zd_mac.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539
  1. /* ZD1211 USB-WLAN driver for Linux
  2. *
  3. * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
  4. * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
  5. * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
  6. * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. */
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/slab.h>
  25. #include <linux/usb.h>
  26. #include <linux/jiffies.h>
  27. #include <net/ieee80211_radiotap.h>
  28. #include "zd_def.h"
  29. #include "zd_chip.h"
  30. #include "zd_mac.h"
  31. #include "zd_rf.h"
  32. struct zd_reg_alpha2_map {
  33. u32 reg;
  34. char alpha2[2];
  35. };
  36. static struct zd_reg_alpha2_map reg_alpha2_map[] = {
  37. { ZD_REGDOMAIN_FCC, "US" },
  38. { ZD_REGDOMAIN_IC, "CA" },
  39. { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
  40. { ZD_REGDOMAIN_JAPAN, "JP" },
  41. { ZD_REGDOMAIN_JAPAN_2, "JP" },
  42. { ZD_REGDOMAIN_JAPAN_3, "JP" },
  43. { ZD_REGDOMAIN_SPAIN, "ES" },
  44. { ZD_REGDOMAIN_FRANCE, "FR" },
  45. };
  46. /* This table contains the hardware specific values for the modulation rates. */
  47. static const struct ieee80211_rate zd_rates[] = {
  48. { .bitrate = 10,
  49. .hw_value = ZD_CCK_RATE_1M, },
  50. { .bitrate = 20,
  51. .hw_value = ZD_CCK_RATE_2M,
  52. .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
  53. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  54. { .bitrate = 55,
  55. .hw_value = ZD_CCK_RATE_5_5M,
  56. .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
  57. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  58. { .bitrate = 110,
  59. .hw_value = ZD_CCK_RATE_11M,
  60. .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
  61. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  62. { .bitrate = 60,
  63. .hw_value = ZD_OFDM_RATE_6M,
  64. .flags = 0 },
  65. { .bitrate = 90,
  66. .hw_value = ZD_OFDM_RATE_9M,
  67. .flags = 0 },
  68. { .bitrate = 120,
  69. .hw_value = ZD_OFDM_RATE_12M,
  70. .flags = 0 },
  71. { .bitrate = 180,
  72. .hw_value = ZD_OFDM_RATE_18M,
  73. .flags = 0 },
  74. { .bitrate = 240,
  75. .hw_value = ZD_OFDM_RATE_24M,
  76. .flags = 0 },
  77. { .bitrate = 360,
  78. .hw_value = ZD_OFDM_RATE_36M,
  79. .flags = 0 },
  80. { .bitrate = 480,
  81. .hw_value = ZD_OFDM_RATE_48M,
  82. .flags = 0 },
  83. { .bitrate = 540,
  84. .hw_value = ZD_OFDM_RATE_54M,
  85. .flags = 0 },
  86. };
  87. /*
  88. * Zydas retry rates table. Each line is listed in the same order as
  89. * in zd_rates[] and contains all the rate used when a packet is sent
  90. * starting with a given rates. Let's consider an example :
  91. *
  92. * "11 Mbits : 4, 3, 2, 1, 0" means :
  93. * - packet is sent using 4 different rates
  94. * - 1st rate is index 3 (ie 11 Mbits)
  95. * - 2nd rate is index 2 (ie 5.5 Mbits)
  96. * - 3rd rate is index 1 (ie 2 Mbits)
  97. * - 4th rate is index 0 (ie 1 Mbits)
  98. */
  99. static const struct tx_retry_rate zd_retry_rates[] = {
  100. { /* 1 Mbits */ 1, { 0 }},
  101. { /* 2 Mbits */ 2, { 1, 0 }},
  102. { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
  103. { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
  104. { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
  105. { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
  106. { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
  107. { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
  108. { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
  109. { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
  110. { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
  111. { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
  112. };
  113. static const struct ieee80211_channel zd_channels[] = {
  114. { .center_freq = 2412, .hw_value = 1 },
  115. { .center_freq = 2417, .hw_value = 2 },
  116. { .center_freq = 2422, .hw_value = 3 },
  117. { .center_freq = 2427, .hw_value = 4 },
  118. { .center_freq = 2432, .hw_value = 5 },
  119. { .center_freq = 2437, .hw_value = 6 },
  120. { .center_freq = 2442, .hw_value = 7 },
  121. { .center_freq = 2447, .hw_value = 8 },
  122. { .center_freq = 2452, .hw_value = 9 },
  123. { .center_freq = 2457, .hw_value = 10 },
  124. { .center_freq = 2462, .hw_value = 11 },
  125. { .center_freq = 2467, .hw_value = 12 },
  126. { .center_freq = 2472, .hw_value = 13 },
  127. { .center_freq = 2484, .hw_value = 14 },
  128. };
  129. static void housekeeping_init(struct zd_mac *mac);
  130. static void housekeeping_enable(struct zd_mac *mac);
  131. static void housekeeping_disable(struct zd_mac *mac);
  132. static void beacon_init(struct zd_mac *mac);
  133. static void beacon_enable(struct zd_mac *mac);
  134. static void beacon_disable(struct zd_mac *mac);
  135. static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
  136. static int zd_mac_config_beacon(struct ieee80211_hw *hw,
  137. struct sk_buff *beacon, bool in_intr);
  138. static int zd_reg2alpha2(u8 regdomain, char *alpha2)
  139. {
  140. unsigned int i;
