clock-sh73a0.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. /*
  2. * sh73a0 clock framework support
  3. *
  4. * Copyright (C) 2010 Magnus Damm
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/init.h>
  20. #include <linux/kernel.h>
  21. #include <linux/io.h>
  22. #include <linux/sh_clk.h>
  23. #include <linux/clkdev.h>
  24. #include <mach/common.h>
  25. #define FRQCRA 0xe6150000
  26. #define FRQCRB 0xe6150004
  27. #define FRQCRD 0xe61500e4
  28. #define VCLKCR1 0xe6150008
  29. #define VCLKCR2 0xe615000C
  30. #define VCLKCR3 0xe615001C
  31. #define ZBCKCR 0xe6150010
  32. #define FLCKCR 0xe6150014
  33. #define SD0CKCR 0xe6150074
  34. #define SD1CKCR 0xe6150078
  35. #define SD2CKCR 0xe615007C
  36. #define FSIACKCR 0xe6150018
  37. #define FSIBCKCR 0xe6150090
  38. #define SUBCKCR 0xe6150080
  39. #define SPUACKCR 0xe6150084
  40. #define SPUVCKCR 0xe6150094
  41. #define MSUCKCR 0xe6150088
  42. #define HSICKCR 0xe615008C
  43. #define MFCK1CR 0xe6150098
  44. #define MFCK2CR 0xe615009C
  45. #define DSITCKCR 0xe6150060
  46. #define DSI0PCKCR 0xe6150064
  47. #define DSI1PCKCR 0xe6150068
  48. #define DSI0PHYCR 0xe615006C
  49. #define DSI1PHYCR 0xe6150070
  50. #define PLLECR 0xe61500d0
  51. #define PLL0CR 0xe61500d8
  52. #define PLL1CR 0xe6150028
  53. #define PLL2CR 0xe615002c
  54. #define PLL3CR 0xe61500dc
  55. #define SMSTPCR0 0xe6150130
  56. #define SMSTPCR1 0xe6150134
  57. #define SMSTPCR2 0xe6150138
  58. #define SMSTPCR3 0xe615013c
  59. #define SMSTPCR4 0xe6150140
  60. #define SMSTPCR5 0xe6150144
  61. #define CKSCR 0xe61500c0
  62. /* Fixed 32 KHz root clock from EXTALR pin */
  63. static struct clk r_clk = {
  64. .rate = 32768,
  65. };
  66. /*
  67. * 26MHz default rate for the EXTAL1 root input clock.
  68. * If needed, reset this with clk_set_rate() from the platform code.
  69. */
  70. struct clk sh73a0_extal1_clk = {
  71. .rate = 26000000,
  72. };
  73. /*
  74. * 48MHz default rate for the EXTAL2 root input clock.
  75. * If needed, reset this with clk_set_rate() from the platform code.
