perf_event_intel.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776
  1. /*
  2. * Per core/cpu state
  3. *
  4. * Used to coordinate shared registers between HT threads or
  5. * among events on a single PMU.
  6. */
  7. #include <linux/stddef.h>
  8. #include <linux/types.h>
  9. #include <linux/init.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <asm/hardirq.h>
  13. #include <asm/apic.h>
  14. #include "perf_event.h"
  15. /*
  16. * Intel PerfMon, used on Core and later.
  17. */
  18. static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  19. {
  20. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  21. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  22. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  23. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  24. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  25. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  26. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  27. [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
  28. };
  29. static struct event_constraint intel_core_event_constraints[] __read_mostly =
  30. {
  31. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  32. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  33. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  34. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  35. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  36. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  37. EVENT_CONSTRAINT_END
  38. };
  39. static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  40. {
  41. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  42. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  43. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  44. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  45. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  46. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  47. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  48. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  49. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  50. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  51. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  52. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  53. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  54. EVENT_CONSTRAINT_END
  55. };
  56. static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  57. {
  58. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  59. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  60. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  61. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  62. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  63. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  64. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  65. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  66. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  67. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  68. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  69. EVENT_CONSTRAINT_END
  70. };
  71. static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  72. {
  73. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  74. EVENT_EXTRA_END
  75. };
  76. static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  77. {
  78. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  79. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  80. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  81. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  82. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  83. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  84. INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  85. EVENT_CONSTRAINT_END
  86. };
  87. static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  88. {
  89. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  90. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  91. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  92. INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
  93. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  94. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  95. EVENT_CONSTRAINT_END
  96. };
  97. static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
  98. {
  99. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  100. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
  101. EVENT_EXTRA_END
  102. };
  103. static struct event_constraint intel_v1_event_constraints[] __read_mostly =
  104. {
  105. EVENT_CONSTRAINT_END
  106. };
  107. static struct event_constraint intel_gen_event_constraints[] __read_mostly =
  108. {
  109. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  110. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  111. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  112. EVENT_CONSTRAINT_END
  113. };
  114. static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
  115. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
  116. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
  117. EVENT_EXTRA_END
  118. };
  119. static u64 intel_pmu_event_map(int hw_event)
  120. {
  121. return intel_perfmon_event_map[hw_event];
  122. }
  123. static __initconst const u64 snb_hw_cache_event_ids
  124. [PERF_COUNT_HW_CACHE_MAX]
  125. [PERF_COUNT_HW_CACHE_OP_MAX]
  126. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  127. {
  128. [ C(L1D) ] = {
  129. [ C(OP_READ) ] = {
  130. [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
  131. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
  132. },
  133. [ C(OP_WRITE) ] = {
  134. [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
  135. [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
  136. },
  137. [ C(OP_PREFETCH) ] = {
  138. [ C(RESULT_ACCESS) ] = 0x0,
  139. [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
  140. },
  141. },
  142. [ C(L1I ) ] = {
  143. [ C(OP_READ) ] = {
  144. [ C(RESULT_ACCESS) ] = 0x0,
  145. [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
  146. },
  147. [ C(OP_WRITE) ] = {
  148. [ C(RESULT_ACCESS) ] = -1,
  149. [ C(RESULT_MISS) ] = -1,
  150. },
  151. [ C(OP_PREFETCH) ] = {
  152. [ C(RESULT_ACCESS) ] = 0x0,
  153. [ C(RESULT_MISS) ] = 0x0,
  154. },
  155. },
  156. [ C(LL ) ] = {
  157. [ C(OP_READ) ] = {
  158. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  159. [ C(RESULT_ACCESS) ] = 0x01b7,
  160. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  161. [ C(RESULT_MISS) ] = 0x01b7,
  162. },
  163. [ C(OP_WRITE) ] = {
  164. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  165. [ C(RESULT_ACCESS) ] = 0x01b7,
  166. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  167. [ C(RESULT_MISS) ] = 0x01b7,
  168. },
  169. [ C(OP_PREFETCH) ] = {
  170. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  171. [ C(RESULT_ACCESS) ] = 0x01b7,
  172. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  173. [ C(RESULT_MISS) ] = 0x01b7,
  174. },
  175. },
  176. [ C(DTLB) ] = {
  177. [ C(OP_READ) ] = {
  178. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
  179. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
  180. },
  181. [ C(OP_WRITE) ] = {
  182. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
  183. [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  184. },
  185. [ C(OP_PREFETCH) ] = {
  186. [ C(RESULT_ACCESS) ] = 0x0,
  187. [ C(RESULT_MISS) ] = 0x0,
  188. },
  189. },
  190. [ C(ITLB) ] = {
  191. [ C(OP_READ) ] = {
  192. [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
  193. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
  194. },
  195. [ C(OP_WRITE) ] = {
  196. [ C(RESULT_ACCESS) ] = -1,
  197. [ C(RESULT_MISS) ] = -1,
  198. },
  199. [ C(OP_PREFETCH) ] = {
  200. [ C(RESULT_ACCESS) ] = -1,
  201. [ C(RESULT_MISS) ] = -1,
  202. },
  203. },
  204. [ C(BPU ) ] = {
  205. [ C(OP_READ) ] = {
  206. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  207. [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  208. },
  209. [ C(OP_WRITE) ] = {
  210. [ C(RESULT_ACCESS) ] = -1,
  211. [ C(RESULT_MISS) ] = -1,
  212. },
  213. [ C(OP_PREFETCH) ] = {
  214. [ C(RESULT_ACCESS) ] = -1,
  215. [ C(RESULT_MISS) ] = -1,
  216. },
  217. },
  218. [ C(NODE) ] = {
  219. [ C(OP_READ) ] = {
  220. [ C(RESULT_ACCESS) ] = -1,
  221. [ C(RESULT_MISS) ] = -1,
  222. },
  223. [ C(OP_WRITE) ] = {
  224. [ C(RESULT_ACCESS) ] = -1,
  225. [ C(RESULT_MISS) ] = -1,
  226. },
  227. [ C(OP_PREFETCH) ] = {
  228. [ C(RESULT_ACCESS) ] = -1,
  229. [ C(RESULT_MISS) ] = -1,
  230. },
  231. },
  232. };
  233. static __initconst const u64 westmere_hw_cache_event_ids
  234. [PERF_COUNT_HW_CACHE_MAX]
  235. [PERF_COUNT_HW_CACHE_OP_MAX]
  236. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  237. {
  238. [ C(L1D) ] = {
  239. [ C(OP_READ) ] = {
  240. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  241. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  242. },
  243. [ C(OP_WRITE) ] = {
  244. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  245. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  246. },
  247. [ C(OP_PREFETCH) ] = {
  248. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  249. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  250. },
  251. },
  252. [ C(L1I ) ] = {
  253. [ C(OP_READ) ] = {
  254. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  255. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  256. },
  257. [ C(OP_WRITE) ] = {
  258. [ C(RESULT_ACCESS) ] = -1,
  259. [ C(RESULT_MISS) ] = -1,
  260. },
  261. [ C(OP_PREFETCH) ] = {
  262. [ C(RESULT_ACCESS) ] = 0x0,
  263. [ C(RESULT_MISS) ] = 0x0,
  264. },
  265. },
  266. [ C(LL ) ] = {
  267. [ C(OP_READ) ] = {
  268. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  269. [ C(RESULT_ACCESS) ] = 0x01b7,
  270. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  271. [ C(RESULT_MISS) ] = 0x01b7,
  272. },
  273. /*
  274. * Use RFO, not WRITEBACK, because a write miss would typically occur
  275. * on RFO.
