out",
  2379. };
  2380. int i;
  2381. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2382. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2383. /* Initialize the endpoints structures */
  2384. memset(dev->ep, 0, sizeof dev->ep);
  2385. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2386. struct pch_udc_ep *ep = &dev->ep[i];
  2387. ep->dev = dev;
  2388. ep->halted = 1;
  2389. ep->num = i / 2;
  2390. ep->in = ~i & 1;
  2391. ep->ep.name = ep_string[i];
  2392. ep->ep.ops = &pch_udc_ep_ops;
  2393. if (ep->in)
  2394. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2395. else
  2396. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2397. UDC_EP_REG_SHIFT;
  2398. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2399. ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
  2400. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2401. INIT_LIST_HEAD(&ep->queue);
  2402. }
  2403. dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  2404. dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  2405. /* remove ep0 in and out from the list. They have own pointer */
  2406. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2407. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2408. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2409. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2410. }
  2411. /**
  2412. * pch_udc_pcd_init() - This API initializes the driver structure
  2413. * @dev: Reference to the driver structure
  2414. *
  2415. * Return codes:
  2416. * 0: Success
  2417. */
  2418. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2419. {
  2420. pch_udc_init(dev);
  2421. pch_udc_pcd_reinit(dev);
  2422. return 0;
  2423. }
  2424. /**
  2425. * init_dma_pools() - create dma pools during initialization
  2426. * @pdev: reference to struct pci_dev
  2427. */
  2428. static int init_dma_pools(struct pch_udc_dev *dev)
  2429. {
  2430. struct pch_udc_stp_dma_desc *td_stp;
  2431. struct pch_udc_data_dma_desc *td_data;
  2432. /* DMA setup */
  2433. dev->data_requests = pci_pool_create("data_requests", dev->pdev,
  2434. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2435. if (!dev->data_requests) {
  2436. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2437. __func__);
  2438. return -ENOMEM;
  2439. }
  2440. /* dma desc for setup data */
  2441. dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
  2442. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2443. if (!dev->stp_requests) {
  2444. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2445. __func__);
  2446. return -ENOMEM;
  2447. }
  2448. /* setup */
  2449. td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2450. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2451. if (!td_stp) {
  2452. dev_err(&dev->pdev->dev,
  2453. "%s: can't allocate setup dma descriptor\n", __func__);
  2454. return -ENOMEM;
  2455. }
  2456. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2457. /* data: 0 packets !? */
  2458. td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
  2459. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2460. if (!td_data) {
  2461. dev_err(&dev->pdev->dev,
  2462. "%s: can't allocate data dma descriptor\n", __func__);
  2463. return -ENOMEM;
  2464. }
  2465. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2466. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2467. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2468. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2469. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2470. dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
  2471. if (!dev->ep0out_buf)
  2472. return -ENOMEM;
  2473. dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
  2474. UDC_EP0OUT_BUFF_SIZE * 4,
  2475. DMA_FROM_DEVICE);
  2476. return 0;
  2477. }
  2478. static int pch_udc_start(struct usb_gadget_driver *driver,
  2479. int (*bind)(struct usb_gadget *))
  2480. {
  2481. struct pch_udc_dev *dev = pch_udc;
  2482. int retval;
  2483. if (!driver || (driver->max_speed == USB_SPEED_UNKNOWN) || !bind ||
  2484. !driver->setup || !driver->unbind || !driver->disconnect) {
  2485. dev_err(&dev->pdev->dev,
  2486. "%s: invalid driver parameter\n", __func__);
  2487. return -EINVAL;
  2488. }
  2489. if (!dev)
  2490. return -ENODEV;
  2491. if (dev->driver) {
  2492. dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
  2493. return -EBUSY;