  141. struct zd_reg_alpha2_map *reg_map;
  142. for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
  143. reg_map = &reg_alpha2_map[i];
  144. if (regdomain == reg_map->reg) {
  145. alpha2[0] = reg_map->alpha2[0];
  146. alpha2[1] = reg_map->alpha2[1];
  147. return 0;
  148. }
  149. }
  150. return 1;
  151. }
  152. static int zd_check_signal(struct ieee80211_hw *hw, int signal)
  153. {
  154. struct zd_mac *mac = zd_hw_mac(hw);
  155. dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
  156. "%s: signal value from device not in range 0..100, "
  157. "but %d.\n", __func__, signal);
  158. if (signal < 0)
  159. signal = 0;
  160. else if (signal > 100)
  161. signal = 100;
  162. return signal;
  163. }
  164. int zd_mac_preinit_hw(struct ieee80211_hw *hw)
  165. {
  166. int r;
  167. u8 addr[ETH_ALEN];
  168. struct zd_mac *mac = zd_hw_mac(hw);
  169. r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
  170. if (r)
  171. return r;
  172. SET_IEEE80211_PERM_ADDR(hw, addr);
  173. return 0;
  174. }
  175. int zd_mac_init_hw(struct ieee80211_hw *hw)
  176. {
  177. int r;
  178. struct zd_mac *mac = zd_hw_mac(hw);
  179. struct zd_chip *chip = &mac->chip;
  180. char alpha2[2];
  181. u8 default_regdomain;
  182. r = zd_chip_enable_int(chip);
  183. if (r)
  184. goto out;
  185. r = zd_chip_init_hw(chip);
  186. if (r)
  187. goto disable_int;
  188. ZD_ASSERT(!irqs_disabled());
  189. r = zd_read_regdomain(chip, &default_regdomain);
  190. if (r)
  191. goto disable_int;
  192. spin_lock_irq(&mac->lock);
  193. mac->regdomain = mac->default_regdomain = default_regdomain;
  194. spin_unlock_irq(&mac->lock);
  195. /* We must inform the device that we are doing encryption/decryption in
  196. * software at the moment. */
  197. r = zd_set_encryption_type(chip, ENC_SNIFFER);
  198. if (r)
  199. goto disable_int;
  200. r = zd_reg2alpha2(mac->regdomain, alpha2);
  201. if (r)
  202. goto disable_int;
  203. r = regulatory_hint(hw->wiphy, alpha2);
  204. disable_int:
  205. zd_chip_disable_int(chip);
  206. out:
  207. return r;
  208. }
  209. void zd_mac_clear(struct zd_mac *mac)
  210. {
  211. flush_workqueue(zd_workqueue);
  212. zd_chip_clear(&mac->chip);
  213. ZD_ASSERT(!spin_is_locked(&mac->lock));
  214. ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
  215. }
  216. static int set_rx_filter(struct zd_mac *mac)
  217. {
  218. unsigned long flags;
  219. u32 filter = STA_RX_FILTER;
  220. spin_lock_irqsave(&mac->lock, flags);
  221. if (mac->pass_ctrl)
  222. filter |= RX_FILTER_CTRL;
  223. spin_unlock_irqrestore(&mac->lock, flags);
  224. return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
  225. }
  226. static int set_mac_and_bssid(struct zd_mac *mac)
  227. {
  228. int r;
  229. if (!mac->vif)
  230. return -1;
  231. r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
  232. if (r)
  233. return r;
  234. /* Vendor driver after setting MAC either sets BSSID for AP or
  235. * filter for other modes.
  236. */
  237. if (mac->type != NL80211_IFTYPE_AP)
  238. return set_rx_filter(mac);
  239. else
  240. return zd_write_bssid(&mac->chip, mac->vif->addr);
  241. }
  242. static int set_mc_hash(struct zd_mac *mac)
  243. {
  244. struct zd_mc_hash hash;
  245. zd_mc_clear(&hash);
  246. return zd_chip_set_multicast_hash(&mac->chip, &hash);
  247. }
  248. int zd_op_start(struct ieee80211_hw *hw)
  249. {
  250. struct zd_mac *mac = zd_hw_mac(hw);
  251. struct zd_chip *chip = &mac->chip;
  252. struct zd_usb *usb = &chip->usb;
  253. int r;
  254. if (!usb->initialized) {
  255. r = zd_usb_init_hw(usb);
  256. if (r)
  257. goto out;
  258. }
  259. r = zd_chip_enable_int(chip);
  260. if (r < 0)
  261. goto out;
  262. r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
  263. if (r < 0)
  264. goto disable_int;
  265. r = set_rx_filter(mac);
  266. if (r)
  267. goto disable_int;
  268. r = set_mc_hash(mac);
  269. if (r)
  270. goto disable_int;
  271. r = zd_chip_switch_radio_on(chip);
  272. if (r < 0)
  273. goto disable_int;
  274. r = zd_chip_enable_rxtx(chip);
  275. if (r < 0)
  276. goto disable_radio;
  277. r = zd_chip_enable_hwint(chip);
  278. if (r < 0)
  279. goto disable_rxtx;
  280. housekeeping_enable(mac);
  281. beacon_enable(mac);
  282. set_bit(ZD_DEVICE_RUNNING, &mac->flags);
  283. return 0;
  284. disable_rxtx:
  285. zd_chip_disable_rxtx(chip);
  286. disable_radio:
  287. zd_chip_switch_radio_off(chip);
  288. disable_int:
  289. zd_chip_disable_int(chip);
  290. out:
  291. return r;
  292. }
  293. void zd_op_stop(struct ieee80211_hw *hw)
  294. {
  295. struct zd_mac *mac = zd_hw_mac(hw);
  296. struct zd_chip *chip = &mac->chip;
  297. struct sk_buff *skb;
  298. struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
  299. clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
  300. /* The order here deliberately is a little different from the open()
  301. * method, since we need to make sure there is no opportunity for RX
  302. * frames to be processed by mac80211 after we have stopped it.