  276. */
  277. [ C(OP_WRITE) ] = {
  278. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  279. [ C(RESULT_ACCESS) ] = 0x01b7,
  280. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  281. [ C(RESULT_MISS) ] = 0x01b7,
  282. },
  283. [ C(OP_PREFETCH) ] = {
  284. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  285. [ C(RESULT_ACCESS) ] = 0x01b7,
  286. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  287. [ C(RESULT_MISS) ] = 0x01b7,
  288. },
  289. },
  290. [ C(DTLB) ] = {
  291. [ C(OP_READ) ] = {
  292. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  293. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  294. },
  295. [ C(OP_WRITE) ] = {
  296. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  297. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  298. },
  299. [ C(OP_PREFETCH) ] = {
  300. [ C(RESULT_ACCESS) ] = 0x0,
  301. [ C(RESULT_MISS) ] = 0x0,
  302. },
  303. },
  304. [ C(ITLB) ] = {
  305. [ C(OP_READ) ] = {
  306. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  307. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  308. },
  309. [ C(OP_WRITE) ] = {
  310. [ C(RESULT_ACCESS) ] = -1,
  311. [ C(RESULT_MISS) ] = -1,
  312. },
  313. [ C(OP_PREFETCH) ] = {
  314. [ C(RESULT_ACCESS) ] = -1,
  315. [ C(RESULT_MISS) ] = -1,
  316. },
  317. },
  318. [ C(BPU ) ] = {
  319. [ C(OP_READ) ] = {
  320. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  321. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  322. },
  323. [ C(OP_WRITE) ] = {
  324. [ C(RESULT_ACCESS) ] = -1,
  325. [ C(RESULT_MISS) ] = -1,
  326. },
  327. [ C(OP_PREFETCH) ] = {
  328. [ C(RESULT_ACCESS) ] = -1,
  329. [ C(RESULT_MISS) ] = -1,
  330. },
  331. },
  332. [ C(NODE) ] = {
  333. [ C(OP_READ) ] = {
  334. [ C(RESULT_ACCESS) ] = 0x01b7,
  335. [ C(RESULT_MISS) ] = 0x01b7,
  336. },
  337. [ C(OP_WRITE) ] = {
  338. [ C(RESULT_ACCESS) ] = 0x01b7,
  339. [ C(RESULT_MISS) ] = 0x01b7,
  340. },
  341. [ C(OP_PREFETCH) ] = {
  342. [ C(RESULT_ACCESS) ] = 0x01b7,
  343. [ C(RESULT_MISS) ] = 0x01b7,
  344. },
  345. },
  346. };
  347. /*
  348. * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
  349. * See IA32 SDM Vol 3B 30.6.1.3
  350. */
  351. #define NHM_DMND_DATA_RD (1 << 0)
  352. #define NHM_DMND_RFO (1 << 1)
  353. #define NHM_DMND_IFETCH (1 << 2)
  354. #define NHM_DMND_WB (1 << 3)
  355. #define NHM_PF_DATA_RD (1 << 4)
  356. #define NHM_PF_DATA_RFO (1 << 5)
  357. #define NHM_PF_IFETCH (1 << 6)
  358. #define NHM_OFFCORE_OTHER (1 << 7)
  359. #define NHM_UNCORE_HIT (1 << 8)
  360. #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
  361. #define NHM_OTHER_CORE_HITM (1 << 10)
  362. /* reserved */
  363. #define NHM_REMOTE_CACHE_FWD (1 << 12)
  364. #define NHM_REMOTE_DRAM (1 << 13)
  365. #define NHM_LOCAL_DRAM (1 << 14)
  366. #define NHM_NON_DRAM (1 << 15)
  367. #define NHM_ALL_DRAM (NHM_REMOTE_DRAM|NHM_LOCAL_DRAM)
  368. #define NHM_DMND_READ (NHM_DMND_DATA_RD)
  369. #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
  370. #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
  371. #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
  372. #define NHM_L3_MISS (NHM_NON_DRAM|NHM_ALL_DRAM|NHM_REMOTE_CACHE_FWD)
  373. #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
  374. static __initconst const u64 nehalem_hw_cache_extra_regs
  375. [PERF_COUNT_HW_CACHE_MAX]
  376. [PERF_COUNT_HW_CACHE_OP_MAX]
  377. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  378. {
  379. [ C(LL ) ] = {
  380. [ C(OP_READ) ] = {
  381. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
  382. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
  383. },
  384. [ C(OP_WRITE) ] = {
  385. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
  386. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
  387. },
  388. [ C(OP_PREFETCH) ] = {
  389. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
  390. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
  391. },
  392. },
  393. [ C(NODE) ] = {
  394. [ C(OP_READ) ] = {
  395. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_ALL_DRAM,
  396. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE_DRAM,
  397. },
  398. [ C(OP_WRITE) ] = {
  399. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_ALL_DRAM,
  400. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE_DRAM,
  401. },
  402. [ C(OP_PREFETCH) ] = {
  403. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_ALL_DRAM,
  404. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE_DRAM,
  405. },
  406. },
  407. };
  408. static __initconst const u64 nehalem_hw_cache_event_ids
  409. [PERF_COUNT_HW_CACHE_MAX]
  410. [PERF_COUNT_HW_CACHE_OP_MAX]
  411. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  412. {
  413. [ C(L1D) ] = {
  414. [ C(OP_READ) ] = {
  415. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  416. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  417. },
  418. [ C(OP_WRITE) ] = {
  419. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  420. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  421. },
  422. [ C(OP_PREFETCH) ] = {
  423. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  424. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  425. },
  426. },
  427. [ C(L1I ) ] = {
  428. [ C(OP_READ) ] = {
  429. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  430. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  431. },
  432. [ C(OP_WRITE) ] = {
  433. [ C(RESULT_ACCESS) ] = -1,
  434. [ C(RESULT_MISS) ] = -1,
  435. },
  436. [ C(OP_PREFETCH) ] = {
  437. [ C(RESULT_ACCESS) ] = 0x0,
  438. [ C(RESULT_MISS) ] = 0x0,
  439. },
  440. },
  441. [ C(LL ) ] = {
  442. [ C(OP_READ) ] = {
  443. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  444. [ C(RESULT_ACCESS) ] = 0x01b7,
  445. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  446. [ C(RESULT_MISS) ] = 0x01b7,
  447. },
  448. /*
  449. * Use RFO, not WRITEBACK, because a write miss would typically occur
  450. * on RFO.
