sprom.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. /*
  2. * Broadcom specific AMBA
  3. * SPROM reading
  4. *
  5. * Licensed under the GNU/GPL. See COPYING for details.
  6. */
  7. #include "bcma_private.h"
  8. #include <linux/bcma/bcma.h>
  9. #include <linux/bcma/bcma_regs.h>
  10. #include <linux/pci.h>
  11. #include <linux/io.h>
  12. #include <linux/dma-mapping.h>
  13. #include <linux/slab.h>
  14. /**************************************************
  15. * R/W ops.
  16. **************************************************/
  17. static void bcma_sprom_read(struct bcma_bus *bus, u16 offset, u16 *sprom)
  18. {
  19. int i;
  20. for (i = 0; i < SSB_SPROMSIZE_WORDS_R4; i++)
  21. sprom[i] = bcma_read16(bus->drv_cc.core,
  22. offset + (i * 2));
  23. }
  24. /**************************************************
  25. * Validation.
  26. **************************************************/
  27. static inline u8 bcma_crc8(u8 crc, u8 data)
  28. {
  29. /* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */
  30. static const u8 t[] = {
  31. 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
  32. 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
  33. 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
  34. 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
  35. 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
  36. 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
  37. 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
  38. 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
  39. 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
  40. 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
  41. 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
  42. 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
  43. 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
  44. 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
  45. 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
  46. 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
  47. 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
  48. 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
  49. 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
  50. 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
  51. 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
  52. 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
  53. 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
  54. 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
  55. 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
  56. 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
  57. 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
  58. 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
  59. 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
  60. 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
  61. 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
  62. 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
  63. };
  64. return t[crc ^ data];
  65. }
  66. static u8 bcma_sprom_crc(const u16 *sprom)
  67. {
  68. int word;
  69. u8 crc = 0xFF;
  70. for (word = 0; word < SSB_SPROMSIZE_WORDS_R4 - 1; word++) {
  71. crc = bcma_crc8(crc, sprom[word] & 0x00FF);
  72. crc = bcma_crc8(crc, (sprom[word] & 0xFF00) >> 8);
  73. }
  74. crc = bcma_crc8(crc, sprom[SSB_SPROMSIZE_WORDS_R4 - 1] & 0x00FF);
  75. crc ^= 0xFF;
  76. return crc;
  77. }
  78. static int bcma_sprom_check_crc(const u16 *sprom)
  79. {
  80. u8 crc;
  81. u8 expected_crc;
  82. u16 tmp;
  83. crc = bcma_sprom_crc(sprom);
  84. tmp = sprom[SSB_SPROMSIZE_WORDS_R4 - 1] & SSB_SPROM_REVISION_CRC;
  85. expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT;
  86. if (crc != expected_crc)
  87. return -EPROTO;
  88. return 0;
  89. }
  90. static int bcma_sprom_valid(const u16 *sprom)
  91. {
  92. u16 revision;
  93. int err;
  94. err = bcma_sprom_check_crc(sprom);
  95. if (err)
  96. return err;
  97. revision = sprom[SSB_SPROMSIZE_WORDS_R4 - 1] & SSB_SPROM_REVISION_REV;
  98. if (revision != 8 && revision != 9) {
  99. pr_err("Unsupported SPROM revision: %d\n", revision);
  100. return -ENOENT;
  101. }
  102. return 0;
  103. }
  104. /**************************************************
  105. * SPROM extraction.
