spi-topcliff-pch.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759
  1. /*
  2. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  3. *
  4. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/pci.h>
  21. #include <linux/wait.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/sched.h>
  25. #include <linux/spi/spidev.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/dmaengine.h>
  30. #include <linux/pch_dma.h>
  31. /* Register offsets */
  32. #define PCH_SPCR 0x00 /* SPI control register */
  33. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  34. #define PCH_SPSR 0x08 /* SPI status register */
  35. #define PCH_SPDWR 0x0C /* SPI write data register */
  36. #define PCH_SPDRR 0x10 /* SPI read data register */
  37. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  38. #define PCH_SRST 0x1C /* SPI reset register */
  39. #define PCH_ADDRESS_SIZE 0x20
  40. #define PCH_SPSR_TFD 0x000007C0
  41. #define PCH_SPSR_RFD 0x0000F800
  42. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  43. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  44. #define PCH_RX_THOLD 7
  45. #define PCH_RX_THOLD_MAX 15
  46. #define PCH_TX_THOLD 2
  47. #define PCH_MAX_BAUDRATE 5000000
  48. #define PCH_MAX_FIFO_DEPTH 16
  49. #define STATUS_RUNNING 1
  50. #define STATUS_EXITING 2
  51. #define PCH_SLEEP_TIME 10
  52. #define SSN_LOW 0x02U
  53. #define SSN_HIGH 0x03U
  54. #define SSN_NO_CONTROL 0x00U
  55. #define PCH_MAX_CS 0xFF
  56. #define PCI_DEVICE_ID_GE_SPI 0x8816
  57. #define SPCR_SPE_BIT (1 << 0)
  58. #define SPCR_MSTR_BIT (1 << 1)
  59. #define SPCR_LSBF_BIT (1 << 4)
  60. #define SPCR_CPHA_BIT (1 << 5)
  61. #define SPCR_CPOL_BIT (1 << 6)
  62. #define SPCR_TFIE_BIT (1 << 8)
  63. #define SPCR_RFIE_BIT (1 << 9)
  64. #define SPCR_FIE_BIT (1 << 10)
  65. #define SPCR_ORIE_BIT (1 << 11)
  66. #define SPCR_MDFIE_BIT (1 << 12)
  67. #define SPCR_FICLR_BIT (1 << 24)
  68. #define SPSR_TFI_BIT (1 << 0)
  69. #define SPSR_RFI_BIT (1 << 1)
  70. #define SPSR_FI_BIT (1 << 2)
  71. #define SPSR_ORF_BIT (1 << 3)
  72. #define SPBRR_SIZE_BIT (1 << 10)
  73. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75. #define SPCR_RFIC_FIELD 20
  76. #define SPCR_TFIC_FIELD 16
  77. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  78. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  79. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  80. #define PCH_CLOCK_HZ 50000000
  81. #define PCH_MAX_SPBR 1023
  82. /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  83. #define PCI_VENDOR_ID_ROHM 0x10DB
  84. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  85. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  86. #define PCI_DEVICE_ID_ML7831_SPI 0x8816
  87. /*
  88. * Set the number of SPI instance max
  89. * Intel EG20T PCH : 1ch
  90. * LAPIS Semiconductor ML7213 IOH : 2ch
  91. * LAPIS Semiconductor ML7223 IOH : 1ch
  92. * LAPIS Semiconductor ML7831 IOH : 1ch
  93. */
  94. #define PCH_SPI_MAX_DEV 2
  95. #define PCH_BUF_SIZE 4096
  96. #define PCH_DMA_TRANS_SIZE 12
  97. static int use_dma = 1;
  98. struct pch_spi_dma_ctrl {
  99. struct dma_async_tx_descriptor *desc_tx;
  100. struct dma_async_tx_descriptor *desc_rx;
  101. struct pch_dma_slave param_tx;
  102. struct pch_dma_slave param_rx;
  103. struct dma_chan *chan_tx;
  104. struct dma_chan *chan_rx;
  105. struct scatterlist *sg_tx_p;
  106. struct scatterlist *sg_rx_p;
  107. struct scatterlist sg_tx;
  108. struct scatterlist sg_rx;
  109. int nent;
  110. void *tx_buf_virt;
  111. void *rx_buf_virt;
  112. dma_addr_t tx_buf_dma;
  113. dma_addr_t rx_buf_dma;
  114. };
  115. /**
  116. * struct pch_spi_data - Holds the SPI channel specific details
  117. * @io_remap_addr: The remapped PCI base address
  118. * @master: Pointer to the SPI master structure
  119. * @work: Reference to work queue handler
  120. * @wk: Workqueue for carrying out execution of the
  121. * requests
  122. * @wait: Wait queue for waking up upon receiving an
  123. * interrupt.
  124. * @transfer_complete: Status of SPI Transfer
  125. * @bcurrent_msg_processing: Status flag for message processing
  126. * @lock: Lock for protecting this structure
  127. * @queue: SPI Message queue
  128. * @status: Status of the SPI driver
  129. * @bpw_len: Length of data to be transferred in bits per
  130. * word
  131. * @transfer_active: Flag showing active transfer
  132. * @tx_index: Transmit data count; for bookkeeping during
  133. * transfer
  134. * @rx_index: Receive data count; for bookkeeping during
  135. * transfer
  136. * @tx_buff: Buffer for data to be transmitted
  137. * @rx_index: Buffer for Received data
  138. * @n_curnt_chip: The chip number that this SPI driver currently
  139. * operates on
  140. * @current_chip: Reference to the current chip that this SPI
  141. * driver currently operates on
  142. * @current_msg: The current message that this SPI driver is
  143. * handling
  144. * @cur_trans: The current transfer that this SPI driver is
  145. * handling
  146. * @board_dat: Reference to the SPI device data structure
  147. * @plat_dev: platform_device structure
  148. * @ch: SPI channel number
  149. * @irq_reg_sts: Status of IRQ registration
  150. */
  151. struct pch_spi_data {
  152. void __iomem *io_remap_addr;
  153. unsigned long io_base_addr;
  154. struct spi_master *master;
  155. struct work_struct work;
  156. struct workqueue_struct *wk;
  157. wait_queue_head_t wait;
  158. u8 transfer_complete;
  159. u8 bcurrent_msg_processing;
  160. spinlock_t lock;
  161. struct list_head queue;
  162. u8 status;
  163. u32 bpw_len;
  164. u8 transfer_active;
  165. u32 tx_index;
  166. u32 rx_index;
  167. u16 *pkt_tx_buff;
  168. u16 *pkt_rx_buff;
  169. u8 n_curnt_chip;
  170. struct spi_device *current_chip;
  171. struct spi_message *current_msg;
  172. struct spi_transfer *cur_trans;
  173. struct pch_spi_board_data *board_dat;
  174. struct platform_device *plat_dev;
  175. int ch;
  176. struct pch_spi_dma_ctrl dma;
  177. int use_dma;
  178. u8 irq_reg_sts;
  179. };
  180. /**
  181. * struct pch_spi_board_data - Holds the SPI device specific details
  182. * @pdev: Pointer to the PCI device
  183. * @suspend_sts: Status of suspend
  184. * @num: The number of SPI device instance
  185. */
  186. struct pch_spi_board_data {
  187. struct pci_dev *pdev;
  188. u8 suspend_sts;
  189. int num;
  190. };
  191. struct pch_pd_dev_save {
  192. int num;
  193. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  194. struct pch_spi_board_data *board_dat;
  195. };
  196. static struct pci_device_id pch_spi_pcidev_id[] = {
  197. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  198. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  199. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  200. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
  201. { }
  202. };
  203. /**
  204. * pch_spi_writereg() - Performs register writes
  205. * @master: Pointer to struct spi_master.