  451. */
  452. [ C(OP_WRITE) ] = {
  453. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  454. [ C(RESULT_ACCESS) ] = 0x01b7,
  455. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  456. [ C(RESULT_MISS) ] = 0x01b7,
  457. },
  458. [ C(OP_PREFETCH) ] = {
  459. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  460. [ C(RESULT_ACCESS) ] = 0x01b7,
  461. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  462. [ C(RESULT_MISS) ] = 0x01b7,
  463. },
  464. },
  465. [ C(DTLB) ] = {
  466. [ C(OP_READ) ] = {
  467. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  468. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  469. },
  470. [ C(OP_WRITE) ] = {
  471. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  472. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  473. },
  474. [ C(OP_PREFETCH) ] = {
  475. [ C(RESULT_ACCESS) ] = 0x0,
  476. [ C(RESULT_MISS) ] = 0x0,
  477. },
  478. },
  479. [ C(ITLB) ] = {
  480. [ C(OP_READ) ] = {
  481. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  482. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  483. },
  484. [ C(OP_WRITE) ] = {
  485. [ C(RESULT_ACCESS) ] = -1,
  486. [ C(RESULT_MISS) ] = -1,
  487. },
  488. [ C(OP_PREFETCH) ] = {
  489. [ C(RESULT_ACCESS) ] = -1,
  490. [ C(RESULT_MISS) ] = -1,
  491. },
  492. },
  493. [ C(BPU ) ] = {
  494. [ C(OP_READ) ] = {
  495. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  496. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  497. },
  498. [ C(OP_WRITE) ] = {
  499. [ C(RESULT_ACCESS) ] = -1,
  500. [ C(RESULT_MISS) ] = -1,
  501. },
  502. [ C(OP_PREFETCH) ] = {
  503. [ C(RESULT_ACCESS) ] = -1,
  504. [ C(RESULT_MISS) ] = -1,
  505. },
  506. },
  507. [ C(NODE) ] = {
  508. [ C(OP_READ) ] = {
  509. [ C(RESULT_ACCESS) ] = 0x01b7,
  510. [ C(RESULT_MISS) ] = 0x01b7,
  511. },
  512. [ C(OP_WRITE) ] = {
  513. [ C(RESULT_ACCESS) ] = 0x01b7,
  514. [ C(RESULT_MISS) ] = 0x01b7,
  515. },
  516. [ C(OP_PREFETCH) ] = {
  517. [ C(RESULT_ACCESS) ] = 0x01b7,
  518. [ C(RESULT_MISS) ] = 0x01b7,
  519. },
  520. },
  521. };
  522. static __initconst const u64 core2_hw_cache_event_ids
  523. [PERF_COUNT_HW_CACHE_MAX]
  524. [PERF_COUNT_HW_CACHE_OP_MAX]
  525. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  526. {
  527. [ C(L1D) ] = {
  528. [ C(OP_READ) ] = {
  529. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  530. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  531. },
  532. [ C(OP_WRITE) ] = {
  533. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  534. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  535. },
  536. [ C(OP_PREFETCH) ] = {
  537. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  538. [ C(RESULT_MISS) ] = 0,
  539. },
  540. },
  541. [ C(L1I ) ] = {
  542. [ C(OP_READ) ] = {
  543. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  544. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  545. },
  546. [ C(OP_WRITE) ] = {
  547. [ C(RESULT_ACCESS) ] = -1,
  548. [ C(RESULT_MISS) ] = -1,
  549. },
  550. [ C(OP_PREFETCH) ] = {
  551. [ C(RESULT_ACCESS) ] = 0,
  552. [ C(RESULT_MISS) ] = 0,
  553. },
  554. },
  555. [ C(LL ) ] = {
  556. [ C(OP_READ) ] = {
  557. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  558. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  559. },
  560. [ C(OP_WRITE) ] = {
  561. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  562. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  563. },
  564. [ C(OP_PREFETCH) ] = {
  565. [ C(RESULT_ACCESS) ] = 0,
  566. [ C(RESULT_MISS) ] = 0,
  567. },
  568. },
  569. [ C(DTLB) ] = {
  570. [ C(OP_READ) ] = {
  571. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  572. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  573. },
  574. [ C(OP_WRITE) ] = {
  575. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  576. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  577. },
  578. [ C(OP_PREFETCH) ] = {
  579. [ C(RESULT_ACCESS) ] = 0,
  580. [ C(RESULT_MISS) ] = 0,
  581. },
  582. },
  583. [ C(ITLB) ] = {
  584. [ C(OP_READ) ] = {
  585. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  586. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  587. },
  588. [ C(OP_WRITE) ] = {
  589. [ C(RESULT_ACCESS) ] = -1,
  590. [ C(RESULT_MISS) ] = -1,
  591. },
  592. [ C(OP_PREFETCH) ] = {
  593. [ C(RESULT_ACCESS) ] = -1,
  594. [ C(RESULT_MISS) ] = -1,
  595. },
  596. },
  597. [ C(BPU ) ] = {
  598. [ C(OP_READ) ] = {
  599. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  600. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  601. },
  602. [ C(OP_WRITE) ] = {
  603. [ C(RESULT_ACCESS) ] = -1,
  604. [ C(RESULT_MISS) ] = -1,
  605. },
  606. [ C(OP_PREFETCH) ] = {
  607. [ C(RESULT_ACCESS) ] = -1,
  608. [ C(RESULT_MISS) ] = -1,
  609. },
  610. },
  611. };
  612. static __initconst const u64 atom_hw_cache_event_ids
  613. [PERF_COUNT_HW_CACHE_MAX]
  614. [PERF_COUNT_HW_CACHE_OP_MAX]
  615. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  616. {