  106. **************************************************/
  107. #define SPOFF(offset) ((offset) / sizeof(u16))
  108. #define SPEX(_field, _offset, _mask, _shift) \
  109. bus->sprom._field = ((sprom[SPOFF(_offset)] & (_mask)) >> (_shift))
  110. static void bcma_sprom_extract_r8(struct bcma_bus *bus, const u16 *sprom)
  111. {
  112. u16 v, o;
  113. int i;
  114. u16 pwr_info_offset[] = {
  115. SSB_SROM8_PWR_INFO_CORE0, SSB_SROM8_PWR_INFO_CORE1,
  116. SSB_SROM8_PWR_INFO_CORE2, SSB_SROM8_PWR_INFO_CORE3
  117. };
  118. BUILD_BUG_ON(ARRAY_SIZE(pwr_info_offset) !=
  119. ARRAY_SIZE(bus->sprom.core_pwr_info));
  120. bus->sprom.revision = sprom[SSB_SPROMSIZE_WORDS_R4 - 1] &
  121. SSB_SPROM_REVISION_REV;
  122. for (i = 0; i < 3; i++) {
  123. v = sprom[SPOFF(SSB_SPROM8_IL0MAC) + i];
  124. *(((__be16 *)bus->sprom.il0mac) + i) = cpu_to_be16(v);
  125. }
  126. SPEX(board_rev, SSB_SPROM8_BOARDREV, ~0, 0);
  127. SPEX(txpid2g[0], SSB_SPROM4_TXPID2G01, SSB_SPROM4_TXPID2G0,
  128. SSB_SPROM4_TXPID2G0_SHIFT);
  129. SPEX(txpid2g[1], SSB_SPROM4_TXPID2G01, SSB_SPROM4_TXPID2G1,
  130. SSB_SPROM4_TXPID2G1_SHIFT);
  131. SPEX(txpid2g[2], SSB_SPROM4_TXPID2G23, SSB_SPROM4_TXPID2G2,
  132. SSB_SPROM4_TXPID2G2_SHIFT);
  133. SPEX(txpid2g[3], SSB_SPROM4_TXPID2G23, SSB_SPROM4_TXPID2G3,
  134. SSB_SPROM4_TXPID2G3_SHIFT);
  135. SPEX(txpid5gl[0], SSB_SPROM4_TXPID5GL01, SSB_SPROM4_TXPID5GL0,
  136. SSB_SPROM4_TXPID5GL0_SHIFT);
  137. SPEX(txpid5gl[1], SSB_SPROM4_TXPID5GL01, SSB_SPROM4_TXPID5GL1,
  138. SSB_SPROM4_TXPID5GL1_SHIFT);
  139. SPEX(txpid5gl[2], SSB_SPROM4_TXPID5GL23, SSB_SPROM4_TXPID5GL2,
  140. SSB_SPROM4_TXPID5GL2_SHIFT);
  141. SPEX(txpid5gl[3], SSB_SPROM4_TXPID5GL23, SSB_SPROM4_TXPID5GL3,
  142. SSB_SPROM4_TXPID5GL3_SHIFT);
  143. SPEX(txpid5g[0], SSB_SPROM4_TXPID5G01, SSB_SPROM4_TXPID5G0,
  144. SSB_SPROM4_TXPID5G0_SHIFT);
  145. SPEX(txpid5g[1], SSB_SPROM4_TXPID5G01, SSB_SPROM4_TXPID5G1,
  146. SSB_SPROM4_TXPID5G1_SHIFT);
  147. SPEX(txpid5g[2], SSB_SPROM4_TXPID5G23, SSB_SPROM4_TXPID5G2,
  148. SSB_SPROM4_TXPID5G2_SHIFT);
  149. SPEX(txpid5g[3], SSB_SPROM4_TXPID5G23, SSB_SPROM4_TXPID5G3,
  150. SSB_SPROM4_TXPID5G3_SHIFT);
  151. SPEX(txpid5gh[0], SSB_SPROM4_TXPID5GH01, SSB_SPROM4_TXPID5GH0,
  152. SSB_SPROM4_TXPID5GH0_SHIFT);
  153. SPEX(txpid5gh[1], SSB_SPROM4_TXPID5GH01, SSB_SPROM4_TXPID5GH1,
  154. SSB_SPROM4_TXPID5GH1_SHIFT);
  155. SPEX(txpid5gh[2], SSB_SPROM4_TXPID5GH23, SSB_SPROM4_TXPID5GH2,