  206. * @idx: Register offset.
  207. * @val: Value to be written to register.
  208. */
  209. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  210. {
  211. struct pch_spi_data *data = spi_master_get_devdata(master);
  212. iowrite32(val, (data->io_remap_addr + idx));
  213. }
  214. /**
  215. * pch_spi_readreg() - Performs register reads
  216. * @master: Pointer to struct spi_master.
  217. * @idx: Register offset.
  218. */
  219. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  220. {
  221. struct pch_spi_data *data = spi_master_get_devdata(master);
  222. return ioread32(data->io_remap_addr + idx);
  223. }
  224. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  225. u32 set, u32 clr)
  226. {
  227. u32 tmp = pch_spi_readreg(master, idx);
  228. tmp = (tmp & ~clr) | set;
  229. pch_spi_writereg(master, idx, tmp);
  230. }
  231. static void pch_spi_set_master_mode(struct spi_master *master)
  232. {
  233. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  234. }
  235. /**
  236. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  237. * @master: Pointer to struct spi_master.
  238. */
  239. static void pch_spi_clear_fifo(struct spi_master *master)
  240. {
  241. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  242. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  243. }
  244. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  245. void __iomem *io_remap_addr)
  246. {
  247. u32 n_read, tx_index, rx_index, bpw_len;
  248. u16 *pkt_rx_buffer, *pkt_tx_buff;
  249. int read_cnt;
  250. u32 reg_spcr_val;
  251. void __iomem *spsr;
  252. void __iomem *spdrr;
  253. void __iomem *spdwr;
  254. spsr = io_remap_addr + PCH_SPSR;
  255. iowrite32(reg_spsr_val, spsr);
  256. if (data->transfer_active) {
  257. rx_index = data->rx_index;
  258. tx_index = data->tx_index;
  259. bpw_len = data->bpw_len;
  260. pkt_rx_buffer = data->pkt_rx_buff;
  261. pkt_tx_buff = data->pkt_tx_buff;
  262. spdrr = io_remap_addr + PCH_SPDRR;
  263. spdwr = io_remap_addr + PCH_SPDWR;
  264. n_read = PCH_READABLE(reg_spsr_val);
  265. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  266. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  267. if (tx_index < bpw_len)
  268. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  269. }
  270. /* disable RFI if not needed */
  271. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  272. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  273. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  274. /* reset rx threshold */
  275. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  276. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  277. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  278. }
  279. /* update counts */
  280. data->tx_index = tx_index;
  281. data->rx_index = rx_index;
  282. }
  283. /* if transfer complete interrupt */
  284. if (reg_spsr_val & SPSR_FI_BIT) {
  285. if ((tx_index == bpw_len) && (rx_index == tx_index)) {
  286. /* disable interrupts */
  287. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  288. /* transfer is completed;
  289. inform pch_spi_process_messages */
  290. data->transfer_complete = true;
  291. data->transfer_active = false;
  292. wake_up(&data->wait);
  293. } else {
  294. dev_err(&data->master->dev,
  295. "%s : Transfer is not completed", __func__);
  296. }
  297. }
  298. }
  299. /**
  300. * pch_spi_handler() - Interrupt handler
  301. * @irq: The interrupt number.
  302. * @dev_id: Pointer to struct pch_spi_board_data.
  303. */
  304. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  305. {
  306. u32 reg_spsr_val;
  307. void __iomem *spsr;
  308. void __iomem *io_remap_addr;
  309. irqreturn_t ret = IRQ_NONE;
  310. struct pch_spi_data *data = dev_id;
  311. struct pch_spi_board_data *board_dat = data->board_dat;
  312. if (board_dat->suspend_sts) {
  313. dev_dbg(&board_dat->pdev->dev,
  314. "%s returning due to suspend\n", __func__);
  315. return IRQ_NONE;
  316. }
  317. io_remap_addr = data->io_remap_addr;
  318. spsr = io_remap_addr + PCH_SPSR;
  319. reg_spsr_val = ioread32(spsr);
  320. if (reg_spsr_val & SPSR_ORF_BIT) {
  321. dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
  322. if (data->current_msg->complete != 0) {
  323. data->transfer_complete = true;
  324. data->current_msg->status = -EIO;
  325. data->current_msg->complete(data->current_msg->context);
  326. data->bcurrent_msg_processing = false;
  327. data->current_msg = NULL;
  328. data->cur_trans = NULL;
  329. }
  330. }
  331. if (data->use_dma)
  332. return IRQ_NONE;
  333. /* Check if the interrupt is for SPI device */
  334. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  335. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  336. ret = IRQ_HANDLED;
  337. }
  338. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  339. __func__, ret);
  340. return ret;
  341. }
  342. /**
  343. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  344. * @master: Pointer to struct spi_master.
  345. * @speed_hz: Baud rate.
  346. */
  347. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  348. {
  349. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  350. /* if baud rate is less than we can support limit it */
  351. if (n_spbr > PCH_MAX_SPBR)
  352. n_spbr = PCH_MAX_SPBR;
  353. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  354. }
  355. /**
  356. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  357. * @master: Pointer to struct spi_master.
  358. * @bits_per_word: Bits per word for SPI transfer.
  359. */
  360. static void pch_spi_set_bits_per_word(struct spi_master *master,
  361. u8 bits_per_word)
  362. {
  363. if (bits_per_word == 8)
  364. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  365. else
  366. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  367. }
  368. /**
  369. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  370. * @spi: Pointer to struct spi_device.
  371. */
  372. static void pch_spi_setup_transfer(struct spi_device *spi)
  373. {
  374. u32 flags = 0;
  375. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  376. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  377. spi->max_speed_hz);
  378. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  379. /* set bits per word */
  380. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  381. if (!(spi->mode & SPI_LSB_FIRST))
  382. flags |= SPCR_LSBF_BIT;
  383. if (spi->mode & SPI_CPOL)
  384. flags |= SPCR_CPOL_BIT;
  385. if (spi->mode & SPI_CPHA)
  386. flags |= SPCR_CPHA_BIT;
  387. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  388. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  389. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  390. pch_spi_clear_fifo(spi->master);
  391. }
  392. /**
  393. * pch_spi_reset() - Clears SPI registers
  394. * @master: Pointer to struct spi_master.