  617. [ C(L1D) ] = {
  618. [ C(OP_READ) ] = {
  619. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  620. [ C(RESULT_MISS) ] = 0,
  621. },
  622. [ C(OP_WRITE) ] = {
  623. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  624. [ C(RESULT_MISS) ] = 0,
  625. },
  626. [ C(OP_PREFETCH) ] = {
  627. [ C(RESULT_ACCESS) ] = 0x0,
  628. [ C(RESULT_MISS) ] = 0,
  629. },
  630. },
  631. [ C(L1I ) ] = {
  632. [ C(OP_READ) ] = {
  633. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  634. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  635. },
  636. [ C(OP_WRITE) ] = {
  637. [ C(RESULT_ACCESS) ] = -1,
  638. [ C(RESULT_MISS) ] = -1,
  639. },
  640. [ C(OP_PREFETCH) ] = {
  641. [ C(RESULT_ACCESS) ] = 0,
  642. [ C(RESULT_MISS) ] = 0,
  643. },
  644. },
  645. [ C(LL ) ] = {
  646. [ C(OP_READ) ] = {
  647. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  648. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  649. },
  650. [ C(OP_WRITE) ] = {
  651. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  652. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  653. },
  654. [ C(OP_PREFETCH) ] = {
  655. [ C(RESULT_ACCESS) ] = 0,
  656. [ C(RESULT_MISS) ] = 0,
  657. },
  658. },
  659. [ C(DTLB) ] = {
  660. [ C(OP_READ) ] = {
  661. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  662. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  663. },
  664. [ C(OP_WRITE) ] = {
  665. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  666. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  667. },
  668. [ C(OP_PREFETCH) ] = {
  669. [ C(RESULT_ACCESS) ] = 0,
  670. [ C(RESULT_MISS) ] = 0,
  671. },
  672. },
  673. [ C(ITLB) ] = {
  674. [ C(OP_READ) ] = {
  675. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  676. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  677. },
  678. [ C(OP_WRITE) ] = {
  679. [ C(RESULT_ACCESS) ] = -1,
  680. [ C(RESULT_MISS) ] = -1,
  681. },
  682. [ C(OP_PREFETCH) ] = {
  683. [ C(RESULT_ACCESS) ] = -1,
  684. [ C(RESULT_MISS) ] = -1,
  685. },
  686. },
  687. [ C(BPU ) ] = {
  688. [ C(OP_READ) ] = {
  689. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  690. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  691. },
  692. [ C(OP_WRITE) ] = {
  693. [ C(RESULT_ACCESS) ] = -1,
  694. [ C(RESULT_MISS) ] = -1,
  695. },
  696. [ C(OP_PREFETCH) ] = {
  697. [ C(RESULT_ACCESS) ] = -1,
  698. [ C(RESULT_MISS) ] = -1,
  699. },
  700. },
  701. };
  702. static void intel_pmu_disable_all(void)
  703. {
  704. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  705. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  706. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  707. intel_pmu_disable_bts();
  708. intel_pmu_pebs_disable_all();
  709. intel_pmu_lbr_disable_all();
  710. }
  711. static void intel_pmu_enable_all(int added)
  712. {
  713. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  714. intel_pmu_pebs_enable_all();
  715. intel_pmu_lbr_enable_all();
  716. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
  717. x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
  718. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  719. struct perf_event *event =
  720. cpuc->events[X86_PMC_IDX_FIXED_BTS];
  721. if (WARN_ON_ONCE(!event))
  722. return;
  723. intel_pmu_enable_bts(event->hw.config);
  724. }
  725. }
  726. /*
  727. * Workaround for:
  728. * Intel Errata AAK100 (model 26)
  729. * Intel Errata AAP53 (model 30)
  730. * Intel Errata BD53 (model 44)
  731. *
  732. * The official story:
  733. * These chips need to be 'reset' when adding counters by programming the
  734. * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
  735. * in sequence on the same PMC or on different PMCs.
  736. *
  737. * In practise it appears some of these events do in fact count, and
  738. * we need to programm all 4 events.
  739. */
  740. static void intel_pmu_nhm_workaround(void)
  741. {
  742. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  743. static const unsigned long nhm_magic[4] = {
  744. 0x4300B5,
  745. 0x4300D2,
  746. 0x4300B1,
  747. 0x4300B1
  748. };
  749. struct perf_event *event;
  750. int i;
  751. /*
  752. * The Errata requires below steps:
  753. * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
  754. * 2) Configure 4 PERFEVTSELx with the magic events and clear
  755. * the corresponding PMCx;
  756. * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
  757. * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
  758. * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
  759. */
  760. /*
  761. * The real steps we choose are a little different from above.
  762. * A) To reduce MSR operations, we don't run step 1) as they
  763. * are already cleared before this function is called;
  764. * B) Call x86_perf_event_update to save PMCx before configuring
  765. * PERFEVTSELx with magic number;
  766. * C) With step 5), we do clear only when the PERFEVTSELx is
  767. * not used currently.