  2494. }
  2495. driver->driver.bus = NULL;
  2496. dev->driver = driver;
  2497. dev->gadget.dev.driver = &driver->driver;
  2498. /* Invoke the bind routine of the gadget driver */
  2499. retval = bind(&dev->gadget);
  2500. if (retval) {
  2501. dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
  2502. __func__, driver->driver.name, retval);
  2503. dev->driver = NULL;
  2504. dev->gadget.dev.driver = NULL;
  2505. return retval;
  2506. }
  2507. /* get ready for ep0 traffic */
  2508. pch_udc_setup_ep0(dev);
  2509. /* clear SD */
  2510. pch_udc_clear_disconnect(dev);
  2511. dev->connected = 1;
  2512. return 0;
  2513. }
  2514. static int pch_udc_stop(struct usb_gadget_driver *driver)
  2515. {
  2516. struct pch_udc_dev *dev = pch_udc;
  2517. if (!dev)
  2518. return -ENODEV;
  2519. if (!driver || (driver != dev->driver)) {
  2520. dev_err(&dev->pdev->dev,
  2521. "%s: invalid driver parameter\n", __func__);
  2522. return -EINVAL;
  2523. }
  2524. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2525. /* Assures that there are no pending requests with this driver */
  2526. driver->disconnect(&dev->gadget);
  2527. driver->unbind(&dev->gadget);
  2528. dev->gadget.dev.driver = NULL;
  2529. dev->driver = NULL;
  2530. dev->connected = 0;
  2531. /* set SD */
  2532. pch_udc_set_disconnect(dev);
  2533. return 0;
  2534. }
  2535. static void pch_udc_shutdown(struct pci_dev *pdev)
  2536. {
  2537. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2538. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2539. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2540. /* disable the pullup so the host will think we're gone */
  2541. pch_udc_set_disconnect(dev);
  2542. }
  2543. static void pch_udc_remove(struct pci_dev *pdev)
  2544. {
  2545. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2546. usb_del_gadget_udc(&dev->gadget);
  2547. /* gadget driver must not be registered */
  2548. if (dev->driver)
  2549. dev_err(&pdev->dev,
  2550. "%s: gadget driver still bound!!!\n", __func__);
  2551. /* dma pool cleanup */
  2552. if (dev->data_requests)
  2553. pci_pool_destroy(dev->data_requests);
  2554. if (dev->stp_requests) {
  2555. /* cleanup DMA desc's for ep0in */
  2556. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2557. pci_pool_free(dev->stp_requests,
  2558. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2559. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2560. }
  2561. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2562. pci_pool_free(dev->stp_requests,
  2563. dev->ep[UDC_EP0OUT_IDX].td_data,
  2564. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2565. }
  2566. pci_pool_destroy(dev->stp_requests);
  2567. }
  2568. if (dev->dma_addr)
  2569. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2570. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2571. kfree(dev->ep0out_buf);
  2572. pch_udc_exit(dev);
  2573. if (dev->irq_registered)
  2574. free_irq(pdev->irq, dev);
  2575. if (dev->base_addr)
  2576. iounmap(dev->base_addr);
  2577. if (dev->mem_region)
  2578. release_mem_region(dev->phys_addr,
  2579. pci_resource_len(pdev, PCH_UDC_PCI_BAR));
  2580. if (dev->active)
  2581. pci_disable_device(pdev);
  2582. if (dev->registered)
  2583. device_unregister(&dev->gadget.dev);
  2584. kfree(dev);
  2585. pci_set_drvdata(pdev, NULL);
  2586. }
  2587. #ifdef CONFIG_PM
  2588. static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
  2589. {
  2590. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2591. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2592. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2593. pci_disable_device(pdev);
  2594. pci_enable_wake(pdev, PCI_D3hot, 0);
  2595. if (pci_save_state(pdev)) {
  2596. dev_err(&pdev->dev,
  2597. "%s: could not save PCI config state\n", __func__);
  2598. return -ENOMEM;
  2599. }
  2600. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2601. return 0;
  2602. }
  2603. static int pch_udc_resume(struct pci_dev *pdev)
  2604. {
  2605. int ret;
  2606. pci_set_power_state(pdev, PCI_D0);
  2607. pci_restore_state(pdev);
  2608. ret = pci_enable_device(pdev);
  2609. if (ret) {
  2610. dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
  2611. return ret;
  2612. }
  2613. pci_enable_wake(pdev, PCI_D3hot, 0);
  2614. return 0;
  2615. }
  2616. #else
  2617. #define pch_udc_suspend NULL