  76. */
  77. struct clk sh73a0_extal2_clk = {
  78. .rate = 48000000,
  79. };
  80. /* A fixed divide-by-2 block */
  81. static unsigned long div2_recalc(struct clk *clk)
  82. {
  83. return clk->parent->rate / 2;
  84. }
  85. static struct clk_ops div2_clk_ops = {
  86. .recalc = div2_recalc,
  87. };
  88. static unsigned long div7_recalc(struct clk *clk)
  89. {
  90. return clk->parent->rate / 7;
  91. }
  92. static struct clk_ops div7_clk_ops = {
  93. .recalc = div7_recalc,
  94. };
  95. static unsigned long div13_recalc(struct clk *clk)
  96. {
  97. return clk->parent->rate / 13;
  98. }
  99. static struct clk_ops div13_clk_ops = {
  100. .recalc = div13_recalc,
  101. };
  102. /* Divide extal1 by two */
  103. static struct clk extal1_div2_clk = {
  104. .ops = &div2_clk_ops,
  105. .parent = &sh73a0_extal1_clk,
  106. };
  107. /* Divide extal2 by two */
  108. static struct clk extal2_div2_clk = {
  109. .ops = &div2_clk_ops,
  110. .parent = &sh73a0_extal2_clk,
  111. };
  112. static struct clk_ops main_clk_ops = {
  113. .recalc = followparent_recalc,
  114. };
  115. /* Main clock */
  116. static struct clk main_clk = {
  117. .ops = &main_clk_ops,
  118. };
  119. /* Divide Main clock by two */
  120. static struct clk main_div2_clk = {
  121. .ops = &div2_clk_ops,
  122. .parent = &main_clk,
  123. };
  124. /* PLL0, PLL1, PLL2, PLL3 */
  125. static unsigned long pll_recalc(struct clk *clk)
  126. {
  127. unsigned long mult = 1;
  128. if (__raw_readl(PLLECR) & (1 << clk->enable_bit)) {
  129. mult = (((__raw_readl(clk->enable_reg) >> 24) & 0x3f) + 1);
  130. /* handle CFG bit for PLL1 and PLL2 */
  131. switch (clk->enable_bit) {
  132. case 1:
  133. case 2:
  134. if (__raw_readl(clk->enable_reg) & (1 << 20))
  135. mult *= 2;
  136. }
  137. }
  138. return clk->parent->rate * mult;
  139. }
  140. static struct clk_ops pll_clk_ops = {
  141. .recalc = pll_recalc,
  142. };
  143. static struct clk pll0_clk = {
  144. .ops = &pll_clk_ops,
  145. .flags = CLK_ENABLE_ON_INIT,
  146. .parent = &main_clk,
  147. .enable_reg = (void __iomem *)PLL0CR,
  148. .enable_bit = 0,
  149. };
  150. static struct clk pll1_clk = {
  151. .ops = &pll_clk_ops,
  152. .flags = CLK_ENABLE_ON_INIT,
  153. .parent = &main_clk,
  154. .enable_reg = (void __iomem *)PLL1CR,
  155. .enable_bit = 1,
  156. };
  157. static struct clk pll2_clk = {
  158. .ops = &pll_clk_ops,
  159. .flags = CLK_ENABLE_ON_INIT,
  160. .parent = &main_clk,
  161. .enable_reg = (void __iomem *)PLL2CR,
  162. .enable_bit = 2,
  163. };
  164. static struct clk pll3_clk = {
  165. .ops = &pll_clk_ops,
  166. .flags = CLK_ENABLE_ON_INIT,
  167. .parent = &main_clk,