  768. * D) Call x86_perf_event_set_period to restore PMCx;
  769. */
  770. /* We always operate 4 pairs of PERF Counters */
  771. for (i = 0; i < 4; i++) {
  772. event = cpuc->events[i];
  773. if (event)
  774. x86_perf_event_update(event);
  775. }
  776. for (i = 0; i < 4; i++) {
  777. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
  778. wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
  779. }
  780. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
  781. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  782. for (i = 0; i < 4; i++) {
  783. event = cpuc->events[i];
  784. if (event) {
  785. x86_perf_event_set_period(event);
  786. __x86_pmu_enable_event(&event->hw,
  787. ARCH_PERFMON_EVENTSEL_ENABLE);
  788. } else
  789. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
  790. }
  791. }
  792. static void intel_pmu_nhm_enable_all(int added)
  793. {
  794. if (added)
  795. intel_pmu_nhm_workaround();
  796. intel_pmu_enable_all(added);
  797. }
  798. static inline u64 intel_pmu_get_status(void)
  799. {
  800. u64 status;
  801. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  802. return status;
  803. }
  804. static inline void intel_pmu_ack_status(u64 ack)
  805. {
  806. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  807. }
  808. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  809. {
  810. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  811. u64 ctrl_val, mask;
  812. mask = 0xfULL << (idx * 4);
  813. rdmsrl(hwc->config_base, ctrl_val);
  814. ctrl_val &= ~mask;
  815. wrmsrl(hwc->config_base, ctrl_val);
  816. }
  817. static void intel_pmu_disable_event(struct perf_event *event)
  818. {
  819. struct hw_perf_event *hwc = &event->hw;
  820. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  821. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  822. intel_pmu_disable_bts();
  823. intel_pmu_drain_bts_buffer();
  824. return;
  825. }
  826. cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
  827. cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
  828. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  829. intel_pmu_disable_fixed(hwc);
  830. return;
  831. }
  832. x86_pmu_disable_event(event);
  833. if (unlikely(event->attr.precise_ip))
  834. intel_pmu_pebs_disable(event);
  835. }
  836. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  837. {
  838. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  839. u64 ctrl_val, bits, mask;
  840. /*
  841. * Enable IRQ generation (0x8),
  842. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  843. * if requested:
  844. */
  845. bits = 0x8ULL;
  846. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  847. bits |= 0x2;
  848. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  849. bits |= 0x1;
  850. /*
  851. * ANY bit is supported in v3 and up
  852. */
  853. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  854. bits |= 0x4;
  855. bits <<= (idx * 4);
  856. mask = 0xfULL << (idx * 4);
  857. rdmsrl(hwc->config_base, ctrl_val);
  858. ctrl_val &= ~mask;
  859. ctrl_val |= bits;
  860. wrmsrl(hwc->config_base, ctrl_val);
  861. }
  862. static void intel_pmu_enable_event(struct perf_event *event)
  863. {
  864. struct hw_perf_event *hwc = &event->hw;
  865. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  866. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  867. if (!__this_cpu_read(cpu_hw_events.enabled))
  868. return;
  869. intel_pmu_enable_bts(hwc->config);
  870. return;
  871. }
  872. if (event->attr.exclude_host)
  873. cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
  874. if (event->attr.exclude_guest)
  875. cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
  876. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  877. intel_pmu_enable_fixed(hwc);
  878. return;
  879. }
  880. if (unlikely(event->attr.precise_ip))
  881. intel_pmu_pebs_enable(event);
  882. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  883. }
  884. /*
  885. * Save and restart an expired event. Called by NMI contexts,
  886. * so it has to be careful about preempting normal event ops:
  887. */
  888. int intel_pmu_save_and_restart(struct perf_event *event)
  889. {
  890. x86_perf_event_update(event);
  891. return x86_perf_event_set_period(event);
  892. }
  893. static void intel_pmu_reset(void)
  894. {
  895. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  896. unsigned long flags;
  897. int idx;
  898. if (!x86_pmu.num_counters)
  899. return;
  900. local_irq_save(flags);
  901. printk("clearing PMU state on CPU#%d\n", smp_processor_id());
  902. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  903. checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
  904. checking_wrmsrl(x86_pmu_event_addr(idx), 0ull);
  905. }
  906. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  907. checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  908. if (ds)
  909. ds->bts_index = ds->bts_buffer_base;
  910. local_irq_restore(flags);
  911. }
  912. /*
  913. * This handler is triggered by the local APIC, so the APIC IRQ handling
  914. * rules apply:
  915. */
  916. static int intel_pmu_handle_irq(struct pt_regs *regs)
  917. {
  918. struct perf_sample_data data;
  919. struct cpu_hw_events *cpuc;
  920. int bit, loops;
  921. u64 status;
  922. int handled;
  923. perf_sample_data_init(&data, 0);
  924. cpuc = &__get_cpu_var(cpu_hw_events);
  925. /*
  926. * Some chipsets need to unmask the LVTPC in a particular spot
  927. * inside the nmi handler. As a result, the unmasking was pushed
  928. * into all the nmi handlers.
  929. *
  930. * This handler doesn't seem to have any issues with the unmasking
  931. * so it was left at the top.
  932. */
  933. apic_write(APIC_LVTPC, APIC_DM_NMI);
  934. intel_pmu_disable_all();
  935. handled = intel_pmu_drain_bts_buffer();
  936. status = intel_pmu_get_status();
  937. if (!status) {
  938. intel_pmu_enable_all(0);
  939. return handled;
  940. }
  941. loops = 0;
  942. again:
  943. intel_pmu_ack_status(status);
  944. if (++loops > 100) {
  945. WARN_ONCE(1, "perfevents: irq loop stuck!\n");
  946. perf_event_print_debug();
  947. intel_pmu_reset();
  948. goto done;
  949. }
  950. inc_irq_stat(apic_perf_irqs);
  951. intel_pmu_lbr_read();
  952. /*
  953. * PEBS overflow sets bit 62 in the global status register
  954. */
  955. if (__test_and_clear_bit(62, (unsigned long *)&status)) {
  956. handled++;
  957. x86_pmu.drain_pebs(regs);
  958. }
  959. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  960. struct perf_event *event = cpuc->events[bit];
  961. handled++;
  962. if (!test_bit(bit, cpuc->active_mask))
  963. continue;
  964. if (!intel_pmu_save_and_restart(event))
  965. continue;
  966. data.period = event->hw.last_period;
  967. if (perf_event_overflow(event, &data, regs))
  968. x86_pmu_stop(event, 0);
  969. }
  970. /*
  971. * Repeat if there is more work to be done:
  972. */
  973. status = intel_pmu_get_status();
  974. if (status)
  975. goto again;
  976. done:
  977. intel_pmu_enable_all(0);
  978. return handled;
  979. }
  980. static struct event_constraint *
  981. intel_bts_constraints(struct perf_event *event)
  982. {
  983. struct hw_perf_event *hwc = &event->hw;
  984. unsigned int hw_event, bts_event;
  985. if (event->attr.freq)
  986. return NULL;
  987. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  988. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  989. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  990. return &bts_constraint;
  991. return NULL;
  992. }
  993. static bool intel_try_alt_er(struct perf_event *event, int orig_idx)
  994. {
  995. if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
  996. return false;
  997. if (event->hw.extra_reg.idx == EXTRA_REG_RSP_0) {
  998. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  999. event->hw.config |= 0x01bb;
  1000. event->hw.extra_reg.idx = EXTRA_REG_RSP_1;
  1001. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
  1002. } else if (event->hw.extra_reg.idx == EXTRA_REG_RSP_1) {
  1003. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  1004. event->hw.config |= 0x01b7;
  1005. event->hw.extra_reg.idx = EXTRA_REG_RSP_0;
  1006. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
  1007. }
  1008. if (event->hw.extra_reg.idx == orig_idx)
  1009. return false;
  1010. return true;
  1011. }
  1012. /*
  1013. * manage allocation of shared extra msr for certain events
  1014. *
  1015. * sharing can be:
  1016. * per-cpu: to be shared between the various events on a single PMU
  1017. * per-core: per-cpu + shared by HT threads
  1018. */
  1019. static struct event_constraint *
  1020. __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
  1021. struct perf_event *event)
  1022. {
  1023. struct event_constraint *c = &emptyconstraint;
  1024. struct hw_perf_event_extra *reg = &event->hw.extra_reg;
  1025. struct er_account *era;
  1026. unsigned long flags;
  1027. int orig_idx = reg->idx;
  1028. /* already allocated shared msr */
  1029. if (reg->alloc)
  1030. return &unconstrained;
  1031. again:
  1032. era = &cpuc->shared_regs->regs[reg->idx];
  1033. /*
  1034. * we use spin_lock_irqsave() to avoid lockdep issues when
  1035. * passing a fake cpuc
  1036. */
  1037. raw_spin_lock_irqsave(&era->lock, flags);
  1038. if (!atomic_read(&era->ref) || era->config == reg->config) {
  1039. /* lock in msr value */
  1040. era->config = reg->config;
  1041. era->reg = reg->reg;
  1042. /* one more user */
  1043. atomic_inc(&era->ref);
  1044. /* no need to reallocate during incremental event scheduling */
  1045. reg->alloc = 1;
  1046. /*
  1047. * All events using extra_reg are unconstrained.