  156. SSB_SPROM4_TXPID5GH2_SHIFT);
  157. SPEX(txpid5gh[3], SSB_SPROM4_TXPID5GH23, SSB_SPROM4_TXPID5GH3,
  158. SSB_SPROM4_TXPID5GH3_SHIFT);
  159. SPEX(boardflags_lo, SSB_SPROM8_BFLLO, ~0, 0);
  160. SPEX(boardflags_hi, SSB_SPROM8_BFLHI, ~0, 0);
  161. SPEX(boardflags2_lo, SSB_SPROM8_BFL2LO, ~0, 0);
  162. SPEX(boardflags2_hi, SSB_SPROM8_BFL2HI, ~0, 0);
  163. SPEX(country_code, SSB_SPROM8_CCODE, ~0, 0);
  164. /* Extract cores power info info */
  165. for (i = 0; i < ARRAY_SIZE(pwr_info_offset); i++) {
  166. o = pwr_info_offset[i];
  167. SPEX(core_pwr_info[i].itssi_2g, o + SSB_SROM8_2G_MAXP_ITSSI,
  168. SSB_SPROM8_2G_ITSSI, SSB_SPROM8_2G_ITSSI_SHIFT);
  169. SPEX(core_pwr_info[i].maxpwr_2g, o + SSB_SROM8_2G_MAXP_ITSSI,
  170. SSB_SPROM8_2G_MAXP, 0);
  171. SPEX(core_pwr_info[i].pa_2g[0], o + SSB_SROM8_2G_PA_0, ~0, 0);
  172. SPEX(core_pwr_info[i].pa_2g[1], o + SSB_SROM8_2G_PA_1, ~0, 0);
  173. SPEX(core_pwr_info[i].pa_2g[2], o + SSB_SROM8_2G_PA_2, ~0, 0);
  174. SPEX(core_pwr_info[i].itssi_5g, o + SSB_SROM8_5G_MAXP_ITSSI,
  175. SSB_SPROM8_5G_ITSSI, SSB_SPROM8_5G_ITSSI_SHIFT);
  176. SPEX(core_pwr_info[i].maxpwr_5g, o + SSB_SROM8_5G_MAXP_ITSSI,
  177. SSB_SPROM8_5G_MAXP, 0);
  178. SPEX(core_pwr_info[i].maxpwr_5gh, o + SSB_SPROM8_5GHL_MAXP,
  179. SSB_SPROM8_5GH_MAXP, 0);
  180. SPEX(core_pwr_info[i].maxpwr_5gl, o + SSB_SPROM8_5GHL_MAXP,
  181. SSB_SPROM8_5GL_MAXP, SSB_SPROM8_5GL_MAXP_SHIFT);
  182. SPEX(core_pwr_info[i].pa_5gl[0], o + SSB_SROM8_5GL_PA_0, ~0, 0);
  183. SPEX(core_pwr_info[i].pa_5gl[1], o + SSB_SROM8_5GL_PA_1, ~0, 0);
  184. SPEX(core_pwr_info[i].pa_5gl[2], o + SSB_SROM8_5GL_PA_2, ~0, 0);
  185. SPEX(core_pwr_info[i].pa_5g[0], o + SSB_SROM8_5G_PA_0, ~0, 0);
  186. SPEX(core_pwr_info[i].pa_5g[1], o + SSB_SROM8_5G_PA_1, ~0, 0);
  187. SPEX(core_pwr_info[i].pa_5g[2], o + SSB_SROM8_5G_PA_2, ~0, 0);
  188. SPEX(core_pwr_info[i].pa_5gh[0], o + SSB_SROM8_5GH_PA_0, ~0, 0);
  189. SPEX(core_pwr_info[i].pa_5gh[1], o + SSB_SROM8_5GH_PA_1, ~0, 0);
  190. SPEX(core_pwr_info[i].pa_5gh[2], o + SSB_SROM8_5GH_PA_2, ~0, 0);
  191. }
  192. SPEX(fem.ghz2.tssipos, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_TSSIPOS,
  193. SSB_SROM8_FEM_TSSIPOS_SHIFT);
  194. SPEX(fem.ghz2.extpa_gain, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_EXTPA_GAIN,
  195. SSB_SROM8_FEM_EXTPA_GAIN_SHIFT);
