menu.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430
  1. /*
  2. * menu.c - the menu idle governor
  3. *
  4. * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
  5. * Copyright (C) 2009 Intel Corporation
  6. * Author:
  7. * Arjan van de Ven <arjan@linux.intel.com>
  8. *
  9. * This code is licenced under the GPL version 2 as described
  10. * in the COPYING file that acompanies the Linux Kernel.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/cpuidle.h>
  14. #include <linux/pm_qos.h>
  15. #include <linux/time.h>
  16. #include <linux/ktime.h>
  17. #include <linux/hrtimer.h>
  18. #include <linux/tick.h>
  19. #include <linux/sched.h>
  20. #include <linux/math64.h>
  21. #include <linux/module.h>
  22. #define BUCKETS 12
  23. #define INTERVALS 8
  24. #define RESOLUTION 1024
  25. #define DECAY 8
  26. #define MAX_INTERESTING 50000
  27. #define STDDEV_THRESH 400
  28. /*
  29. * Concepts and ideas behind the menu governor
  30. *
  31. * For the menu governor, there are 3 decision factors for picking a C
  32. * state:
  33. * 1) Energy break even point
  34. * 2) Performance impact
  35. * 3) Latency tolerance (from pmqos infrastructure)
  36. * These these three factors are treated independently.
  37. *
  38. * Energy break even point
  39. * -----------------------
  40. * C state entry and exit have an energy cost, and a certain amount of time in
  41. * the C state is required to actually break even on this cost. CPUIDLE
  42. * provides us this duration in the "target_residency" field. So all that we
  43. * need is a good prediction of how long we'll be idle. Like the traditional
  44. * menu governor, we start with the actual known "next timer event" time.
  45. *
  46. * Since there are other source of wakeups (interrupts for example) than
  47. * the next timer event, this estimation is rather optimistic. To get a
  48. * more realistic estimate, a correction factor is applied to the estimate,
  49. * that is based on historic behavior. For example, if in the past the actual
  50. * duration always was 50% of the next timer tick, the correction factor will
  51. * be 0.5.
  52. *
  53. * menu uses a running average for this correction factor, however it uses a
  54. * set of factors, not just a single factor. This stems from the realization
  55. * that the ratio is dependent on the order of magnitude of the expected
  56. * duration; if we expect 500 milliseconds of idle time the likelihood of
  57. * getting an interrupt very early is much higher than if we expect 50 micro
  58. * seconds of idle time. A second independent factor that has big impact on
  59. * the actual factor is if there is (disk) IO outstanding or not.
  60. * (as a special twist, we consider every sleep longer than 50 milliseconds
  61. * as perfect; there are no power gains for sleeping longer than this)
  62. *
  63. * For these two reasons we keep an array of 12 independent factors, that gets
  64. * indexed based on the magnitude of the expected duration as well as the
  65. * "is IO outstanding" property.
  66. *
  67. * Repeatable-interval-detector
  68. * ----------------------------
  69. * There are some cases where "next timer" is a completely unusable predictor:
  70. * Those cases where the interval is fixed, for example due to hardware
  71. * interrupt mitigation, but also due to fixed transfer rate devices such as
  72. * mice.
  73. * For this, we use a different predictor: We track the duration of the last 8
  74. * intervals and if the stand deviation of these 8 intervals is below a
  75. * threshold value, we use the average of these intervals as prediction.
  76. *
  77. * Limiting Performance Impact
  78. * ---------------------------
  79. * C states, especially those with large exit latencies, can have a real
  80. * noticeable impact on workloads, which is not acceptable for most sysadmins,
  81. * and in addition, less performance has a power price of its own.
  82. *
  83. * As a general rule of thumb, menu assumes that the following heuristic
  84. * holds:
  85. * The busier the system, the less impact of C states is acceptable
  86. *
  87. * This rule-of-thumb is implemented using a performance-multiplier:
  88. * If the exit latency times the performance multiplier is longer than
  89. * the predicted duration, the C state is not considered a candidate
  90. * for selection due to a too high performance impact. So the higher
  91. * this multiplier is, the longer we need to be idle to pick a deep C
  92. * state, and thus the less likely a busy CPU will hit such a deep
  93. * C state.
  94. *
  95. * Two factors are used in determing this multiplier:
  96. * a value of 10 is added for each point of "per cpu load average" we have.
  97. * a value of 5 points is added for each process that is waiting for
  98. * IO on this CPU.
  99. * (these values are experimentally determined)
  100. *
  101. * The load average factor gives a longer term (few seconds) input to the
  102. * decision, while the iowait value gives a cpu local instantanious input.
  103. * The iowait factor may look low, but realize that this is also already
  104. * represented in the system load average.