  168. .enable_reg = (void __iomem *)PLL3CR,
  169. .enable_bit = 3,
  170. };
  171. /* Divide PLL */
  172. static struct clk pll1_div2_clk = {
  173. .ops = &div2_clk_ops,
  174. .parent = &pll1_clk,
  175. };
  176. static struct clk pll1_div7_clk = {
  177. .ops = &div7_clk_ops,
  178. .parent = &pll1_clk,
  179. };
  180. static struct clk pll1_div13_clk = {
  181. .ops = &div13_clk_ops,
  182. .parent = &pll1_clk,
  183. };
  184. /* External input clock */
  185. struct clk sh73a0_extcki_clk = {
  186. };
  187. struct clk sh73a0_extalr_clk = {
  188. };
  189. static struct clk *main_clks[] = {
  190. &r_clk,
  191. &sh73a0_extal1_clk,
  192. &sh73a0_extal2_clk,
  193. &extal1_div2_clk,
  194. &extal2_div2_clk,
  195. &main_clk,
  196. &main_div2_clk,
  197. &pll0_clk,
  198. &pll1_clk,
  199. &pll2_clk,
  200. &pll3_clk,
  201. &pll1_div2_clk,
  202. &pll1_div7_clk,
  203. &pll1_div13_clk,
  204. &sh73a0_extcki_clk,
  205. &sh73a0_extalr_clk,
  206. };
  207. static void div4_kick(struct clk *clk)
  208. {
  209. unsigned long value;
  210. /* set KICK bit in FRQCRB to update hardware setting */
  211. value = __raw_readl(FRQCRB);
  212. value |= (1 << 31);
  213. __raw_writel(value, FRQCRB);
  214. }
  215. static int divisors[] = { 2, 3, 4, 6, 8, 12, 16, 18,
  216. 24, 0, 36, 48, 7 };
  217. static struct clk_div_mult_table div4_div_mult_table = {
  218. .divisors = divisors,
  219. .nr_divisors = ARRAY_SIZE(divisors),
  220. };
  221. static struct clk_div4_table div4_table = {
  222. .div_mult_table = &div4_div_mult_table,
  223. .kick = div4_kick,
  224. };
  225. enum { DIV4_I, DIV4_ZG, DIV4_M3, DIV4_B, DIV4_M1, DIV4_M2,
  226. DIV4_Z, DIV4_ZTR, DIV4_ZT, DIV4_ZX, DIV4_HP, DIV4_NR };
  227. #define DIV4(_reg, _bit, _mask, _flags) \
  228. SH_CLK_DIV4(&pll1_clk, _reg, _bit, _mask, _flags)
  229. static struct clk div4_clks[DIV4_NR] = {
  230. [DIV4_I] = DIV4(FRQCRA, 20, 0xfff, CLK_ENABLE_ON_INIT),
  231. [DIV4_ZG] = DIV4(FRQCRA, 16, 0xbff, CLK_ENABLE_ON_INIT),
  232. [DIV4_M3] = DIV4(FRQCRA, 12, 0xfff, CLK_ENABLE_ON_INIT),
  233. [DIV4_B] = DIV4(FRQCRA, 8, 0xfff, CLK_ENABLE_ON_INIT),
  234. [DIV4_M1] = DIV4(FRQCRA, 4, 0xfff, 0),
  235. [DIV4_M2] = DIV4(FRQCRA, 0, 0xfff, 0),
  236. [DIV4_Z] = DIV4(FRQCRB, 24, 0xbff, 0),
  237. [DIV4_ZTR] = DIV4(FRQCRB, 20, 0xfff, 0),
  238. [DIV4_ZT] = DIV4(FRQCRB, 16, 0xfff, 0),
  239. [DIV4_ZX] = DIV4(FRQCRB, 12, 0xfff, 0),
  240. [DIV4_HP] = DIV4(FRQCRB, 4, 0xfff, 0),
  241. };
  242. enum { DIV6_VCK1, DIV6_VCK2, DIV6_VCK3, DIV6_ZB1,
  243. DIV6_FLCTL, DIV6_SDHI0, DIV6_SDHI1, DIV6_SDHI2,
  244. DIV6_FSIA, DIV6_FSIB, DIV6_SUB,
  245. DIV6_SPUA, DIV6_SPUV, DIV6_MSU,
  246. DIV6_HSI, DIV6_MFG1, DIV6_MFG2,
