xmit.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. static u16 bits_per_symbol[][2] = {
  33. /* 20MHz 40MHz */
  34. { 26, 54 }, /* 0: BPSK */
  35. { 52, 108 }, /* 1: QPSK 1/2 */
  36. { 78, 162 }, /* 2: QPSK 3/4 */
  37. { 104, 216 }, /* 3: 16-QAM 1/2 */
  38. { 156, 324 }, /* 4: 16-QAM 3/4 */
  39. { 208, 432 }, /* 5: 64-QAM 2/3 */
  40. { 234, 486 }, /* 6: 64-QAM 3/4 */
  41. { 260, 540 }, /* 7: 64-QAM 5/6 */
  42. };
  43. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  44. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  45. struct ath_atx_tid *tid, struct sk_buff *skb);
  46. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  47. int tx_flags, struct ath_txq *txq);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head, bool internal);
  53. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  54. struct ath_tx_status *ts, int nframes, int nbad,
  55. int txok);
  56. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  57. int seqno);
  58. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  59. struct ath_txq *txq,
  60. struct ath_atx_tid *tid,
  61. struct sk_buff *skb);
  62. enum {
  63. MCS_HT20,
  64. MCS_HT20_SGI,
  65. MCS_HT40,
  66. MCS_HT40_SGI,
  67. };
  68. static int ath_max_4ms_framelen[4][32] = {
  69. [MCS_HT20] = {
  70. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  71. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  72. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  73. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  74. },
  75. [MCS_HT20_SGI] = {
  76. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  77. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  78. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  79. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  80. },
  81. [MCS_HT40] = {
  82. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  83. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  84. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  85. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  86. },
  87. [MCS_HT40_SGI] = {
  88. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  89. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  90. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  91. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  92. }
  93. };
  94. /*********************/
  95. /* Aggregation logic */
  96. /*********************/
  97. static void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  98. __acquires(&txq->axq_lock)
  99. {
  100. spin_lock_bh(&txq->axq_lock);
  101. }
  102. static void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  103. __releases(&txq->axq_lock)
  104. {
  105. spin_unlock_bh(&txq->axq_lock);
  106. }
  107. static void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  108. __releases(&txq->axq_lock)
  109. {
  110. struct sk_buff_head q;
  111. struct sk_buff *skb;
  112. __skb_queue_head_init(&q);
  113. skb_queue_splice_init(&txq->complete_q, &q);
  114. spin_unlock_bh(&txq->axq_lock);
  115. while ((skb = __skb_dequeue(&q)))
  116. ieee80211_tx_status(sc->hw, skb);
  117. }
  118. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  119. {
  120. struct ath_atx_ac *ac = tid->ac;
  121. if (tid->paused)
  122. return;
  123. if (tid->sched)
  124. return;
  125. tid->sched = true;
  126. list_add_tail(&tid->list, &ac->tid_q);
  127. if (ac->sched)
  128. return;
  129. ac->sched = true;
  130. list_add_tail(&ac->list, &txq->axq_acq);
  131. }
  132. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  133. {
  134. struct ath_txq *txq = tid->ac->txq;
  135. WARN_ON(!tid->paused);
  136. ath_txq_lock(sc, txq);
  137. tid->paused = false;
  138. if (skb_queue_empty(&tid->buf_q))
  139. goto unlock;
  140. ath_tx_queue_tid(txq, tid);
  141. ath_txq_schedule(sc, txq);
  142. unlock:
  143. ath_txq_unlock_complete(sc, txq);
  144. }
  145. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  146. {
  147. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  148. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  149. sizeof(tx_info->rate_driver_data));
  150. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  151. }
  152. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  153. {
  154. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  155. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  156. }
  157. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  158. {
  159. struct ath_txq *txq = tid->ac->txq;
  160. struct sk_buff *skb;
  161. struct ath_buf *bf;
  162. struct list_head bf_head;
  163. struct ath_tx_status ts;
  164. struct ath_frame_info *fi;
  165. bool sendbar = false;
  166. INIT_LIST_HEAD(&bf_head);
  167. memset(&ts, 0, sizeof(ts));
  168. while ((skb = __skb_dequeue(&tid->buf_q))) {
  169. fi = get_frame_info(skb);
  170. bf = fi->bf;
  171. if (bf && fi->retries) {
  172. list_add_tail(&bf->list, &bf_head);
  173. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  174. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  175. sendbar = true;
  176. } else {
  177. ath_tx_send_normal(sc, txq, NULL, skb);
  178. }
  179. }
  180. if (tid->baw_head == tid->baw_tail) {
  181. tid->state &= ~AGGR_ADDBA_COMPLETE;
  182. tid->state &= ~AGGR_CLEANUP;
  183. }
  184. if (sendbar) {
  185. ath_txq_unlock(sc, txq);
  186. ath_send_bar(tid, tid->seq_start);
  187. ath_txq_lock(sc, txq);
  188. }
  189. }
  190. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  191. int seqno)
  192. {
  193. int index, cindex;
  194. index = ATH_BA_INDEX(tid->seq_start, seqno);
  195. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  196. __clear_bit(cindex, tid->tx_buf);
  197. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  198. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  199. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  200. if (tid->bar_index >= 0)
  201. tid->bar_index--;
  202. }
  203. }
  204. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  205. u16 seqno)
  206. {
  207. int index, cindex;
  208. index = ATH_BA_INDEX(tid->seq_start, seqno);
  209. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  210. __set_bit(cindex, tid->tx_buf);
  211. if (index >= ((tid->baw_tail - tid->baw_head) &
  212. (ATH_TID_MAX_BUFS - 1))) {
  213. tid->baw_tail = cindex;
  214. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  215. }
  216. }
  217. /*
  218. * TODO: For frame(s) that are in the retry state, we will reuse the
  219. * sequence number(s) without setting the retry bit. The
  220. * alternative is to give up on these and BAR the receiver's window
  221. * forward.
  222. */
  223. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  224. struct ath_atx_tid *tid)
  225. {
  226. struct sk_buff *skb;
  227. struct ath_buf *bf;
  228. struct list_head bf_head;
  229. struct ath_tx_status ts;
  230. struct ath_frame_info *fi;
  231. memset(&ts, 0, sizeof(ts));
  232. INIT_LIST_HEAD(&bf_head);
  233. while ((skb = __skb_dequeue(&tid->buf_q))) {
  234. fi = get_frame_info(skb);
  235. bf = fi->bf;
  236. if (!bf) {
  237. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  238. continue;
  239. }
  240. list_add_tail(&bf->list, &bf_head);
  241. if (fi->retries)
  242. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  243. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  244. }
  245. tid->seq_next = tid->seq_start;
  246. tid->baw_tail = tid->baw_head;
  247. tid->bar_index = -1;
  248. }
  249. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  250. struct sk_buff *skb, int count)
  251. {
  252. struct ath_frame_info *fi = get_frame_info(skb);
  253. struct ath_buf *bf = fi->bf;
  254. struct ieee80211_hdr *hdr;
  255. int prev = fi->retries;
  256. TX_STAT_INC(txq->axq_qnum, a_retries);
  257. fi->retries += count;
  258. if (prev > 0)
  259. return;
  260. hdr = (struct ieee80211_hdr *)skb->data;
  261. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  262. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  263. sizeof(*hdr), DMA_TO_DEVICE);
  264. }
  265. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  266. {
  267. struct ath_buf *bf = NULL;
  268. spin_lock_bh(&sc->tx.txbuflock);
  269. if (unlikely(list_empty(&sc->tx.txbuf))) {
  270. spin_unlock_bh(&sc->tx.txbuflock);
  271. return NULL;
  272. }
  273. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  274. list_del(&bf->list);
  275. spin_unlock_bh(&sc->tx.txbuflock);
  276. return bf;
  277. }
  278. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  279. {
  280. spin_lock_bh(&sc->tx.txbuflock);
  281. list_add_tail(&bf->list, &sc->tx.txbuf);
  282. spin_unlock_bh(&sc->tx.txbuflock);
  283. }