  196. SPEX(fem.ghz2.pdet_range, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_PDET_RANGE,
  197. SSB_SROM8_FEM_PDET_RANGE_SHIFT);
  198. SPEX(fem.ghz2.tr_iso, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_TR_ISO,
  199. SSB_SROM8_FEM_TR_ISO_SHIFT);
  200. SPEX(fem.ghz2.antswlut, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_ANTSWLUT,
  201. SSB_SROM8_FEM_ANTSWLUT_SHIFT);
  202. SPEX(fem.ghz5.tssipos, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_TSSIPOS,
  203. SSB_SROM8_FEM_TSSIPOS_SHIFT);
  204. SPEX(fem.ghz5.extpa_gain, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_EXTPA_GAIN,
  205. SSB_SROM8_FEM_EXTPA_GAIN_SHIFT);
  206. SPEX(fem.ghz5.pdet_range, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_PDET_RANGE,
  207. SSB_SROM8_FEM_PDET_RANGE_SHIFT);
  208. SPEX(fem.ghz5.tr_iso, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_TR_ISO,
  209. SSB_SROM8_FEM_TR_ISO_SHIFT);
  210. SPEX(fem.ghz5.antswlut, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_ANTSWLUT,
  211. SSB_SROM8_FEM_ANTSWLUT_SHIFT);
  212. }
  213. int bcma_sprom_get(struct bcma_bus *bus)
  214. {
  215. u16 offset;
  216. u16 *sprom;
  217. u32 sromctrl;
  218. int err = 0;
  219. if (!bus->drv_cc.core)
  220. return -EOPNOTSUPP;
  221. if (!(bus->drv_cc.capabilities & BCMA_CC_CAP_SPROM))
  222. return -ENOENT;
  223. if (bus->drv_cc.core->id.rev >= 32) {
  224. sromctrl = bcma_read32(bus->drv_cc.core, BCMA_CC_SROM_CONTROL);
  225. if (!(sromctrl & BCMA_CC_SROM_CONTROL_PRESENT))
  226. return -ENOENT;
  227. }
  228. sprom = kcalloc(SSB_SPROMSIZE_WORDS_R4, sizeof(u16),
  229. GFP_KERNEL);
  230. if (!sprom)
  231. return -ENOMEM;
  232. if (bus->chipinfo.id == 0x4331)
  233. bcma_chipco_bcm4331_ext_pa_lines_ctl(&bus->drv_cc, false);
  234. /* Most cards have SPROM moved by additional offset 0x30 (48 dwords).
  235. * According to brcm80211 this applies to cards with PCIe rev >= 6
  236. * TODO: understand this condition and use it */
  237. offset = (bus->chipinfo.id == 0x4331) ? BCMA_CC_SPROM :
  238. BCMA_CC_SPROM_PCIE6;
  239. pr_debug("SPROM offset 0x%x\n", offset);
  240. bcma_sprom_read(bus, offset, sprom);
  241. if (bus->chipinfo.id == 0x4331)
  242. bcma_chipco_bcm4331_ext_pa_lines_ctl(&bus->drv_cc, true);
  243. err = bcma_sprom_valid(sprom);
  244. if (err)
  245. goto out;
  246. bcma_sprom_extract_r8(bus, sprom);
  247. out:
  248. kfree(sprom);
  249. return err;
  250. }