  247. DIV6_DSIT, DIV6_DSI0P, DIV6_DSI1P,
  248. DIV6_NR };
  249. static struct clk *vck_parent[8] = {
  250. [0] = &pll1_div2_clk,
  251. [1] = &pll2_clk,
  252. [2] = &sh73a0_extcki_clk,
  253. [3] = &sh73a0_extal2_clk,
  254. [4] = &main_div2_clk,
  255. [5] = &sh73a0_extalr_clk,
  256. [6] = &main_clk,
  257. };
  258. static struct clk *pll_parent[4] = {
  259. [0] = &pll1_div2_clk,
  260. [1] = &pll2_clk,
  261. [2] = &pll1_div13_clk,
  262. };
  263. static struct clk *hsi_parent[4] = {
  264. [0] = &pll1_div2_clk,
  265. [1] = &pll2_clk,
  266. [2] = &pll1_div7_clk,
  267. };
  268. static struct clk *pll_extal2_parent[] = {
  269. [0] = &pll1_div2_clk,
  270. [1] = &pll2_clk,
  271. [2] = &sh73a0_extal2_clk,
  272. [3] = &sh73a0_extal2_clk,
  273. };
  274. static struct clk *dsi_parent[8] = {
  275. [0] = &pll1_div2_clk,
  276. [1] = &pll2_clk,
  277. [2] = &main_clk,
  278. [3] = &sh73a0_extal2_clk,
  279. [4] = &sh73a0_extcki_clk,
  280. };
  281. static struct clk div6_clks[DIV6_NR] = {
  282. [DIV6_VCK1] = SH_CLK_DIV6_EXT(VCLKCR1, 0,
  283. vck_parent, ARRAY_SIZE(vck_parent), 12, 3),
  284. [DIV6_VCK2] = SH_CLK_DIV6_EXT(VCLKCR2, 0,
  285. vck_parent, ARRAY_SIZE(vck_parent), 12, 3),
  286. [DIV6_VCK3] = SH_CLK_DIV6_EXT(VCLKCR3, 0,
  287. vck_parent, ARRAY_SIZE(vck_parent), 12, 3),
  288. [DIV6_ZB1] = SH_CLK_DIV6_EXT(ZBCKCR, CLK_ENABLE_ON_INIT,
  289. pll_parent, ARRAY_SIZE(pll_parent), 7, 1),
  290. [DIV6_FLCTL] = SH_CLK_DIV6_EXT(FLCKCR, 0,
  291. pll_parent, ARRAY_SIZE(pll_parent), 7, 1),
  292. [DIV6_SDHI0] = SH_CLK_DIV6_EXT(SD0CKCR, 0,
  293. pll_parent, ARRAY_SIZE(pll_parent), 6, 2),
  294. [DIV6_SDHI1] = SH_CLK_DIV6_EXT(SD1CKCR, 0,
  295. pll_parent, ARRAY_SIZE(pll_parent), 6, 2),
  296. [DIV6_SDHI2] = SH_CLK_DIV6_EXT(SD2CKCR, 0,
  297. pll_parent, ARRAY_SIZE(pll_parent), 6, 2),
  298. [DIV6_FSIA] = SH_CLK_DIV6_EXT(FSIACKCR, 0,
  299. pll_parent, ARRAY_SIZE(pll_parent), 6, 1),
  300. [DIV6_FSIB] = SH_CLK_DIV6_EXT(FSIBCKCR, 0,
  301. pll_parent, ARRAY_SIZE(pll_parent), 6, 1),
  302. [DIV6_SUB] = SH_CLK_DIV6_EXT(SUBCKCR, 0,
  303. pll_extal2_parent, ARRAY_SIZE(pll_extal2_parent), 6, 2),
  304. [DIV6_SPUA] = SH_CLK_DIV6_EXT(SPUACKCR, 0,
  305. pll_extal2_parent, ARRAY_SIZE(pll_extal2_parent), 6, 2),
  306. [DIV6_SPUV] = SH_CLK_DIV6_EXT(SPUVCKCR, 0,
  307. pll_extal2_parent, ARRAY_SIZE(pll_extal2_parent), 6, 2),
  308. [DIV6_MSU] = SH_CLK_DIV6_EXT(MSUCKCR, 0,
  309. pll_parent, ARRAY_SIZE(pll_parent), 7, 1),
  310. [DIV6_HSI] = SH_CLK_DIV6_EXT(HSICKCR, 0,
  311. hsi_parent, ARRAY_SIZE(hsi_parent), 6, 2),
  312. [DIV6_MFG1] = SH_CLK_DIV6_EXT(MFCK1CR, 0,
  313. pll_parent, ARRAY_SIZE(pll_parent), 7, 1),