  395. */
  396. static void pch_spi_reset(struct spi_master *master)
  397. {
  398. /* write 1 to reset SPI */
  399. pch_spi_writereg(master, PCH_SRST, 0x1);
  400. /* clear reset */
  401. pch_spi_writereg(master, PCH_SRST, 0x0);
  402. }
  403. static int pch_spi_setup(struct spi_device *pspi)
  404. {
  405. /* check bits per word */
  406. if (pspi->bits_per_word == 0) {
  407. pspi->bits_per_word = 8;
  408. dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
  409. }
  410. if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
  411. dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
  412. return -EINVAL;
  413. }
  414. /* Check baud rate setting */
  415. /* if baud rate of chip is greater than
  416. max we can support,return error */
  417. if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
  418. pspi->max_speed_hz = PCH_MAX_BAUDRATE;
  419. dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
  420. (pspi->mode) & (SPI_CPOL | SPI_CPHA));
  421. return 0;
  422. }
  423. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  424. {
  425. struct spi_transfer *transfer;
  426. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  427. int retval;
  428. unsigned long flags;
  429. /* validate spi message and baud rate */
  430. if (unlikely(list_empty(&pmsg->transfers) == 1)) {
  431. dev_err(&pspi->dev, "%s list empty\n", __func__);
  432. retval = -EINVAL;
  433. goto err_out;
  434. }
  435. if (unlikely(pspi->max_speed_hz == 0)) {
  436. dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
  437. __func__, pspi->max_speed_hz);
  438. retval = -EINVAL;
  439. goto err_out;
  440. }
  441. dev_dbg(&pspi->dev, "%s Transfer List not empty. "
  442. "Transfer Speed is set.\n", __func__);
  443. spin_lock_irqsave(&data->lock, flags);
  444. /* validate Tx/Rx buffers and Transfer length */
  445. list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
  446. if (!transfer->tx_buf && !transfer->rx_buf) {
  447. dev_err(&pspi->dev,
  448. "%s Tx and Rx buffer NULL\n", __func__);
  449. retval = -EINVAL;
  450. goto err_return_spinlock;
  451. }
  452. if (!transfer->len) {
  453. dev_err(&pspi->dev, "%s Transfer length invalid\n",
  454. __func__);
  455. retval = -EINVAL;
  456. goto err_return_spinlock;
  457. }
  458. dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
  459. " valid\n", __func__);
  460. /* if baud rate has been specified validate the same */
  461. if (transfer->speed_hz > PCH_MAX_BAUDRATE)
  462. transfer->speed_hz = PCH_MAX_BAUDRATE;
  463. /* if bits per word has been specified validate the same */
  464. if (transfer->bits_per_word) {
  465. if ((transfer->bits_per_word != 8)
  466. && (transfer->bits_per_word != 16)) {
  467. retval = -EINVAL;
  468. dev_err(&pspi->dev,
  469. "%s Invalid bits per word\n", __func__);
  470. goto err_return_spinlock;
  471. }
  472. }
  473. }
  474. spin_unlock_irqrestore(&data->lock, flags);
  475. /* We won't process any messages if we have been asked to terminate */
  476. if (data->status == STATUS_EXITING) {
  477. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  478. retval = -ESHUTDOWN;
  479. goto err_out;
  480. }
  481. /* If suspended ,return -EINVAL */
  482. if (data->board_dat->suspend_sts) {
  483. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  484. retval = -EINVAL;
  485. goto err_out;
  486. }
  487. /* set status of message */
  488. pmsg->actual_length = 0;
  489. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  490. pmsg->status = -EINPROGRESS;
  491. spin_lock_irqsave(&data->lock, flags);
  492. /* add message to queue */
  493. list_add_tail(&pmsg->queue, &data->queue);
  494. spin_unlock_irqrestore(&data->lock, flags);
  495. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  496. /* schedule work queue to run */
  497. queue_work(data->wk, &data->work);
  498. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  499. retval = 0;
  500. err_out:
  501. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  502. return retval;
  503. err_return_spinlock:
  504. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  505. spin_unlock_irqrestore(&data->lock, flags);
  506. return retval;
  507. }
  508. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  509. struct spi_device *pspi)
  510. {
  511. if (data->current_chip != NULL) {
  512. if (pspi->chip_select != data->n_curnt_chip) {
  513. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  514. data->current_chip = NULL;
  515. }
  516. }
  517. data->current_chip = pspi;
  518. data->n_curnt_chip = data->current_chip->chip_select;
  519. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  520. pch_spi_setup_transfer(pspi);
  521. }
  522. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  523. {
  524. int size;
  525. u32 n_writes;
  526. int j;
  527. struct spi_message *pmsg;
  528. const u8 *tx_buf;
  529. const u16 *tx_sbuf;
  530. /* set baud rate if needed */
  531. if (data->cur_trans->speed_hz) {
  532. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  533. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  534. }
  535. /* set bits per word if needed */
  536. if (data->cur_trans->bits_per_word &&
  537. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  538. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  539. pch_spi_set_bits_per_word(data->master,
  540. data->cur_trans->bits_per_word);
  541. *bpw = data->cur_trans->bits_per_word;
  542. } else {
  543. *bpw = data->current_msg->spi->bits_per_word;
  544. }
  545. /* reset Tx/Rx index */
  546. data->tx_index = 0;
  547. data->rx_index = 0;
  548. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  549. /* find alloc size */
  550. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  551. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  552. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  553. if (data->pkt_tx_buff != NULL) {
  554. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  555. if (!data->pkt_rx_buff)
  556. kfree(data->pkt_tx_buff);
  557. }
  558. if (!data->pkt_rx_buff) {
  559. /* flush queue and set status of all transfers to -ENOMEM */
  560. dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
  561. list_for_each_entry(pmsg, data->queue.next, queue) {
  562. pmsg->status = -ENOMEM;
  563. if (pmsg->complete != 0)
  564. pmsg->complete(pmsg->context);
  565. /* delete from queue */
  566. list_del_init(&pmsg->queue);
  567. }
  568. return;
  569. }
  570. /* copy Tx Data */
  571. if (data->cur_trans->tx_buf != NULL) {
  572. if (*bpw == 8) {
  573. tx_buf = data->cur_trans->tx_buf;
  574. for (j = 0; j < data->bpw_len; j++)