  303. */
  304. zd_chip_disable_rxtx(chip);
  305. beacon_disable(mac);
  306. housekeeping_disable(mac);
  307. flush_workqueue(zd_workqueue);
  308. zd_chip_disable_hwint(chip);
  309. zd_chip_switch_radio_off(chip);
  310. zd_chip_disable_int(chip);
  311. while ((skb = skb_dequeue(ack_wait_queue)))
  312. dev_kfree_skb_any(skb);
  313. }
  314. int zd_restore_settings(struct zd_mac *mac)
  315. {
  316. struct sk_buff *beacon;
  317. struct zd_mc_hash multicast_hash;
  318. unsigned int short_preamble;
  319. int r, beacon_interval, beacon_period;
  320. u8 channel;
  321. dev_dbg_f(zd_mac_dev(mac), "\n");
  322. spin_lock_irq(&mac->lock);
  323. multicast_hash = mac->multicast_hash;
  324. short_preamble = mac->short_preamble;
  325. beacon_interval = mac->beacon.interval;
  326. beacon_period = mac->beacon.period;
  327. channel = mac->channel;
  328. spin_unlock_irq(&mac->lock);
  329. r = set_mac_and_bssid(mac);
  330. if (r < 0) {
  331. dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
  332. return r;
  333. }
  334. r = zd_chip_set_channel(&mac->chip, channel);
  335. if (r < 0) {
  336. dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
  337. r);
  338. return r;
  339. }
  340. set_rts_cts(mac, short_preamble);
  341. r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
  342. if (r < 0) {
  343. dev_dbg_f(zd_mac_dev(mac),
  344. "zd_chip_set_multicast_hash failed, %d\n", r);
  345. return r;
  346. }
  347. if (mac->type == NL80211_IFTYPE_MESH_POINT ||
  348. mac->type == NL80211_IFTYPE_ADHOC ||
  349. mac->type == NL80211_IFTYPE_AP) {
  350. if (mac->vif != NULL) {
  351. beacon = ieee80211_beacon_get(mac->hw, mac->vif);
  352. if (beacon)
  353. zd_mac_config_beacon(mac->hw, beacon, false);
  354. }
  355. zd_set_beacon_interval(&mac->chip, beacon_interval,
  356. beacon_period, mac->type);
  357. spin_lock_irq(&mac->lock);
  358. mac->beacon.last_update = jiffies;
  359. spin_unlock_irq(&mac->lock);
  360. }
  361. return 0;
  362. }
  363. /**
  364. * zd_mac_tx_status - reports tx status of a packet if required
  365. * @hw - a &struct ieee80211_hw pointer
  366. * @skb - a sk-buffer
  367. * @flags: extra flags to set in the TX status info
  368. * @ackssi: ACK signal strength
  369. * @success - True for successful transmission of the frame
  370. *
  371. * This information calls ieee80211_tx_status_irqsafe() if required by the
  372. * control information. It copies the control information into the status
  373. * information.
  374. *
  375. * If no status information has been requested, the skb is freed.
  376. */
  377. static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
  378. int ackssi, struct tx_status *tx_status)
  379. {
  380. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  381. int i;
  382. int success = 1, retry = 1;
  383. int first_idx;
  384. const struct tx_retry_rate *retries;
  385. ieee80211_tx_info_clear_status(info);
  386. if (tx_status) {
  387. success = !tx_status->failure;
  388. retry = tx_status->retry + success;
  389. }
  390. if (success) {
  391. /* success */
  392. info->flags |= IEEE80211_TX_STAT_ACK;
  393. } else {
  394. /* failure */
  395. info->flags &= ~IEEE80211_TX_STAT_ACK;
  396. }
  397. first_idx = info->status.rates[0].idx;
  398. ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
  399. retries = &zd_retry_rates[first_idx];
  400. ZD_ASSERT(1 <= retry && retry <= retries->count);
  401. info->status.rates[0].idx = retries->rate[0];
  402. info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
  403. for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
  404. info->status.rates[i].idx = retries->rate[i];
  405. info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
  406. }
  407. for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
  408. info->status.rates[i].idx = retries->rate[retry - 1];
  409. info->status.rates[i].count = 1; // (success ? 1:2);
  410. }
  411. if (i<IEEE80211_TX_MAX_RATES)
  412. info->status.rates[i].idx = -1; /* terminate */
  413. info->status.ack_signal = zd_check_signal(hw, ackssi);
  414. ieee80211_tx_status_irqsafe(hw, skb);
  415. }
  416. /**
  417. * zd_mac_tx_failed - callback for failed frames
  418. * @dev: the mac80211 wireless device
  419. *
  420. * This function is called if a frame couldn't be successfully
  421. * transferred. The first frame from the tx queue, will be selected and
  422. * reported as error to the upper layers.
  423. */
  424. void zd_mac_tx_failed(struct urb *urb)
  425. {
  426. struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
  427. struct zd_mac *mac = zd_hw_mac(hw);
  428. struct sk_buff_head *q = &mac->ack_wait_queue;
  429. struct sk_buff *skb;
  430. struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
  431. unsigned long flags;
  432. int success = !tx_status->failure;
  433. int retry = tx_status->retry + success;
  434. int found = 0;
  435. int i, position = 0;
  436. q = &mac->ack_wait_queue;
  437. spin_lock_irqsave(&q->lock, flags);
  438. skb_queue_walk(q, skb) {
  439. struct ieee80211_hdr *tx_hdr;
  440. struct ieee80211_tx_info *info;
  441. int first_idx, final_idx;
  442. const struct tx_retry_rate *retries;
  443. u8 final_rate;
  444. position ++;
  445. /* if the hardware reports a failure and we had a 802.11 ACK
  446. * pending, then we skip the first skb when searching for a
  447. * matching frame */
  448. if (tx_status->failure && mac->ack_pending &&
  449. skb_queue_is_first(q, skb)) {
  450. continue;
  451. }
  452. tx_hdr = (struct ieee80211_hdr *)skb->data;
  453. /* we skip all frames not matching the reported destination */
  454. if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
  455. continue;
  456. }
  457. /* we skip all frames not matching the reported final rate */
  458. info = IEEE80211_SKB_CB(skb);
  459. first_idx = info->status.rates[0].idx;
  460. ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
  461. retries = &zd_retry_rates[first_idx];
  462. if (retry <= 0 || retry > retries->count)
  463. continue;
  464. final_idx = retries->rate[retry - 1];
  465. final_rate = zd_rates[final_idx].hw_value;
  466. if (final_rate != tx_status->rate) {
  467. continue;
  468. }
  469. found = 1;
  470. break;
  471. }
  472. if (found) {
  473. for (i=1; i<=position; i++) {
  474. skb = __skb_dequeue(q);
  475. zd_mac_tx_status(hw, skb,
  476. mac->ack_pending ? mac->ack_signal : 0,
  477. i == position ? tx_status : NULL);
  478. mac->ack_pending = 0;
  479. }
  480. }
  481. spin_unlock_irqrestore(&q->lock, flags);
  482. }
  483. /**
  484. * zd_mac_tx_to_dev - callback for USB layer
  485. * @skb: a &sk_buff pointer
  486. * @error: error value, 0 if transmission successful
  487. *
  488. * Informs the MAC layer that the frame has successfully transferred to the
  489. * device. If an ACK is required and the transfer to the device has been
  490. * successful, the packets are put on the @ack_wait_queue with
  491. * the control set removed.