  314. [DIV6_MFG2] = SH_CLK_DIV6_EXT(MFCK2CR, 0,
  315. pll_parent, ARRAY_SIZE(pll_parent), 7, 1),
  316. [DIV6_DSIT] = SH_CLK_DIV6_EXT(DSITCKCR, 0,
  317. pll_parent, ARRAY_SIZE(pll_parent), 7, 1),
  318. [DIV6_DSI0P] = SH_CLK_DIV6_EXT(DSI0PCKCR, 0,
  319. dsi_parent, ARRAY_SIZE(dsi_parent), 12, 3),
  320. [DIV6_DSI1P] = SH_CLK_DIV6_EXT(DSI1PCKCR, 0,
  321. dsi_parent, ARRAY_SIZE(dsi_parent), 12, 3),
  322. };
  323. enum { MSTP001,
  324. MSTP129, MSTP128, MSTP127, MSTP126, MSTP125, MSTP118, MSTP116, MSTP100,
  325. MSTP219,
  326. MSTP207, MSTP206, MSTP204, MSTP203, MSTP202, MSTP201, MSTP200,
  327. MSTP331, MSTP329, MSTP325, MSTP323, MSTP318,
  328. MSTP314, MSTP313, MSTP312, MSTP311,
  329. MSTP303, MSTP302, MSTP301, MSTP300,
  330. MSTP411, MSTP410, MSTP403,
  331. MSTP_NR };
  332. #define MSTP(_parent, _reg, _bit, _flags) \
  333. SH_CLK_MSTP32(_parent, _reg, _bit, _flags)
  334. static struct clk mstp_clks[MSTP_NR] = {
  335. [MSTP001] = MSTP(&div4_clks[DIV4_HP], SMSTPCR0, 1, 0), /* IIC2 */
  336. [MSTP129] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 29, 0), /* CEU1 */
  337. [MSTP128] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 28, 0), /* CSI2-RX1 */
  338. [MSTP127] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 27, 0), /* CEU0 */
  339. [MSTP126] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 26, 0), /* CSI2-RX0 */
  340. [MSTP125] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR1, 25, 0), /* TMU0 */
  341. [MSTP118] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 18, 0), /* DSITX0 */
  342. [MSTP116] = MSTP(&div4_clks[DIV4_HP], SMSTPCR1, 16, 0), /* IIC0 */
  343. [MSTP100] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 0, 0), /* LCDC0 */
  344. [MSTP219] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 19, 0), /* SCIFA7 */
  345. [MSTP207] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 7, 0), /* SCIFA5 */
  346. [MSTP206] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 6, 0), /* SCIFB */
  347. [MSTP204] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 4, 0), /* SCIFA0 */
  348. [MSTP203] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 3, 0), /* SCIFA1 */
  349. [MSTP202] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 2, 0), /* SCIFA2 */
  350. [MSTP201] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 1, 0), /* SCIFA3 */
  351. [MSTP200] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 0, 0), /* SCIFA4 */
  352. [MSTP331] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR3, 31, 0), /* SCIFA6 */
  353. [MSTP329] = MSTP(&r_clk, SMSTPCR3, 29, 0), /* CMT10 */
  354. [MSTP325] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR3, 25, 0), /* IrDA */