  284. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  285. {
  286. struct ath_buf *tbf;
  287. tbf = ath_tx_get_buffer(sc);
  288. if (WARN_ON(!tbf))
  289. return NULL;
  290. ATH_TXBUF_RESET(tbf);
  291. tbf->bf_mpdu = bf->bf_mpdu;
  292. tbf->bf_buf_addr = bf->bf_buf_addr;
  293. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  294. tbf->bf_state = bf->bf_state;
  295. return tbf;
  296. }
  297. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  298. struct ath_tx_status *ts, int txok,
  299. int *nframes, int *nbad)
  300. {
  301. struct ath_frame_info *fi;
  302. u16 seq_st = 0;
  303. u32 ba[WME_BA_BMP_SIZE >> 5];
  304. int ba_index;
  305. int isaggr = 0;
  306. *nbad = 0;
  307. *nframes = 0;
  308. isaggr = bf_isaggr(bf);
  309. if (isaggr) {
  310. seq_st = ts->ts_seqnum;
  311. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  312. }
  313. while (bf) {
  314. fi = get_frame_info(bf->bf_mpdu);
  315. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  316. (*nframes)++;
  317. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  318. (*nbad)++;
  319. bf = bf->bf_next;
  320. }
  321. }
  322. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  323. struct ath_buf *bf, struct list_head *bf_q,
  324. struct ath_tx_status *ts, int txok, bool retry)
  325. {
  326. struct ath_node *an = NULL;
  327. struct sk_buff *skb;
  328. struct ieee80211_sta *sta;
  329. struct ieee80211_hw *hw = sc->hw;
  330. struct ieee80211_hdr *hdr;
  331. struct ieee80211_tx_info *tx_info;
  332. struct ath_atx_tid *tid = NULL;
  333. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  334. struct list_head bf_head;
  335. struct sk_buff_head bf_pending;
  336. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  337. u32 ba[WME_BA_BMP_SIZE >> 5];
  338. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  339. bool rc_update = true;
  340. struct ieee80211_tx_rate rates[4];
  341. struct ath_frame_info *fi;
  342. int nframes;
  343. u8 tidno;
  344. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  345. int i, retries;
  346. int bar_index = -1;
  347. skb = bf->bf_mpdu;
  348. hdr = (struct ieee80211_hdr *)skb->data;
  349. tx_info = IEEE80211_SKB_CB(skb);
  350. memcpy(rates, tx_info->control.rates, sizeof(rates));
  351. retries = ts->ts_longretry + 1;
  352. for (i = 0; i < ts->ts_rateindex; i++)
  353. retries += rates[i].count;
  354. rcu_read_lock();
  355. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  356. if (!sta) {
  357. rcu_read_unlock();
  358. INIT_LIST_HEAD(&bf_head);
  359. while (bf) {
  360. bf_next = bf->bf_next;
  361. if (!bf->bf_stale || bf_next != NULL)
  362. list_move_tail(&bf->list, &bf_head);
  363. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  364. bf = bf_next;
  365. }
  366. return;
  367. }
  368. an = (struct ath_node *)sta->drv_priv;
  369. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  370. tid = ATH_AN_2_TID(an, tidno);
  371. seq_first = tid->seq_start;
  372. /*
  373. * The hardware occasionally sends a tx status for the wrong TID.
  374. * In this case, the BA status cannot be considered valid and all
  375. * subframes need to be retransmitted
  376. */
  377. if (tidno != ts->tid)
  378. txok = false;
  379. isaggr = bf_isaggr(bf);
  380. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  381. if (isaggr && txok) {
  382. if (ts->ts_flags & ATH9K_TX_BA) {
  383. seq_st = ts->ts_seqnum;
  384. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  385. } else {
  386. /*
  387. * AR5416 can become deaf/mute when BA
  388. * issue happens. Chip needs to be reset.
  389. * But AP code may have sychronization issues
  390. * when perform internal reset in this routine.
  391. * Only enable reset in STA mode for now.
  392. */
  393. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  394. needreset = 1;
  395. }
  396. }
  397. __skb_queue_head_init(&bf_pending);
  398. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  399. while (bf) {
  400. u16 seqno = bf->bf_state.seqno;
  401. txfail = txpending = sendbar = 0;
  402. bf_next = bf->bf_next;
  403. skb = bf->bf_mpdu;
  404. tx_info = IEEE80211_SKB_CB(skb);
  405. fi = get_frame_info(skb);
  406. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  407. /* transmit completion, subframe is
  408. * acked by block ack */
  409. acked_cnt++;
  410. } else if (!isaggr && txok) {
  411. /* transmit completion */
  412. acked_cnt++;
  413. } else if ((tid->state & AGGR_CLEANUP) || !retry) {
  414. /*
  415. * cleanup in progress, just fail
  416. * the un-acked sub-frames
  417. */
  418. txfail = 1;
  419. } else if (flush) {
  420. txpending = 1;
  421. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  422. if (txok || !an->sleeping)
  423. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  424. retries);
  425. txpending = 1;
  426. } else {
  427. txfail = 1;
  428. txfail_cnt++;
  429. bar_index = max_t(int, bar_index,
  430. ATH_BA_INDEX(seq_first, seqno));
  431. }
  432. /*
  433. * Make sure the last desc is reclaimed if it
  434. * not a holding desc.
  435. */
  436. INIT_LIST_HEAD(&bf_head);
  437. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  438. bf_next != NULL || !bf_last->bf_stale)
  439. list_move_tail(&bf->list, &bf_head);
  440. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  441. /*
  442. * complete the acked-ones/xretried ones; update
  443. * block-ack window
  444. */
  445. ath_tx_update_baw(sc, tid, seqno);
  446. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  447. memcpy(tx_info->control.rates, rates, sizeof(rates));
  448. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  449. rc_update = false;
  450. }
  451. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  452. !txfail);
  453. } else {
  454. /* retry the un-acked ones */
  455. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  456. bf->bf_next == NULL && bf_last->bf_stale) {
  457. struct ath_buf *tbf;
  458. tbf = ath_clone_txbuf(sc, bf_last);
  459. /*
  460. * Update tx baw and complete the
  461. * frame with failed status if we
  462. * run out of tx buf.
  463. */
  464. if (!tbf) {
  465. ath_tx_update_baw(sc, tid, seqno);
  466. ath_tx_complete_buf(sc, bf, txq,
  467. &bf_head, ts, 0);
  468. bar_index = max_t(int, bar_index,
  469. ATH_BA_INDEX(seq_first, seqno));
  470. break;
  471. }
  472. fi->bf = tbf;
  473. }
  474. /*
  475. * Put this buffer to the temporary pending
  476. * queue to retain ordering
  477. */
  478. __skb_queue_tail(&bf_pending, skb);
  479. }
  480. bf = bf_next;
  481. }
  482. /* prepend un-acked frames to the beginning of the pending frame queue */
  483. if (!skb_queue_empty(&bf_pending)) {
  484. if (an->sleeping)
  485. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  486. skb_queue_splice(&bf_pending, &tid->buf_q);
  487. if (!an->sleeping) {
  488. ath_tx_queue_tid(txq, tid);
  489. if (ts->ts_status & ATH9K_TXERR_FILT)
  490. tid->ac->clear_ps_filter = true;
  491. }
  492. }
  493. if (bar_index >= 0) {
  494. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  495. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  496. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  497. ath_txq_unlock(sc, txq);
  498. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  499. ath_txq_lock(sc, txq);
  500. }
  501. if (tid->state & AGGR_CLEANUP)
  502. ath_tx_flush_tid(sc, tid);
  503. rcu_read_unlock();
  504. if (needreset) {
  505. RESET_STAT_INC(sc, RESET_TYPE_TX_ERROR);
  506. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  507. }
  508. }
  509. static bool ath_lookup_legacy(struct ath_buf *bf)
  510. {
  511. struct sk_buff *skb;
  512. struct ieee80211_tx_info *tx_info;
  513. struct ieee80211_tx_rate *rates;
  514. int i;
  515. skb = bf->bf_mpdu;
  516. tx_info = IEEE80211_SKB_CB(skb);
  517. rates = tx_info->control.rates;
  518. for (i = 0; i < 4; i++) {
  519. if (!rates[i].count || rates[i].idx < 0)
  520. break;
  521. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  522. return true;
  523. }
  524. return false;
  525. }
  526. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  527. struct ath_atx_tid *tid)
  528. {
  529. struct sk_buff *skb;
  530. struct ieee80211_tx_info *tx_info;
  531. struct ieee80211_tx_rate *rates;
  532. u32 max_4ms_framelen, frmlen;
  533. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  534. int i;
  535. skb = bf->bf_mpdu;
  536. tx_info = IEEE80211_SKB_CB(skb);
  537. rates = tx_info->control.rates;
  538. /*
  539. * Find the lowest frame length among the rate series that will have a
  540. * 4ms transmit duration.
  541. * TODO - TXOP limit needs to be considered.