  492. */
  493. void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
  494. {
  495. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  496. struct ieee80211_hw *hw = info->rate_driver_data[0];
  497. struct zd_mac *mac = zd_hw_mac(hw);
  498. ieee80211_tx_info_clear_status(info);
  499. skb_pull(skb, sizeof(struct zd_ctrlset));
  500. if (unlikely(error ||
  501. (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
  502. /*
  503. * FIXME : do we need to fill in anything ?
  504. */
  505. ieee80211_tx_status_irqsafe(hw, skb);
  506. } else {
  507. struct sk_buff_head *q = &mac->ack_wait_queue;
  508. skb_queue_tail(q, skb);
  509. while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
  510. zd_mac_tx_status(hw, skb_dequeue(q),
  511. mac->ack_pending ? mac->ack_signal : 0,
  512. NULL);
  513. mac->ack_pending = 0;
  514. }
  515. }
  516. }
  517. static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
  518. {
  519. /* ZD_PURE_RATE() must be used to remove the modulation type flag of
  520. * the zd-rate values.
  521. */
  522. static const u8 rate_divisor[] = {
  523. [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
  524. [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
  525. /* Bits must be doubled. */
  526. [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
  527. [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
  528. [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
  529. [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
  530. [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
  531. [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
  532. [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
  533. [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
  534. [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
  535. [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
  536. };
  537. u32 bits = (u32)tx_length * 8;
  538. u32 divisor;
  539. divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
  540. if (divisor == 0)
  541. return -EINVAL;
  542. switch (zd_rate) {
  543. case ZD_CCK_RATE_5_5M:
  544. bits = (2*bits) + 10; /* round up to the next integer */
  545. break;
  546. case ZD_CCK_RATE_11M:
  547. if (service) {
  548. u32 t = bits % 11;
  549. *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
  550. if (0 < t && t <= 3) {
  551. *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
  552. }
  553. }
  554. bits += 10; /* round up to the next integer */
  555. break;
  556. }
  557. return bits/divisor;
  558. }
  559. static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
  560. struct ieee80211_hdr *header,
  561. struct ieee80211_tx_info *info)
  562. {
  563. /*
  564. * CONTROL TODO:
  565. * - if backoff needed, enable bit 0
  566. * - if burst (backoff not needed) disable bit 0
  567. */
  568. cs->control = 0;
  569. /* First fragment */
  570. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  571. cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
  572. /* No ACK expected (multicast, etc.) */
  573. if (info->flags & IEEE80211_TX_CTL_NO_ACK)
  574. cs->control |= ZD_CS_NO_ACK;
  575. /* PS-POLL */
  576. if (ieee80211_is_pspoll(header->frame_control))
  577. cs->control |= ZD_CS_PS_POLL_FRAME;
  578. if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
  579. cs->control |= ZD_CS_RTS;
  580. if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
  581. cs->control |= ZD_CS_SELF_CTS;
  582. /* FIXME: Management frame? */
  583. }
  584. static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
  585. {
  586. if (!mac->beacon.cur_beacon)
  587. return false;
  588. if (mac->beacon.cur_beacon->len != beacon->len)
  589. return false;
  590. return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
  591. }
  592. static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
  593. {
  594. ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
  595. kfree_skb(mac->beacon.cur_beacon);
  596. mac->beacon.cur_beacon = NULL;
  597. }
  598. static void zd_mac_free_cur_beacon(struct zd_mac *mac)
  599. {
  600. mutex_lock(&mac->chip.mutex);
  601. zd_mac_free_cur_beacon_locked(mac);
  602. mutex_unlock(&mac->chip.mutex);
  603. }
  604. static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
  605. bool in_intr)
  606. {
  607. struct zd_mac *mac = zd_hw_mac(hw);
  608. int r, ret, num_cmds, req_pos = 0;
  609. u32 tmp, j = 0;
  610. /* 4 more bytes for tail CRC */
  611. u32 full_len = beacon->len + 4;
  612. unsigned long end_jiffies, message_jiffies;
  613. struct zd_ioreq32 *ioreqs;
  614. mutex_lock(&mac->chip.mutex);
  615. /* Check if hw already has this beacon. */
  616. if (zd_mac_match_cur_beacon(mac, beacon)) {
  617. r = 0;
  618. goto out_nofree;
  619. }
  620. /* Alloc memory for full beacon write at once. */
  621. num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
  622. ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
  623. if (!ioreqs) {
  624. r = -ENOMEM;
  625. goto out_nofree;
  626. }
  627. r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
  628. if (r < 0)
  629. goto out;
  630. r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
  631. if (r < 0)
  632. goto release_sema;
  633. if (in_intr && tmp & 0x2) {
  634. r = -EBUSY;
  635. goto release_sema;
  636. }
  637. end_jiffies = jiffies + HZ / 2; /*~500ms*/
  638. message_jiffies = jiffies + HZ / 10; /*~100ms*/
  639. while (tmp & 0x2) {
  640. r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
  641. if (r < 0)
  642. goto release_sema;
  643. if (time_is_before_eq_jiffies(message_jiffies)) {
  644. message_jiffies = jiffies + HZ / 10;
  645. dev_err(zd_mac_dev(mac),
  646. "CR_BCN_FIFO_SEMAPHORE not ready\n");
  647. if (time_is_before_eq_jiffies(end_jiffies)) {
  648. dev_err(zd_mac_dev(mac),
  649. "Giving up beacon config.\n");
  650. r = -ETIMEDOUT;
  651. goto reset_device;
  652. }
  653. }
  654. msleep(20);
  655. }
  656. ioreqs[req_pos].addr = CR_BCN_FIFO;
  657. ioreqs[req_pos].value = full_len - 1;
  658. req_pos++;
  659. if (zd_chip_is_zd1211b(&mac->chip)) {
  660. ioreqs[req_pos].addr = CR_BCN_LENGTH;
  661. ioreqs[req_pos].value = full_len - 1;
  662. req_pos++;
  663. }
  664. for (j = 0 ; j < beacon->len; j++) {
  665. ioreqs[req_pos].addr = CR_BCN_FIFO;
  666. ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
  667. req_pos++;
  668. }
  669. for (j = 0; j < 4; j++) {
  670. ioreqs[req_pos].addr = CR_BCN_FIFO;
  671. ioreqs[req_pos].value = 0x0;
  672. req_pos++;
  673. }
  674. BUG_ON(req_pos != num_cmds);
  675. r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
  676. release_sema:
  677. /*
  678. * Try very hard to release device beacon semaphore, as otherwise
  679. * device/driver can be left in unusable state.