  1048. * Avoids calling x86_get_event_constraints()
  1049. *
  1050. * Must revisit if extra_reg controlling events
  1051. * ever have constraints. Worst case we go through
  1052. * the regular event constraint table.
  1053. */
  1054. c = &unconstrained;
  1055. } else if (intel_try_alt_er(event, orig_idx)) {
  1056. raw_spin_unlock_irqrestore(&era->lock, flags);
  1057. goto again;
  1058. }
  1059. raw_spin_unlock_irqrestore(&era->lock, flags);
  1060. return c;
  1061. }
  1062. static void
  1063. __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
  1064. struct hw_perf_event_extra *reg)
  1065. {
  1066. struct er_account *era;
  1067. /*
  1068. * only put constraint if extra reg was actually
  1069. * allocated. Also takes care of event which do
  1070. * not use an extra shared reg
  1071. */
  1072. if (!reg->alloc)
  1073. return;
  1074. era = &cpuc->shared_regs->regs[reg->idx];
  1075. /* one fewer user */
  1076. atomic_dec(&era->ref);
  1077. /* allocate again next time */
  1078. reg->alloc = 0;
  1079. }
  1080. static struct event_constraint *
  1081. intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
  1082. struct perf_event *event)
  1083. {
  1084. struct event_constraint *c = NULL;
  1085. if (event->hw.extra_reg.idx != EXTRA_REG_NONE)
  1086. c = __intel_shared_reg_get_constraints(cpuc, event);
  1087. return c;
  1088. }
  1089. struct event_constraint *
  1090. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1091. {
  1092. struct event_constraint *c;
  1093. if (x86_pmu.event_constraints) {
  1094. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1095. if ((event->hw.config & c->cmask) == c->code)
  1096. return c;
  1097. }
  1098. }
  1099. return &unconstrained;
  1100. }
  1101. static struct event_constraint *
  1102. intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1103. {
  1104. struct event_constraint *c;
  1105. c = intel_bts_constraints(event);
  1106. if (c)
  1107. return c;
  1108. c = intel_pebs_constraints(event);
  1109. if (c)
  1110. return c;
  1111. c = intel_shared_regs_constraints(cpuc, event);
  1112. if (c)
  1113. return c;
  1114. return x86_get_event_constraints(cpuc, event);
  1115. }
  1116. static void
  1117. intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
  1118. struct perf_event *event)
  1119. {
  1120. struct hw_perf_event_extra *reg;
  1121. reg = &event->hw.extra_reg;
  1122. if (reg->idx != EXTRA_REG_NONE)
  1123. __intel_shared_reg_put_constraints(cpuc, reg);
  1124. }
  1125. static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
  1126. struct perf_event *event)
  1127. {
  1128. intel_put_shared_regs_event_constraints(cpuc, event);
  1129. }
  1130. static int intel_pmu_hw_config(struct perf_event *event)
  1131. {
  1132. int ret = x86_pmu_hw_config(event);
  1133. if (ret)
  1134. return ret;
  1135. if (event->attr.precise_ip &&
  1136. (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  1137. /*
  1138. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  1139. * (0x003c) so that we can use it with PEBS.
  1140. *
  1141. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  1142. * PEBS capable. However we can use INST_RETIRED.ANY_P
  1143. * (0x00c0), which is a PEBS capable event, to get the same
  1144. * count.
  1145. *
  1146. * INST_RETIRED.ANY_P counts the number of cycles that retires
  1147. * CNTMASK instructions. By setting CNTMASK to a value (16)
  1148. * larger than the maximum number of instructions that can be
  1149. * retired per cycle (4) and then inverting the condition, we
  1150. * count all cycles that retire 16 or less instructions, which
  1151. * is every cycle.
  1152. *
  1153. * Thereby we gain a PEBS capable cycle counter.