  575. data->pkt_tx_buff[j] = *tx_buf++;
  576. } else {
  577. tx_sbuf = data->cur_trans->tx_buf;
  578. for (j = 0; j < data->bpw_len; j++)
  579. data->pkt_tx_buff[j] = *tx_sbuf++;
  580. }
  581. }
  582. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  583. n_writes = data->bpw_len;
  584. if (n_writes > PCH_MAX_FIFO_DEPTH)
  585. n_writes = PCH_MAX_FIFO_DEPTH;
  586. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  587. "0x2 to SSNXCR\n", __func__);
  588. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  589. for (j = 0; j < n_writes; j++)
  590. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  591. /* update tx_index */
  592. data->tx_index = j;
  593. /* reset transfer complete flag */
  594. data->transfer_complete = false;
  595. data->transfer_active = true;
  596. }
  597. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  598. {
  599. struct spi_message *pmsg;
  600. dev_dbg(&data->master->dev, "%s called\n", __func__);
  601. /* Invoke complete callback
  602. * [To the spi core..indicating end of transfer] */
  603. data->current_msg->status = 0;
  604. if (data->current_msg->complete != 0) {
  605. dev_dbg(&data->master->dev,
  606. "%s:Invoking callback of SPI core\n", __func__);
  607. data->current_msg->complete(data->current_msg->context);
  608. }
  609. /* update status in global variable */
  610. data->bcurrent_msg_processing = false;
  611. dev_dbg(&data->master->dev,
  612. "%s:data->bcurrent_msg_processing = false\n", __func__);
  613. data->current_msg = NULL;
  614. data->cur_trans = NULL;
  615. /* check if we have items in list and not suspending
  616. * return 1 if list empty */
  617. if ((list_empty(&data->queue) == 0) &&
  618. (!data->board_dat->suspend_sts) &&
  619. (data->status != STATUS_EXITING)) {
  620. /* We have some more work to do (either there is more tranint
  621. * bpw;sfer requests in the current message or there are
  622. *more messages)
  623. */
  624. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  625. queue_work(data->wk, &data->work);
  626. } else if (data->board_dat->suspend_sts ||
  627. data->status == STATUS_EXITING) {
  628. dev_dbg(&data->master->dev,
  629. "%s suspend/remove initiated, flushing queue\n",
  630. __func__);
  631. list_for_each_entry(pmsg, data->queue.next, queue) {
  632. pmsg->status = -EIO;
  633. if (pmsg->complete)
  634. pmsg->complete(pmsg->context);
  635. /* delete from queue */
  636. list_del_init(&pmsg->queue);
  637. }
  638. }
  639. }
  640. static void pch_spi_set_ir(struct pch_spi_data *data)
  641. {
  642. /* enable interrupts, set threshold, enable SPI */
  643. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  644. /* set receive threshold to PCH_RX_THOLD */
  645. pch_spi_setclr_reg(data->master, PCH_SPCR,
  646. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  647. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  648. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  649. MASK_RFIC_SPCR_BITS | PCH_ALL);
  650. else
  651. /* set receive threshold to maximum */
  652. pch_spi_setclr_reg(data->master, PCH_SPCR,
  653. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  654. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  655. SPCR_SPE_BIT,
  656. MASK_RFIC_SPCR_BITS | PCH_ALL);
  657. /* Wait until the transfer completes; go to sleep after
  658. initiating the transfer. */
  659. dev_dbg(&data->master->dev,
  660. "%s:waiting for transfer to get over\n", __func__);
  661. wait_event_interruptible(data->wait, data->transfer_complete);
  662. /* clear all interrupts */
  663. pch_spi_writereg(data->master, PCH_SPSR,
  664. pch_spi_readreg(data->master, PCH_SPSR));
  665. /* Disable interrupts and SPI transfer */
  666. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  667. /* clear FIFO */
  668. pch_spi_clear_fifo(data->master);
  669. }
  670. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  671. {
  672. int j;
  673. u8 *rx_buf;
  674. u16 *rx_sbuf;
  675. /* copy Rx Data */
  676. if (!data->cur_trans->rx_buf)
  677. return;
  678. if (bpw == 8) {
  679. rx_buf = data->cur_trans->rx_buf;
  680. for (j = 0; j < data->bpw_len; j++)
  681. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  682. } else {
  683. rx_sbuf = data->cur_trans->rx_buf;
  684. for (j = 0; j < data->bpw_len; j++)
  685. *rx_sbuf++ = data->pkt_rx_buff[j];
  686. }
  687. }
  688. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  689. {
  690. int j;
  691. u8 *rx_buf;
  692. u16 *rx_sbuf;
  693. const u8 *rx_dma_buf;
  694. const u16 *rx_dma_sbuf;
  695. /* copy Rx Data */
  696. if (!data->cur_trans->rx_buf)
  697. return;
  698. if (bpw == 8) {
  699. rx_buf = data->cur_trans->rx_buf;
  700. rx_dma_buf = data->dma.rx_buf_virt;
  701. for (j = 0; j < data->bpw_len; j++)
  702. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  703. } else {
  704. rx_sbuf = data->cur_trans->rx_buf;
  705. rx_dma_sbuf = data->dma.rx_buf_virt;
  706. for (j = 0; j < data->bpw_len; j++)
  707. *rx_sbuf++ = *rx_dma_sbuf++;
  708. }
  709. }
  710. static int pch_spi_start_transfer(struct pch_spi_data *data)
  711. {
  712. struct pch_spi_dma_ctrl *dma;
  713. unsigned long flags;
  714. int rtn;
  715. dma = &data->dma;
  716. spin_lock_irqsave(&data->lock, flags);
  717. /* disable interrupts, SPI set enable */
  718. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  719. spin_unlock_irqrestore(&data->lock, flags);
  720. /* Wait until the transfer completes; go to sleep after
  721. initiating the transfer. */
  722. dev_dbg(&data->master->dev,
  723. "%s:waiting for transfer to get over\n", __func__);
  724. rtn = wait_event_interruptible_timeout(data->wait,
  725. data->transfer_complete,
  726. msecs_to_jiffies(2 * HZ));
  727. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  728. DMA_FROM_DEVICE);
  729. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
  730. DMA_FROM_DEVICE);
  731. memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
  732. async_tx_ack(dma->desc_rx);
  733. async_tx_ack(dma->desc_tx);
  734. kfree(dma->sg_tx_p);
  735. kfree(dma->sg_rx_p);
  736. spin_lock_irqsave(&data->lock, flags);
  737. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  738. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  739. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  740. SPCR_SPE_BIT);
  741. /* clear all interrupts */
  742. pch_spi_writereg(data->master, PCH_SPSR,
  743. pch_spi_readreg(data->master, PCH_SPSR));
  744. /* clear FIFO */
  745. pch_spi_clear_fifo(data->master);
  746. spin_unlock_irqrestore(&data->lock, flags);
  747. return rtn;