  542. */
  543. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  544. for (i = 0; i < 4; i++) {
  545. int modeidx;
  546. if (!rates[i].count)
  547. continue;
  548. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  549. legacy = 1;
  550. break;
  551. }
  552. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  553. modeidx = MCS_HT40;
  554. else
  555. modeidx = MCS_HT20;
  556. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  557. modeidx++;
  558. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  559. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  560. }
  561. /*
  562. * limit aggregate size by the minimum rate if rate selected is
  563. * not a probe rate, if rate selected is a probe rate then
  564. * avoid aggregation of this packet.
  565. */
  566. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  567. return 0;
  568. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  569. /*
  570. * Override the default aggregation limit for BTCOEX.
  571. */
  572. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  573. if (bt_aggr_limit)
  574. aggr_limit = bt_aggr_limit;
  575. /*
  576. * h/w can accept aggregates up to 16 bit lengths (65535).
  577. * The IE, however can hold up to 65536, which shows up here
  578. * as zero. Ignore 65536 since we are constrained by hw.
  579. */
  580. if (tid->an->maxampdu)
  581. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  582. return aggr_limit;
  583. }
  584. /*
  585. * Returns the number of delimiters to be added to
  586. * meet the minimum required mpdudensity.
  587. */
  588. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  589. struct ath_buf *bf, u16 frmlen,
  590. bool first_subfrm)
  591. {
  592. #define FIRST_DESC_NDELIMS 60
  593. struct sk_buff *skb = bf->bf_mpdu;
  594. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  595. u32 nsymbits, nsymbols;
  596. u16 minlen;
  597. u8 flags, rix;
  598. int width, streams, half_gi, ndelim, mindelim;
  599. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  600. /* Select standard number of delimiters based on frame length alone */
  601. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  602. /*
  603. * If encryption enabled, hardware requires some more padding between
  604. * subframes.
  605. * TODO - this could be improved to be dependent on the rate.
  606. * The hardware can keep up at lower rates, but not higher rates
  607. */
  608. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  609. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  610. ndelim += ATH_AGGR_ENCRYPTDELIM;
  611. /*
  612. * Add delimiter when using RTS/CTS with aggregation
  613. * and non enterprise AR9003 card
  614. */
  615. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  616. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  617. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  618. /*
  619. * Convert desired mpdu density from microeconds to bytes based
  620. * on highest rate in rate series (i.e. first rate) to determine
  621. * required minimum length for subframe. Take into account
  622. * whether high rate is 20 or 40Mhz and half or full GI.
  623. *
  624. * If there is no mpdu density restriction, no further calculation
  625. * is needed.
  626. */
  627. if (tid->an->mpdudensity == 0)
  628. return ndelim;
  629. rix = tx_info->control.rates[0].idx;
  630. flags = tx_info->control.rates[0].flags;
  631. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  632. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  633. if (half_gi)
  634. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  635. else
  636. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  637. if (nsymbols == 0)
  638. nsymbols = 1;
  639. streams = HT_RC_2_STREAMS(rix);
  640. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  641. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  642. if (frmlen < minlen) {
  643. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  644. ndelim = max(mindelim, ndelim);
  645. }
  646. return ndelim;
  647. }
  648. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  649. struct ath_txq *txq,
  650. struct ath_atx_tid *tid,
  651. struct list_head *bf_q,
  652. int *aggr_len)
  653. {
  654. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  655. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  656. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  657. u16 aggr_limit = 0, al = 0, bpad = 0,
  658. al_delta, h_baw = tid->baw_size / 2;
  659. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  660. struct ieee80211_tx_info *tx_info;
  661. struct ath_frame_info *fi;
  662. struct sk_buff *skb;
  663. u16 seqno;
  664. do {
  665. skb = skb_peek(&tid->buf_q);
  666. fi = get_frame_info(skb);
  667. bf = fi->bf;
  668. if (!fi->bf)
  669. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  670. if (!bf)
  671. continue;
  672. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  673. seqno = bf->bf_state.seqno;
  674. /* do not step over block-ack window */
  675. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  676. status = ATH_AGGR_BAW_CLOSED;
  677. break;
  678. }
  679. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  680. struct ath_tx_status ts = {};
  681. struct list_head bf_head;
  682. INIT_LIST_HEAD(&bf_head);
  683. list_add(&bf->list, &bf_head);
  684. __skb_unlink(skb, &tid->buf_q);
  685. ath_tx_update_baw(sc, tid, seqno);
  686. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  687. continue;
  688. }
  689. if (!bf_first)
  690. bf_first = bf;
  691. if (!rl) {
  692. aggr_limit = ath_lookup_rate(sc, bf, tid);
  693. rl = 1;
  694. }
  695. /* do not exceed aggregation limit */
  696. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  697. if (nframes &&
  698. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  699. ath_lookup_legacy(bf))) {
  700. status = ATH_AGGR_LIMITED;
  701. break;
  702. }
  703. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  704. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  705. break;
  706. /* do not exceed subframe limit */
  707. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  708. status = ATH_AGGR_LIMITED;
  709. break;
  710. }
  711. /* add padding for previous frame to aggregation length */
  712. al += bpad + al_delta;
  713. /*
  714. * Get the delimiters needed to meet the MPDU
  715. * density for this node.
  716. */
  717. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  718. !nframes);
  719. bpad = PADBYTES(al_delta) + (ndelim << 2);
  720. nframes++;
  721. bf->bf_next = NULL;
  722. /* link buffers of this frame to the aggregate */
  723. if (!fi->retries)
  724. ath_tx_addto_baw(sc, tid, seqno);
  725. bf->bf_state.ndelim = ndelim;
  726. __skb_unlink(skb, &tid->buf_q);
  727. list_add_tail(&bf->list, bf_q);
  728. if (bf_prev)
  729. bf_prev->bf_next = bf;
  730. bf_prev = bf;
  731. } while (!skb_queue_empty(&tid->buf_q));
  732. *aggr_len = al;
  733. return status;
  734. #undef PADBYTES
  735. }
  736. /*
  737. * rix - rate index
  738. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  739. * width - 0 for 20 MHz, 1 for 40 MHz
  740. * half_gi - to use 4us v/s 3.6 us for symbol time
  741. */
  742. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  743. int width, int half_gi, bool shortPreamble)
  744. {
  745. u32 nbits, nsymbits, duration, nsymbols;
  746. int streams;
  747. /* find number of symbols: PLCP + data */
  748. streams = HT_RC_2_STREAMS(rix);
  749. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  750. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  751. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  752. if (!half_gi)
  753. duration = SYMBOL_TIME(nsymbols);
  754. else
  755. duration = SYMBOL_TIME_HALFGI(nsymbols);
  756. /* addup duration for legacy/ht training and signal fields */
  757. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  758. return duration;
  759. }
  760. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  761. struct ath_tx_info *info, int len)
  762. {
  763. struct ath_hw *ah = sc->sc_ah;
  764. struct sk_buff *skb;
  765. struct ieee80211_tx_info *tx_info;
  766. struct ieee80211_tx_rate *rates;
  767. const struct ieee80211_rate *rate;
  768. struct ieee80211_hdr *hdr;
  769. int i;
  770. u8 rix = 0;
  771. skb = bf->bf_mpdu;
  772. tx_info = IEEE80211_SKB_CB(skb);
  773. rates = tx_info->control.rates;
  774. hdr = (struct ieee80211_hdr *)skb->data;
  775. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  776. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  777. /*
  778. * We check if Short Preamble is needed for the CTS rate by
  779. * checking the BSS's global flag.