  105. *
  106. */
  107. struct menu_device {
  108. int last_state_idx;
  109. int needs_update;
  110. unsigned int expected_us;
  111. u64 predicted_us;
  112. unsigned int exit_us;
  113. unsigned int bucket;
  114. u64 correction_factor[BUCKETS];
  115. u32 intervals[INTERVALS];
  116. int interval_ptr;
  117. };
  118. #define LOAD_INT(x) ((x) >> FSHIFT)
  119. #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
  120. static int get_loadavg(void)
  121. {
  122. unsigned long this = this_cpu_load();
  123. return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
  124. }
  125. static inline int which_bucket(unsigned int duration)
  126. {
  127. int bucket = 0;
  128. /*
  129. * We keep two groups of stats; one with no
  130. * IO pending, one without.
  131. * This allows us to calculate
  132. * E(duration)|iowait
  133. */
  134. if (nr_iowait_cpu(smp_processor_id()))
  135. bucket = BUCKETS/2;
  136. if (duration < 10)
  137. return bucket;
  138. if (duration < 100)
  139. return bucket + 1;
  140. if (duration < 1000)
  141. return bucket + 2;
  142. if (duration < 10000)
  143. return bucket + 3;
  144. if (duration < 100000)
  145. return bucket + 4;
  146. return bucket + 5;
  147. }
  148. /*
  149. * Return a multiplier for the exit latency that is intended
  150. * to take performance requirements into account.
  151. * The more performance critical we estimate the system
  152. * to be, the higher this multiplier, and thus the higher
  153. * the barrier to go to an expensive C state.
  154. */
  155. static inline int performance_multiplier(void)
  156. {
  157. int mult = 1;
  158. /* for higher loadavg, we are more reluctant */
  159. mult += 2 * get_loadavg();
  160. /* for IO wait tasks (per cpu!) we add 5x each */
  161. mult += 10 * nr_iowait_cpu(smp_processor_id());
  162. return mult;
  163. }
  164. static DEFINE_PER_CPU(struct menu_device, menu_devices);
  165. static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
  166. /* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
  167. static u64 div_round64(u64 dividend, u32 divisor)
  168. {
  169. return div_u64(dividend + (divisor / 2), divisor);
  170. }
  171. /*
  172. * Try detecting repeating patterns by keeping track of the last 8
  173. * intervals, and checking if the standard deviation of that set
  174. * of points is below a threshold. If it is... then use the
  175. * average of these 8 points as the estimated value.
  176. */
  177. static void detect_repeating_patterns(struct menu_device *data)
  178. {
  179. int i;
  180. uint64_t avg = 0;
  181. uint64_t stddev = 0; /* contains the square of the std deviation */
  182. /* first calculate average and standard deviation of the past */
  183. for (i = 0; i < INTERVALS; i++)
  184. avg += data->intervals[i];
  185. avg = avg / INTERVALS;
  186. /* if the avg is beyond the known next tick, it's worthless */
  187. if (avg > data->expected_us)
  188. return;
  189. for (i = 0; i < INTERVALS; i++)
  190. stddev += (data->intervals[i] - avg) *
  191. (data->intervals[i] - avg);
  192. stddev = stddev / INTERVALS;
  193. /*
  194. * now.. if stddev is small.. then assume we have a
  195. * repeating pattern and predict we keep doing this.
  196. */
  197. if (avg && stddev < STDDEV_THRESH)
  198. data->predicted_us = avg;
  199. }
  200. /**
  201. * menu_select - selects the next idle state to enter
  202. * @drv: cpuidle driver containing state data
  203. * @dev: the CPU
  204. */
  205. static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
  206. {
  207. struct menu_device *data = &__get_cpu_var(menu_devices);
  208. int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
  209. unsigned int power_usage = -1;
  210. int i;
  211. int multiplier;
  212. struct timespec t;
  213. if (data->needs_update) {
  214. menu_update(drv, dev);
  215. data->needs_update = 0;
  216. }
  217. data->last_state_idx = 0;
  218. data->exit_us = 0;
  219. /* Special case when user has set very strict latency requirement */
  220. if (unlikely(latency_req == 0))
  221. return 0;
  222. /* determine the expected residency time, round up */
  223. t = ktime_to_timespec(tick_nohz_get_sleep_length());
  224. data->expected_us =
  225. t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
  226. data->bucket = which_bucket(data->expected_us);
  227. multiplier = performance_multiplier();
  228. /*
  229. * if the correction factor is 0 (eg first time init or cpu hotplug
  230. * etc), we actually want to start out with a unity factor.