  680. */
  681. end_jiffies = jiffies + HZ / 2; /*~500ms*/
  682. ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
  683. while (ret < 0) {
  684. if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
  685. ret = -ETIMEDOUT;
  686. break;
  687. }
  688. msleep(20);
  689. ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
  690. }
  691. if (ret < 0)
  692. dev_err(zd_mac_dev(mac), "Could not release "
  693. "CR_BCN_FIFO_SEMAPHORE!\n");
  694. if (r < 0 || ret < 0) {
  695. if (r >= 0)
  696. r = ret;
  697. /* We don't know if beacon was written successfully or not,
  698. * so clear current. */
  699. zd_mac_free_cur_beacon_locked(mac);
  700. goto out;
  701. }
  702. /* Beacon has now been written successfully, update current. */
  703. zd_mac_free_cur_beacon_locked(mac);
  704. mac->beacon.cur_beacon = beacon;
  705. beacon = NULL;
  706. /* 802.11b/g 2.4G CCK 1Mb
  707. * 802.11a, not yet implemented, uses different values (see GPL vendor
  708. * driver)
  709. */
  710. r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
  711. CR_BCN_PLCP_CFG);
  712. out:
  713. kfree(ioreqs);
  714. out_nofree:
  715. kfree_skb(beacon);
  716. mutex_unlock(&mac->chip.mutex);
  717. return r;
  718. reset_device:
  719. zd_mac_free_cur_beacon_locked(mac);
  720. kfree_skb(beacon);
  721. mutex_unlock(&mac->chip.mutex);
  722. kfree(ioreqs);
  723. /* semaphore stuck, reset device to avoid fw freeze later */
  724. dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
  725. "reseting device...");
  726. usb_queue_reset_device(mac->chip.usb.intf);
  727. return r;
  728. }
  729. static int fill_ctrlset(struct zd_mac *mac,
  730. struct sk_buff *skb)
  731. {
  732. int r;
  733. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  734. unsigned int frag_len = skb->len + FCS_LEN;
  735. unsigned int packet_length;
  736. struct ieee80211_rate *txrate;
  737. struct zd_ctrlset *cs = (struct zd_ctrlset *)
  738. skb_push(skb, sizeof(struct zd_ctrlset));
  739. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  740. ZD_ASSERT(frag_len <= 0xffff);
  741. /*
  742. * Firmware computes the duration itself (for all frames except PSPoll)
  743. * and needs the field set to 0 at input, otherwise firmware messes up
  744. * duration_id and sets bits 14 and 15 on.
  745. */
  746. if (!ieee80211_is_pspoll(hdr->frame_control))
  747. hdr->duration_id = 0;
  748. txrate = ieee80211_get_tx_rate(mac->hw, info);
  749. cs->modulation = txrate->hw_value;
  750. if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  751. cs->modulation = txrate->hw_value_short;
  752. cs->tx_length = cpu_to_le16(frag_len);
  753. cs_set_control(mac, cs, hdr, info);
  754. packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
  755. ZD_ASSERT(packet_length <= 0xffff);
  756. /* ZD1211B: Computing the length difference this way, gives us
  757. * flexibility to compute the packet length.
  758. */
  759. cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
  760. packet_length - frag_len : packet_length);
  761. /*
  762. * CURRENT LENGTH:
  763. * - transmit frame length in microseconds
  764. * - seems to be derived from frame length
  765. * - see Cal_Us_Service() in zdinlinef.h
  766. * - if macp->bTxBurstEnable is enabled, then multiply by 4
  767. * - bTxBurstEnable is never set in the vendor driver
  768. *
  769. * SERVICE:
  770. * - "for PLCP configuration"
  771. * - always 0 except in some situations at 802.11b 11M
  772. * - see line 53 of zdinlinef.h
  773. */
  774. cs->service = 0;
  775. r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
  776. le16_to_cpu(cs->tx_length));
  777. if (r < 0)
  778. return r;
  779. cs->current_length = cpu_to_le16(r);
  780. cs->next_frame_length = 0;
  781. return 0;
  782. }
  783. /**
  784. * zd_op_tx - transmits a network frame to the device
  785. *
  786. * @dev: mac80211 hardware device
  787. * @skb: socket buffer
  788. * @control: the control structure
  789. *
  790. * This function transmit an IEEE 802.11 network frame to the device. The
  791. * control block of the skbuff will be initialized. If necessary the incoming
  792. * mac80211 queues will be stopped.
  793. */
  794. static void zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
  795. {
  796. struct zd_mac *mac = zd_hw_mac(hw);
  797. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  798. int r;
  799. r = fill_ctrlset(mac, skb);
  800. if (r)
  801. goto fail;
  802. info->rate_driver_data[0] = hw;
  803. r = zd_usb_tx(&mac->chip.usb, skb);
  804. if (r)
  805. goto fail;
  806. return;
  807. fail:
  808. dev_kfree_skb(skb);
  809. }
  810. /**
  811. * filter_ack - filters incoming packets for acknowledgements
  812. * @dev: the mac80211 device
  813. * @rx_hdr: received header
  814. * @stats: the status for the received packet
  815. *
  816. * This functions looks for ACK packets and tries to match them with the
  817. * frames in the tx queue. If a match is found the frame will be dequeued and
  818. * the upper layers is informed about the successful transmission. If
  819. * mac80211 queues have been stopped and the number of frames still to be
  820. * transmitted is low the queues will be opened again.
  821. *
  822. * Returns 1 if the frame was an ACK, 0 if it was ignored.