  748. }
  749. static void pch_dma_rx_complete(void *arg)
  750. {
  751. struct pch_spi_data *data = arg;
  752. /* transfer is completed;inform pch_spi_process_messages_dma */
  753. data->transfer_complete = true;
  754. wake_up_interruptible(&data->wait);
  755. }
  756. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  757. {
  758. struct pch_dma_slave *param = slave;
  759. if ((chan->chan_id == param->chan_id) &&
  760. (param->dma_dev == chan->device->dev)) {
  761. chan->private = param;
  762. return true;
  763. } else {
  764. return false;
  765. }
  766. }
  767. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  768. {
  769. dma_cap_mask_t mask;
  770. struct dma_chan *chan;
  771. struct pci_dev *dma_dev;
  772. struct pch_dma_slave *param;
  773. struct pch_spi_dma_ctrl *dma;
  774. unsigned int width;
  775. if (bpw == 8)
  776. width = PCH_DMA_WIDTH_1_BYTE;
  777. else
  778. width = PCH_DMA_WIDTH_2_BYTES;
  779. dma = &data->dma;
  780. dma_cap_zero(mask);
  781. dma_cap_set(DMA_SLAVE, mask);
  782. /* Get DMA's dev information */
  783. dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
  784. /* Set Tx DMA */
  785. param = &dma->param_tx;
  786. param->dma_dev = &dma_dev->dev;
  787. param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
  788. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  789. param->width = width;
  790. chan = dma_request_channel(mask, pch_spi_filter, param);
  791. if (!chan) {
  792. dev_err(&data->master->dev,
  793. "ERROR: dma_request_channel FAILS(Tx)\n");
  794. data->use_dma = 0;
  795. return;
  796. }
  797. dma->chan_tx = chan;
  798. /* Set Rx DMA */
  799. param = &dma->param_rx;
  800. param->dma_dev = &dma_dev->dev;
  801. param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
  802. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  803. param->width = width;
  804. chan = dma_request_channel(mask, pch_spi_filter, param);
  805. if (!chan) {
  806. dev_err(&data->master->dev,
  807. "ERROR: dma_request_channel FAILS(Rx)\n");
  808. dma_release_channel(dma->chan_tx);
  809. dma->chan_tx = NULL;
  810. data->use_dma = 0;
  811. return;
  812. }
  813. dma->chan_rx = chan;
  814. }
  815. static void pch_spi_release_dma(struct pch_spi_data *data)
  816. {
  817. struct pch_spi_dma_ctrl *dma;
  818. dma = &data->dma;
  819. if (dma->chan_tx) {
  820. dma_release_channel(dma->chan_tx);
  821. dma->chan_tx = NULL;
  822. }
  823. if (dma->chan_rx) {
  824. dma_release_channel(dma->chan_rx);
  825. dma->chan_rx = NULL;
  826. }
  827. return;
  828. }
  829. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  830. {
  831. const u8 *tx_buf;
  832. const u16 *tx_sbuf;
  833. u8 *tx_dma_buf;
  834. u16 *tx_dma_sbuf;
  835. struct scatterlist *sg;
  836. struct dma_async_tx_descriptor *desc_tx;
  837. struct dma_async_tx_descriptor *desc_rx;
  838. int num;
  839. int i;
  840. int size;
  841. int rem;
  842. unsigned long flags;
  843. struct pch_spi_dma_ctrl *dma;
  844. dma = &data->dma;
  845. /* set baud rate if needed */
  846. if (data->cur_trans->speed_hz) {
  847. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  848. spin_lock_irqsave(&data->lock, flags);
  849. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  850. spin_unlock_irqrestore(&data->lock, flags);
  851. }
  852. /* set bits per word if needed */
  853. if (data->cur_trans->bits_per_word &&
  854. (data->current_msg->spi->bits_per_word !=
  855. data->cur_trans->bits_per_word)) {
  856. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  857. spin_lock_irqsave(&data->lock, flags);
  858. pch_spi_set_bits_per_word(data->master,
  859. data->cur_trans->bits_per_word);
  860. spin_unlock_irqrestore(&data->lock, flags);
  861. *bpw = data->cur_trans->bits_per_word;
  862. } else {
  863. *bpw = data->current_msg->spi->bits_per_word;
  864. }
  865. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  866. /* copy Tx Data */
  867. if (data->cur_trans->tx_buf != NULL) {
  868. if (*bpw == 8) {
  869. tx_buf = data->cur_trans->tx_buf;
  870. tx_dma_buf = dma->tx_buf_virt;
  871. for (i = 0; i < data->bpw_len; i++)
  872. *tx_dma_buf++ = *tx_buf++;
  873. } else {
  874. tx_sbuf = data->cur_trans->tx_buf;
  875. tx_dma_sbuf = dma->tx_buf_virt;
  876. for (i = 0; i < data->bpw_len; i++)
  877. *tx_dma_sbuf++ = *tx_sbuf++;
  878. }
  879. }
  880. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  881. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  882. size = PCH_DMA_TRANS_SIZE;
  883. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  884. } else {
  885. num = 1;
  886. size = data->bpw_len;
  887. rem = data->bpw_len;
  888. }
  889. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  890. __func__, num, size, rem);
  891. spin_lock_irqsave(&data->lock, flags);
  892. /* set receive fifo threshold and transmit fifo threshold */
  893. pch_spi_setclr_reg(data->master, PCH_SPCR,
  894. ((size - 1) << SPCR_RFIC_FIELD) |
  895. (PCH_TX_THOLD << SPCR_TFIC_FIELD),
  896. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  897. spin_unlock_irqrestore(&data->lock, flags);
  898. /* RX */
  899. dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  900. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  901. /* offset, length setting */
  902. sg = dma->sg_rx_p;
  903. for (i = 0; i < num; i++, sg++) {
  904. if (i == (num - 2)) {
  905. sg->offset = size * i;
  906. sg->offset = sg->offset * (*bpw / 8);
  907. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  908. sg->offset);
  909. sg_dma_len(sg) = rem;
  910. } else if (i == (num - 1)) {
  911. sg->offset = size * (i - 1) + rem;
  912. sg->offset = sg->offset * (*bpw / 8);
  913. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  914. sg->offset);
  915. sg_dma_len(sg) = size;
  916. } else {
  917. sg->offset = size * i;
  918. sg->offset = sg->offset * (*bpw / 8);
  919. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  920. sg->offset);
  921. sg_dma_len(sg) = size;
  922. }
  923. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  924. }
  925. sg = dma->sg_rx_p;
  926. desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
  927. num, DMA_DEV_TO_MEM,
  928. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  929. if (!desc_rx) {
  930. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  931. __func__);
  932. return;
  933. }
  934. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  935. desc_rx->callback = pch_dma_rx_complete;
  936. desc_rx->callback_param = data;
  937. dma->nent = num;
  938. dma->desc_rx = desc_rx;
  939. /* TX */