  231. */
  232. if (data->correction_factor[data->bucket] == 0)
  233. data->correction_factor[data->bucket] = RESOLUTION * DECAY;
  234. /* Make sure to round up for half microseconds */
  235. data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
  236. RESOLUTION * DECAY);
  237. detect_repeating_patterns(data);
  238. /*
  239. * We want to default to C1 (hlt), not to busy polling
  240. * unless the timer is happening really really soon.
  241. */
  242. if (data->expected_us > 5)
  243. data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
  244. /*
  245. * Find the idle state with the lowest power while satisfying
  246. * our constraints.
  247. */
  248. for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
  249. struct cpuidle_state *s = &drv->states[i];
  250. if (s->target_residency > data->predicted_us)
  251. continue;
  252. if (s->exit_latency > latency_req)
  253. continue;
  254. if (s->exit_latency * multiplier > data->predicted_us)
  255. continue;
  256. if (s->power_usage < power_usage) {
  257. power_usage = s->power_usage;
  258. data->last_state_idx = i;
  259. data->exit_us = s->exit_latency;
  260. }
  261. }
  262. return data->last_state_idx;
  263. }
  264. /**
  265. * menu_reflect - records that data structures need update
  266. * @dev: the CPU
  267. * @index: the index of actual entered state
  268. *
  269. * NOTE: it's important to be fast here because this operation will add to
  270. * the overall exit latency.
  271. */
  272. static void menu_reflect(struct cpuidle_device *dev, int index)
  273. {
  274. struct menu_device *data = &__get_cpu_var(menu_devices);
  275. data->last_state_idx = index;
  276. if (index >= 0)
  277. data->needs_update = 1;
  278. }
  279. /**
  280. * menu_update - attempts to guess what happened after entry
  281. * @drv: cpuidle driver containing state data
  282. * @dev: the CPU
  283. */
  284. static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
  285. {
  286. struct menu_device *data = &__get_cpu_var(menu_devices);
  287. int last_idx = data->last_state_idx;
  288. unsigned int last_idle_us = cpuidle_get_last_residency(dev);
  289. struct cpuidle_state *target = &drv->states[last_idx];
  290. unsigned int measured_us;
  291. u64 new_factor;
  292. /*
  293. * Ugh, this idle state doesn't support residency measurements, so we
  294. * are basically lost in the dark. As a compromise, assume we slept
  295. * for the whole expected time.
  296. */
  297. if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
  298. last_idle_us = data->expected_us;
  299. measured_us = last_idle_us;
  300. /*
  301. * We correct for the exit latency; we are assuming here that the
  302. * exit latency happens after the event that we're interested in.
  303. */
  304. if (measured_us > data->exit_us)
  305. measured_us -= data->exit_us;
  306. /* update our correction ratio */
  307. new_factor = data->correction_factor[data->bucket]
  308. * (DECAY - 1) / DECAY;
  309. if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
  310. new_factor += RESOLUTION * measured_us / data->expected_us;
  311. else
  312. /*
  313. * we were idle so long that we count it as a perfect
  314. * prediction
  315. */
  316. new_factor += RESOLUTION;
  317. /*
  318. * We don't want 0 as factor; we always want at least
  319. * a tiny bit of estimated time.
  320. */
  321. if (new_factor == 0)
  322. new_factor = 1;
  323. data->correction_factor[data->bucket] = new_factor;
  324. /* update the repeating-pattern data */
  325. data->intervals[data->interval_ptr++] = last_idle_us;
  326. if (data->interval_ptr >= INTERVALS)
  327. data->interval_ptr = 0;
  328. }
  329. /**
  330. * menu_enable_device - scans a CPU's states and does setup
  331. * @drv: cpuidle driver
  332. * @dev: the CPU
  333. */
  334. static int menu_enable_device(struct cpuidle_driver *drv,
  335. struct cpuidle_device *dev)
  336. {
  337. struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
  338. memset(data, 0, sizeof(struct menu_device));
  339. return 0;
  340. }
  341. static struct cpuidle_governor menu_governor = {
  342. .name = "menu",
  343. .rating = 20,
  344. .enable = menu_enable_device,
  345. .select = menu_select,
  346. .reflect = menu_reflect,
  347. .owner = THIS_MODULE,
  348. };
  349. /**
  350. * init_menu - initializes the governor
  351. */
  352. static int __init init_menu(void)
  353. {
  354. return cpuidle_register_governor(&menu_governor);
  355. }
  356. /**
  357. * exit_menu - exits the governor
  358. */
  359. static void __exit exit_menu(void)
  360. {
  361. cpuidle_unregister_governor(&menu_governor);
  362. }
  363. MODULE_LICENSE("GPL");
  364. module_init(init_menu);
  365. module_exit(exit_menu);