  1154. */
  1155. u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
  1156. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  1157. event->hw.config = alt_config;
  1158. }
  1159. if (event->attr.type != PERF_TYPE_RAW)
  1160. return 0;
  1161. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  1162. return 0;
  1163. if (x86_pmu.version < 3)
  1164. return -EINVAL;
  1165. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1166. return -EACCES;
  1167. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  1168. return 0;
  1169. }
  1170. struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
  1171. {
  1172. if (x86_pmu.guest_get_msrs)
  1173. return x86_pmu.guest_get_msrs(nr);
  1174. *nr = 0;
  1175. return NULL;
  1176. }
  1177. EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
  1178. static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
  1179. {
  1180. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1181. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  1182. arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
  1183. arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
  1184. arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
  1185. *nr = 1;
  1186. return arr;
  1187. }
  1188. static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
  1189. {
  1190. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1191. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  1192. int idx;
  1193. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1194. struct perf_event *event = cpuc->events[idx];
  1195. arr[idx].msr = x86_pmu_config_addr(idx);
  1196. arr[idx].host = arr[idx].guest = 0;
  1197. if (!test_bit(idx, cpuc->active_mask))
  1198. continue;
  1199. arr[idx].host = arr[idx].guest =
  1200. event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
  1201. if (event->attr.exclude_host)
  1202. arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  1203. else if (event->attr.exclude_guest)
  1204. arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  1205. }
  1206. *nr = x86_pmu.num_counters;
  1207. return arr;
  1208. }
  1209. static void core_pmu_enable_event(struct perf_event *event)
  1210. {
  1211. if (!event->attr.exclude_host)
  1212. x86_pmu_enable_event(event);
  1213. }
  1214. static void core_pmu_enable_all(int added)
  1215. {
  1216. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1217. int idx;
  1218. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1219. struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
  1220. if (!test_bit(idx, cpuc->active_mask) ||
  1221. cpuc->events[idx]->attr.exclude_host)
  1222. continue;
  1223. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  1224. }
  1225. }
  1226. static __initconst const struct x86_pmu core_pmu = {
  1227. .name = "core",
  1228. .handle_irq = x86_pmu_handle_irq,
  1229. .disable_all = x86_pmu_disable_all,
  1230. .enable_all = core_pmu_enable_all,
  1231. .enable = core_pmu_enable_event,
  1232. .disable = x86_pmu_disable_event,
  1233. .hw_config = x86_pmu_hw_config,
  1234. .schedule_events = x86_schedule_events,
  1235. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1236. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1237. .event_map = intel_pmu_event_map,
  1238. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1239. .apic = 1,
  1240. /*
  1241. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1242. * so we install an artificial 1<<31 period regardless of
  1243. * the generic event period:
  1244. */
  1245. .max_period = (1ULL << 31) - 1,
  1246. .get_event_constraints = intel_get_event_constraints,
  1247. .put_event_constraints = intel_put_event_constraints,
  1248. .event_constraints = intel_core_event_constraints,
  1249. .guest_get_msrs = core_guest_get_msrs,
  1250. };
  1251. struct intel_shared_regs *allocate_shared_regs(int cpu)
  1252. {
  1253. struct intel_shared_regs *regs;
  1254. int i;
  1255. regs = kzalloc_node(sizeof(struct intel_shared_regs),
  1256. GFP_KERNEL, cpu_to_node(cpu));
  1257. if (regs) {
  1258. /*
  1259. * initialize the locks to keep lockdep happy
  1260. */
  1261. for (i = 0; i < EXTRA_REG_MAX; i++)
  1262. raw_spin_lock_init(&regs->regs[i].lock);
  1263. regs->core_id = -1;
  1264. }
  1265. return regs;
  1266. }
  1267. static int intel_pmu_cpu_prepare(int cpu)
  1268. {
  1269. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1270. if (!x86_pmu.extra_regs)
  1271. return NOTIFY_OK;
  1272. cpuc->shared_regs = allocate_shared_regs(cpu);
  1273. if (!cpuc->shared_regs)
  1274. return NOTIFY_BAD;
  1275. return NOTIFY_OK;
  1276. }
  1277. static void intel_pmu_cpu_starting(int cpu)
  1278. {
  1279. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1280. int core_id = topology_core_id(cpu);
  1281. int i;
  1282. init_debug_store_on_cpu(cpu);
  1283. /*
  1284. * Deal with CPUs that don't clear their LBRs on power-up.
  1285. */
  1286. intel_pmu_lbr_reset();
  1287. if (!cpuc->shared_regs || (x86_pmu.er_flags & ERF_NO_HT_SHARING))
  1288. return;
  1289. for_each_cpu(i, topology_thread_cpumask(cpu)) {
  1290. struct intel_shared_regs *pc;
  1291. pc = per_cpu(cpu_hw_events, i).shared_regs;
  1292. if (pc && pc->core_id == core_id) {
  1293. cpuc->kfree_on_online = cpuc->shared_regs;
  1294. cpuc->shared_regs = pc;
  1295. break;
  1296. }
  1297. }
  1298. cpuc->shared_regs->core_id = core_id;
  1299. cpuc->shared_regs->refcnt++;
  1300. }
  1301. static void intel_pmu_cpu_dying(int cpu)
  1302. {
  1303. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1304. struct intel_shared_regs *pc;
  1305. pc = cpuc->shared_regs;
  1306. if (pc) {
  1307. if (pc->core_id == -1 || --pc->refcnt == 0)
  1308. kfree(pc);
  1309. cpuc->shared_regs = NULL;
  1310. }
  1311. fini_debug_store_on_cpu(cpu);
  1312. }
  1313. static __initconst const struct x86_pmu intel_pmu = {
  1314. .name = "Intel",
  1315. .handle_irq = intel_pmu_handle_irq,
  1316. .disable_all = intel_pmu_disable_all,
  1317. .enable_all = intel_pmu_enable_all,
  1318. .enable = intel_pmu_enable_event,
  1319. .disable = intel_pmu_disable_event,
  1320. .hw_config = intel_pmu_hw_config,
  1321. .schedule_events = x86_schedule_events,
  1322. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1323. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1324. .event_map = intel_pmu_event_map,
  1325. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1326. .apic = 1,
  1327. /*
  1328. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1329. * so we install an artificial 1<<31 period regardless of
  1330. * the generic event period:
  1331. */
  1332. .max_period = (1ULL << 31) - 1,
  1333. .get_event_constraints = intel_get_event_constraints,
  1334. .put_event_constraints = intel_put_event_constraints,
  1335. .cpu_prepare = intel_pmu_cpu_prepare,
  1336. .cpu_starting = intel_pmu_cpu_starting,
  1337. .cpu_dying = intel_pmu_cpu_dying,
  1338. .guest_get_msrs = intel_guest_get_msrs,
  1339. };
  1340. static __init void intel_clovertown_quirk(void)
  1341. {
  1342. /*
  1343. * PEBS is unreliable due to:
  1344. *
  1345. * AJ67 - PEBS may experience CPL leaks
  1346. * AJ68 - PEBS PMI may be delayed by one event
  1347. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  1348. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  1349. *
  1350. * AJ67 could be worked around by restricting the OS/USR flags.
  1351. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  1352. *
  1353. * AJ106 could possibly be worked around by not allowing LBR
  1354. * usage from PEBS, including the fixup.
  1355. * AJ68 could possibly be worked around by always programming
  1356. * a pebs_event_reset[0] value and coping with the lost events.
  1357. *
  1358. * But taken together it might just make sense to not enable PEBS on
  1359. * these chips.