  780. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  781. */
  782. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  783. info->rtscts_rate = rate->hw_value;
  784. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  785. info->rtscts_rate |= rate->hw_value_short;
  786. for (i = 0; i < 4; i++) {
  787. bool is_40, is_sgi, is_sp;
  788. int phy;
  789. if (!rates[i].count || (rates[i].idx < 0))
  790. continue;
  791. rix = rates[i].idx;
  792. info->rates[i].Tries = rates[i].count;
  793. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  794. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  795. info->flags |= ATH9K_TXDESC_RTSENA;
  796. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  797. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  798. info->flags |= ATH9K_TXDESC_CTSENA;
  799. }
  800. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  801. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  802. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  803. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  804. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  805. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  806. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  807. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  808. /* MCS rates */
  809. info->rates[i].Rate = rix | 0x80;
  810. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  811. ah->txchainmask, info->rates[i].Rate);
  812. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  813. is_40, is_sgi, is_sp);
  814. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  815. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  816. continue;
  817. }
  818. /* legacy rates */
  819. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  820. !(rate->flags & IEEE80211_RATE_ERP_G))
  821. phy = WLAN_RC_PHY_CCK;
  822. else
  823. phy = WLAN_RC_PHY_OFDM;
  824. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  825. info->rates[i].Rate = rate->hw_value;
  826. if (rate->hw_value_short) {
  827. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  828. info->rates[i].Rate |= rate->hw_value_short;
  829. } else {
  830. is_sp = false;
  831. }
  832. if (bf->bf_state.bfs_paprd)
  833. info->rates[i].ChSel = ah->txchainmask;
  834. else
  835. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  836. ah->txchainmask, info->rates[i].Rate);
  837. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  838. phy, rate->bitrate * 100, len, rix, is_sp);
  839. }
  840. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  841. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  842. info->flags &= ~ATH9K_TXDESC_RTSENA;
  843. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  844. if (info->flags & ATH9K_TXDESC_RTSENA)
  845. info->flags &= ~ATH9K_TXDESC_CTSENA;
  846. }
  847. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  848. {
  849. struct ieee80211_hdr *hdr;
  850. enum ath9k_pkt_type htype;
  851. __le16 fc;
  852. hdr = (struct ieee80211_hdr *)skb->data;
  853. fc = hdr->frame_control;
  854. if (ieee80211_is_beacon(fc))
  855. htype = ATH9K_PKT_TYPE_BEACON;
  856. else if (ieee80211_is_probe_resp(fc))
  857. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  858. else if (ieee80211_is_atim(fc))
  859. htype = ATH9K_PKT_TYPE_ATIM;
  860. else if (ieee80211_is_pspoll(fc))
  861. htype = ATH9K_PKT_TYPE_PSPOLL;
  862. else
  863. htype = ATH9K_PKT_TYPE_NORMAL;
  864. return htype;
  865. }
  866. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  867. struct ath_txq *txq, int len)
  868. {
  869. struct ath_hw *ah = sc->sc_ah;
  870. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  871. struct ath_buf *bf_first = bf;
  872. struct ath_tx_info info;
  873. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  874. memset(&info, 0, sizeof(info));
  875. info.is_first = true;
  876. info.is_last = true;
  877. info.txpower = MAX_RATE_POWER;
  878. info.qcu = txq->axq_qnum;
  879. info.flags = ATH9K_TXDESC_INTREQ;
  880. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  881. info.flags |= ATH9K_TXDESC_NOACK;
  882. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  883. info.flags |= ATH9K_TXDESC_LDPC;
  884. ath_buf_set_rate(sc, bf, &info, len);
  885. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  886. info.flags |= ATH9K_TXDESC_CLRDMASK;
  887. if (bf->bf_state.bfs_paprd)
  888. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  889. while (bf) {
  890. struct sk_buff *skb = bf->bf_mpdu;
  891. struct ath_frame_info *fi = get_frame_info(skb);
  892. info.type = get_hw_packet_type(skb);
  893. if (bf->bf_next)
  894. info.link = bf->bf_next->bf_daddr;
  895. else
  896. info.link = 0;
  897. info.buf_addr[0] = bf->bf_buf_addr;
  898. info.buf_len[0] = skb->len;
  899. info.pkt_len = fi->framelen;
  900. info.keyix = fi->keyix;
  901. info.keytype = fi->keytype;
  902. if (aggr) {
  903. if (bf == bf_first)
  904. info.aggr = AGGR_BUF_FIRST;
  905. else if (!bf->bf_next)
  906. info.aggr = AGGR_BUF_LAST;
  907. else
  908. info.aggr = AGGR_BUF_MIDDLE;
  909. info.ndelim = bf->bf_state.ndelim;
  910. info.aggr_len = len;
  911. }
  912. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  913. bf = bf->bf_next;
  914. }
  915. }
  916. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  917. struct ath_atx_tid *tid)
  918. {
  919. struct ath_buf *bf;
  920. enum ATH_AGGR_STATUS status;
  921. struct ieee80211_tx_info *tx_info;
  922. struct list_head bf_q;
  923. int aggr_len;
  924. do {
  925. if (skb_queue_empty(&tid->buf_q))
  926. return;
  927. INIT_LIST_HEAD(&bf_q);
  928. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  929. /*
  930. * no frames picked up to be aggregated;
  931. * block-ack window is not open.
  932. */
  933. if (list_empty(&bf_q))
  934. break;
  935. bf = list_first_entry(&bf_q, struct ath_buf, list);
  936. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  937. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  938. if (tid->ac->clear_ps_filter) {
  939. tid->ac->clear_ps_filter = false;
  940. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  941. } else {
  942. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  943. }
  944. /* if only one frame, send as non-aggregate */
  945. if (bf == bf->bf_lastbf) {
  946. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  947. bf->bf_state.bf_type = BUF_AMPDU;
  948. } else {
  949. TX_STAT_INC(txq->axq_qnum, a_aggr);
  950. }
  951. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  952. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  953. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  954. status != ATH_AGGR_BAW_CLOSED);
  955. }
  956. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  957. u16 tid, u16 *ssn)
  958. {
  959. struct ath_atx_tid *txtid;
  960. struct ath_node *an;
  961. an = (struct ath_node *)sta->drv_priv;
  962. txtid = ATH_AN_2_TID(an, tid);
  963. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  964. return -EAGAIN;
  965. txtid->state |= AGGR_ADDBA_PROGRESS;
  966. txtid->paused = true;
  967. *ssn = txtid->seq_start = txtid->seq_next;
  968. txtid->bar_index = -1;
  969. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  970. txtid->baw_head = txtid->baw_tail = 0;
  971. return 0;
  972. }
  973. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  974. {
  975. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  976. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  977. struct ath_txq *txq = txtid->ac->txq;
  978. if (txtid->state & AGGR_CLEANUP)
  979. return;
  980. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  981. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  982. return;
  983. }
  984. ath_txq_lock(sc, txq);
  985. txtid->paused = true;
  986. /*
  987. * If frames are still being transmitted for this TID, they will be
  988. * cleaned up during tx completion. To prevent race conditions, this
  989. * TID can only be reused after all in-progress subframes have been
  990. * completed.
  991. */
  992. if (txtid->baw_head != txtid->baw_tail)
  993. txtid->state |= AGGR_CLEANUP;
  994. else
  995. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  996. ath_tx_flush_tid(sc, txtid);
  997. ath_txq_unlock_complete(sc, txq);
  998. }
  999. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1000. struct ath_node *an)
  1001. {
  1002. struct ath_atx_tid *tid;
  1003. struct ath_atx_ac *ac;
  1004. struct ath_txq *txq;
  1005. bool buffered;
  1006. int tidno;
  1007. for (tidno = 0, tid = &an->tid[tidno];
  1008. tidno < WME_NUM_TID; tidno++, tid++) {
  1009. if (!tid->sched)
  1010. continue;
  1011. ac = tid->ac;
  1012. txq = ac->txq;
  1013. ath_txq_lock(sc, txq);
  1014. buffered = !skb_queue_empty(&tid->buf_q);
  1015. tid->sched = false;
  1016. list_del(&tid->list);
  1017. if (ac->sched) {
  1018. ac->sched = false;
  1019. list_del(&ac->list);
  1020. }
  1021. ath_txq_unlock(sc, txq);
  1022. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1023. }
  1024. }
  1025. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1026. {
  1027. struct ath_atx_tid *tid;
  1028. struct ath_atx_ac *ac;
  1029. struct ath_txq *txq;
  1030. int tidno;
  1031. for (tidno = 0, tid = &an->tid[tidno];
  1032. tidno < WME_NUM_TID; tidno++, tid++) {
  1033. ac = tid->ac;
  1034. txq = ac->txq;
  1035. ath_txq_lock(sc, txq);
  1036. ac->clear_ps_filter = true;
  1037. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1038. ath_tx_queue_tid(txq, tid);
  1039. ath_txq_schedule(sc, txq);
  1040. }
  1041. ath_txq_unlock_complete(sc, txq);
  1042. }
  1043. }
  1044. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1045. {
  1046. struct ath_atx_tid *txtid;
  1047. struct ath_node *an;
  1048. an = (struct ath_node *)sta->drv_priv;
  1049. if (sc->sc_flags & SC_OP_TXAGGR) {
  1050. txtid = ATH_AN_2_TID(an, tid);
  1051. txtid->baw_size =
  1052. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1053. txtid->state |= AGGR_ADDBA_COMPLETE;
  1054. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1055. ath_tx_resume_tid(sc, txtid);
  1056. }
  1057. }
  1058. /********************/
  1059. /* Queue Management */
  1060. /********************/
  1061. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  1062. struct ath_txq *txq)
  1063. {
  1064. struct ath_atx_ac *ac, *ac_tmp;
  1065. struct ath_atx_tid *tid, *tid_tmp;
  1066. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1067. list_del(&ac->list);
  1068. ac->sched = false;
  1069. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  1070. list_del(&tid->list);
  1071. tid->sched = false;
  1072. ath_tid_drain(sc, txq, tid);
  1073. }
  1074. }
  1075. }
  1076. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1077. {
  1078. struct ath_hw *ah = sc->sc_ah;
  1079. struct ath9k_tx_queue_info qi;
  1080. static const int subtype_txq_to_hwq[] = {
  1081. [WME_AC_BE] = ATH_TXQ_AC_BE,
  1082. [WME_AC_BK] = ATH_TXQ_AC_BK,
  1083. [WME_AC_VI] = ATH_TXQ_AC_VI,
  1084. [WME_AC_VO] = ATH_TXQ_AC_VO,
  1085. };
  1086. int axq_qnum, i;
  1087. memset(&qi, 0, sizeof(qi));
  1088. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1089. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1090. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1091. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1092. qi.tqi_physCompBuf = 0;
  1093. /*
  1094. * Enable interrupts only for EOL and DESC conditions.