  2618. #define pch_udc_resume NULL
  2619. #endif /* CONFIG_PM */
  2620. static int pch_udc_probe(struct pci_dev *pdev,
  2621. const struct pci_device_id *id)
  2622. {
  2623. unsigned long resource;
  2624. unsigned long len;
  2625. int retval;
  2626. struct pch_udc_dev *dev;
  2627. /* one udc only */
  2628. if (pch_udc) {
  2629. pr_err("%s: already probed\n", __func__);
  2630. return -EBUSY;
  2631. }
  2632. /* init */
  2633. dev = kzalloc(sizeof *dev, GFP_KERNEL);
  2634. if (!dev) {
  2635. pr_err("%s: no memory for device structure\n", __func__);
  2636. return -ENOMEM;
  2637. }
  2638. /* pci setup */
  2639. if (pci_enable_device(pdev) < 0) {
  2640. kfree(dev);
  2641. pr_err("%s: pci_enable_device failed\n", __func__);
  2642. return -ENODEV;
  2643. }
  2644. dev->active = 1;
  2645. pci_set_drvdata(pdev, dev);
  2646. /* PCI resource allocation */
  2647. resource = pci_resource_start(pdev, 1);
  2648. len = pci_resource_len(pdev, 1);
  2649. if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
  2650. dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
  2651. retval = -EBUSY;
  2652. goto finished;
  2653. }
  2654. dev->phys_addr = resource;
  2655. dev->mem_region = 1;
  2656. dev->base_addr = ioremap_nocache(resource, len);
  2657. if (!dev->base_addr) {
  2658. pr_err("%s: device memory cannot be mapped\n", __func__);
  2659. retval = -ENOMEM;
  2660. goto finished;
  2661. }
  2662. if (!pdev->irq) {
  2663. dev_err(&pdev->dev, "%s: irq not set\n", __func__);
  2664. retval = -ENODEV;
  2665. goto finished;
  2666. }
  2667. pch_udc = dev;
  2668. /* initialize the hardware */
  2669. if (pch_udc_pcd_init(dev))
  2670. goto finished;
  2671. if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
  2672. dev)) {
  2673. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2674. pdev->irq);
  2675. retval = -ENODEV;
  2676. goto finished;
  2677. }
  2678. dev->irq = pdev->irq;
  2679. dev->irq_registered = 1;
  2680. pci_set_master(pdev);
  2681. pci_try_set_mwi(pdev);
  2682. /* device struct setup */
  2683. spin_lock_init(&dev->lock);
  2684. dev->pdev = pdev;
  2685. dev->gadget.ops = &pch_udc_ops;
  2686. retval = init_dma_pools(dev);
  2687. if (retval)
  2688. goto finished;
  2689. dev_set_name(&dev->gadget.dev, "gadget");
  2690. dev->gadget.dev.parent = &pdev->dev;
  2691. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2692. dev->gadget.dev.release = gadget_release;
  2693. dev->gadget.name = KBUILD_MODNAME;
  2694. dev->gadget.max_speed = USB_SPEED_HIGH;
  2695. retval = device_register(&dev->gadget.dev);
  2696. if (retval)
  2697. goto finished;
  2698. dev->registered = 1;
  2699. /* Put the device in disconnected state till a driver is bound */
  2700. pch_udc_set_disconnect(dev);
  2701. retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
  2702. if (retval)
  2703. goto finished;
  2704. return 0;
  2705. finished:
  2706. pch_udc_remove(pdev);
  2707. return retval;
  2708. }
  2709. static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
  2710. {
  2711. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2712. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2713. .class_mask = 0xffffffff,
  2714. },
  2715. {
  2716. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
  2717. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2718. .class_mask = 0xffffffff,
  2719. },
  2720. {
  2721. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
  2722. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2723. .class_mask = 0xffffffff,
  2724. },
  2725. { 0 },
  2726. };
  2727. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2728. static struct pci_driver pch_udc_driver = {
  2729. .name = KBUILD_MODNAME,
  2730. .id_table = pch_udc_pcidev_id,
  2731. .probe = pch_udc_probe,
  2732. .remove = pch_udc_remove,
  2733. .suspend = pch_udc_suspend,
  2734. .resume = pch_udc_resume,
  2735. .shutdown = pch_udc_shutdown,
  2736. };
  2737. static int __init pch_udc_pci_init(void)
  2738. {
  2739. return pci_register_driver(&pch_udc_driver);
  2740. }
  2741. module_init(pch_udc_pci_init);
  2742. static void __exit pch_udc_pci_exit(void)
  2743. {
  2744. pci_unregister_driver(&pch_udc_driver);
  2745. }
  2746. module_exit(pch_udc_pci_exit);
  2747. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2748. MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
  2749. MODULE_LICENSE("GPL");