  1360. */
  1361. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  1362. x86_pmu.pebs = 0;
  1363. x86_pmu.pebs_constraints = NULL;
  1364. }
  1365. static __init void intel_sandybridge_quirk(void)
  1366. {
  1367. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  1368. x86_pmu.pebs = 0;
  1369. x86_pmu.pebs_constraints = NULL;
  1370. }
  1371. static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
  1372. { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
  1373. { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
  1374. { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
  1375. { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
  1376. { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
  1377. { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
  1378. { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
  1379. };
  1380. static __init void intel_arch_events_quirk(void)
  1381. {
  1382. int bit;
  1383. /* disable event that reported as not presend by cpuid */
  1384. for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
  1385. intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
  1386. printk(KERN_WARNING "CPUID marked event: \'%s\' unavailable\n",
  1387. intel_arch_events_map[bit].name);
  1388. }
  1389. }
  1390. static __init void intel_nehalem_quirk(void)
  1391. {
  1392. union cpuid10_ebx ebx;
  1393. ebx.full = x86_pmu.events_maskl;
  1394. if (ebx.split.no_branch_misses_retired) {
  1395. /*
  1396. * Erratum AAJ80 detected, we work it around by using
  1397. * the BR_MISP_EXEC.ANY event. This will over-count
  1398. * branch-misses, but it's still much better than the
  1399. * architectural event which is often completely bogus:
  1400. */
  1401. intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
  1402. ebx.split.no_branch_misses_retired = 0;
  1403. x86_pmu.events_maskl = ebx.full;
  1404. printk(KERN_INFO "CPU erratum AAJ80 worked around\n");
  1405. }
  1406. }
  1407. __init int intel_pmu_init(void)
  1408. {
  1409. union cpuid10_edx edx;
  1410. union cpuid10_eax eax;
  1411. union cpuid10_ebx ebx;
  1412. unsigned int unused;
  1413. int version;
  1414. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  1415. switch (boot_cpu_data.x86) {
  1416. case 0x6:
  1417. return p6_pmu_init();
  1418. case 0xf:
  1419. return p4_pmu_init();
  1420. }
  1421. return -ENODEV;
  1422. }
  1423. /*
  1424. * Check whether the Architectural PerfMon supports
  1425. * Branch Misses Retired hw_event or not.
  1426. */
  1427. cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
  1428. if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
  1429. return -ENODEV;
  1430. version = eax.split.version_id;
  1431. if (version < 2)
  1432. x86_pmu = core_pmu;
  1433. else
  1434. x86_pmu = intel_pmu;
  1435. x86_pmu.version = version;
  1436. x86_pmu.num_counters = eax.split.num_counters;
  1437. x86_pmu.cntval_bits = eax.split.bit_width;
  1438. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  1439. x86_pmu.events_maskl = ebx.full;
  1440. x86_pmu.events_mask_len = eax.split.mask_length;
  1441. /*
  1442. * Quirk: v2 perfmon does not report fixed-purpose events, so
  1443. * assume at least 3 events:
  1444. */
  1445. if (version > 1)
  1446. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  1447. /*
  1448. * v2 and above have a perf capabilities MSR
  1449. */
  1450. if (version > 1) {
  1451. u64 capabilities;
  1452. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  1453. x86_pmu.intel_cap.capabilities = capabilities;
  1454. }
  1455. intel_ds_init();
  1456. x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
  1457. /*
  1458. * Install the hw-cache-events table:
  1459. */
  1460. switch (boot_cpu_data.x86_model) {
  1461. case 14: /* 65 nm core solo/duo, "Yonah" */
  1462. pr_cont("Core events, ");
  1463. break;
  1464. case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  1465. x86_add_quirk(intel_clovertown_quirk);
  1466. case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  1467. case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  1468. case 29: /* six-core 45 nm xeon "Dunnington" */
  1469. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  1470. sizeof(hw_cache_event_ids));
  1471. intel_pmu_lbr_init_core();
  1472. x86_pmu.event_constraints = intel_core2_event_constraints;
  1473. x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
  1474. pr_cont("Core2 events, ");
  1475. break;
  1476. case 26: /* 45 nm nehalem, "Bloomfield" */
  1477. case 30: /* 45 nm nehalem, "Lynnfield" */
  1478. case 46: /* 45 nm nehalem-ex, "Beckton" */
  1479. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  1480. sizeof(hw_cache_event_ids));
  1481. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1482. sizeof(hw_cache_extra_regs));
  1483. intel_pmu_lbr_init_nhm();
  1484. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  1485. x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
  1486. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1487. x86_pmu.extra_regs = intel_nehalem_extra_regs;
  1488. /* UOPS_ISSUED.STALLED_CYCLES */
  1489. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1490. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1491. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1492. x86_add_quirk(intel_nehalem_quirk);
  1493. pr_cont("Nehalem events, ");
  1494. break;
  1495. case 28: /* Atom */
  1496. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  1497. sizeof(hw_cache_event_ids));
  1498. intel_pmu_lbr_init_atom();
  1499. x86_pmu.event_constraints = intel_gen_event_constraints;
  1500. x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
  1501. pr_cont("Atom events, ");
  1502. break;
  1503. case 37: /* 32 nm nehalem, "Clarkdale" */
  1504. case 44: /* 32 nm nehalem, "Gulftown" */
  1505. case 47: /* 32 nm Xeon E7 */
  1506. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  1507. sizeof(hw_cache_event_ids));
  1508. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1509. sizeof(hw_cache_extra_regs));
  1510. intel_pmu_lbr_init_nhm();
  1511. x86_pmu.event_constraints = intel_westmere_event_constraints;
  1512. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1513. x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
  1514. x86_pmu.extra_regs = intel_westmere_extra_regs;
  1515. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1516. /* UOPS_ISSUED.STALLED_CYCLES */
  1517. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1518. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1519. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1520. pr_cont("Westmere events, ");
  1521. break;
  1522. case 42: /* SandyBridge */
  1523. x86_add_quirk(intel_sandybridge_quirk);
  1524. case 45: /* SandyBridge, "Romely-EP" */
  1525. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  1526. sizeof(hw_cache_event_ids));
  1527. intel_pmu_lbr_init_nhm();
  1528. x86_pmu.event_constraints = intel_snb_event_constraints;
  1529. x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
  1530. x86_pmu.extra_regs = intel_snb_extra_regs;
  1531. /* all extra regs are per-cpu when HT is on */
  1532. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1533. x86_pmu.er_flags |= ERF_NO_HT_SHARING;
  1534. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  1535. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1536. /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
  1537. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
  1538. pr_cont("SandyBridge events, ");
  1539. break;
  1540. default:
  1541. switch (x86_pmu.version) {
  1542. case 1:
  1543. x86_pmu.event_constraints = intel_v1_event_constraints;
  1544. pr_cont("generic architected perfmon v1, ");
  1545. break;
  1546. default:
  1547. /*
  1548. * default constraints for v2 and up
  1549. */
  1550. x86_pmu.event_constraints = intel_gen_event_constraints;
  1551. pr_cont("generic architected perfmon, ");
  1552. break;
  1553. }
  1554. }
  1555. return 0;
  1556. }