  1095. * We mark tx descriptors to receive a DESC interrupt
  1096. * when a tx queue gets deep; otherwise waiting for the
  1097. * EOL to reap descriptors. Note that this is done to
  1098. * reduce interrupt load and this only defers reaping
  1099. * descriptors, never transmitting frames. Aside from
  1100. * reducing interrupts this also permits more concurrency.
  1101. * The only potential downside is if the tx queue backs
  1102. * up in which case the top half of the kernel may backup
  1103. * due to a lack of tx descriptors.
  1104. *
  1105. * The UAPSD queue is an exception, since we take a desc-
  1106. * based intr on the EOSP frames.
  1107. */
  1108. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1109. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  1110. TXQ_FLAG_TXERRINT_ENABLE;
  1111. } else {
  1112. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1113. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1114. else
  1115. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1116. TXQ_FLAG_TXDESCINT_ENABLE;
  1117. }
  1118. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1119. if (axq_qnum == -1) {
  1120. /*
  1121. * NB: don't print a message, this happens
  1122. * normally on parts with too few tx queues
  1123. */
  1124. return NULL;
  1125. }
  1126. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1127. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1128. txq->axq_qnum = axq_qnum;
  1129. txq->mac80211_qnum = -1;
  1130. txq->axq_link = NULL;
  1131. __skb_queue_head_init(&txq->complete_q);
  1132. INIT_LIST_HEAD(&txq->axq_q);
  1133. INIT_LIST_HEAD(&txq->axq_acq);
  1134. spin_lock_init(&txq->axq_lock);
  1135. txq->axq_depth = 0;
  1136. txq->axq_ampdu_depth = 0;
  1137. txq->axq_tx_inprogress = false;
  1138. sc->tx.txqsetup |= 1<<axq_qnum;
  1139. txq->txq_headidx = txq->txq_tailidx = 0;
  1140. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1141. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1142. }
  1143. return &sc->tx.txq[axq_qnum];
  1144. }
  1145. int ath_txq_update(struct ath_softc *sc, int qnum,
  1146. struct ath9k_tx_queue_info *qinfo)
  1147. {
  1148. struct ath_hw *ah = sc->sc_ah;
  1149. int error = 0;
  1150. struct ath9k_tx_queue_info qi;
  1151. if (qnum == sc->beacon.beaconq) {
  1152. /*
  1153. * XXX: for beacon queue, we just save the parameter.
  1154. * It will be picked up by ath_beaconq_config when
  1155. * it's necessary.
  1156. */
  1157. sc->beacon.beacon_qi = *qinfo;
  1158. return 0;
  1159. }
  1160. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1161. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1162. qi.tqi_aifs = qinfo->tqi_aifs;
  1163. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1164. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1165. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1166. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1167. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1168. ath_err(ath9k_hw_common(sc->sc_ah),
  1169. "Unable to update hardware queue %u!\n", qnum);
  1170. error = -EIO;
  1171. } else {
  1172. ath9k_hw_resettxqueue(ah, qnum);
  1173. }
  1174. return error;
  1175. }
  1176. int ath_cabq_update(struct ath_softc *sc)
  1177. {
  1178. struct ath9k_tx_queue_info qi;
  1179. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1180. int qnum = sc->beacon.cabq->axq_qnum;
  1181. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1182. /*
  1183. * Ensure the readytime % is within the bounds.
  1184. */
  1185. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1186. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1187. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1188. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1189. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1190. sc->config.cabqReadytime) / 100;
  1191. ath_txq_update(sc, qnum, &qi);
  1192. return 0;
  1193. }
  1194. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  1195. {
  1196. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1197. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  1198. }
  1199. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1200. struct list_head *list, bool retry_tx)
  1201. {
  1202. struct ath_buf *bf, *lastbf;
  1203. struct list_head bf_head;
  1204. struct ath_tx_status ts;
  1205. memset(&ts, 0, sizeof(ts));
  1206. ts.ts_status = ATH9K_TX_FLUSH;
  1207. INIT_LIST_HEAD(&bf_head);
  1208. while (!list_empty(list)) {
  1209. bf = list_first_entry(list, struct ath_buf, list);
  1210. if (bf->bf_stale) {
  1211. list_del(&bf->list);
  1212. ath_tx_return_buffer(sc, bf);
  1213. continue;
  1214. }
  1215. lastbf = bf->bf_lastbf;
  1216. list_cut_position(&bf_head, list, &lastbf->list);
  1217. txq->axq_depth--;
  1218. if (bf_is_ampdu_not_probing(bf))
  1219. txq->axq_ampdu_depth--;
  1220. if (bf_isampdu(bf))
  1221. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1222. retry_tx);
  1223. else
  1224. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  1225. }
  1226. }
  1227. /*
  1228. * Drain a given TX queue (could be Beacon or Data)
  1229. *
  1230. * This assumes output has been stopped and
  1231. * we do not need to block ath_tx_tasklet.
  1232. */
  1233. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  1234. {
  1235. ath_txq_lock(sc, txq);
  1236. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1237. int idx = txq->txq_tailidx;
  1238. while (!list_empty(&txq->txq_fifo[idx])) {
  1239. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
  1240. retry_tx);
  1241. INCR(idx, ATH_TXFIFO_DEPTH);
  1242. }
  1243. txq->txq_tailidx = idx;
  1244. }
  1245. txq->axq_link = NULL;
  1246. txq->axq_tx_inprogress = false;
  1247. ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
  1248. /* flush any pending frames if aggregation is enabled */
  1249. if ((sc->sc_flags & SC_OP_TXAGGR) && !retry_tx)
  1250. ath_txq_drain_pending_buffers(sc, txq);
  1251. ath_txq_unlock_complete(sc, txq);
  1252. }
  1253. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1254. {
  1255. struct ath_hw *ah = sc->sc_ah;
  1256. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1257. struct ath_txq *txq;
  1258. int i;
  1259. u32 npend = 0;
  1260. if (sc->sc_flags & SC_OP_INVALID)
  1261. return true;
  1262. ath9k_hw_abort_tx_dma(ah);
  1263. /* Check if any queue remains active */
  1264. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1265. if (!ATH_TXQ_SETUP(sc, i))
  1266. continue;
  1267. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1268. npend |= BIT(i);
  1269. }
  1270. if (npend)
  1271. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1272. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1273. if (!ATH_TXQ_SETUP(sc, i))
  1274. continue;
  1275. /*
  1276. * The caller will resume queues with ieee80211_wake_queues.
  1277. * Mark the queue as not stopped to prevent ath_tx_complete
  1278. * from waking the queue too early.
  1279. */
  1280. txq = &sc->tx.txq[i];
  1281. txq->stopped = false;
  1282. ath_draintxq(sc, txq, retry_tx);
  1283. }
  1284. return !npend;
  1285. }
  1286. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1287. {
  1288. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1289. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1290. }
  1291. /* For each axq_acq entry, for each tid, try to schedule packets
  1292. * for transmit until ampdu_depth has reached min Q depth.