  823. */
  824. static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
  825. struct ieee80211_rx_status *stats)
  826. {
  827. struct zd_mac *mac = zd_hw_mac(hw);
  828. struct sk_buff *skb;
  829. struct sk_buff_head *q;
  830. unsigned long flags;
  831. int found = 0;
  832. int i, position = 0;
  833. if (!ieee80211_is_ack(rx_hdr->frame_control))
  834. return 0;
  835. q = &mac->ack_wait_queue;
  836. spin_lock_irqsave(&q->lock, flags);
  837. skb_queue_walk(q, skb) {
  838. struct ieee80211_hdr *tx_hdr;
  839. position ++;
  840. if (mac->ack_pending && skb_queue_is_first(q, skb))
  841. continue;
  842. tx_hdr = (struct ieee80211_hdr *)skb->data;
  843. if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
  844. {
  845. found = 1;
  846. break;
  847. }
  848. }
  849. if (found) {
  850. for (i=1; i<position; i++) {
  851. skb = __skb_dequeue(q);
  852. zd_mac_tx_status(hw, skb,
  853. mac->ack_pending ? mac->ack_signal : 0,
  854. NULL);
  855. mac->ack_pending = 0;
  856. }
  857. mac->ack_pending = 1;
  858. mac->ack_signal = stats->signal;
  859. /* Prevent pending tx-packet on AP-mode */
  860. if (mac->type == NL80211_IFTYPE_AP) {
  861. skb = __skb_dequeue(q);
  862. zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
  863. mac->ack_pending = 0;
  864. }
  865. }
  866. spin_unlock_irqrestore(&q->lock, flags);
  867. return 1;
  868. }
  869. int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
  870. {
  871. struct zd_mac *mac = zd_hw_mac(hw);
  872. struct ieee80211_rx_status stats;
  873. const struct rx_status *status;
  874. struct sk_buff *skb;
  875. int bad_frame = 0;
  876. __le16 fc;
  877. int need_padding;
  878. int i;
  879. u8 rate;
  880. if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
  881. FCS_LEN + sizeof(struct rx_status))
  882. return -EINVAL;
  883. memset(&stats, 0, sizeof(stats));
  884. /* Note about pass_failed_fcs and pass_ctrl access below:
  885. * mac locking intentionally omitted here, as this is the only unlocked
  886. * reader and the only writer is configure_filter. Plus, if there were
  887. * any races accessing these variables, it wouldn't really matter.
  888. * If mac80211 ever provides a way for us to access filter flags
  889. * from outside configure_filter, we could improve on this. Also, this
  890. * situation may change once we implement some kind of DMA-into-skb
  891. * RX path. */
  892. /* Caller has to ensure that length >= sizeof(struct rx_status). */
  893. status = (struct rx_status *)
  894. (buffer + (length - sizeof(struct rx_status)));
  895. if (status->frame_status & ZD_RX_ERROR) {
  896. if (mac->pass_failed_fcs &&
  897. (status->frame_status & ZD_RX_CRC32_ERROR)) {
  898. stats.flag |= RX_FLAG_FAILED_FCS_CRC;
  899. bad_frame = 1;
  900. } else {
  901. return -EINVAL;
  902. }
  903. }
  904. stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
  905. stats.band = IEEE80211_BAND_2GHZ;
  906. stats.signal = zd_check_signal(hw, status->signal_strength);
  907. rate = zd_rx_rate(buffer, status);
  908. /* todo: return index in the big switches in zd_rx_rate instead */
  909. for (i = 0; i < mac->band.n_bitrates; i++)
  910. if (rate == mac->band.bitrates[i].hw_value)
  911. stats.rate_idx = i;
  912. length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
  913. buffer += ZD_PLCP_HEADER_SIZE;
  914. /* Except for bad frames, filter each frame to see if it is an ACK, in
  915. * which case our internal TX tracking is updated. Normally we then
  916. * bail here as there's no need to pass ACKs on up to the stack, but
  917. * there is also the case where the stack has requested us to pass
  918. * control frames on up (pass_ctrl) which we must consider. */
  919. if (!bad_frame &&
  920. filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
  921. && !mac->pass_ctrl)
  922. return 0;
  923. fc = get_unaligned((__le16*)buffer);
  924. need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
  925. skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
  926. if (skb == NULL)
  927. return -ENOMEM;
  928. if (need_padding) {
  929. /* Make sure the payload data is 4 byte aligned. */
  930. skb_reserve(skb, 2);
  931. }
  932. /* FIXME : could we avoid this big memcpy ? */
  933. memcpy(skb_put(skb, length), buffer, length);
  934. memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
  935. ieee80211_rx_irqsafe(hw, skb);
  936. return 0;
  937. }
  938. static int zd_op_add_interface(struct ieee80211_hw *hw,
  939. struct ieee80211_vif *vif)
  940. {
  941. struct zd_mac *mac = zd_hw_mac(hw);
  942. /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
  943. if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
  944. return -EOPNOTSUPP;
  945. switch (vif->type) {
  946. case NL80211_IFTYPE_MONITOR:
  947. case NL80211_IFTYPE_MESH_POINT:
  948. case NL80211_IFTYPE_STATION:
  949. case NL80211_IFTYPE_ADHOC:
  950. case NL80211_IFTYPE_AP:
  951. mac->type = vif->type;
  952. break;
  953. default:
  954. return -EOPNOTSUPP;
  955. }
  956. mac->vif = vif;
  957. return set_mac_and_bssid(mac);
  958. }
  959. static void zd_op_remove_interface(struct ieee80211_hw *hw,
  960. struct ieee80211_vif *vif)
  961. {
  962. struct zd_mac *mac = zd_hw_mac(hw);
  963. mac->type = NL80211_IFTYPE_UNSPECIFIED;
  964. mac->vif = NULL;
  965. zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
  966. zd_write_mac_addr(&mac->chip, NULL);
  967. zd_mac_free_cur_beacon(mac);
  968. }
  969. static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
  970. {
  971. struct zd_mac *mac = zd_hw_mac(hw);
  972. struct ieee80211_conf *conf = &hw->conf;
  973. spin_lock_irq(&mac->lock);
  974. mac->channel = conf->channel->hw_value;
  975. spin_unlock_irq(&mac->lock);
  976. return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
  977. }
  978. static void zd_beacon_done(struct zd_mac *mac)
  979. {
  980. struct sk_buff *skb, *beacon;
  981. if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
  982. return;
  983. if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
  984. return;
  985. /*
  986. * Send out buffered broad- and multicast frames.