  940. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  941. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  942. size = PCH_DMA_TRANS_SIZE;
  943. rem = 16;
  944. } else {
  945. num = 1;
  946. size = data->bpw_len;
  947. rem = data->bpw_len;
  948. }
  949. dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  950. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  951. /* offset, length setting */
  952. sg = dma->sg_tx_p;
  953. for (i = 0; i < num; i++, sg++) {
  954. if (i == 0) {
  955. sg->offset = 0;
  956. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  957. sg->offset);
  958. sg_dma_len(sg) = rem;
  959. } else {
  960. sg->offset = rem + size * (i - 1);
  961. sg->offset = sg->offset * (*bpw / 8);
  962. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  963. sg->offset);
  964. sg_dma_len(sg) = size;
  965. }
  966. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  967. }
  968. sg = dma->sg_tx_p;
  969. desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
  970. sg, num, DMA_MEM_TO_DEV,
  971. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  972. if (!desc_tx) {
  973. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  974. __func__);
  975. return;
  976. }
  977. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  978. desc_tx->callback = NULL;
  979. desc_tx->callback_param = data;
  980. dma->nent = num;
  981. dma->desc_tx = desc_tx;
  982. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  983. "0x2 to SSNXCR\n", __func__);
  984. spin_lock_irqsave(&data->lock, flags);
  985. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  986. desc_rx->tx_submit(desc_rx);
  987. desc_tx->tx_submit(desc_tx);
  988. spin_unlock_irqrestore(&data->lock, flags);
  989. /* reset transfer complete flag */
  990. data->transfer_complete = false;
  991. }
  992. static void pch_spi_process_messages(struct work_struct *pwork)
  993. {
  994. struct spi_message *pmsg;
  995. struct pch_spi_data *data;
  996. int bpw;
  997. data = container_of(pwork, struct pch_spi_data, work);
  998. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  999. spin_lock(&data->lock);
  1000. /* check if suspend has been initiated;if yes flush queue */
  1001. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  1002. dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
  1003. "flushing queue\n", __func__);
  1004. list_for_each_entry(pmsg, data->queue.next, queue) {
  1005. pmsg->status = -EIO;
  1006. if (pmsg->complete != 0) {
  1007. spin_unlock(&data->lock);
  1008. pmsg->complete(pmsg->context);
  1009. spin_lock(&data->lock);
  1010. }
  1011. /* delete from queue */
  1012. list_del_init(&pmsg->queue);
  1013. }
  1014. spin_unlock(&data->lock);
  1015. return;
  1016. }
  1017. data->bcurrent_msg_processing = true;
  1018. dev_dbg(&data->master->dev,
  1019. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  1020. /* Get the message from the queue and delete it from there. */
  1021. data->current_msg = list_entry(data->queue.next, struct spi_message,
  1022. queue);
  1023. list_del_init(&data->current_msg->queue);
  1024. data->current_msg->status = 0;
  1025. pch_spi_select_chip(data, data->current_msg->spi);
  1026. spin_unlock(&data->lock);
  1027. if (data->use_dma)
  1028. pch_spi_request_dma(data,
  1029. data->current_msg->spi->bits_per_word);
  1030. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  1031. do {
  1032. /* If we are already processing a message get the next
  1033. transfer structure from the message otherwise retrieve
  1034. the 1st transfer request from the message. */
  1035. spin_lock(&data->lock);
  1036. if (data->cur_trans == NULL) {
  1037. data->cur_trans =
  1038. list_entry(data->current_msg->transfers.next,
  1039. struct spi_transfer, transfer_list);
  1040. dev_dbg(&data->master->dev, "%s "
  1041. ":Getting 1st transfer message\n", __func__);
  1042. } else {
  1043. data->cur_trans =
  1044. list_entry(data->cur_trans->transfer_list.next,
  1045. struct spi_transfer, transfer_list);
  1046. dev_dbg(&data->master->dev, "%s "
  1047. ":Getting next transfer message\n", __func__);
  1048. }
  1049. spin_unlock(&data->lock);
  1050. if (data->use_dma) {
  1051. pch_spi_handle_dma(data, &bpw);
  1052. if (!pch_spi_start_transfer(data))
  1053. goto out;
  1054. pch_spi_copy_rx_data_for_dma(data, bpw);
  1055. } else {
  1056. pch_spi_set_tx(data, &bpw);
  1057. pch_spi_set_ir(data);
  1058. pch_spi_copy_rx_data(data, bpw);
  1059. kfree(data->pkt_rx_buff);
  1060. data->pkt_rx_buff = NULL;
  1061. kfree(data->pkt_tx_buff);
  1062. data->pkt_tx_buff = NULL;
  1063. }
  1064. /* increment message count */
  1065. data->current_msg->actual_length += data->cur_trans->len;
  1066. dev_dbg(&data->master->dev,
  1067. "%s:data->current_msg->actual_length=%d\n",
  1068. __func__, data->current_msg->actual_length);
  1069. /* check for delay */
  1070. if (data->cur_trans->delay_usecs) {
  1071. dev_dbg(&data->master->dev, "%s:"
  1072. "delay in usec=%d\n", __func__,
  1073. data->cur_trans->delay_usecs);
  1074. udelay(data->cur_trans->delay_usecs);
  1075. }
  1076. spin_lock(&data->lock);
  1077. /* No more transfer in this message. */
  1078. if ((data->cur_trans->transfer_list.next) ==
  1079. &(data->current_msg->transfers)) {
  1080. pch_spi_nomore_transfer(data);
  1081. }
  1082. spin_unlock(&data->lock);
  1083. } while (data->cur_trans != NULL);
  1084. out:
  1085. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
  1086. if (data->use_dma)
  1087. pch_spi_release_dma(data);
  1088. }
  1089. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1090. struct pch_spi_data *data)
  1091. {
  1092. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1093. /* free workqueue */
  1094. if (data->wk != NULL) {
  1095. destroy_workqueue(data->wk);
  1096. data->wk = NULL;
  1097. dev_dbg(&board_dat->pdev->dev,
  1098. "%s destroy_workqueue invoked successfully\n",
  1099. __func__);
  1100. }
  1101. }
  1102. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1103. struct pch_spi_data *data)
  1104. {
  1105. int retval = 0;
  1106. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1107. /* create workqueue */
  1108. data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
  1109. if (!data->wk) {
  1110. dev_err(&board_dat->pdev->dev,
  1111. "%s create_singlet hread_workqueue failed\n", __func__);
  1112. retval = -EBUSY;
  1113. goto err_return;
  1114. }
  1115. /* reset PCH SPI h/w */
  1116. pch_spi_reset(data->master);
  1117. dev_dbg(&board_dat->pdev->dev,
  1118. "%s pch_spi_reset invoked successfully\n", __func__);