  1293. */
  1294. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1295. {
  1296. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1297. struct ath_atx_tid *tid, *last_tid;
  1298. if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
  1299. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1300. return;
  1301. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1302. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1303. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1304. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1305. list_del(&ac->list);
  1306. ac->sched = false;
  1307. while (!list_empty(&ac->tid_q)) {
  1308. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1309. list);
  1310. list_del(&tid->list);
  1311. tid->sched = false;
  1312. if (tid->paused)
  1313. continue;
  1314. ath_tx_sched_aggr(sc, txq, tid);
  1315. /*
  1316. * add tid to round-robin queue if more frames
  1317. * are pending for the tid
  1318. */
  1319. if (!skb_queue_empty(&tid->buf_q))
  1320. ath_tx_queue_tid(txq, tid);
  1321. if (tid == last_tid ||
  1322. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1323. break;
  1324. }
  1325. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1326. ac->sched = true;
  1327. list_add_tail(&ac->list, &txq->axq_acq);
  1328. }
  1329. if (ac == last_ac ||
  1330. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1331. return;
  1332. }
  1333. }
  1334. /***********/
  1335. /* TX, DMA */
  1336. /***********/
  1337. /*
  1338. * Insert a chain of ath_buf (descriptors) on a txq and
  1339. * assume the descriptors are already chained together by caller.
  1340. */
  1341. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1342. struct list_head *head, bool internal)
  1343. {
  1344. struct ath_hw *ah = sc->sc_ah;
  1345. struct ath_common *common = ath9k_hw_common(ah);
  1346. struct ath_buf *bf, *bf_last;
  1347. bool puttxbuf = false;
  1348. bool edma;
  1349. /*
  1350. * Insert the frame on the outbound list and
  1351. * pass it on to the hardware.
  1352. */
  1353. if (list_empty(head))
  1354. return;
  1355. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1356. bf = list_first_entry(head, struct ath_buf, list);
  1357. bf_last = list_entry(head->prev, struct ath_buf, list);
  1358. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1359. txq->axq_qnum, txq->axq_depth);
  1360. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1361. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1362. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1363. puttxbuf = true;
  1364. } else {
  1365. list_splice_tail_init(head, &txq->axq_q);
  1366. if (txq->axq_link) {
  1367. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1368. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1369. txq->axq_qnum, txq->axq_link,
  1370. ito64(bf->bf_daddr), bf->bf_desc);
  1371. } else if (!edma)
  1372. puttxbuf = true;
  1373. txq->axq_link = bf_last->bf_desc;
  1374. }
  1375. if (puttxbuf) {
  1376. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1377. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1378. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1379. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1380. }
  1381. if (!edma) {
  1382. TX_STAT_INC(txq->axq_qnum, txstart);
  1383. ath9k_hw_txstart(ah, txq->axq_qnum);
  1384. }
  1385. if (!internal) {
  1386. txq->axq_depth++;
  1387. if (bf_is_ampdu_not_probing(bf))
  1388. txq->axq_ampdu_depth++;
  1389. }
  1390. }
  1391. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1392. struct sk_buff *skb, struct ath_tx_control *txctl)
  1393. {
  1394. struct ath_frame_info *fi = get_frame_info(skb);
  1395. struct list_head bf_head;
  1396. struct ath_buf *bf;
  1397. /*
  1398. * Do not queue to h/w when any of the following conditions is true:
  1399. * - there are pending frames in software queue
  1400. * - the TID is currently paused for ADDBA/BAR request
  1401. * - seqno is not within block-ack window
  1402. * - h/w queue depth exceeds low water mark
  1403. */
  1404. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1405. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1406. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1407. /*
  1408. * Add this frame to software queue for scheduling later
  1409. * for aggregation.
  1410. */
  1411. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1412. __skb_queue_tail(&tid->buf_q, skb);
  1413. if (!txctl->an || !txctl->an->sleeping)
  1414. ath_tx_queue_tid(txctl->txq, tid);
  1415. return;
  1416. }
  1417. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1418. if (!bf)
  1419. return;
  1420. bf->bf_state.bf_type = BUF_AMPDU;
  1421. INIT_LIST_HEAD(&bf_head);
  1422. list_add(&bf->list, &bf_head);
  1423. /* Add sub-frame to BAW */
  1424. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1425. /* Queue to h/w without aggregation */
  1426. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1427. bf->bf_lastbf = bf;
  1428. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1429. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1430. }
  1431. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1432. struct ath_atx_tid *tid, struct sk_buff *skb)
  1433. {
  1434. struct ath_frame_info *fi = get_frame_info(skb);
  1435. struct list_head bf_head;
  1436. struct ath_buf *bf;
  1437. bf = fi->bf;
  1438. if (!bf)
  1439. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1440. if (!bf)
  1441. return;
  1442. INIT_LIST_HEAD(&bf_head);
  1443. list_add_tail(&bf->list, &bf_head);
  1444. bf->bf_state.bf_type = 0;
  1445. bf->bf_lastbf = bf;
  1446. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1447. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1448. TX_STAT_INC(txq->axq_qnum, queued);
  1449. }
  1450. static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
  1451. int framelen)
  1452. {
  1453. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1454. struct ieee80211_sta *sta = tx_info->control.sta;
  1455. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1456. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1457. struct ath_frame_info *fi = get_frame_info(skb);
  1458. struct ath_node *an = NULL;
  1459. enum ath9k_key_type keytype;
  1460. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1461. if (sta)
  1462. an = (struct ath_node *) sta->drv_priv;
  1463. memset(fi, 0, sizeof(*fi));
  1464. if (hw_key)
  1465. fi->keyix = hw_key->hw_key_idx;
  1466. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1467. fi->keyix = an->ps_key;
  1468. else
  1469. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1470. fi->keytype = keytype;
  1471. fi->framelen = framelen;
  1472. }
  1473. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1474. {
  1475. struct ath_hw *ah = sc->sc_ah;
  1476. struct ath9k_channel *curchan = ah->curchan;
  1477. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1478. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1479. (chainmask == 0x7) && (rate < 0x90))
  1480. return 0x3;
  1481. else
  1482. return chainmask;
  1483. }
  1484. /*
  1485. * Assign a descriptor (and sequence number if necessary,
  1486. * and map buffer for DMA. Frees skb on error
  1487. */
  1488. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1489. struct ath_txq *txq,
  1490. struct ath_atx_tid *tid,
  1491. struct sk_buff *skb)
  1492. {
  1493. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1494. struct ath_frame_info *fi = get_frame_info(skb);
  1495. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1496. struct ath_buf *bf;
  1497. u16 seqno;
  1498. bf = ath_tx_get_buffer(sc);
  1499. if (!bf) {
  1500. ath_dbg(common, XMIT, "TX buffers are full\n");
  1501. goto error;
  1502. }
  1503. ATH_TXBUF_RESET(bf);
  1504. if (tid) {
  1505. seqno = tid->seq_next;
  1506. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1507. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1508. bf->bf_state.seqno = seqno;
  1509. }
  1510. bf->bf_mpdu = skb;
  1511. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1512. skb->len, DMA_TO_DEVICE);
  1513. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1514. bf->bf_mpdu = NULL;
  1515. bf->bf_buf_addr = 0;
  1516. ath_err(ath9k_hw_common(sc->sc_ah),
  1517. "dma_mapping_error() on TX\n");
  1518. ath_tx_return_buffer(sc, bf);
  1519. goto error;
  1520. }
  1521. fi->bf = bf;
  1522. return bf;
  1523. error:
  1524. dev_kfree_skb_any(skb);
  1525. return NULL;
  1526. }
  1527. /* FIXME: tx power */
  1528. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1529. struct ath_tx_control *txctl)
  1530. {
  1531. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1532. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1533. struct ath_atx_tid *tid = NULL;
  1534. struct ath_buf *bf;
  1535. u8 tidno;
  1536. if ((sc->sc_flags & SC_OP_TXAGGR) && txctl->an &&
  1537. ieee80211_is_data_qos(hdr->frame_control)) {
  1538. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1539. IEEE80211_QOS_CTL_TID_MASK;
  1540. tid = ATH_AN_2_TID(txctl->an, tidno);
  1541. WARN_ON(tid->ac->txq != txctl->txq);
  1542. }
  1543. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1544. /*
  1545. * Try aggregation if it's a unicast data frame
  1546. * and the destination is HT capable.