  987. */
  988. while (!ieee80211_queue_stopped(mac->hw, 0)) {
  989. skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
  990. if (!skb)
  991. break;
  992. zd_op_tx(mac->hw, skb);
  993. }
  994. /*
  995. * Fetch next beacon so that tim_count is updated.
  996. */
  997. beacon = ieee80211_beacon_get(mac->hw, mac->vif);
  998. if (beacon)
  999. zd_mac_config_beacon(mac->hw, beacon, true);
  1000. spin_lock_irq(&mac->lock);
  1001. mac->beacon.last_update = jiffies;
  1002. spin_unlock_irq(&mac->lock);
  1003. }
  1004. static void zd_process_intr(struct work_struct *work)
  1005. {
  1006. u16 int_status;
  1007. unsigned long flags;
  1008. struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
  1009. spin_lock_irqsave(&mac->lock, flags);
  1010. int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
  1011. spin_unlock_irqrestore(&mac->lock, flags);
  1012. if (int_status & INT_CFG_NEXT_BCN) {
  1013. /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
  1014. zd_beacon_done(mac);
  1015. } else {
  1016. dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
  1017. }
  1018. zd_chip_enable_hwint(&mac->chip);
  1019. }
  1020. static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
  1021. struct netdev_hw_addr_list *mc_list)
  1022. {
  1023. struct zd_mac *mac = zd_hw_mac(hw);
  1024. struct zd_mc_hash hash;
  1025. struct netdev_hw_addr *ha;
  1026. zd_mc_clear(&hash);
  1027. netdev_hw_addr_list_for_each(ha, mc_list) {
  1028. dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
  1029. zd_mc_add_addr(&hash, ha->addr);
  1030. }
  1031. return hash.low | ((u64)hash.high << 32);
  1032. }
  1033. #define SUPPORTED_FIF_FLAGS \
  1034. (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
  1035. FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
  1036. static void zd_op_configure_filter(struct ieee80211_hw *hw,
  1037. unsigned int changed_flags,
  1038. unsigned int *new_flags,
  1039. u64 multicast)
  1040. {
  1041. struct zd_mc_hash hash = {
  1042. .low = multicast,
  1043. .high = multicast >> 32,
  1044. };
  1045. struct zd_mac *mac = zd_hw_mac(hw);
  1046. unsigned long flags;
  1047. int r;
  1048. /* Only deal with supported flags */
  1049. changed_flags &= SUPPORTED_FIF_FLAGS;
  1050. *new_flags &= SUPPORTED_FIF_FLAGS;
  1051. /*
  1052. * If multicast parameter (as returned by zd_op_prepare_multicast)
  1053. * has changed, no bit in changed_flags is set. To handle this
  1054. * situation, we do not return if changed_flags is 0. If we do so,
  1055. * we will have some issue with IPv6 which uses multicast for link
  1056. * layer address resolution.
  1057. */
  1058. if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
  1059. zd_mc_add_all(&hash);
  1060. spin_lock_irqsave(&mac->lock, flags);
  1061. mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
  1062. mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
  1063. mac->multicast_hash = hash;
  1064. spin_unlock_irqrestore(&mac->lock, flags);
  1065. zd_chip_set_multicast_hash(&mac->chip, &hash);
  1066. if (changed_flags & FIF_CONTROL) {
  1067. r = set_rx_filter(mac);
  1068. if (r)
  1069. dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
  1070. }
  1071. /* no handling required for FIF_OTHER_BSS as we don't currently
  1072. * do BSSID filtering */
  1073. /* FIXME: in future it would be nice to enable the probe response
  1074. * filter (so that the driver doesn't see them) until
  1075. * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
  1076. * have to schedule work to enable prbresp reception, which might
  1077. * happen too late. For now we'll just listen and forward them all the
  1078. * time. */
  1079. }
  1080. static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
  1081. {
  1082. mutex_lock(&mac->chip.mutex);
  1083. zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
  1084. mutex_unlock(&mac->chip.mutex);
  1085. }
  1086. static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
  1087. struct ieee80211_vif *vif,
  1088. struct ieee80211_bss_conf *bss_conf,
  1089. u32 changes)
  1090. {
  1091. struct zd_mac *mac = zd_hw_mac(hw);
  1092. int associated;
  1093. dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
  1094. if (mac->type == NL80211_IFTYPE_MESH_POINT ||
  1095. mac->type == NL80211_IFTYPE_ADHOC ||
  1096. mac->type == NL80211_IFTYPE_AP) {
  1097. associated = true;
  1098. if (changes & BSS_CHANGED_BEACON) {
  1099. struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
  1100. if (beacon) {
  1101. zd_chip_disable_hwint(&mac->chip);
  1102. zd_mac_config_beacon(hw, beacon, false);
  1103. zd_chip_enable_hwint(&mac->chip);
  1104. }
  1105. }
  1106. if (changes & BSS_CHANGED_BEACON_ENABLED) {
  1107. u16 interval = 0;
  1108. u8 period = 0;
  1109. if (bss_conf->enable_beacon) {
  1110. period = bss_conf->dtim_period;
  1111. interval = bss_conf->beacon_int;
  1112. }
  1113. spin_lock_irq(&mac->lock);
  1114. mac->beacon.period = period;
  1115. mac->beacon.interval = interval;
  1116. mac->beacon.last_update = jiffies;
  1117. spin_unlock_irq(&mac->lock);
  1118. zd_set_beacon_interval(&mac->chip, interval, period,
  1119. mac->type);
  1120. }
  1121. } else
  1122. associated = is_valid_ether_addr(bss_conf->bssid);
  1123. spin_lock_irq(&mac->lock);
  1124. mac->associated = associated;
  1125. spin_unlock_irq(&mac->lock);
  1126. /* TODO: do hardware bssid filtering */
  1127. if (changes & BSS_CHANGED_ERP_PREAMBLE) {
  1128. spin_lock_irq(&mac->lock);
  1129. mac->short_preamble = bss_conf->use_short_preamble;
  1130. spin_unlock_irq(&mac->lock);
  1131. set_rts_cts(mac, bss_conf->use_short_preamble);
  1132. }
  1133. }
  1134. static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
  1135. {
  1136. struct zd_mac *mac = zd_hw_mac(hw);
  1137. return zd_chip_get_tsf(&mac->chip);