  1119. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1120. err_return:
  1121. if (retval != 0) {
  1122. dev_err(&board_dat->pdev->dev,
  1123. "%s FAIL:invoking pch_spi_free_resources\n", __func__);
  1124. pch_spi_free_resources(board_dat, data);
  1125. }
  1126. dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
  1127. return retval;
  1128. }
  1129. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1130. struct pch_spi_data *data)
  1131. {
  1132. struct pch_spi_dma_ctrl *dma;
  1133. dma = &data->dma;
  1134. if (dma->tx_buf_dma)
  1135. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1136. dma->tx_buf_virt, dma->tx_buf_dma);
  1137. if (dma->rx_buf_dma)
  1138. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1139. dma->rx_buf_virt, dma->rx_buf_dma);
  1140. return;
  1141. }
  1142. static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1143. struct pch_spi_data *data)
  1144. {
  1145. struct pch_spi_dma_ctrl *dma;
  1146. dma = &data->dma;
  1147. /* Get Consistent memory for Tx DMA */
  1148. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1149. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1150. /* Get Consistent memory for Rx DMA */
  1151. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1152. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1153. }
  1154. static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
  1155. {
  1156. int ret;
  1157. struct spi_master *master;
  1158. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1159. struct pch_spi_data *data;
  1160. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1161. master = spi_alloc_master(&board_dat->pdev->dev,
  1162. sizeof(struct pch_spi_data));
  1163. if (!master) {
  1164. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1165. plat_dev->id);
  1166. return -ENOMEM;
  1167. }
  1168. data = spi_master_get_devdata(master);
  1169. data->master = master;
  1170. platform_set_drvdata(plat_dev, data);
  1171. /* baseaddress + address offset) */
  1172. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1173. PCH_ADDRESS_SIZE * plat_dev->id;
  1174. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
  1175. PCH_ADDRESS_SIZE * plat_dev->id;
  1176. if (!data->io_remap_addr) {
  1177. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1178. ret = -ENOMEM;
  1179. goto err_pci_iomap;
  1180. }
  1181. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1182. plat_dev->id, data->io_remap_addr);
  1183. /* initialize members of SPI master */
  1184. master->bus_num = -1;
  1185. master->num_chipselect = PCH_MAX_CS;
  1186. master->setup = pch_spi_setup;
  1187. master->transfer = pch_spi_transfer;
  1188. data->board_dat = board_dat;
  1189. data->plat_dev = plat_dev;
  1190. data->n_curnt_chip = 255;
  1191. data->status = STATUS_RUNNING;
  1192. data->ch = plat_dev->id;
  1193. data->use_dma = use_dma;
  1194. INIT_LIST_HEAD(&data->queue);
  1195. spin_lock_init(&data->lock);
  1196. INIT_WORK(&data->work, pch_spi_process_messages);
  1197. init_waitqueue_head(&data->wait);
  1198. ret = pch_spi_get_resources(board_dat, data);
  1199. if (ret) {
  1200. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1201. goto err_spi_get_resources;
  1202. }
  1203. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1204. IRQF_SHARED, KBUILD_MODNAME, data);
  1205. if (ret) {
  1206. dev_err(&plat_dev->dev,
  1207. "%s request_irq failed\n", __func__);
  1208. goto err_request_irq;
  1209. }
  1210. data->irq_reg_sts = true;
  1211. pch_spi_set_master_mode(master);
  1212. ret = spi_register_master(master);
  1213. if (ret != 0) {
  1214. dev_err(&plat_dev->dev,
  1215. "%s spi_register_master FAILED\n", __func__);
  1216. goto err_spi_register_master;
  1217. }
  1218. if (use_dma) {
  1219. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1220. pch_alloc_dma_buf(board_dat, data);
  1221. }
  1222. return 0;
  1223. err_spi_register_master:
  1224. free_irq(board_dat->pdev->irq, board_dat);
  1225. err_request_irq:
  1226. pch_spi_free_resources(board_dat, data);
  1227. err_spi_get_resources:
  1228. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1229. err_pci_iomap:
  1230. spi_master_put(master);
  1231. return ret;
  1232. }
  1233. static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
  1234. {
  1235. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1236. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1237. int count;
  1238. unsigned long flags;
  1239. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1240. __func__, plat_dev->id, board_dat->pdev->irq);
  1241. if (use_dma)
  1242. pch_free_dma_buf(board_dat, data);
  1243. /* check for any pending messages; no action is taken if the queue
  1244. * is still full; but at least we tried. Unload anyway */
  1245. count = 500;
  1246. spin_lock_irqsave(&data->lock, flags);
  1247. data->status = STATUS_EXITING;
  1248. while ((list_empty(&data->queue) == 0) && --count) {
  1249. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1250. __func__);
  1251. spin_unlock_irqrestore(&data->lock, flags);
  1252. msleep(PCH_SLEEP_TIME);
  1253. spin_lock_irqsave(&data->lock, flags);
  1254. }
  1255. spin_unlock_irqrestore(&data->lock, flags);
  1256. pch_spi_free_resources(board_dat, data);
  1257. /* disable interrupts & free IRQ */
  1258. if (data->irq_reg_sts) {
  1259. /* disable interrupts */
  1260. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1261. data->irq_reg_sts = false;
  1262. free_irq(board_dat->pdev->irq, data);
  1263. }
  1264. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1265. spi_unregister_master(data->master);
  1266. spi_master_put(data->master);
  1267. platform_set_drvdata(plat_dev, NULL);
  1268. return 0;
  1269. }
  1270. #ifdef CONFIG_PM
  1271. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1272. pm_message_t state)
  1273. {
  1274. u8 count;
  1275. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1276. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1277. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1278. if (!board_dat) {
  1279. dev_err(&pd_dev->dev,
  1280. "%s pci_get_drvdata returned NULL\n", __func__);
  1281. return -EFAULT;
  1282. }
  1283. /* check if the current message is processed:
  1284. Only after thats done the transfer will be suspended */
  1285. count = 255;
  1286. while ((--count) > 0) {
  1287. if (!(data->bcurrent_msg_processing))
  1288. break;
  1289. msleep(PCH_SLEEP_TIME);
  1290. }
  1291. /* Free IRQ */
  1292. if (data->irq_reg_sts) {
  1293. /* disable all interrupts */
  1294. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1295. pch_spi_reset(data->master);