  1547. */
  1548. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1549. } else {
  1550. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1551. if (!bf)
  1552. return;
  1553. bf->bf_state.bfs_paprd = txctl->paprd;
  1554. if (txctl->paprd)
  1555. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1556. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1557. }
  1558. }
  1559. /* Upon failure caller should free skb */
  1560. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1561. struct ath_tx_control *txctl)
  1562. {
  1563. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1564. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1565. struct ieee80211_sta *sta = info->control.sta;
  1566. struct ieee80211_vif *vif = info->control.vif;
  1567. struct ath_softc *sc = hw->priv;
  1568. struct ath_txq *txq = txctl->txq;
  1569. int padpos, padsize;
  1570. int frmlen = skb->len + FCS_LEN;
  1571. int q;
  1572. /* NOTE: sta can be NULL according to net/mac80211.h */
  1573. if (sta)
  1574. txctl->an = (struct ath_node *)sta->drv_priv;
  1575. if (info->control.hw_key)
  1576. frmlen += info->control.hw_key->icv_len;
  1577. /*
  1578. * As a temporary workaround, assign seq# here; this will likely need
  1579. * to be cleaned up to work better with Beacon transmission and virtual
  1580. * BSSes.
  1581. */
  1582. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1583. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1584. sc->tx.seq_no += 0x10;
  1585. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1586. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1587. }
  1588. /* Add the padding after the header if this is not already done */
  1589. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1590. padsize = padpos & 3;
  1591. if (padsize && skb->len > padpos) {
  1592. if (skb_headroom(skb) < padsize)
  1593. return -ENOMEM;
  1594. skb_push(skb, padsize);
  1595. memmove(skb->data, skb->data + padsize, padpos);
  1596. hdr = (struct ieee80211_hdr *) skb->data;
  1597. }
  1598. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1599. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1600. !ieee80211_is_data(hdr->frame_control))
  1601. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1602. setup_frame_info(hw, skb, frmlen);
  1603. /*
  1604. * At this point, the vif, hw_key and sta pointers in the tx control
  1605. * info are no longer valid (overwritten by the ath_frame_info data.
  1606. */
  1607. q = skb_get_queue_mapping(skb);
  1608. ath_txq_lock(sc, txq);
  1609. if (txq == sc->tx.txq_map[q] &&
  1610. ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
  1611. ieee80211_stop_queue(sc->hw, q);
  1612. txq->stopped = true;
  1613. }
  1614. ath_tx_start_dma(sc, skb, txctl);
  1615. ath_txq_unlock(sc, txq);
  1616. return 0;
  1617. }
  1618. /*****************/
  1619. /* TX Completion */
  1620. /*****************/
  1621. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1622. int tx_flags, struct ath_txq *txq)
  1623. {
  1624. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1625. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1626. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1627. int q, padpos, padsize;
  1628. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1629. if (!(tx_flags & ATH_TX_ERROR))
  1630. /* Frame was ACKed */
  1631. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1632. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1633. padsize = padpos & 3;
  1634. if (padsize && skb->len>padpos+padsize) {
  1635. /*
  1636. * Remove MAC header padding before giving the frame back to
  1637. * mac80211.
  1638. */
  1639. memmove(skb->data + padsize, skb->data, padpos);
  1640. skb_pull(skb, padsize);
  1641. }
  1642. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1643. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1644. ath_dbg(common, PS,
  1645. "Going back to sleep after having received TX status (0x%lx)\n",
  1646. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1647. PS_WAIT_FOR_CAB |
  1648. PS_WAIT_FOR_PSPOLL_DATA |
  1649. PS_WAIT_FOR_TX_ACK));
  1650. }
  1651. q = skb_get_queue_mapping(skb);
  1652. if (txq == sc->tx.txq_map[q]) {
  1653. if (WARN_ON(--txq->pending_frames < 0))
  1654. txq->pending_frames = 0;
  1655. if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
  1656. ieee80211_wake_queue(sc->hw, q);
  1657. txq->stopped = false;
  1658. }
  1659. }
  1660. __skb_queue_tail(&txq->complete_q, skb);
  1661. }
  1662. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1663. struct ath_txq *txq, struct list_head *bf_q,
  1664. struct ath_tx_status *ts, int txok)
  1665. {
  1666. struct sk_buff *skb = bf->bf_mpdu;
  1667. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1668. unsigned long flags;
  1669. int tx_flags = 0;
  1670. if (!txok)
  1671. tx_flags |= ATH_TX_ERROR;
  1672. if (ts->ts_status & ATH9K_TXERR_FILT)
  1673. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1674. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1675. bf->bf_buf_addr = 0;
  1676. if (bf->bf_state.bfs_paprd) {
  1677. if (time_after(jiffies,
  1678. bf->bf_state.bfs_paprd_timestamp +
  1679. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1680. dev_kfree_skb_any(skb);
  1681. else
  1682. complete(&sc->paprd_complete);
  1683. } else {
  1684. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1685. ath_tx_complete(sc, skb, tx_flags, txq);
  1686. }
  1687. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1688. * accidentally reference it later.
  1689. */
  1690. bf->bf_mpdu = NULL;
  1691. /*
  1692. * Return the list of ath_buf of this mpdu to free queue
  1693. */
  1694. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1695. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1696. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1697. }
  1698. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1699. struct ath_tx_status *ts, int nframes, int nbad,
  1700. int txok)
  1701. {
  1702. struct sk_buff *skb = bf->bf_mpdu;
  1703. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1704. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1705. struct ieee80211_hw *hw = sc->hw;
  1706. struct ath_hw *ah = sc->sc_ah;
  1707. u8 i, tx_rateindex;
  1708. if (txok)
  1709. tx_info->status.ack_signal = ts->ts_rssi;
  1710. tx_rateindex = ts->ts_rateindex;
  1711. WARN_ON(tx_rateindex >= hw->max_rates);
  1712. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1713. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1714. BUG_ON(nbad > nframes);
  1715. }
  1716. tx_info->status.ampdu_len = nframes;
  1717. tx_info->status.ampdu_ack_len = nframes - nbad;
  1718. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1719. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1720. /*
  1721. * If an underrun error is seen assume it as an excessive
  1722. * retry only if max frame trigger level has been reached
  1723. * (2 KB for single stream, and 4 KB for dual stream).
  1724. * Adjust the long retry as if the frame was tried
  1725. * hw->max_rate_tries times to affect how rate control updates
  1726. * PER for the failed rate.
  1727. * In case of congestion on the bus penalizing this type of
  1728. * underruns should help hardware actually transmit new frames
  1729. * successfully by eventually preferring slower rates.
  1730. * This itself should also alleviate congestion on the bus.
  1731. */
  1732. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1733. ATH9K_TX_DELIM_UNDERRUN)) &&
  1734. ieee80211_is_data(hdr->frame_control) &&
  1735. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1736. tx_info->status.rates[tx_rateindex].count =
  1737. hw->max_rate_tries;
  1738. }
  1739. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1740. tx_info->status.rates[i].count = 0;
  1741. tx_info->status.rates[i].idx = -1;
  1742. }
  1743. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1744. }
  1745. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  1746. struct ath_tx_status *ts, struct ath_buf *bf,
  1747. struct list_head *bf_head)
  1748. {
  1749. int txok;
  1750. txq->axq_depth--;
  1751. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  1752. txq->axq_tx_inprogress = false;
  1753. if (bf_is_ampdu_not_probing(bf))
  1754. txq->axq_ampdu_depth--;
  1755. if (!bf_isampdu(bf)) {
  1756. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  1757. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  1758. } else
  1759. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
  1760. if (sc->sc_flags & SC_OP_TXAGGR)
  1761. ath_txq_schedule(sc, txq);
  1762. }
  1763. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1764. {
  1765. struct ath_hw *ah = sc->sc_ah;
  1766. struct ath_common *common = ath9k_hw_common(ah);
  1767. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1768. struct list_head bf_head;
  1769. struct ath_desc *ds;
  1770. struct ath_tx_status ts;
  1771. int status;
  1772. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1773. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1774. txq->axq_link);
  1775. ath_txq_lock(sc, txq);
  1776. for (;;) {
  1777. if (work_pending(&sc->hw_reset_work))
  1778. break;
  1779. if (list_empty(&txq->axq_q)) {
  1780. txq->axq_link = NULL;
  1781. if (sc->sc_flags & SC_OP_TXAGGR)
  1782. ath_txq_schedule(sc, txq);
  1783. break;
  1784. }
  1785. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1786. /*
  1787. * There is a race condition that a BH gets scheduled
  1788. * after sw writes TxE and before hw re-load the last
  1789. * descriptor to get the newly chained one.
  1790. * Software must keep the last DONE descriptor as a
  1791. * holding descriptor - software does so by marking
  1792. * it with the STALE flag.