  355. [MSTP323] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 23, 0), /* IIC1 */
  356. [MSTP318] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 18, 0), /* SY-DMAC */
  357. [MSTP314] = MSTP(&div6_clks[DIV6_SDHI0], SMSTPCR3, 14, 0), /* SDHI0 */
  358. [MSTP313] = MSTP(&div6_clks[DIV6_SDHI1], SMSTPCR3, 13, 0), /* SDHI1 */
  359. [MSTP312] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 12, 0), /* MMCIF0 */
  360. [MSTP311] = MSTP(&div6_clks[DIV6_SDHI2], SMSTPCR3, 11, 0), /* SDHI2 */
  361. [MSTP303] = MSTP(&main_div2_clk, SMSTPCR3, 3, 0), /* TPU1 */
  362. [MSTP302] = MSTP(&main_div2_clk, SMSTPCR3, 2, 0), /* TPU2 */
  363. [MSTP301] = MSTP(&main_div2_clk, SMSTPCR3, 1, 0), /* TPU3 */
  364. [MSTP300] = MSTP(&main_div2_clk, SMSTPCR3, 0, 0), /* TPU4 */
  365. [MSTP411] = MSTP(&div4_clks[DIV4_HP], SMSTPCR4, 11, 0), /* IIC3 */
  366. [MSTP410] = MSTP(&div4_clks[DIV4_HP], SMSTPCR4, 10, 0), /* IIC4 */
  367. [MSTP403] = MSTP(&r_clk, SMSTPCR4, 3, 0), /* KEYSC */
  368. };
  369. static struct clk_lookup lookups[] = {
  370. /* main clocks */
  371. CLKDEV_CON_ID("r_clk", &r_clk),
  372. /* DIV6 clocks */
  373. CLKDEV_CON_ID("vck1_clk", &div6_clks[DIV6_VCK1]),
  374. CLKDEV_CON_ID("vck2_clk", &div6_clks[DIV6_VCK2]),
  375. CLKDEV_CON_ID("vck3_clk", &div6_clks[DIV6_VCK3]),
  376. CLKDEV_CON_ID("sdhi0_clk", &div6_clks[DIV6_SDHI0]),
  377. CLKDEV_CON_ID("sdhi1_clk", &div6_clks[DIV6_SDHI1]),
  378. CLKDEV_CON_ID("sdhi2_clk", &div6_clks[DIV6_SDHI2]),
  379. CLKDEV_ICK_ID("dsit_clk", "sh-mipi-dsi.0", &div6_clks[DIV6_DSIT]),
  380. CLKDEV_ICK_ID("dsit_clk", "sh-mipi-dsi.1", &div6_clks[DIV6_DSIT]),
  381. CLKDEV_ICK_ID("dsip_clk", "sh-mipi-dsi.0", &div6_clks[DIV6_DSI0P]),
  382. CLKDEV_ICK_ID("dsip_clk", "sh-mipi-dsi.1", &div6_clks[DIV6_DSI1P]),
  383. /* MSTP32 clocks */
  384. CLKDEV_DEV_ID("i2c-sh_mobile.2", &mstp_clks[MSTP001]), /* I2C2 */
  385. CLKDEV_DEV_ID("sh_mobile_ceu.1", &mstp_clks[MSTP129]), /* CEU1 */
  386. CLKDEV_DEV_ID("sh-mobile-csi2.1", &mstp_clks[MSTP128]), /* CSI2-RX1 */
  387. CLKDEV_DEV_ID("sh_mobile_ceu.0", &mstp_clks[MSTP127]), /* CEU0 */
  388. CLKDEV_DEV_ID("sh-mobile-csi2.0", &mstp_clks[MSTP126]), /* CSI2-RX0 */
  389. CLKDEV_DEV_ID("sh_tmu.0", &mstp_clks[MSTP125]), /* TMU00 */
  390. CLKDEV_DEV_ID("sh_tmu.1", &mstp_clks[MSTP125]), /* TMU01 */
  391. CLKDEV_DEV_ID("sh-mipi-dsi.0", &mstp_clks[MSTP118]), /* DSITX */
  392. CLKDEV_DEV_ID("i2c-sh_mobile.0", &mstp_clks[MSTP116]), /* I2C0 */
  393. CLKDEV_DEV_ID("sh_mobile_lcdc_fb.0", &mstp_clks[MSTP100]), /* LCDC0 */
  394. CLKDEV_DEV_ID("sh-sci.7", &mstp_clks[MSTP219]), /* SCIFA7 */
  395. CLKDEV_DEV_ID("sh-sci.5", &mstp_clks[MSTP207]), /* SCIFA5 */