  1138. }
  1139. static const struct ieee80211_ops zd_ops = {
  1140. .tx = zd_op_tx,
  1141. .start = zd_op_start,
  1142. .stop = zd_op_stop,
  1143. .add_interface = zd_op_add_interface,
  1144. .remove_interface = zd_op_remove_interface,
  1145. .config = zd_op_config,
  1146. .prepare_multicast = zd_op_prepare_multicast,
  1147. .configure_filter = zd_op_configure_filter,
  1148. .bss_info_changed = zd_op_bss_info_changed,
  1149. .get_tsf = zd_op_get_tsf,
  1150. };
  1151. struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
  1152. {
  1153. struct zd_mac *mac;
  1154. struct ieee80211_hw *hw;
  1155. hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
  1156. if (!hw) {
  1157. dev_dbg_f(&intf->dev, "out of memory\n");
  1158. return NULL;
  1159. }
  1160. mac = zd_hw_mac(hw);
  1161. memset(mac, 0, sizeof(*mac));
  1162. spin_lock_init(&mac->lock);
  1163. mac->hw = hw;
  1164. mac->type = NL80211_IFTYPE_UNSPECIFIED;
  1165. memcpy(mac->channels, zd_channels, sizeof(zd_channels));
  1166. memcpy(mac->rates, zd_rates, sizeof(zd_rates));
  1167. mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
  1168. mac->band.bitrates = mac->rates;
  1169. mac->band.n_channels = ARRAY_SIZE(zd_channels);
  1170. mac->band.channels = mac->channels;
  1171. hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
  1172. hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
  1173. IEEE80211_HW_SIGNAL_UNSPEC |
  1174. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1175. hw->wiphy->interface_modes =
  1176. BIT(NL80211_IFTYPE_MESH_POINT) |
  1177. BIT(NL80211_IFTYPE_STATION) |
  1178. BIT(NL80211_IFTYPE_ADHOC) |
  1179. BIT(NL80211_IFTYPE_AP);
  1180. hw->max_signal = 100;
  1181. hw->queues = 1;
  1182. hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
  1183. /*
  1184. * Tell mac80211 that we support multi rate retries
  1185. */
  1186. hw->max_rates = IEEE80211_TX_MAX_RATES;
  1187. hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
  1188. skb_queue_head_init(&mac->ack_wait_queue);
  1189. mac->ack_pending = 0;
  1190. zd_chip_init(&mac->chip, hw, intf);
  1191. housekeeping_init(mac);
  1192. beacon_init(mac);
  1193. INIT_WORK(&mac->process_intr, zd_process_intr);
  1194. SET_IEEE80211_DEV(hw, &intf->dev);
  1195. return hw;
  1196. }
  1197. #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
  1198. static void beacon_watchdog_handler(struct work_struct *work)
  1199. {
  1200. struct zd_mac *mac =
  1201. container_of(work, struct zd_mac, beacon.watchdog_work.work);
  1202. struct sk_buff *beacon;
  1203. unsigned long timeout;
  1204. int interval, period;
  1205. if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
  1206. goto rearm;
  1207. if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
  1208. goto rearm;
  1209. spin_lock_irq(&mac->lock);
  1210. interval = mac->beacon.interval;
  1211. period = mac->beacon.period;
  1212. timeout = mac->beacon.last_update +
  1213. msecs_to_jiffies(interval * 1024 / 1000) * 3;
  1214. spin_unlock_irq(&mac->lock);
  1215. if (interval > 0 && time_is_before_jiffies(timeout)) {
  1216. dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
  1217. "restarting. "
  1218. "(interval: %d, dtim: %d)\n",
  1219. interval, period);
  1220. zd_chip_disable_hwint(&mac->chip);
  1221. beacon = ieee80211_beacon_get(mac->hw, mac->vif);
  1222. if (beacon) {
  1223. zd_mac_free_cur_beacon(mac);
  1224. zd_mac_config_beacon(mac->hw, beacon, false);
  1225. }
  1226. zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
  1227. zd_chip_enable_hwint(&mac->chip);
  1228. spin_lock_irq(&mac->lock);
  1229. mac->beacon.last_update = jiffies;
  1230. spin_unlock_irq(&mac->lock);
  1231. }
  1232. rearm:
  1233. queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
  1234. BEACON_WATCHDOG_DELAY);
  1235. }
  1236. static void beacon_init(struct zd_mac *mac)
  1237. {
  1238. INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
  1239. }
  1240. static void beacon_enable(struct zd_mac *mac)
  1241. {
  1242. dev_dbg_f(zd_mac_dev(mac), "\n");
  1243. mac->beacon.last_update = jiffies;
  1244. queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
  1245. BEACON_WATCHDOG_DELAY);
  1246. }
  1247. static void beacon_disable(struct zd_mac *mac)
  1248. {
  1249. dev_dbg_f(zd_mac_dev(mac), "\n");
  1250. cancel_delayed_work_sync(&mac->beacon.watchdog_work);
  1251. zd_mac_free_cur_beacon(mac);
  1252. }
  1253. #define LINK_LED_WORK_DELAY HZ
  1254. static void link_led_handler(struct work_struct *work)
  1255. {
  1256. struct zd_mac *mac =
  1257. container_of(work, struct zd_mac, housekeeping.link_led_work.work);
  1258. struct zd_chip *chip = &mac->chip;
  1259. int is_associated;
  1260. int r;
  1261. if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
  1262. goto requeue;
  1263. spin_lock_irq(&mac->lock);
  1264. is_associated = mac->associated;
  1265. spin_unlock_irq(&mac->lock);
  1266. r = zd_chip_control_leds(chip,
  1267. is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
  1268. if (r)
  1269. dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
  1270. requeue:
  1271. queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
  1272. LINK_LED_WORK_DELAY);
  1273. }
  1274. static void housekeeping_init(struct zd_mac *mac)
  1275. {
  1276. INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
  1277. }
  1278. static void housekeeping_enable(struct zd_mac *mac)
  1279. {
  1280. dev_dbg_f(zd_mac_dev(mac), "\n");
  1281. queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
  1282. 0);
  1283. }
  1284. static void housekeeping_disable(struct zd_mac *mac)
  1285. {
  1286. dev_dbg_f(zd_mac_dev(mac), "\n");
  1287. cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
  1288. zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
  1289. }