  1793. */
  1794. bf_held = NULL;
  1795. if (bf->bf_stale) {
  1796. bf_held = bf;
  1797. if (list_is_last(&bf_held->list, &txq->axq_q))
  1798. break;
  1799. bf = list_entry(bf_held->list.next, struct ath_buf,
  1800. list);
  1801. }
  1802. lastbf = bf->bf_lastbf;
  1803. ds = lastbf->bf_desc;
  1804. memset(&ts, 0, sizeof(ts));
  1805. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1806. if (status == -EINPROGRESS)
  1807. break;
  1808. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1809. /*
  1810. * Remove ath_buf's of the same transmit unit from txq,
  1811. * however leave the last descriptor back as the holding
  1812. * descriptor for hw.
  1813. */
  1814. lastbf->bf_stale = true;
  1815. INIT_LIST_HEAD(&bf_head);
  1816. if (!list_is_singular(&lastbf->list))
  1817. list_cut_position(&bf_head,
  1818. &txq->axq_q, lastbf->list.prev);
  1819. if (bf_held) {
  1820. list_del(&bf_held->list);
  1821. ath_tx_return_buffer(sc, bf_held);
  1822. }
  1823. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1824. }
  1825. ath_txq_unlock_complete(sc, txq);
  1826. }
  1827. static void ath_tx_complete_poll_work(struct work_struct *work)
  1828. {
  1829. struct ath_softc *sc = container_of(work, struct ath_softc,
  1830. tx_complete_work.work);
  1831. struct ath_txq *txq;
  1832. int i;
  1833. bool needreset = false;
  1834. #ifdef CONFIG_ATH9K_DEBUGFS
  1835. sc->tx_complete_poll_work_seen++;
  1836. #endif
  1837. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1838. if (ATH_TXQ_SETUP(sc, i)) {
  1839. txq = &sc->tx.txq[i];
  1840. ath_txq_lock(sc, txq);
  1841. if (txq->axq_depth) {
  1842. if (txq->axq_tx_inprogress) {
  1843. needreset = true;
  1844. ath_txq_unlock(sc, txq);
  1845. break;
  1846. } else {
  1847. txq->axq_tx_inprogress = true;
  1848. }
  1849. }
  1850. ath_txq_unlock_complete(sc, txq);
  1851. }
  1852. if (needreset) {
  1853. ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
  1854. "tx hung, resetting the chip\n");
  1855. RESET_STAT_INC(sc, RESET_TYPE_TX_HANG);
  1856. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  1857. }
  1858. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1859. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1860. }
  1861. void ath_tx_tasklet(struct ath_softc *sc)
  1862. {
  1863. int i;
  1864. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1865. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1866. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1867. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1868. ath_tx_processq(sc, &sc->tx.txq[i]);
  1869. }
  1870. }
  1871. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1872. {
  1873. struct ath_tx_status ts;
  1874. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1875. struct ath_hw *ah = sc->sc_ah;
  1876. struct ath_txq *txq;
  1877. struct ath_buf *bf, *lastbf;
  1878. struct list_head bf_head;
  1879. int status;
  1880. for (;;) {
  1881. if (work_pending(&sc->hw_reset_work))
  1882. break;
  1883. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1884. if (status == -EINPROGRESS)
  1885. break;
  1886. if (status == -EIO) {
  1887. ath_dbg(common, XMIT, "Error processing tx status\n");
  1888. break;
  1889. }
  1890. /* Skip beacon completions */
  1891. if (ts.qid == sc->beacon.beaconq)
  1892. continue;
  1893. txq = &sc->tx.txq[ts.qid];
  1894. ath_txq_lock(sc, txq);
  1895. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1896. ath_txq_unlock(sc, txq);
  1897. return;
  1898. }
  1899. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1900. struct ath_buf, list);
  1901. lastbf = bf->bf_lastbf;
  1902. INIT_LIST_HEAD(&bf_head);
  1903. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1904. &lastbf->list);
  1905. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1906. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1907. if (!list_empty(&txq->axq_q)) {
  1908. struct list_head bf_q;
  1909. INIT_LIST_HEAD(&bf_q);
  1910. txq->axq_link = NULL;
  1911. list_splice_tail_init(&txq->axq_q, &bf_q);
  1912. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1913. }
  1914. }
  1915. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1916. ath_txq_unlock_complete(sc, txq);
  1917. }
  1918. }
  1919. /*****************/
  1920. /* Init, Cleanup */
  1921. /*****************/
  1922. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1923. {
  1924. struct ath_descdma *dd = &sc->txsdma;
  1925. u8 txs_len = sc->sc_ah->caps.txs_len;
  1926. dd->dd_desc_len = size * txs_len;
  1927. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1928. &dd->dd_desc_paddr, GFP_KERNEL);
  1929. if (!dd->dd_desc)
  1930. return -ENOMEM;
  1931. return 0;
  1932. }
  1933. static int ath_tx_edma_init(struct ath_softc *sc)
  1934. {
  1935. int err;
  1936. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1937. if (!err)
  1938. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1939. sc->txsdma.dd_desc_paddr,
  1940. ATH_TXSTATUS_RING_SIZE);
  1941. return err;
  1942. }
  1943. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1944. {
  1945. struct ath_descdma *dd = &sc->txsdma;
  1946. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1947. dd->dd_desc_paddr);
  1948. }
  1949. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1950. {
  1951. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1952. int error = 0;
  1953. spin_lock_init(&sc->tx.txbuflock);
  1954. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1955. "tx", nbufs, 1, 1);
  1956. if (error != 0) {
  1957. ath_err(common,
  1958. "Failed to allocate tx descriptors: %d\n", error);
  1959. goto err;
  1960. }
  1961. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1962. "beacon", ATH_BCBUF, 1, 1);
  1963. if (error != 0) {
  1964. ath_err(common,
  1965. "Failed to allocate beacon descriptors: %d\n", error);
  1966. goto err;
  1967. }
  1968. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1969. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1970. error = ath_tx_edma_init(sc);
  1971. if (error)
  1972. goto err;
  1973. }
  1974. err:
  1975. if (error != 0)
  1976. ath_tx_cleanup(sc);
  1977. return error;
  1978. }
  1979. void ath_tx_cleanup(struct ath_softc *sc)
  1980. {
  1981. if (sc->beacon.bdma.dd_desc_len != 0)
  1982. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1983. if (sc->tx.txdma.dd_desc_len != 0)
  1984. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1985. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1986. ath_tx_edma_cleanup(sc);
  1987. }
  1988. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1989. {
  1990. struct ath_atx_tid *tid;
  1991. struct ath_atx_ac *ac;
  1992. int tidno, acno;
  1993. for (tidno = 0, tid = &an->tid[tidno];
  1994. tidno < WME_NUM_TID;
  1995. tidno++, tid++) {
  1996. tid->an = an;
  1997. tid->tidno = tidno;
  1998. tid->seq_start = tid->seq_next = 0;
  1999. tid->baw_size = WME_MAX_BA;
  2000. tid->baw_head = tid->baw_tail = 0;
  2001. tid->sched = false;
  2002. tid->paused = false;
  2003. tid->state &= ~AGGR_CLEANUP;
  2004. __skb_queue_head_init(&tid->buf_q);
  2005. acno = TID_TO_WME_AC(tidno);
  2006. tid->ac = &an->ac[acno];
  2007. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2008. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2009. }
  2010. for (acno = 0, ac = &an->ac[acno];
  2011. acno < WME_NUM_AC; acno++, ac++) {
  2012. ac->sched = false;
  2013. ac->txq = sc->tx.txq_map[acno];
  2014. INIT_LIST_HEAD(&ac->tid_q);
  2015. }
  2016. }
  2017. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2018. {
  2019. struct ath_atx_ac *ac;
  2020. struct ath_atx_tid *tid;
  2021. struct ath_txq *txq;
  2022. int tidno;
  2023. for (tidno = 0, tid = &an->tid[tidno];
  2024. tidno < WME_NUM_TID; tidno++, tid++) {
  2025. ac = tid->ac;
  2026. txq = ac->txq;
  2027. ath_txq_lock(sc, txq);
  2028. if (tid->sched) {
  2029. list_del(&tid->list);
  2030. tid->sched = false;
  2031. }
  2032. if (ac->sched) {
  2033. list_del(&ac->list);
  2034. tid->ac->sched = false;
  2035. }
  2036. ath_tid_drain(sc, txq, tid);
  2037. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2038. tid->state &= ~AGGR_CLEANUP;
  2039. ath_txq_unlock(sc, txq);
  2040. }
  2041. }