  396. CLKDEV_DEV_ID("sh-sci.8", &mstp_clks[MSTP206]), /* SCIFB */
  397. CLKDEV_DEV_ID("sh-sci.0", &mstp_clks[MSTP204]), /* SCIFA0 */
  398. CLKDEV_DEV_ID("sh-sci.1", &mstp_clks[MSTP203]), /* SCIFA1 */
  399. CLKDEV_DEV_ID("sh-sci.2", &mstp_clks[MSTP202]), /* SCIFA2 */
  400. CLKDEV_DEV_ID("sh-sci.3", &mstp_clks[MSTP201]), /* SCIFA3 */
  401. CLKDEV_DEV_ID("sh-sci.4", &mstp_clks[MSTP200]), /* SCIFA4 */
  402. CLKDEV_DEV_ID("sh-sci.6", &mstp_clks[MSTP331]), /* SCIFA6 */
  403. CLKDEV_DEV_ID("sh_cmt.10", &mstp_clks[MSTP329]), /* CMT10 */
  404. CLKDEV_DEV_ID("sh_irda.0", &mstp_clks[MSTP325]), /* IrDA */
  405. CLKDEV_DEV_ID("i2c-sh_mobile.1", &mstp_clks[MSTP323]), /* I2C1 */
  406. CLKDEV_DEV_ID("sh-dma-engine.0", &mstp_clks[MSTP318]), /* SY-DMAC */
  407. CLKDEV_DEV_ID("sh_mobile_sdhi.0", &mstp_clks[MSTP314]), /* SDHI0 */
  408. CLKDEV_DEV_ID("sh_mobile_sdhi.1", &mstp_clks[MSTP313]), /* SDHI1 */
  409. CLKDEV_DEV_ID("sh_mmcif.0", &mstp_clks[MSTP312]), /* MMCIF0 */
  410. CLKDEV_DEV_ID("sh_mobile_sdhi.2", &mstp_clks[MSTP311]), /* SDHI2 */
  411. CLKDEV_DEV_ID("leds-renesas-tpu.12", &mstp_clks[MSTP303]), /* TPU1 */
  412. CLKDEV_DEV_ID("leds-renesas-tpu.21", &mstp_clks[MSTP302]), /* TPU2 */
  413. CLKDEV_DEV_ID("leds-renesas-tpu.30", &mstp_clks[MSTP301]), /* TPU3 */
  414. CLKDEV_DEV_ID("leds-renesas-tpu.41", &mstp_clks[MSTP300]), /* TPU4 */
  415. CLKDEV_DEV_ID("i2c-sh_mobile.3", &mstp_clks[MSTP411]), /* I2C3 */
  416. CLKDEV_DEV_ID("i2c-sh_mobile.4", &mstp_clks[MSTP410]), /* I2C4 */
  417. CLKDEV_DEV_ID("sh_keysc.0", &mstp_clks[MSTP403]), /* KEYSC */
  418. };
  419. void __init sh73a0_clock_init(void)
  420. {
  421. int k, ret = 0;
  422. /* Set SDHI clocks to a known state */
  423. __raw_writel(0x108, SD0CKCR);
  424. __raw_writel(0x108, SD1CKCR);
  425. __raw_writel(0x108, SD2CKCR);
  426. /* detect main clock parent */
  427. switch ((__raw_readl(CKSCR) >> 28) & 0x03) {
  428. case 0:
  429. main_clk.parent = &sh73a0_extal1_clk;
  430. break;
  431. case 1:
  432. main_clk.parent = &extal1_div2_clk;
  433. break;
  434. case 2:
  435. main_clk.parent = &sh73a0_extal2_clk;
  436. break;
  437. case 3:
  438. main_clk.parent = &extal2_div2_clk;
  439. break;
  440. }
  441. for (k = 0; !ret && (k < ARRAY_SIZE(main_clks)); k++)
  442. ret = clk_register(main_clks[k]);
  443. if (!ret)
  444. ret = sh_clk_div4_register(div4_clks, DIV4_NR, &div4_table);
  445. if (!ret)
  446. ret = sh_clk_div6_reparent_register(div6_clks, DIV6_NR);
  447. if (!ret)
  448. ret = sh_clk_mstp32_register(mstp_clks, MSTP_NR);
  449. clkdev_add_table(lookups, ARRAY_SIZE(lookups));
  450. if (!ret)
  451. clk_init();
  452. else
  453. panic("failed to setup sh73a0 clocks\n");
  454. }