  1296. free_irq(board_dat->pdev->irq, data);
  1297. data->irq_reg_sts = false;
  1298. dev_dbg(&pd_dev->dev,
  1299. "%s free_irq invoked successfully.\n", __func__);
  1300. }
  1301. return 0;
  1302. }
  1303. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1304. {
  1305. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1306. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1307. int retval;
  1308. if (!board_dat) {
  1309. dev_err(&pd_dev->dev,
  1310. "%s pci_get_drvdata returned NULL\n", __func__);
  1311. return -EFAULT;
  1312. }
  1313. if (!data->irq_reg_sts) {
  1314. /* register IRQ */
  1315. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1316. IRQF_SHARED, KBUILD_MODNAME, data);
  1317. if (retval < 0) {
  1318. dev_err(&pd_dev->dev,
  1319. "%s request_irq failed\n", __func__);
  1320. return retval;
  1321. }
  1322. /* reset PCH SPI h/w */
  1323. pch_spi_reset(data->master);
  1324. pch_spi_set_master_mode(data->master);
  1325. data->irq_reg_sts = true;
  1326. }
  1327. return 0;
  1328. }
  1329. #else
  1330. #define pch_spi_pd_suspend NULL
  1331. #define pch_spi_pd_resume NULL
  1332. #endif
  1333. static struct platform_driver pch_spi_pd_driver = {
  1334. .driver = {
  1335. .name = "pch-spi",
  1336. .owner = THIS_MODULE,
  1337. },
  1338. .probe = pch_spi_pd_probe,
  1339. .remove = __devexit_p(pch_spi_pd_remove),
  1340. .suspend = pch_spi_pd_suspend,
  1341. .resume = pch_spi_pd_resume
  1342. };
  1343. static int __devinit pch_spi_probe(struct pci_dev *pdev,
  1344. const struct pci_device_id *id)
  1345. {
  1346. struct pch_spi_board_data *board_dat;
  1347. struct platform_device *pd_dev = NULL;
  1348. int retval;
  1349. int i;
  1350. struct pch_pd_dev_save *pd_dev_save;
  1351. pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
  1352. if (!pd_dev_save) {
  1353. dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
  1354. return -ENOMEM;
  1355. }
  1356. board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
  1357. if (!board_dat) {
  1358. dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
  1359. retval = -ENOMEM;
  1360. goto err_no_mem;
  1361. }
  1362. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1363. if (retval) {
  1364. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1365. goto pci_request_regions;
  1366. }
  1367. board_dat->pdev = pdev;
  1368. board_dat->num = id->driver_data;
  1369. pd_dev_save->num = id->driver_data;
  1370. pd_dev_save->board_dat = board_dat;
  1371. retval = pci_enable_device(pdev);
  1372. if (retval) {
  1373. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1374. goto pci_enable_device;
  1375. }
  1376. for (i = 0; i < board_dat->num; i++) {
  1377. pd_dev = platform_device_alloc("pch-spi", i);
  1378. if (!pd_dev) {
  1379. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1380. goto err_platform_device;
  1381. }
  1382. pd_dev_save->pd_save[i] = pd_dev;
  1383. pd_dev->dev.parent = &pdev->dev;
  1384. retval = platform_device_add_data(pd_dev, board_dat,
  1385. sizeof(*board_dat));
  1386. if (retval) {
  1387. dev_err(&pdev->dev,
  1388. "platform_device_add_data failed\n");
  1389. platform_device_put(pd_dev);
  1390. goto err_platform_device;
  1391. }
  1392. retval = platform_device_add(pd_dev);
  1393. if (retval) {
  1394. dev_err(&pdev->dev, "platform_device_add failed\n");
  1395. platform_device_put(pd_dev);
  1396. goto err_platform_device;
  1397. }
  1398. }
  1399. pci_set_drvdata(pdev, pd_dev_save);
  1400. return 0;
  1401. err_platform_device:
  1402. pci_disable_device(pdev);
  1403. pci_enable_device:
  1404. pci_release_regions(pdev);
  1405. pci_request_regions:
  1406. kfree(board_dat);
  1407. err_no_mem:
  1408. kfree(pd_dev_save);
  1409. return retval;
  1410. }
  1411. static void __devexit pch_spi_remove(struct pci_dev *pdev)
  1412. {
  1413. int i;
  1414. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1415. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1416. for (i = 0; i < pd_dev_save->num; i++)
  1417. platform_device_unregister(pd_dev_save->pd_save[i]);
  1418. pci_disable_device(pdev);
  1419. pci_release_regions(pdev);
  1420. kfree(pd_dev_save->board_dat);
  1421. kfree(pd_dev_save);
  1422. }
  1423. #ifdef CONFIG_PM
  1424. static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
  1425. {
  1426. int retval;
  1427. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1428. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1429. pd_dev_save->board_dat->suspend_sts = true;
  1430. /* save config space */
  1431. retval = pci_save_state(pdev);
  1432. if (retval == 0) {
  1433. pci_enable_wake(pdev, PCI_D3hot, 0);
  1434. pci_disable_device(pdev);
  1435. pci_set_power_state(pdev, PCI_D3hot);
  1436. } else {
  1437. dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
  1438. }
  1439. return retval;
  1440. }
  1441. static int pch_spi_resume(struct pci_dev *pdev)
  1442. {
  1443. int retval;
  1444. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1445. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1446. pci_set_power_state(pdev, PCI_D0);
  1447. pci_restore_state(pdev);
  1448. retval = pci_enable_device(pdev);
  1449. if (retval < 0) {
  1450. dev_err(&pdev->dev,
  1451. "%s pci_enable_device failed\n", __func__);
  1452. } else {
  1453. pci_enable_wake(pdev, PCI_D3hot, 0);
  1454. /* set suspend status to false */
  1455. pd_dev_save->board_dat->suspend_sts = false;
  1456. }
  1457. return retval;
  1458. }
  1459. #else
  1460. #define pch_spi_suspend NULL
  1461. #define pch_spi_resume NULL
  1462. #endif
  1463. static struct pci_driver pch_spi_pcidev = {
  1464. .name = "pch_spi",
  1465. .id_table = pch_spi_pcidev_id,
  1466. .probe = pch_spi_probe,
  1467. .remove = pch_spi_remove,
  1468. .suspend = pch_spi_suspend,
  1469. .resume = pch_spi_resume,
  1470. };
  1471. static int __init pch_spi_init(void)
  1472. {
  1473. int ret;
  1474. ret = platform_driver_register(&pch_spi_pd_driver);
  1475. if (ret)
  1476. return ret;
  1477. ret = pci_register_driver(&pch_spi_pcidev);
  1478. if (ret)
  1479. return ret;
  1480. return 0;
  1481. }
  1482. module_init(pch_spi_init);
  1483. static void __exit pch_spi_exit(void)
  1484. {
  1485. pci_unregister_driver(&pch_spi_pcidev);
  1486. platform_driver_unregister(&pch_spi_pd_driver);
  1487. }
  1488. module_exit(pch_spi_exit);
  1489. module_param(use_dma, int, 0644);
  1490. MODULE_PARM_DESC(use_dma,
  1491. "to use DMA for data transfers pass 1 else 0; default 1");
  1492. MODULE_LICENSE("GPL");
  1493. MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");